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ABSTRACT

Accurately understanding the interior structure of extrasolar planets is critical for inferring their formation and
evolution. The internal density distribution of a planet has a direct effect on the star-planet orbit through the
gravitational quadrupole field created by the rotational and tidal bulges. These quadrupoles induce apsidal
precession that is proportional to the planetary Love number (k2p, twice the apsidal motion constant), a bulk
physical characteristic of the planet that depends on the internal density distribution, including the presence
or absence of a massive solid core. We find that the quadrupole of the planetary tidal bulge is the dominant
source of apsidal precession for very hot Jupiters (a � 0.025 AU), exceeding the effects of general relativity
and the stellar quadrupole by more than an order of magnitude. For the shortest-period planets, the planetary
interior induces precession of a few degrees per year. By investigating the full photometric signal of apsidal
precession, we find that changes in transit shapes are much more important than transit timing variations.
With its long baseline of ultra-precise photometry, the space-based Kepler mission can realistically detect
apsidal precession with the accuracy necessary to infer the presence or absence of a massive core in very
hot Jupiters with orbital eccentricities as low as e � 0.003. The signal due to k2p creates unique transit
light-curve variations that are generally not degenerate with other parameters or phenomena. We discuss the
plausibility of measuring k2p in an effort to directly constrain the interior properties of extrasolar planets.
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1. INTRODUCTION

Whether studying planets within our solar system or planets
orbiting other stars, understanding planetary interiors represents
our best strategy for determining their bulk composition, internal
dynamics, and formation histories. For our closest neighbors, we
have had the luxury of sending spacecraft to accurately measure
the higher-order gravity fields of these objects, yielding invalu-
able constraints on their interior density distributions. Using
these observations, we have been able, for instance, to infer the
presence of large cores, providing support for the core-accretion
theory of planet formation (Guillot 2005). The study of planets
outside our solar system, however, has necessitated the devel-
opment and usage of more indirect techniques. Nevertheless,
as the number of well-characterized extrasolar planets grows,
we gain more clues that help us answer the most fundamental
questions about how planets form and evolve.

Guided by our current understanding of planetary physics,
we have begun to study the interiors of extrasolar planets. This
endeavor has been dominated by a model-based approach, in
which the mass and radius of a planet are measured using radial
velocity and transit photometry observations, and the interior
properties are inferred by finding the model most consistent
with those two observations. This strategy clearly requires a
set of assumptions, not the least of which is that the physical
processes at work in extrasolar planets are just like those that we
understand for our own giant planets. While it does seem that this
approach is adequate for explaining most of the known transiting
planets, there does exist a group of planets for which the usual set
of assumptions are not capable of reproducing the observations
(e.g., Guillot et al. 2006; Burrows et al. 2007). These are the
planets with so-called positive radius anomalies, including the
first-discovered transiting planet HD 209458b (Charbonneau
et al. 2000). Though most of these planets can be explained by

1 Both authors contributed equally to this work.

adjusting different pieces of the interior physics in the models
(including opacities, equations of state, and heat deposition), it
is currently impossible to discern which combination of these
possible explanations is actually responsible for their observed
sizes (Guillot et al. 2006).

Additional uncertainties also exist for planets at the other end
of the size spectrum. For the group of undersized extrasolar
planets, such as HD 149026b, the canonical approach is to give
the planet a massive highly condensed core of heavy elements
in order to match the observed radius. This approach also
provides a first-order estimate of the planet’s bulk composition,
in terms of its fraction of heavy elements. There is also the added
complication of how the assumed state of differentiation affects
the inferred composition and predicted structure (Baraffe et al.
2008).

Currently, the most promising approach to modeling the
distinctive features of extrasolar planet interiors is to study the
known transiting planets as an ensemble. The group can be
used either to develop a single consistent model that reproduces
all the observations (e.g., Guillot et al. 2006) or to showcase
the possible diversity in model parameters (e.g., opacities, as
in Burrows et al. 2007). Surely, a model-independent measure
of interior structure would be valuable in order to begin
disentangling otherwise unconstrained physics.

The idea of obtaining direct structural measurements for
distant objects is by no means a new one. For decades, the
interiors of eclipsing binary stars have been measured by
observing “apsidal motion,” i.e., precession of the orbit due to
the nonpoint-mass component of the gravitational field (Russell
1928; Cowling 1938; Sterne 1939a, 1939b). The signal of the
changing orbit is encoded in the light curves of these systems
by altering the timing of the primary and secondary eclipses.
From these eclipse times, it is straightforward to determine the
so-called apsidal motion constant which then constrains the
allowed interior density distributions. Interior measurements
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inferred from apsidal precession were among the first indications
that stars were highly centrally condensed. While it seems
nonintuitive, we show in this paper that we can use a similar
technique to measure the interior properties of very hot Jupiters.
Most surprisingly, the interior structure signal for very hot
Jupiters actually dominates over the signal from the star, yielding
an unambiguous determination of planetary interior properties.

Our theoretical analysis is also extended to full simulated
photometry in order to explore the observability of apsidal
precession. We show that this precession is observable by
measuring the subtle variations in transit light curves. The
photometric analysis is focused on the data expected from
NASA’s Kepler mission, which successfully launched on 2009
March 6 (Borucki et al. 2003; Koch et al. 2006). Kepler will
obtain exquisite photometry on ∼100,000 stars, of which about
30 are expected to host hot Jupiters with periods less than three
days (Beatty & Gaudi 2008). Kepler has the potential to measure
the gravitational quadrupoles of very hot Jupiters through the
technique described below. If successful, this will constitute a
major step toward an understanding of the diversity of planetary
interiors.

In Section 2, we describe the background theory that connects
interior structure and orbital dynamics and explore which
effects are most important. Section 3 applies this theory to
the observable changes in the transit photometry, including full
Kepler simulated light curves. We show in Section 4 that the
signal due to the planetary interior has a unique signature.
Other methods for inferring planetary interior properties are
discussed in Section 5. The final section discusses the important
conclusions of our work.

2. BACKGROUND THEORY

2.1. Coordinate System and Notation

The internal structure of very hot Jupiters can be determined
by observing changes in the planet’s orbit. These changes can be
described in terms of two general types of precession. Apsidal
precession refers to rotation of the orbital ellipse within the
plane of the orbit. It is characterized by circulation of the line
of apsides, which lies along the major axis of the orbit. Nodal
precession, on the other hand, occurs out of the plane of the
orbit and refers to the orbit normal precessing about the total
angular momentum vector of the system. For typical very hot
Jupiter systems with no other planets, apsidal precession has
a much stronger observable signal than nodal precession (see
Section 4.1), so we focus our discussion on the simpler case of
a fixed orbital plane.

As is typical for non-Keplerian orbits, the star-planet orbit is
described using osculating orbital elements that change in time.
We identify the plane of the sky as the reference plane and orient
the coordinate axes in the usual way such that the sky lies in
the x–z plane with the y-axis pointing at Earth. The intersection
of the orbital plane and the reference plane is called the line of
nodes, but without directly resolving the system, there is no way
to determine the orientation of the line of nodes with respect to
astronomical North; thus, the longitude of the ascending node,
Ω, cannot be determined. Given this degeneracy, we simplify the
description by orienting the z-axis to lie within the plane spanned
by the orbit normal and the line of sight. The angle between the
line of sight and the orbit normal is i, the inclination. The x-axis
is in the plane of the sky and is the reference line from which the
argument of periapse (ω) is measured (in the standard counter-
clockwise sense). For this choice of coordinates, the argument

of periapse and longitude of periapse (� ) are equivalent. Given
this coordinate system, transit centers occur when the planet
crosses the y–z plane; this point lies 90◦ past the reference x-
axis, and thus primary transits occur when the true anomaly, f,
satisfies ftr + ωtr ≡ 90◦, where the subscript tr indicates the
value at transit center.2

Throughout this paper, we refer to parameters of the star
(mass, radius, etc.) with subscripts of “∗” and parameters
of the planet with subscripts of “p.” For evaluation of vari-
ous equations, we will take as fiducial values the mass ratio
Mp/M∗ = 10−3, the radius ratio Rp/R∗ = 0.1 (though some
low-density planets have radius ratios greater than 1/6), and
the semimajor axis in stellar radii a/R∗ = 6, typical for very
hot Jupiters, which we define as planets with semimajor axes
a � 0.025 AU (see Table 1).3 In this definition, we deviate
from Beatty & Gaudi (2008), who define very hot Jupiters as
planets with periods less than three days. These authors esti-
mate that Kepler will find ∼30 such planets, of which ∼16 will
be brighter than V = 14 (T. Beatty 2009, private communica-
tion). Since our definition is more stringent, our technique will
be applicable to fewer Kepler planets.

2.2. Rotational and Tidal Potentials

It is well known from classical mechanics, that if stars and
planets are considered to be purely spherical masses, then they
will obey a simple r−2 force law and, hence, execute closed
elliptical orbits. Nonspherical mass effects are caused by the
application of external potential(s): the centrifugal potential
of spinning bodies causes rotational flattening and the tidal
potential of a nearby mass raises tidal bulges. Rotational and
tidal bulges create gravitational quadrupole fields (r−3) that lead
to orbital precession.

The complex subject of how planets4 respond to applied
potentials is encapsulated in the so-called theory of figures
(Zharkov & Trubitsyn 1978). As long as the distortions are
small, we can simplify the problem by ignoring the small
interaction terms between the tidal and rotational potentials;
in this paper, we thus restrict ourselves to the first-order theory,
where the two planetary responses simply add. Even in the linear
case, the way the fluid planet responds depends on the full
radial density structure of the planet. The planetary response
is conveniently captured in a single variable k2p, using the
definition

V ind
2 (Rp) ≡ k2pV

app
2 (Rp), (1)

where k2p is the Love number of the planet, which is just a
constant of proportionality between the applied second-degree
potential field V

app
2 and the resulting field that it induces V ind

2
at the surface of the planet. Due to the orthogonality of the
Legendre polynomials used to express the gravity field, if the
planet is responding to a second-degree harmonic field, then
only the second-degree harmonic of the planet’s gravity field
is altered, to first-order. Thus, k2p is a measure of how the
redistribution of mass caused by the applied potential actually
affects the external gravity field of the planet. In the stellar
literature, the symbol k2 is used for the apsidal motion constant,

2 In elliptical orbits, if the inclination is not 90◦, the photometric minima do
not exactly coincide with the planetary conjunctions. See Kopal (1959), p. 388
and Section 3.3 below.
3 Throughout this work, we do not distinguish between Mtot and M∗, since
Mp � M∗.
4 For clarity, in these sections we focus on the planetary shape, though the
derivations are also valid for stars.
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which is half of the secular/fluid Love number that we use
throughout this paper (Sterne 1939a).

The Love number k2 is an extremely useful parameterization,
as it hides the complex interactions of a planet and an applied
potential in just a single number. The process of calculating
k2 of a fluid object (such as stars and gas giants) from the
interior density distribution is fairly straightforward and outlined
in several places (e.g., Sterne 1939a; Kopal 1959). Objects with
most of their mass near their cores, like stars, have very low k2
values (∼0.03 for main sequence solar-like stars, Claret 1995)
since the distorted outer envelope has little mass and therefore
little effect on the gravity field. Planets have much flatter
density distributions, and thus distortions of their relatively
more massive outer envelopes greatly affect the gravity field.
At the upper extreme lies a uniform density sphere, which has
k2 = 3/2. In this way, k2 can be thought of as a measure of the
level of central condensation of an object, with stronger central
condensation corresponding to smaller k2.

By examining the variations in k2 for giant planets within
our own solar system, we can gain a feel for its expected
values and how sensitive it is to internal structure. The n = 1
polytrope is commonly used to approximate the density structure
of (cold) gas giant planets; it has k2 ≈ 0.52 (Kopal 1959).
This can be compared to the value determined from the gravity
measurements of Jupiter, where k2J � 0.49. Even though
Jupiter may have a 10 Earth mass core, it is small in comparison
to Jupiter’s total mass, and thus it has minor effect on the value
of k2. Saturn, on the other hand, has a roughly 20 Earth mass
core and is less than 1/3 of Jupiter’s mass. As a result, the
presence of Saturn’s core is easily seen in the value of its Love
number k2S ≈ 0.32. From this, we can see that planets with
and without significant cores differ in k2p by about ∼ 0.1. This
can also be inferred from Barnes & Fortney (2003) by using the
Darwin–Radau relation to convert the moment of inertia factor
to k2. Furthermore, Bodenheimer et al. (2001) list the moment
of inertia factors of various planet models of HD 209458 b and
τ Bootis b, which correspond to a range of k2p values from ∼0.1
to ∼0.6.

Current methods for inferring the internal structures of ex-
trasolar planets combine measurements of the mass and radius
with a model to obtain estimates of the planet’s implied com-
position and core size. Unfortunately, these models require one
to make assumptions about the degree of differentiation, among
other things (Baraffe et al. 2008). A good measurement of k2p,
however, reveals important independent structure information,
which can break the degeneracies between bulk composition
and the state of differentiation. Given such a wide range of po-
tential k2p values, even an imprecise measurement of k2p will
be extremely valuable for understanding extrasolar planets. By
measuring the k2p values for extrasolar planets, we can also un-
cover constraints on the density structure that are independent of
the measurement of the planetary radius. This new information
may allow us to probe the unknown physics responsible for the
currently unexplained radius anomalies.

2.2.1. Induced External Gravity Field

The internal structures of planets in our own solar system are
most readily characterized by the zonal harmonics of the planet’s
gravity field, e.g., J2, J4. It is these high-order harmonics that are
directly measured by spacecraft flybys. To better understand the
connection between the two, we can relate the k2 formulation
to J2 by writing out the expression for the induced potential
at the surface of the planet in Equation (1) in terms of the

definition of J2, yielding k2pV
app

2 (Rp) = −J2
GMp

Rp
P2(cos θ ),

where P2 is the usual Legendre polynomial and θ is the planetary
colatitude (Murray & Dermott 1999). We can use this equation
to obtain expressions for the J2 field induced by both rotation
and tides (discussed in more detail below). The relation relies
on dimensionless constants which compare the strength of the
acceleration due to gravity with that of the rotational and tidal
potentials:

qr = ν2
pR3

p

GMp

and qt = −3

(
Rp

r

)3 (
M∗
Mp

)
, (2)

where νp is the angular spin frequency of the planet. For the
case where the spin axis and tidal bulge axis are perpendicular
(i.e., zero obliquity), the relationship between J2 and k2 is, to
first order,

J2 = k2

3

(
qr − qt

2

)
. (3)

Note that qt is a function of the instantaneous orbital separation r,
and is thus constantly changing in an eccentric orbit in response
to the changing tidal potential. Hence, J2 for eccentric extrasolar
planets is a complex function of time. This is why it is more
sensible to analyze the orbital precession in terms of k2, which
is a fixed intrinsic property of the planet, rather than J2.

As very hot Jupiters are expected to be synchronously locked
(denoted by s) with small eccentricities, it can easily be shown
that qs

t ≈ −3qr , which simplifies Equation (3) yielding

J s
2p � 5

6
k2pqr � 5

6
k2p

(
M∗
Mp

) (
Rp

a

)3

. (4)

Using a moderate value of k2p = 0.3, the J2 of very hot Jupiters
reaches as high as 5 ×10−3, about half of the measured J2 of
Jupiter and Saturn.

2.3. Apsidal Precession

The quadrupole field created by rotational and tidal potentials
discussed above induces precession of the star-planet orbit.
Both Jupiter and Saturn have rather significant quadrupoles,
dominated entirely by their sizeable rotational bulges resulting
from rapid rotation periods of less than 10 hr. In contrast,
very hot Jupiters are expected to be synchronously rotating,
and thus their spin periods are longer by a factor of a few.
Since the rotational bulge size goes as the square of the spin
frequency, very hot Jupiters should have rotational bulges that
are at least an order of magnitude smaller than Jupiter and
Saturn, inducing only tiny quadrupole fields. These extrasolar
planets are extremely close to their parent stars, however, with
semimajor axes of only ∼6 stellar radii. Very hot Jupiters
are thus expected to have large tidal bulges which are shown
below to dominate the quadrupole field and resulting apsidal
precession.

2.3.1. Precession Induced by Tidal Bulges

The orbital effect of tidal bulges is complicated by their
continuously changing size. While tidal bulges always point
directly5 at the tide-raising object, their size is a function of

5 We can ignore the lag due to dissipation, which has an angle of only
Q−1

p � 10−5 for giant planets (Goldreich & Soter 1966; Murray & Dermott
1999).
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orbital distance. Since the height of the tidal bulge depends
on the actual separation between the objects, the second-
order gravitational potential is time varying in eccentric orbits.
Accounting for this dependence (which cannot be captured by
using a fixed J2) is critical, as illustrated by Sterne (1939a). The
dominant tidal perturbation to the external gravity field of the
planet, evaluated at the position of the star, is a second-order
potential:

Vtid(r) = 1

2
k2GM∗R5

pr−6. (5)

The apsidal precession due to the tidal bulge, including the
effect of both the star and the planet, is (Sterne 1939a; Eggleton
& Kiseleva-Eggleton 2001)

ω̇tidal = ω̇tidal,∗ + ω̇tidal,p

= 15

2
k2∗

(
R∗
a

)5
Mp

M∗
f2(e)n

+
15

2
k2p

(
Rp

a

)5
M∗
Mp

f2(e)n, (6)

where n is the mean motion and f2(e) is an eccentricity function:

f2(e) = (1 − e2)−5

(
1 +

3

2
e2 +

1

8
e4

)

≈ 1 +
13

2
e2 +

181

8
e4 + · · · . (7)

Note that the factor of 15 does not appear for stationary rota-
tional bulges, as detailed below, and comes through Lagrange’s
planetary equations from the higher dependence on radial sep-
aration (r−6) in the tidal potential. For this reason, tidal bulges
are much more important in producing apsidal precession.

Furthermore, the main factor of importance to extrasolar
planets is the mass ratio, which comes in because the height
of the tide is proportional to the mass of the tide-raising body.
Consider the ratio of the planetary and stellar effects:

ω̇tidal,p

ω̇tidal,∗
= k2p

k2∗

(
Rp

R∗

)5 (
M∗
Mp

)2

� 100. (8)

For tidal bulges, the apsidal motion due to the planet clearly
dominates over the contribution of the star. Even though the
planet’s radius is smaller than the star’s by a factor of ten,
the star is so much more massive than the planet that it raises a
huge tidal bulge, which consequently alters the star-planet orbit.
The benefit provided by the inverse square of the small mass
ratio is compounded by the order of magnitude increase in k2 of
the planet over the star.

2.3.2. Precession Induced by Rotational Bulges

The quadrupolar gravitational field due to the planetary
rotational bulge, evaluated at the star’s position, is

Vrot(r) = 1

3
k2ν

2
pR5

pr−3P2(cos αp), (9)

where αp is the planetary obliquity, the angle between the orbit
normal and the planetary spin axis. Sterne (1939a) assumes zero
obliquity and calculates the secular effect of this perturbation on
the osculating Keplerian elements. This final result, including

the effect of both the star and the planet, is6

ω̇rot = ω̇rot,∗ + ω̇rot,p

= k2∗
2

(
R∗
a

)5
ν2

∗a
3

GM∗
g2(e)n

+
k2p

2

(
Rp

a

)5 ν2
pa3

GMp

g2(e)n, (10)

where g2(e) is another eccentricity function:

g2(e) = (1 − e2)−2 ≈ 1 + 2e2 + 3e4 + · · · . (11)

Evaluating the importance of this effect requires an under-
standing of the spin states of very hot Jupiters and their stars.
The rotation and spin pole orientation of very hot Jupiters should
be tidally damped on timescales � 1 Myr (e.g., Dobbs-Dixon
et al. 2004; Ferraz-Mello et al. 2008). We therefore assume that
all planets have reached the psuedosynchronous rotation rate
derived by Hut (1981). The rotation rate of the star is usually
much slower since the tidal stellar spin-up timescale is much
longer than ∼1 Gyr (Fabrycky et al. 2007).

If both the star and the planet were spinning synchronously,
the stellar and planetary rotational bulges would have compara-
ble contributions to apsidal precession. However, since the tidal
bulge of the planet is a much more important effect, we find
that even fast-spinning stars have a very weak contribution to
apsidal precession.

2.3.3. Total Apsidal Precession

The other major contributor to the apsidal precession in
extrasolar planetary systems is general relativity. The anomalous
apsidal advance of Mercury’s orbit due to its motion near the
massive Sun was one of the first confirmations of general
relativity. This same apsidal advance is prevalent in very hot
Jupiter systems and has been shown to be possibly detectable
through long-term transit timing (Miralda-Escudé 2002; Heyl
& Gladman 2007; Pál & Kocsis 2008; Jordan & Bakos 2008).
The relativistic advance is given (to lowest order) by

ω̇GR = 3GM∗n
ac2(1 − e2)

. (12)

One additional effect for nonsynchronous planets is due
to thermal tides (Arras & Socrates 2009), which create a
bulge on the planet due to temperature-dependent expansion
of an unevenly radiated upper atmosphere. The thermal tidal
bulge is very small in mass and is not expected to provide a
significant contribution to apsidal precession (P. Arras 2009,
private communication) and is thus neglected.

Since we are considering only the lowest-order effects, all the
apsidal precession rates (rotational/tidal for the star/planet and
general relativity) simply add to give the total apsidal precession
(roughly in order of importance for very hot Jupiters):

ω̇tot = ω̇tid,p + ω̇GR + ω̇rot,p + ω̇rot,∗ + ω̇tid,∗. (13)

6 The full equation, including arbitrary obliquities, is given by Kopal (1978),
Equation (V.3.18) (see also Sterne 1939a; Eggleton & Kiseleva-Eggleton
2001). Also recall that, unlike these authors, we use the symbol k2 to represent
the Love number, which is twice the apsidal motion constant called k2 in
eclipsing binary literature.
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We are ignoring the small cross-terms (geodetic precession,
quadrupole–quadrupole coupling, Lense-Thirring effect, nuta-
tion, etc.) for the purposes of this paper as higher-order correc-
tions.

Calculating each of these contributions to the precession
shows that for very hot Jupiters, the dominant term in the
total apsidal precession is due to the planetary tidal bulge. For
the known transiting planets, the fraction of apsidal precession
due to the planet is calculated and illustrated in Figure 1. The
precession due to the interiors of very hot Jupiters towers over
the other effects. General relativity, the next largest effect, is
∼10 times slower than the precession caused by the planetary
tidal bulge.

The apsidal precession rate of very hot Jupiters due solely to
the interior structure of the planet is

ω̇p ≈ 3.26 × 10−10 rad/sec ×
(

k2p

0.3

) (
M∗
M


)3/2

×
(

Mp

MJ

)−1 (
Rp

RJ

)5 ( a

0.025 AU

)−13/2
, (14)

which explains why low density very close-in Jupiters are
the prime targets for measuring apsidal precession. For these
planets, the precession rate can reach a few degrees per year.

The precession due to the planet has generally been neglected
in extrasolar planet transit timing work to date (Miralda-Escudé
2002; Heyl & Gladman 2007), which has considered stellar
oblateness or general relativity to be the dominant effects (in
the absence of other planets) though Jordan & Bakos (2008)
have also pointed out that ω̇tidal,p can be an important source
of apsidal precession. We find that the planetary quadrupole is
usually 1–2 orders of magnitude more important than effects
previously considered for single very hot Jupiters. Hence,
measuring apsidal precession essentially gives ω̇tid,p which is
directly proportional to k2p, implying that transit light-curve
variations due to apsidal precession can directly probe the
interiors of extrasolar planets.

2.4. Modification of the Mean Motion

Non-Keplerian potentials also modify the mean motion, n,
and cause a small deviation from Kepler’s third law. Including
the effects described above, the non-Keplerian mean motion, n′,
is (dropping second-order corrections)

n′ = n

(
1 + ε − 3GM∗

2ac2

)
, (15)

where ε is defined as

ε = k2∗
2

qr,∗

(
R∗
a

)2

+
k2p

2
qr,p

(
Rp

a

)2

+ 3k2∗
Mp

Mtot

(
R∗
a

)5

+ 3k2p

M∗
Mp

(
Rp

a

)5

(16)

and n2 ≡ GMtot
a3 . The general relativistic correction to the mean

motion is from Soffel (1989). (Throughout this paper, except
where noted, the difference between n′ and n is ignored as a
higher-order correction.)

As with apsidal precession, the planetary quadrupole is more
important than the stellar quadrupole by about two orders of
magnitude. At the largest, the correction to the mean motion
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Figure 1. Fraction of apsidal precession due to the planetary quadrupole. The
points show the planetary fraction of the total apsidal precession calculated for
the known transiting extrasolar planets with properties taken from J. Schneider’s
ExtraSolar Planet Encyclopedia (http://www.exoplanet.eu), assuming the planet
has a typical Love number of k2p = 0.3 (e.g., Saturn-like). The apsidal
precession induced by the tidal and rotational bulges of the planet overcomes
precession due to general relativity and the star, especially for short-period
planets. The “error bars” show the range of planetary contributions for a 5%
variation in stellar masses (and hence ω̇GR) and the comparatively smaller
effect of varying the stellar Love number and rotation rate over all reasonable
values. The five cases where the planetary contribution to apsidal precession
is most important (boxed) also have the shortest precession periods: WASP-
12b, CoRoT-1b, OGLE-TR-56b, WASP-4b, and TrES-3b would fully precess
in about 18, 71, 116, 120, and 171 yr, respectively. The planet in the lower left
is CoRoT-7, a super-Earth planet whose planetary contribution to precession is
small because of its small radius. Transiting planets with periods longer than six
days all had planetary contributions less than 0.15. In all cases, the dominant
signal in apsidal precession of very hot Jupiters is k2p , which is determined
by their internal density distribution and is a powerful probe into their interior
structure.

is a few times 10−5. Iorio (2006) used the fact that quadrupole
moments cause deviations to Kepler’s third law to attempt to
derive the J2 of the star HD 209458 (the quadrupole of the
planet was incorrectly ignored).

However, as Iorio (2006) found, this method is feasible only
if you know the masses and semimajor axes of the orbit a
priori or independently from Kepler’s law. Since the error in
stellar masses (from radial velocities and evolutionary codes)
is usually 3%–10% (e.g., Torres et al. 2008), the propagated
error on k2p would be a few times greater than the highest
k2p expected, making this method impractical. It has been
proposed that the stellar mass and semimajor axis can be
precisely and independently measured via the light-travel time
effect described by Loeb (2005). In practice, however, the
light-travel time effect is highly degenerate with the unknown
transit epoch and/or the orbital eccentricity. We find that a
precise independent measurement of M∗ from light-travel time
is impractical even with the excellent photometry of Kepler.7

2.5. Expectations for Planetary Eccentricities

Thus far, we have quantified how planetary interiors affect
the orbit through precession. The photometric observability

7 We do note that detailed observations of multiple-planet systems can yield
mass estimates of each of the bodies independently. Kepler asteroseismology
can also provide independent information about stellar mass and other
properties (Kjeldsen et al. 2009).

http://www.exoplanet.eu
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of this apsidal precession is highly dependent on the current
orbital eccentricity (e). Small eccentricities are the largest
limitation to using transit light curves to probe extrasolar
planet interiors. Indeed, if eccentricities are very low, measuring
apsidal precession from transit light curves may not be possible
for any of the Kepler planets.

Nearly all hot Jupiters have eccentricities consistent with zero,
though the radial velocity technique has difficulty putting 3-σ
upper limits on eccentricities smaller than 0.05 (Laughlin et al.
2005). So far, the strongest constraints are placed by comparing
the deviation of the secondary transit time from half the orbital
period, which are related by (e.g., Charbonneau et al. 2005)

e cos ω � π

2Porb

(
tsec − tprim − Porb

2

)
. (17)

Similarly, by measuring the primary and secondary transit
durations (ΘI and ΘII ), an additional constraint can be placed
on e sin ω. The equation commonly quoted in the extrasolar
planet literature (Kallrath et al. 1999; Charbonneau 2003; Winn
et al. 2006) has a sign error; the correct equation is derived by
Kopal (1959), p. 391:

e sin ω = ΘII − ΘI

ΘII + ΘI

α2 − cos2 i

α2 − 2 cos2 i
, (18)

where α ≡ R∗+Rp

a
√

1−e2 . The accuracy of this measurement is
typically smaller than for e cos ω, but we include this equation
to note that there is information about both the eccentricity and
its orientation in the full transit light curve (see also Bakos et al.
2009).

Combining secondary transit timing information with radial
velocity and Rossiter–McLaughlin measurements to help con-
strain ω, Winn et al. (2005) found that the best-fit eccentricity
for HD 209458 was ∼0.015. Though Winn et al. (2005) ar-
gue that the actual eccentricity is probably less than 0.01, it is
not necessarily 0 (Mardling 2007). Recently, Joshi et al. (2008)
revealed WASP-14b, a young massive hot Jupiter with an ec-
centricity of 0.1; WASP-10b and WASP-12b also appear to be
eccentric (Christian et al. 2009; Hebb et al. 2009), though these
eccentricities may be spurious or overestimated.

The most accurate eccentricity constraint is a detection by
Knutson et al. (2007a) for the very hot Jupiter HD189733b.
They observed continuously and at high cadence (0.4 s) with the
Spitzer space telescope and measured a secondary timing offset
corresponding to e cos ω = 0.001 ± 0.0002, a 5-σ result that
they could not explain by any other means. (Preliminary analysis
of additional data for this planet by Agol et al. 2009 indicates
e cos ω = 0.0002 ± 0.0001.) The constraint on e sin ω is much
weaker. A nonzero eccentricity of e � 0.003 for hot Jupiters is,
therefore, consistent with every measurement available in the
literature, though the actual values of eccentricities at the 10−3

level are essentially unconstrained.
In the absence of excitation, the current eccentricities of

these planets depend on the initial eccentricity and the rate
of eccentricity decay. Extrapolating from planets in our solar
system (Goldreich & Soter 1966) implies short circularization
timescales of � 10 Myr, though recent studies have shown that
using a fixed eccentricity-damping timescale is an inappropriate
simplification of the full tidal evolution (e.g., Jackson et al.
2008; Levrard et al. 2009; Rodriguez & Ferraz-Mello 2009).
Even an analysis using the full tidal evolution equations cannot
give a compelling case for the present-day eccentricities of

these planets, since there are essentially no direct constraints
on the tidal dissipation parameter for the planet, Qp. Various
estimates show that Qp for exoplanets is not known and may
be quite large (e.g., Matsumura et al. 2008), implying that
nonzero eccentricities are not impossible. Even so, we stress
that the best candidates for observing apsidal precession are
also those planets that have the fastest eccentricity damping,
since the damping timescale and apsidal precession rates are
both proportional to Mp/M∗(a/Rp)5. Hence, those planets
which have the fastest precession rates will also have the
lowest eccentricities. The first step in determining if this trade-
off allows for apsidal precession to be measured by Kepler
data is to apply the techniques described in this paper to the
data themselves. Furthermore, with the discovery and long-
term characterization of more planets using ground and space-
based observations, the detectability of apsidal precession will
increase dramatically.

We should note that there are several mechanisms that can
excite eccentricities and compete with or overwhelm tidal dissi-
pation. The most prevalent is assumed to be eccentricity pump-
ing by an additional companion (Peale et al. 1979; Bodenheimer
et al. 2001; Adams & Laughlin 2006). Even very small (Earth
mass or less) companions in certain orbits can provide signifi-
cant eccentricity excitation (Mardling 2007). (In this case, how-
ever, our single-planet method for estimating k2p would need to
be modified considerably.) Tidal dissipation in rapidly rotating
stars tends to increase the eccentricity, potentially prolonging
circularization in some systems (Ferraz-Mello et al. 2008). Very
distant inclined companions (e.g., a planet orbiting a star in a
misaligned binary star system) can induce Kozai oscillations
that impart very large eccentricities on secular timescales (e.g.,
Fabrycky & Tremaine 2007). Arras & Socrates (2009) pro-
posed that thermal tides can significantly affect the orbital and
rotational properties of extrasolar planets, though their conclu-
sions appear to be overestimated (Goodman 2009; Gu & Ogilvie
2009). Finally, recent (not necessarily primordial) dynamical
instabilities in the planetary system can also be responsible for
generating eccentricity which simply has not damped away yet
(Ford et al. 2005; Gomes et al. 2005; Chatterjee et al. 2008;
Thommes et al. 2008). We, therefore, continue our analysis un-
der the possibility that some very hot Jupiters may have nonzero
eccentricities.

3. TRANSIT LIGHT CURVES OF APSIDAL PRECESSION

Previous studies of transit light-curve variability due to non-
Keplerian perturbations have focused almost exclusively on
transit timing. In contrast, we model the full photometric light
curve in order to estimate the detectability of k2p. This will
automatically include the effect of changing transit durations,
which are very useful for detecting apsidal precession (Pál &
Kocsis 2008; Jordan & Bakos 2008). In addition, using full
photometry can provide a more direct and realistic estimate of
the detectability of k2p. Of course, the drawback is additional
computational cost, though we found this to be manageable,
requiring less than 20 s to generate the ∼ 2 million photometric
measurements expected from Kepler’s 1-minute cadence over
3.5 years.

3.1. Our Transit Light-Curve Model

Determining the photometric light curve of a transiting system
requires knowing the relative positions of the star and the planet
at all times. These can be calculated by describing the motion
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of the planet with time-varying osculating orbital elements.
When describing the motion of the planet using instantaneous
orbital elements, it is usually customary to ignore the periodic
terms by averaging, as in Sterne (1939a), and calculate only
the secular terms. These small periodic terms describe how the
orbital elements change within a single orbit as a function of the
true anomaly, f, due to the non-Keplerian potential. In precessing
systems, the value of the true anomaly at central transit, ftr ≡
90◦ − ωtr, changes subtly from one transit to the next, inducing
slow variations in the osculating orbital elements at transit.
Therefore, we include in our model the dominant periodic
changes in orbital elements as a function of orbital phase, using
Mtr ≈ ftr as an appropriate approximation for low eccentricities.
Using a direct integration (described in Section 4.1), we verified
that ignoring these periodic variations can cause nonnegligible
systematic errors in determining transit times. The periodic
changes are derived from the same disturbing potentials used
above. We follow the method of Kozai (1959) for calculating
osculating elements from mean elements, and assume zero
obliquity. The correction is similar to the correction to the mean
motion, which is also applied in our model. The correction
to the semimajor axis, eccentricity, longitude of periapse, and
mean anomaly are aosc = amean + 2ae

1−e2 ε cos M ≈ 2aeε cos M ,
eosc = emean + ε(1 − cos M), ωosc = ωmean + ε

e
sin M , and

Mosc = Mmean − ε
e

sin M, where ε is defined in Equation (16).
General relativistic periodic corrections are also added; these are
taken from Soffel (1989), p. 92 (with α = 0, β = γ = 1). Using
our direct integrator (described below), we verified that these
corrections reproduced the actual orbit to sufficient accuracy for
this analysis as long as e  ε ∼ 10−5. Other corrections are
higher order in small parameters and are ignored.

Our model uses these corrected elements to generate astrocen-
tric Cartesian coordinates for a specific system inclination and,
for completeness, also includes the effect of light-travel time
(Loeb 2005) though we concur with Jordan & Bakos (2008) and
Pál & Kocsis (2008) that the light-travel time change due to ω̇
is unimportant. The positions are then translated to photometric
light curves using the quadratic limb-darkening code8 described
by Mandel & Agol (2002). Kepler data will have enough signal-
to-noise (S/N) ratio to justify using nonlinear limb-darkening
laws (Knutson et al. 2007b), but we do not expect that this
simplification will significantly alter our conclusions.

In addition, we include the photometry of the secondary
eclipse. As suggested by López-Morales & Seager (2007), very
hot Jupiters can reach temperatures exceeding 2000 K, where
their blackbody emission at optical wavelengths is detectable
by Kepler. This thermal emission is added to the reflected light
of the planet, which appears to be small based on the low upper
limit of the albedo of HD 209458b and TrES-3 measured by
Rowe et al. (2008) and Winn et al. (2008), respectively. We find
that in Kepler’s observing bandpass of 430–890 nm (Koch et al.
2006), thermal emission of very hot Jupiters can dominate over
the weak reflected light. We estimate the depth of the secondary
eclipse (dsec) in our simulated Kepler data by assuming that
1% of the light is reflected and the other 99% absorbed and
reemitted as processed thermal blackbody emission from the
entire planetary surface (day and night sides). To be conservative
and to account for unmodeled nonblackbody effects, we divide
the resulting planet/star flux ratio by 2 (Hood et al. 2008);
the resulting depth of around 2 × 10−4 is consistent with the
lower values of Burrows et al. (2008), the tentative measurement

8 Available at http://www.astro.washington.edu/ agol∼transit.tar.gz.

of the thermal emission from CoRoT-2b (Alonso et al. 2009),
and the detection of secondary eclipse emission from OGLE-
TR-56b (Sing & López-Morales 2009). We note that the best
candidates for detecting k2p are those with small semimajor
axes and large radii; these same planets have relatively large
dsec values (Table 1). Secondary eclipses are very useful for
determining e and ω. We will also find that they can be important
for observing apsidal precession.

Our model generates accurate photometry for an extrasolar
planet undergoing apsidal precession. Several other small pho-
tometric effects have been discussed in the literature, which
we do not include. Most of these effects are periodic (e.g., the
reflected light curve) and therefore will not affect the long-
term trend of precession. Care will need to be taken to ensure
that slow changes due to parallax and proper motion, which
should be quite small for relatively distant stars observed by
Kepler (Rafikov 2008; Scharf 2007) or changes in the stellar
photosphere (Loeb 2009), are not significant. Non-Gaussian as-
trophysical noise of the star and other systematic noise should
degrade the accuracy with which k2p can be measured compared
to our ideal photometry. The long-term variability of the star can
be interpolated away or modeled (Lanza et al. 2009), though it
is not clear how short-term variability will affect transit light
curves at Kepler’s level of precision. On the other hand, compli-
mentary observations (e.g., warm Spitzer, HST, radial velocities,
and James Webb Space Telescope (JWST)) should only enhance
our understanding of the systems studied.

3.2. Accuracy of k2p Measurement

With an accurate photometric model of apsidal precession,
one could estimate the measurement accuracy of k2p from
Kepler data by carrying out a full Monte Carlo study of the
inversion problem, going from realistic synthetic photometric
data sets to a determination of all system parameters. In this
work, instead, we carry out a much simpler calculation which
cannot provide strict 1-σ error estimates like the Monte Carlo
analysis, but does give an indication of how well k2p can be
resolved given a large data set.

We obtain this accuracy estimate by comparing a realistic
precessing photometric model with k2p �= 0 to a base model
with k2p = 0. The base model is still undergoing very slow
apsidal precession, induced by general relativity and k2∗. We
calculate the effect of a nonzero k2p value by subtracting the
precessing model from the base model (see Figures 2 and 4).
Then, by calculating the root sum square of the residual signal
and comparing it to the photometric error on a single data point,
we obtain a numerical measure of the relative signal induced by
k2p. The S/N for the data set is therefore given by

S

N
∼

√∑
i

(
yi − y0

i

)2

σ
, (19)

where yi and y0
i are the photometry model values for the k2p test

model and the base model, respectively, and σ is the photometric
error. We use σ = 1000 parts per million (ppm) flux per 1 min
integration, corresponding to the expected noise of Kepler on
a faint V = 14 star (Koch et al. 2006). Of the 30 planets with
periods less than three days, 16 are expected to be brighter
than V � 14 (T. Beatty 2009, private communication), and
we can reasonably expect some fraction of these to have orbits
comparable to the planets modeled here.

Since our residual signal changes as a function of time, this is
not a true signal-to-noise calculation; the distribution of values

http://www.astro.washington.edu/ agol~transit.tar.gz.
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Figure 2. Photometric difference signal from k2p . As described in the text, we
use the difference between two theoretical light curves in the transit photometry
to assess the observability of apsidal precession by Kepler. For WASP-4b at
ω = 0◦, e = 0.003, and a central impact parameter, the difference between a
model with k2p = 0 and k2p = 0.146 would yield an effective S/N of 1 on
a moderately bright star (V = 14). Shown is this difference signal; the root
sum of squares of the signal is equal to 1000 ppm, the expected photometric
accuracy of Kepler for a 1 min observation (Koch et al. 2006). The trends seen
in the figure are illustrated in Figure 3 by considering excerpts of single primary
transits from the regions labeled 1–5.

in time matters for a proper interpretation, but any distribution
would yield the same effective S/N, and thus this construction
is not capturing all of the details. Even so, it does provide a
useful and reasonable rough estimate for detectability. In order to
identify the resolution on the k2p measurement, we search for the
value of k2p which yields an S/N of 1. This is reasonable since
it represents the threshold value of k2p, below which planetary-
induced precession cannot be distinguished in the data with the
given errors. The threshold k2p value can also be loosely thought
of as an estimate of the 1-σ expected errors.

This is a realistic estimate only insofar as the residual signal
(yi − y0

i ) is due only to k2p and cannot be absorbed by any
other parameters. Hence, we seek to choose other parameters
so as to minimize the residuals without changing k2p. For most
system parameters, this is accomplished by referencing the time
to the center of the data set, and thus the difference between the
signals grows similarly forward and backward in time as seen
in Figures 2–5. The transit shapes in both models are equivalent
at the center of the data set, as would be expected in an analysis
of actual data.

Additionally, a major effect from changing the precession
period is to alter the observed average period. When analyzing
actual data, this would just be absorbed into a small adjustment
to the (unknown) stellar mass, thereby adjusting the period to
absorb much of the k2p signal. It is, therefore, important to
correct for the average period change to avoid significantly
overestimating the signal due to k2p. Additionally, there is a
similar, though less severe, effect for the epoch of the first
transit, which is also adjusted to best absorb the signal. This
is achieved by using an analytic expression for the transit
times (see Equation (22)) which match the transit times of the
photometric model to very high accuracy. By fitting a line to
these times, we can determine the average period and epoch
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Figure 3. Excerpts of photometric difference signal. Examining excerpts of the
residual signal shown fully in Figure 2, the effects of both transit timing and
“transit shaping” can be seen. The five excerpts are offset for clarity. Transit
timing has an asymmetric signal (dotted lines), obtained when subtracting two
transit curves slightly offset in time. Transit shaping, which is mostly due to
changing transit duration, creates a symmetric signal (dashed lines). The total
difference signal (solid lines) is dominated by the effect of transit shaping,
which has ∼30 times more signal than transit timing alone (see explanation
in the text). Both effects are maximized at the beginning (1) and end (5), as
expected for a signal that increases with longer baseline. The maximal signal
occurs during ingress and egress, when the light curve changes the fastest. The
transit shapes are equivalent at the center (3) by construction. The transit timing
anomaly of precession is quadratic, which, when fitted with a best-fit straight
line corresponding to a nonprecessing signal, yields two intersections when
transit timing is minimized (2,4). The transit timing offset at the beginning and
end is only 0.085 s, while the center is offset by −0.042 s.

that absorb the degenerate portions of the k2p signal, leaving
behind the residual only due to k2p. We have not explicitly
accounted for degeneracies between the signal from k2p and
the other parameters, such as the radius, limb darkening, and
system inclination, but since k2p induces a time-varying signal
while these other parameters are generally constant, there is
little expected signal absorption from these parameters.

The only major drawback of this approach is that it does not
allow the eccentricity state of the system to change. With real
data, the eccentricity and precession phase are not known in
advance, and thus must be found by inversion. As detailed in
Section 2.5, eccentricity and orbital orientation are primarily
constrained by comparing primary and secondary transit pairs,
and thus proper inversion is greatly aided by accurate obser-
vations in wavelengths more favorable to secondary transit ob-
servations, obtained by Spitzer, HST, or from the ground (e.g.,
Knutson et al. 2007a; Swain et al. 2008; Gillon et al. 2008). We
also find that binned and folded Kepler data have comparable
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Figure 4. Photometric difference signal from k2p . Similar to Figure 2, but for
ω = 90◦. This figure is dominated by the photometric difference between
secondary transits slightly offset in time. At ω = 90◦ the changes in the
primary transits due to precession are small, except far away from the central
time. At this orientation, the primary–secondary timing offset (Equation (17))
is maximized. This “secondary transit timing” signal is weaker than the signal
from primary transit as the secondary transit depth is much shallower. Therefore,
an unreasonably high k2p of 0.925 is required to detect the apsidal precession.
Excerpts of single secondary transits taken from regions labeled 1–5 are shown
in Figure 5.

sensitivity to a single Spitzer observation for characterizing the
secondary eclipses of very hot Jupiters. In any case, our assess-
ment of the threshold k2p assumes that the eccentricity of the
system is very well known, which will likely require additional
supporting observations.

3.3. Comparison to Expected Signal

The residual light curves calculated for each planet
(Figures 2–5) match the theoretical expectations of the apsi-
dal precession signal (Miralda-Escudé 2002; Heyl & Gladman
2007; Pál & Kocsis 2008; Jordan & Bakos 2008). To inter-
pret the results of our analysis, it will be useful to briefly re-
view the major components of the apsidal precession signal:
changes in the times of primary transits, changes in the shape
of primary transits, and changes in the primary–secondary off-
set times (Miralda-Escudé 2002; Heyl & Gladman 2007; Pál &
Kocsis 2008; Jordan & Bakos 2008).

The primary transit times, TN , due to apsidal precession,
are well described by a sinusoid for very low eccentricities
(e � 0.1):

TN = T0 + NPobs +
ePobs

π
(cos ωtr,N − cos ωtr,0)], (20)

where T0 is the epoch of the first transit, ωtr,N ≡ ω̇(TN − T0) +
ωtr,0 is the argument of periapse for the Nth transit, and Pobs is
the observed period between successive transits, which deviates
from the actual orbital period since the orbit has precessed
a small amount between transits (Batten 1973). For small
eccentricities, the amplitude of the transit timing variations due
to k2p is

ePobs

π
� 119 s ×

( e

0.003

) ( a

0.025 AU

)3/2
(

M∗
M


)−1/2

. (21)
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Figure 5. Excerpts of photometric difference signal. Similar to Figure 3, but
for ω = 90◦. Single secondary transit differences are excised from the full
difference signal shown in Figure 4. The shape of the curves is due to the
subtraction of two secondary transits slightly offset in time. Since the secondary
transits are complete occultations, they are flat-bottomed and lack the additional
structure due to limb darkening seen in Figure 3. By construction, the offset
grows in time away from the center (3) of the signal and attains a maximum
at the beginning (1) and end (5). Curves 2 and 4 are shown for comparison to
Figure 3.

Given that individual transit times can be measured with
accuracies of only a few seconds, even tiny eccentricities
e � 10−5 can induce detectable transit timing variations on
precessional timescales (∼ ω̇−1).

For our analysis, we extended Equation (20) to fifth order in
eccentricity allowing accurate determination of transit times for
eccentricities up to of order 0.1. We also require a correction for
the effect of a noncentral impact parameter (i < 90◦, e > 0).
For an inclined eccentric orbit, the apparent path of the planet
across the stellar disk is curved. At orientations where the line of
sight is not along the major axis of the ellipse, the curved path is
also asymmetric. Therefore, the times of photometric minima,
TN , do not correspond exactly to the times of conjunction
(when the planet crosses the y–z plane and ftr ≡ 90◦ − ωtr).
We follow the correction from Equation (VI.9-21) of Kopal
(1959), who find that at photometric minimum, ftr = 90◦ −ω′

tr,
where ω′

tr ≡ ωtr + e cos ωtr cot2(i)(1 − e sin ωtr csc2(i)); in this
corrective term, it is only required to keep terms up to second
order in eccentricity. Assuming that i and ω̇ are both held
constant, it can be shown that

TN = T0 + NPobs

+
Pobs

π

[
e(cos ω′

tr,N − cos ω′
tr,0)
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+
3

8
e2(sin 2ω′

tr,N − sin 2ω′
tr,0)

+
1

6
e3(cos 3ω′

tr,N − cos 3ω′
tr,0)

+ e4
( 1

16
(sin 2ω′

tr,N − sin 2ω′
tr,0)

− 5

64
(sin 4ω′

tr,N − sin 4ω′
tr,0)

)
+ e5

( 1

16
(cos 3ω′

tr,N − cos 3ω′
tr,0)

− 3

80
(cos 5ω′

tr,N − cos 5ω′
tr,0)

)]
. (22)

This transcendental equation is solved iteratively for (TN − T0)
to obtain the transit times and has been tested thoroughly against
the empirical determination of transit times calculated by our
light-curve model described above.

The expected apsidal precession periods (including small
contributions from GR and the star) for WASP-12b, CoRoT-
1b, OGLE-TR-56b, WASP-4b, and TrES-3b are around 18, 71,
116, 120, and 171 yr, respectively. In other words, they have
precession rates induced by the planetary tidal bulge of a few
degrees per year, compared to a few degrees per century as the
fastest general relativistic precession (Jordan & Bakos 2008).
We caution that if Rp/a for WASP-12b is overestimated due
to imprecise data (e.g., Winn et al. 2007), then the precession
period would increase accordingly.

Even with such fast precession rates, the duration of observa-
tions will generally be much shorter than the precession period.
In addition, as discussed above, the linear timing anomalies will
be absorbed into the effective period as a small change in the un-
known stellar mass (Heyl & Gladman 2007; Pál & Kocsis 2008;
Jordan & Bakos 2008). Therefore, detection of apsidal preces-
sion from primary transit times alone will require a significant
detection of the curvature over a small portion of a long-period
sinusoid. Since the curvature in Equation (20) is maximal at
ω ≈ 0, 180◦, these orientations have the best primary transit
timing signal. Even at these orientations, detecting k2p from
primary transit times alone is difficult, since it can be shown
that the signal strength is proportional to eω̇2, due to the need
to detect curvature (Heyl & Gladman 2007).

When the observational baseline is much shorter than the
decades-long precession period, utilizing the changing shape
of the transits can significantly improve detectability of apsidal
precession (Pál & Kocsis 2008; Jordan & Bakos 2008). Transit
shapes are primarily determined by the orbital speed at transit ḟtr
and impact parameter b, both of which depend on the precession
phase ωtr. For small eccentricities, the orbital angular speed
at transit is given simply by ḟtr � n(1 + 2e cos ωtr). Changes
in the impact parameter are somewhat more subtle, since b is
given by rtr cos i/R∗, where rtr � a(1 − e2)/(1 + e sin ωtr) is the
star-planet separation. Hence, the apparent impact parameter
of the planet can change for noncentral transits, even when
the orbital plane remains fixed. The evolving transit shape of
precessing orbits is determined by variations in both orbital
speed and impact parameter. Simplifying the effect of transit
shape by considering only the variations in transit duration as
a function of ωtr, Pál & Kocsis (2008) and Jordan & Bakos
(2008) find that these two effects are of comparable magnitude.
These authors also show analytically that the two effects exactly
cancel when b = 1/

√
2. At this impact parameter, the transit

duration stays constant throughout apsidal precession. The full
photometric transit shape, however, still changes detectably in
a precessing orbit, though the magnitude of signal is reduced
(Figure 7).

The expected effect of changing transit shapes is fully
consistent with the photometric difference signals calculated by
our model (Figures 2 and 3). Indeed, our model shows that transit
shaping dominates the signal by a factor of �30 (Figure 3). We
can also see that changes in the transit shape are maximized at
orientations near ω ≈ 0, 180◦ (as expected from Equation (18)).

For small eccentricities, the transit-shaping signal strength is
given by S/N ∝ eω̇ ∝ ek2p. Therefore, when transit shaping
dominates the observable signal, we should find that searching
for the threshold k2p value that yields S/N = 1 results in
a power-law relationship between threshold k2p and e, such
that k2p ∝ e−1. By solving for threshold k2p for eccentricities
from 0.001 to 0.1, we find, as expected, that threshold k2p very
closely follows a power law in eccentricity with a slope of −1
for all planets. This power-law relationship can be written as
ek2p = C, where C is a constant calculated from our model that
depends on the planetary, orbital, and stellar parameters of the
system.

At ω ≈ 90, 270◦, transit timing and transit-shaping effects are
much weaker and are rather ineffective at constraining apsidal
precession. At these orientations (when the Earth’s line of sight
is nearly aligned with the major axis of the orbit), another
photometric signal emerges: variations in the difference between
the times of primary and secondary transits. The changing
orientation of the orbital ellipse causes a variation in the
offset between primary and secondary transit times following
Equation (17) (Heyl & Gladman 2007; Jordan & Bakos 2008).
These authors show that the strength of this signal is also
proportional to eω̇, and we find that the variation in threshold
k2p also follows k2p ∝ e−1.

The photometric difference signal at ω = 90◦ is shown in
Figures 4 and 5. Using the method described in Section 2
to remove degeneracies almost eliminates the primary transit
signal entirely, as expected, and the secondary transit offset
becomes the more powerful signal. For WASP-12b, with an
expected Kepler secondary transit depth of ∼1830 ppm, the
threshold k2p is actually lower at ω = 90◦ (Figure 6). For the
other planets, the secondaries are not as important.

Our estimates of threshold k2p at ω = 90◦ are based
on the unknown secondary transit depth (dsec) in the Kepler
bandpass (though our estimates of dsec are consistent with all
the measurements in the literature to date). Furthermore, we
find that S/N ∝ dsec, so that deeper secondary transits improve
the accuracy with which k2p can be measured. It is important to
note that combining Kepler primary transit times with precise
secondary transit times measured in the near-infrared (e.g., by
warm Spitzer, HST, or JWST) is a very powerful way to constrain
apsidal precession (Heyl & Gladman 2007) for any orientation.
Even a few high-precision secondary eclipse observations are
enough to lower the value of threshold k2p from our predictions,
especially when ω ≈ 90, 270◦.

By construction, threshold k2p values vary linearly with the
assumed photometric error σ = 0.001×100.2(V −14). In addition,
reperforming our analysis using a six-year long Kepler mission
improved threshold k2p values by a common factor of ∼2.2.

3.4. Results for Specific Planets

Using the method described above, we have determined the
threshold k2p for the most favorable known transiting planets
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Figure 6. Eccentricities needed to detect interior properties from apsidal precession. The best-known planets for detecting k2p precession are analogs to the hot Jupiters
WASP-12b, WASP-4b, CoRoT-1b, OGLE-TR-56b, TrES-3b, HAT-P-7b, TrES-2b, and WASP-14b. Assuming that analogs to these planets exist in the Kepler field
around a V = 14 magnitude star, the above graph shows the eccentricities required to detect k2p . Black symbols correspond to calculations with ω = 0◦ and gray
symbols correspond to ω = 90◦; in both cases, b = 0. Apsidal precession is much easier to detect for larger eccentricities, so increasing e decreases the detectable k2p .
Using our transit light-curve model, we found that threshold k2p values followed a power law k2p ∝ e−1 (for low eccentricities), which is consistent with the analytical
estimates that S/N ∝ eω̇ ∝ ek2p (see Section 2). Interpolating (and sometimes extrapolating) on this power-law relationship, the graph identified the eccentricities
required of these analog planets to detect precession due to a “typical” planetary interior of k2p = 0.3 (triangles). For example, when e = 0.00026 and ω = 0◦,
the apsidal precession due to an analog of WASP-12b should be just detectable by Kepler. A higher eccentricity (shown in Table 1) would be needed to measure
k2p with sufficient accuracy (0.1) to distinguish between a massive core and a core-less model (circles). Systematic errors are expected to become important once
the measurement error on k2p reaches as low as 0.01 (squares). If any of the very hot Jupiters discovered by Kepler have comparable eccentricities, the long-term
high-precision photometry would allow for a powerful probe into their interior structure. HAT-P-7b and TrES-2b are known to lie in the Kepler observing field, but
the values above are not corrected for improved photometric accuracy obtainable on these bright stars. Note that the eccentricities shown above and in Table 1 are
computed for S/N = 1; 3-σ measurements require eccentricities three times as high.
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Figure 7. Effect of impact parameter on precession signal. The detectability of
apsidal precession depends on the impact parameter (b) of the orbital track across
the star. For ω = 0◦ (solid), the signal of primary transits is most important,
with transit shaping playing the largest role (see Figure 3). However, the strength
of transit shaping is a function of impact parameter with the minimum effect
analytically estimated by Jordan & Bakos (2008) and Pál & Kocsis (2008) to
be b = 1/

√
2 (the vertical solid line). Using a full photometric model, we

see the expected decrease in the shaping signal (i.e., requiring a larger k2p to
reach S/N = 1). Note that the signal is nearly maximal, with small threshold k2p

values, for a large range of impact parameters. When ω = 90◦ (dotted), the effect
of primary transits is minimal and the offset in secondary transits becomes the
determining factor (see Figure 4). At high impact parameters secondary eclipses
are grazing, reducing the observable signal. We also show the threshold k2p for
an orientation of ω = 45◦, which lies, as expected, between the two extremes.
The values of threshold k2p shown are for a V = 14 CoRoT-1b analog in the
Kepler field with an eccentricity of 0.003.

as analogs for the very hot Jupiters to be discovered by Kepler.
The threshold k2p for each planet was computed at a range
of eccentricities from 0.001 to 0.1 and for ω = 0◦ and
ω = 90◦. Using the relationship discussed above (k2p ∝ e−1),
we interpolated (and sometimes extrapolated) our calculations
to determine the eccentricity required to reach threshold k2p

values of 0.3, 0.1, and 0.01. These results are summarized in
Figure 6 and Table 1.

WASP-12b is the best candidate for observing apsidal pre-
cession. With an eccentricity of e � 0.00026 and k2p = 0.3, the
apsidal precession would have an effective S/N of ∼1 for all of
Kepler data. If e is ∼0.001, then k2p can be well characterized
and not just detected. As the difference in k2 between Jupiter and
Saturn of ∼ 0.15 is primarily due to the presence of a massive
core, a resolution in k2p of 0.1 is enough to detect whether or
not the planet has a core at the ∼1-σ level.

Although WASP-12b does not lie in the Kepler field, it
clearly stands out as an excellent candidate for observing apsidal
precession. Though the putative eccentricity of 0.049 (Hebb
et al. 2009) is probably an overestimate (Laughlin et al. 2005),
if it were real, it would cause sinusoidal transit timing deviations
with an amplitude of ∼25 min (using Equation (20)) and a period
of ∼18 yr. Such a large deviation would be readily observed from
the ground in either transit times or transit shapes. If apsidal
precession is not observed, tight upper limits on the eccentricity
can be established.

Analogs to the very hot Jupiters WASP-4b, TrES-3b, CoRoT-
1b, and OGLE-TR-56b are good candidates for observing
apsidal precession if the eccentricities are above ∼0.003. (Note
that CoRoT-1b has only ∼30 days of observations from the
CoRoT satellite (Barge et al. 2008), which is insufficient to
observe any of the effects discussed in this paper.) These planets
have precession periods of around 100 yr so that the argument
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Table 1
Extrasolar System Parameters and Results

Planet Analog M∗ R∗ Mp Rp a dsec
b ω̇tot e (Threshold

k2p = 0.1)c
Threshold Ṗ d Threshold Q∗d Ref

M
 R
 MJ RJ
a AU ppm ◦/yr ω = 0◦ ω = 90◦ ms yr−1

WASP-12b 1.35 1.57 1.41 1.79 0.0229 1830 19.9 0.0008 0.0004 0.95 92700 1
CoRoT-1b 0.95 1.11 1.03 1.55 0.0245 314 4.96 0.0028 0.0085 0.93 12500 2,3
WASP-4b 0.92 0.91 1.24 1.36 0.0234 109 2.91 0.0047 0.0394 0.68 9900 4
TrES-3b 0.93 0.83 1.91 1.34 0.0228 106 2.04 0.0062 0.0614 0.53 13700 5
OGLE-TR-56b 1.17 1.32 1.29 1.30 0.0236 451 3.00 0.0077 0.0096 1.36 24700 6
HAT-P-7 b 1.47 1.84 1.77 1.36 0.0377 176 0.25 0.2085 0.3146 6.73 2800 7
TrES-2 b 0.98 1.00 1.19 1.22 0.0367 18 0.13 0.2102 . . . 2.94 350 8
WASP-14b 1.21 1.31 7.34 1.28 0.0360 144 0.09 0.8352e . . . 3.92 5400 9
XO-3 b 1.21 1.37 11.8 1.22 0.0454 46 0.04 . . . . . . 8.00 1700 10
HAT-P-11b 0.81 0.75 0.081 0.42 0.0530 0.2 0.01 . . . . . . 29.2 0.1 11
CoRoT-7b 0.91 1.02 0.028 0.16 0.0170 8 0.29 . . . . . . 16.8 80 12

References. (1) Hebb et al. (2009); (2) Bean (2009); (3) Barge et al. (2008); (4) Winn et al. (2009a); (5) Sozzetti et al. (2009); (6) Pont et al. (2007b); (7) Pál
et al. (2009); (8) Holman et al. (2007); (9) Joshi et al. (2009); (10) Johns-Krull et al. (2008); (11) Bakos et al. (2009); (12) www.exoplanet.euf .
Notes. These system parameters were used to estimate the detectability of apsidal precession for these very hot Jupiter systems. The derivation of the values
in the remaining columns is described in the text and in the footnotes below. For all systems, k2∗ = 0.03 and quadratic limb-darkening parameters u1 = 0.35
and u2 = 0.4 (appropriate for Kepler’s bandpass) were used (Mandel & Agol 2002). For reference, the measured eccentricities of WASP-12b, WASP-14b,
HAT-P-11b, and XO-3b are 0.049 ± 0.015, 0.091 ± 0.003, 0.198 ± 0.046, and 0.2884 ± 0.0035, respectively. Other planets have unmeasured eccentricities
or eccentricity upper limits of �0.05. A discussion of these results is provided in Section 3.4.
a We use RJ ≡ 71492 km, the equatorial radius at 1 bar.
b The estimated depth of the secondary transit in Kepler’s bandpass (see Section 3.1).
c The eccentricity required (at two different values of ω) so that a k2p difference of 0.1 has an effective S/N of 1 in all of Kepler data for a V = 14 star,
corresponding to a photometric accuracy of 1000 ppm min−1. If analogs to these planets were found by Kepler with the given eccentricities, the internal density
distribution would be measured well enough to detect the presence of a large core (see Section 3.2). These values correspond to the circles in Figure 6. These
results are for central transits (for b > 0, see Figure 7).
d The value of the change in period, Ṗ , that can be detected with an S/N of 1 in all of Kepler data for a V = 14 star (see Section 4.2). The value of threshold
Q∗ is an estimate of the maximum value of the stellar tidal dissipation parameter, Q∗, assuming that the period decay is entirely due to tidal evolution of the
planet. Lower values of Q∗ are detectable by Kepler. Stars are thought to have time-averaged Q∗ values around 10000, though this value is highly uncertain
and could be much higher for individual stars.
e Even with the precision of Kepler, apsidal precession for these planets is undetectable. The extrapolation used to compute eccentricities at specific values of
threshold k2p assumes the inverse relationship discussed in the text k2p ∝ e−1, which is only true for low eccentricities.
f This ultra-short period low-mass planet was recently announced by the CoRoT team, but has not been published in a peer-reviewed journal. We take the
parameters from J. Schneider’s Extra-Solar Planets Encyclopedia and use the mass–radius relation for terrestrial super-Earths of Sotin et al. (2007) to estimate
the mass as ∼9 Earth masses (rather than using the quoted upper limit of 17 Earth masses).

of periapse of these planets changes by ∼10◦ during the course
of Kepler observations. Though none of these planets lie in the
Kepler field, they are all good candidates for observing apsidal
precession through precision photometry.

WASP-14b is more massive and has a larger semimajor axis
(0.035 instead of 0.025) which is enough to significantly reduce
the detectability of apsidal precession which only proceeds at
0◦.1 yr−1. Unlike the previously mentioned planets, WASP-14b
has a known nonzero eccentricity of 0.091 ± 0.003 (Joshi et al.
2009). Thus, the amplitude of transit timing variations is known
to be very large (∼97 min), but with a ∼3400 yr precession
period.

CoRoT-7b is a very hot super-Earth and has the shortest
known orbital period (excepting the ultra-short period planets
of Sahu et al. 2006). We included this planet in our analy-
sis to get a feel for the plausibility of detecting the interior
structure of terrestrial extrasolar planets. The small radius re-
duces the planetary contribution to apsidal precession (Figure 1)
and significantly reduces the photometric signal. We note here
that in bodies where material strength (rigidity) is more impor-
tant than self-gravity, k2p is no longer directly related to internal
density distribution. The correction factor is typically small for
bodies larger than the Earth (Murray & Dermott 1999).

XO-3b is a supermassive eccentric planet that is not in the
Kepler field. Even so, it is interesting to note that, using the

known eccentricity e = 0.2884 ± 0.0035 (Winn et al. 2009b)
and accounting for the brightness of the host star (V = 9.8),
the Kepler threshold k2p is reduced to only 0.54. As pointed
out by Jordan & Bakos (2008) and Pál & Kocsis (2008),
XO-3b is a good candidate for observing apsidal precession
within the next decade or so. Furthermore, as discussed below,
the nonzero obliquity of the stellar spin axis (Winn et al.
2009b) may also result in an observable signal due to nodal
precession.

HAT-P-7b and HAT-P-11b are orbiting bright stars in the
Kepler field. The latter is an eccentric hot Neptune with
a relatively large semimajor axis resulting in no eminently
detectable apsidal precession. HAT-P-7b, on the other hand, is
a good candidate for detecting apsidal precession. It is probably
one of the brightest hot Jupiters in the Kepler field, orbiting
a V = 10.5 star. The system brightness improves the expected
photometric accuracy from 1000 ppm min−1 to 200 ppm min−1,
implying that an eccentricity of only 0.014 is needed to detect
apsidal precession (threshold k2p = 0.3). Pál et al. (2009)
report a best-fit eccentricity of 0.003 ± 0.012, indicating that
the necessary eccentricity cannot be ruled out. Furthermore,
this planet has transiting data extending back to 2004 and was
observed by NASA’s EPOXI mission in 2008 (Christiansen
et al. 2009; D. Deming 2009, private communication). This
additional baseline, though sparsely sampled, may provide the

file:www.exoplanet.eu
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additional leverage needed to detect apsidal precession if the
eccentricity is nonzero. Note, however, that detecting changes
in transit shapes is more difficult when the observations are
made with a variety of telescopes because transit shapes depend
on the observing filter used, due to wavelength-dependent limb
darkening.

TrES-2b is similar to HAT-P-7b in that it also lies in the
Kepler field, has observations dating to 2005, and was observed
by NASA’s EPOXI mission. TrES-2b is somewhat fainter
than HAT-P-7b (V = 11.4), and, correcting for the system
brightness, an eccentricity of 0.021 would result in detectable
apsidal precession (threshold k2p = 0.3). Observations of the
secondary eclipse show no detectable deviations of the orbit
from circularity (O’Donovan et al. 2009). Even so, the light
curve of this planet is quite sensitive to perturbations as it has
a quite high impact parameter b = 0.854. Accounting for this
impact parameter does not significantly change the required
eccentricity.

We conclude that Kepler may detect the cores of very hot
Jupiters and probe their interior structure through their evolving
transit light curve if eccentricities are above ∼0.003. As future
observations provide longer baselines for these observations,
the sensitivity to interior structure measurements will increase
dramatically, significantly lowering the eccentricity needed to
observe apsidal precession.

In cases where apsidal precession is not observed, the data can
set strong upper limits on planetary eccentricities. An upper limit
on the eccentricity can be inferred by assuming that the planet
has the minimal physically plausible value of k2p ≈ 0.1. Null
detections of apsidal motion should, therefore, provide upper
limits on eccentricity comparable to the values shown in Table 1
(also shown by circles in Figure 6). Such strong eccentricity
constraints are valuable for improving our understanding of
these close-in planets.

4. POTENTIAL CONFUSION OF THE APSIDAL
PRECESSION SIGNAL

In the above, we have assumed that measuring ω̇ is tantamount
to measuring k2p. This is justified by noting that the conversion
ω̇ to k2p involves only factors that are very well characterized.
In Section 2 and Figure 1, we showed that k2p is usually
the dominant source of apsidal precession. The effects of k2∗
and general relativity are well-understood and can typically
be subtracted away without introducing serious uncertainty,
even when they dominate the apsidal precession rate. From
Equation (6), converting the remaining ω̇p to k2p requires only
knowing Mp/M∗, e, Rp/a, and n. The latter two are very
accurately measured with even a few transit light curves (e.g.,
Torres et al. 2008; Southworth 2008). The eccentricity only
enters the equation through the f2(e) and g2(e) eccentricity
functions (Equations (7) and (11)), and Kepler observations
of secondary eclipse are sufficiently accurate to remove any
systematic error due to these terms unless the eccentricity is large
(e � 0.3). Determining the mass ratio requires well-sampled
radial velocity observations. The systems detected by Kepler
are bright enough to get good mass measurements, especially
since very hot Jupiters have large radial velocity amplitudes
(K ∼ 200 m s−1).9 The anticipated error in the mass ratio

9 Other than determining the mass ratio and constraining the eccentricity,
radial velocity information is thought to have a negligible contribution in
constraining apsidal precession, unless a serious observational campaign can
measure the radial velocity period (independently of transits) to subsecond
accuracies (Heyl & Gladman 2007; Jordan & Bakos 2008).

is a few percent (Torres et al. 2008). In all, we estimate that
converting from ω̇ to k2p leads to a typical systematic error on
k2p of around ∼.01. This is a relatively small systematic effect
in comparison to the potential range (∼0.5) of k2p values. For
reference, the eccentricity required to reach a threshold k2p of
0.01 is shown in Figure 6 by squares.

Another way to introduce systematic errors on the measure-
ment of k2p is to misinterpret similar transit light-curve vari-
ations. To ensure that the method outlined in this paper truly
probes the interiors of extrasolar planets, we consider in this
section whether the transit light curve resulting from apsidal
precession can be confused with any other common circum-
stances. Although a very specific combination of parameters is
required for any particular phenomenon to successfully mimic a
signal due to k2p, the effects given below should be reconsidered
when actual data are available.

4.1. Testing the Effect of Obliquity

If either the star or planet has a nonzero obliquity, the orbital
plane will no longer be fixed as a result of nodal precession.
The obliquities of very hot Jupiters rapidly (� 1 MYr) decay
to a Cassini state, and recent work has shown that these planets
are likely in Cassini state 1 (Winn & Holman 2005; Levrard
et al. 2007; Fabrycky et al. 2007). Using a model based on the
equations of Eggleton & Kiseleva-Eggleton (2001), we found
that Cassini obliquities of very hot Jupiters are indeed negligible
(αp < 0◦.01). Though tidal damping of the stellar obliquity
occurs on far longer timescales, several measurements of the
projected stellar obliquity through the Rossiter–McLaughlin
effect indicate that planet-hosting stars generally have low
obliquities � 10◦ like the Sun (Fabrycky & Winn 2009). Hence,
the general expectation is that both the star and planet will have
rather low, but potentially nonzero, obliquities.

Understanding the specific orbital evolution resulting from
nonzero obliquities is more complicated than the simple pre-
scription for apsidal precession. To correctly account for non-
Keplerian effects, we wrote a direct integrator, following
Mardling & Lin (2002), that calculates the Cartesian trajec-
tory (and the direction of the spin axes) of a star-planet system
including general relativity and the effects of quadrupolar dis-
tortion. This integrator reproduces the orbit-averaged analytic
equations of Mardling & Lin (2002), which are the same as
those in Eggleton & Kiseleva-Eggleton (2001), Sterne (1939a),
and elsewhere.10 We did not include the effects of tidal forces
or additional planets which are not relevant to our problem.

Using this direct integrator, we investigated the effect of
nonzero obliquities on the transit times, durations, and impact
parameters. Integration of several cases with varying stellar
and planetary obliquities showed that the largest effect on the
photometry was due to changes in the impact parameter, as
expected for an orbit with changing orientation (Miralda-Escudé
2002). However, even for large stellar obliquities (∼ 45◦) the
transit light-curve variations due to obliquity are generally small
relative to the effects of purely apsidal precession, even with low
eccentricities. One reason for this is that the tidal bulge, which
does not contribute to nodal precession, is � 15 times more
important than the rotational bulge. As with apsidal precession,
the planetary contribution to orbital variations is much stronger
than the stellar contribution (for equal obliquities). Unless the

10 This involved minor modifications to the “direct integrator” Equations (3)
and (5) in Mardling & Lin (2002). In Equation (3), the coefficient 12 should be
6 (R. Mardling 2009, private communication) and Equation (5) was replaced
with the nearly equivalent equation from Soffel (1989).
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planetary obliquity is unexpectedly large (� 0◦.5), the obliquity-
induced nodal precession should have only a minor effect on the
transit light curve.

4.2. Transit Timing due to Orbital Decay

Orbital decay generates a small secular trend in transit times.
Sasselov (2003) proposed the detectability of the expected ∼1
ms yr−1 period change due to semimajor axis decay of OGLE-
TR-56b. The transit timing anomaly solely due to orbital decay
(or growth) is the result of constantly accumulating changes in
the period:

TN � T0 + NPobs +
1

2
N2δP, (23)

where δP ≡ ṖP is the change in the period during one
orbit and N is the number of transits after the initial transit.
Equation (23) can be derived by noting that the transit times are
basically the integral of the instantaneous period. As before, the
transit timing anomaly is composed of the quadratic deviation
of TN from a straight line. The change in period can be due to
magnetic stellar breaking (e.g., Lee et al. 2009; Barker & Ogilvie
2009a), the Yarkovsky effect applied to planets (Fabrycky 2008),
and/or other effects.

For planets orbiting an asynchronously rotating star, a major
source of orbital decay is tidal evolution, which results in a slow
change in semimajor axis, according to the formula (Murray &
Dermott 1999)

ȧ = sign(ν∗ − n)
3k2∗
Q∗

Mp

M∗

(
R∗
a

)5

na, (24)

where sign(x) returns the sign of x or 0 if x = 0 and where Q∗
is the tidal quality parameter of the star, typically around 104

(Dobbs-Dixon et al. 2004). Though δP due to tidal dissipation
is only of order 3 micro-seconds, N grows by ∼300 each year,
reaching ∼1000 during the duration of Kepler for very hot
Jupiters. This implies a transit timing signal of about a few
seconds.

Calculating the total S/N of tidal evolution, as was done for
k2p, we find that reasonable values of Q∗ can be measured even
for faint stars (V = 14; 1000 ppm min−1 noise). For a circular
orbit with the parameters of OGLE-TR-56b, the effective S/N
reaches 1 when Ṗ is 1.36 ms yr−1 (see Table 1), corresponding
to Q∗ ≈ 25000. This implies the detectability of most of the
empirically motivated estimates of Sasselov (2003) for the tidal
decay of OGLE-TR-56b, which are estimated to be within an
order of magnitude of 1 ms yr−1. On the other hand, Barker
& Ogilvie (2009b) estimate that the tidal damping in F-stars
like OGLE-TR-56 and WASP-12 may be very low, which may
explain the survival of these short-period planets.

The estimates of the threshold values of Ṗ , shown in Table 1,
include removing degeneracies in other parameters, except ap-
sidal precession of eccentric orbits, and assume that everything
but Ṗ is known. Note that the transit light-curve signal due to
orbital decay is entirely due to transit timing; the change in a
is far too small to observe in transit shaping. As the signal due
to apsidal precession includes significant changes to the shapes
of the transits, the signal due to k2p is qualitatively different
than that of Q∗. The shifting of secondary transits from preces-
sion also helps in this regard, as outlined above. However, the
primary transit timing signals can be similar: quadratic transit
timing anomalies with amplitudes of ∼1 s.

Kepler analogs of very hot Jupiters WASP-12b, OGLE-TR-
56b, CoRoT-1b, WASP-4b, and TrES-3b could have detectable

transit timing anomalies due to tidal decay, implying a direct
measurement of the current value of Q∗ for specific stars
(Table 1). This is an exciting possibility, providing the first direct
measurements (or constraints) of the currently unknown details
of tidal dissipation in a variety of individual stars.11 We also
note that interesting orbital decay of eclipsing binary systems
seen by Kepler could also be detectable.

4.3. Confusion due to Other Planets

Could the signal due to k2p be confused with additional
planets? In considering this issue, it should be noted that all
known hot Jupiters (with a � 0.05 AU and Mp � 0.5 MJup)
have no currently known additional companions. The apparent
single nature of these systems could very well be due to
observational biases (Fabrycky 2009). However, even for stars
that have been observed for many years with radial velocity
(e.g., 51 Peg, HD 209458), there appears to be a strong tendency
toward hot Jupiters as the only close-in massive planets.

Previous studies of transit timing variations focus on the ef-
fects of additional planetary perturbers (e.g., Holman & Murray
2005; Agol et al. 2005; Ford & Holman 2007; Nesvorný &
Morbidelli 2008). These authors find that nearby massive plan-
ets or even low-mass planets in mean-motion resonances would
cause strong transit timing variations that are easily distinguish-
able from the comparatively long-period timing anomalies due
to k2p. Relatively distant companions or nonresonant low-mass
planets, however, can induce a linear apsidal precession signal
just like k2p (Miralda-Escudé 2002; Heyl & Gladman 2007;
Jordan & Bakos 2008). The precession rate induced by a per-
turbing body is a function of its mass and semimajor axis. The
interior structure of very hot Jupiters causes apsidal precession
as fast as a few degrees per year. To match this precession rate
would require, for example, another Jupiter-mass planet at � 0.1
AU or a solar-mass star at ∼1 AU. Even perturbers an order of
magnitude smaller than these would be readily detectable using
radial velocity observations and/or high-frequency transit time
variations. When restricted to planets that are undetectable by
other means, adding the precession due to the unknown perturb-
ing planet would lead to an insignificant overestimate of k2p

for very hot Jupiters.12 When observing transiting planets with
larger semimajor axes (a � 0.05 AU), the strength of planetary-
induced apsidal precession is reduced to a level comparable to
apsidal precession from a low-mass perturbing planet (Jordan
& Bakos 2008) and confusion may be possible in these cases.

Since the transit timing signal for apsidal precession is similar
to a sinusoid, another potential source of confusion would be
light-travel time offsets due to a distant orbiting companion
(e.g., Deeg et al. 2008). The transit timing signal due to stellar
motion about the barycenter can be distinguished from k2p

precession13 by considering the changes in transit shapes and
primary–secondary transit time offsets, which are not affected
by distant companions.

We conclude that transit timing effects from other planets can
be readily distinguished from the effects of apsidal precession.

11 The vanishingly small effect of eccentricity decay is ∼ 1/Qp smaller than
apsidal precession, so that direct measurements of Qp from eccentricity decay
are not feasible.
12 Conversely, as a consequence of the fast precession of very hot Jupiters due
to their (unknown) interiors, it will be very difficult to detect the presence of
additional perturbing planets in these systems from apsidal precession alone.
13 Transit time anomalies due to Q∗ (Section 4.2), however, can be confused
with barycenter light-travel time shifts due to a distant planet that may be
undetectable in radial velocities.



1792 RAGOZZINE & WOLF Vol. 698

To address the issue of the transit-shaping signal due to addi-
tional planets, we wrote a simple three-body integrator (similar
to the integrator mentioned above) to investigate the kinds of
transit light-curve signals created by additional planets. For the
vast majority of additional planet parameters, the transit timing
deviations always carry far more signals than the minor devi-
ations due to changes in the angular velocity14 (ḟtr) or impact
parameter (b), which together determine the transit shape as de-
scribed in Section 3.3. Generally, it is much easier to delay a
transit by 5 s than it is to shift the apparent transit plane by an
appreciable amount.

However, when the perturbing planet is on a plane highly
inclined to the transiting planet, changes in the transit shape can
become detectable, even while the transit timing variations are
negligible. For example, a perturbing planet of mass 10−5M∗
at 0.1 AU with a mutual inclination of 45◦ caused very hot
Jupiter transit durations to change by ∼1 s yr−1. This kind of
signal is the result of nodal precession induced by the perturbing
planet, as originally pointed out by Miralda-Escudé (2002). In
our investigation, we found that the three-body nodal precession
alters the impact parameter (b), but does not significantly affect
the orbital angular velocity (ḟtr). Conversely, the transit-shaping
signal due to k2p is generally produced by changes in both b and
ḟtr, but at near-central transits, the effect of changing orbital
velocity is dominant (see Section 3.3). In high-precision transit
light curves, both the angular velocity and the impact parameter
can be independently measured and, hence, the signals of apsidal
and nodal precession are usually distinct for all but the most
grazing transits.

Given the uniqueness of the apsidal precession signal induced
by the planet’s interior, it appears that if additional planets are not
detectable in radial velocities, transit timing variations, or nodal
precession, then they will not contribute to a misinterpretation
of an inferred value of k2p for very hot Jupiters. Nevertheless,
future measurements of k2p should check that these issues are
unimportant within the context of the specific system being
studied.

Finally, we estimate that moons or rings with enough mass
to bias an inferred k2p would cause other readily detectable
photometric anomalies (e.g., planet-moon barycentric motion
Sartoretti & Schneider 1999). In addition, extrasolar moons with
any significant mass are tidally unstable, especially around very
hot Jupiters (Barnes & O’Brien 2002).

5. OTHER METHODS FOR DETERMINING K2P

5.1. Secular Evolution of a Two-Planet System

Measuring k2 for an extrasolar planet was suggested by Wu
& Goldreich (2002) for the inner planet of HD 83443. Unfor-
tunately, later analyses have indicated that the supposed second
planet in this system was actually an artifact of the sparse radial
velocity data (Mayor et al. 2004). Nevertheless, this technique
could be applied to other eccentric planetary systems with simi-
lar conditions (Mardling 2007). Wu & Goldreich (2002) showed
that in a regime of significant tidal circularization and excitation
from an additional planet, the ratio of eccentricities depends on
the precession rate, which is dominated by k2p as shown above
(see also Adams & Laughlin 2006, who do not include pre-
cession due to the planetary quadrupole). In theory, the current

14 The angular velocity is directly related to the star–planet separation through
conservation of angular momentum: rḟ 2.

orbital state of such multiplanet systems gives an indirect mea-
surement of the apsidal precession rate.

5.2. Direct Detection of Planetary Asphericity

Another method for determining interior properties of transit-
ing planets would be to directly measure the asphericity due to
the rotational or tidal bulge in primary transit photometry. The
height of the rotational and tidal bulges is qrh2Rp and qth2Rp,
respectively, where qr and qt are the dimensionless small pa-
rameters defined in Equation (2) and h2 is another Love number
which, for fluid bodies, is simply k2 + 1 (Sterne 1939a). These
bulges cause the disk of the planet to be slightly elliptical, sub-
tly modifying the photometric signal, as discussed for rotational
bulges by Seager & Hui (2002) and Barnes & Fortney (2003).
However, as discussed by Barnes & Fortney (2003), in real sys-
tems with actual observations, the size of the rotational bulge is
very difficult to determine as it is highly correlated with stellar
and orbital parameters that are not known a priori, e.g., limb-
darkening coefficients.

The tidal bulge, whose height is also set by k2p, does not
suffer from some of the difficulties involved with measuring the
rotational bulge. It has a known orientation (pointing toward
the star), so there is no degeneracy from an unknown obliquity
(Barnes & Fortney 2003). (Note, however, that for hot Jupiters,
the obliquities must be tidally evolved to nearly zero, so this
is not really a problem with the rotational bulge.) In addition,
the signal due to oblateness is only significant near ingress/
egress, but the tidal bulge is continuously changing orientation
throughout the entire transit. Though the tidal bulge is typically
three times larger than the rotational bulge (Equation (2)), the
projection of the tidal bulge that is seen during a transit is small,
proportional to sin θ where θ is the angle between the planet
position and the Earth’s line of sight. For very hot Jupiters that
have semimajor axes of only �6 stellar radii, sin θ during transit
ingress/egress reaches � 1/6 so that the projected tidal bulge is
about half as large as the rotational bulge. The extra dimming due
to the tidal bulges (and rotational bulges) is as high as 2 × 10−4

for some planets that are expected to have tides over 2000 km
high (e.g., WASP-12b, WASP-4b, Corot-1b, OGLE-TR-56b);
this compares very favorably with the photometric accuracy of
binned Kepler data at about 10 ppm min−1. However, we expect
that, as with the rotational bulge alone, the combined signal
from the rotational and tidal bulge will be highly degenerate
with the unknown limb-darkening coefficients, as the size of the
projection of the tidal bulge also varies as the distance to the
center of the star.

We note that using multicolor photometry should significantly
improve the prospects of detecting nonspherical planetary tran-
sits since it breaks most of these degeneracies. For example,
Knutson et al. (2007b) use HST to observe transits of HD
209458b in 10 wavelength bands and measure the planetary
radius with a relative accuracy (between bands) of 0.003RJ , of
the same level as the change in shape due to oblateness and the
tidal bulge. Pont et al. (2007a) made a similar measurement for
HD 189733b and reached even higher relative accuracy. Com-
bining such measurements with other data (e.g., primary transits
in the infrared, where limb darkening is much smaller) and a
stellar photosphere model (to correctly correlate limb-darkening
parameters as in Agol & Steffen 2007), could yield detections
of planetary asphericity, especially in very hot Jupiters which
have the largest bulges.

One possible source of confusion in interpreting planetary
asphericity is the thermally induced pressure effects of an
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unevenly radiated surface. In nonsynchronous planets, the
thermal tidal bulge (Arras & Socrates 2009) can shift the level
of the photosphere by approximately an atmospheric scale
height, about 10−2 or 10−3 planetary radii (P. Arras 2009,
private communication). The orientation of the thermal bulge
is significantly different from the tidal or rotational bulges
and should be distinguishable. Furthermore, very hot Jupiters
should orbit synchronously, reducing the importance of this
effect. Nevertheless, the effect of atmospheric phenomena on
measurements of planetary asphericity should be considered.

Though difficult to disentangle from other small photometric
effects, high-precision multicolor photometry may be another
viable method for measuring k2p. This technique is complimen-
tary to detecting k2p from apsidal precession since it does not
require that the planet is eccentric, nor does it require a long
time baseline. On some planets, the two methods could be used
together as mutual confirmation of the planetary interior struc-
ture.

6. CONCLUSIONS

The planetary mass and radius are the only bulk physical
characteristics measured for extrasolar planets to date. In this
paper, we find that the planetary Love number (k2p, equiva-
lent to J2) can also have an observationally detectable signal
(quadrupole-induced apsidal precession) which can provide a
new and unique probe into the interiors of very hot Jupiters.
In particular, k2p is influenced by the size of a solid core and
other internal properties. Core sizes can be used to infer the
formation and evolution of individual extrasolar planets (e.g.,
Dodson-Robinson & Bodenheimer 2009; Helled & Schubert
2009).

The presence of a nearby massive star creates a large tidal
potential on these planets, raising significant tidal bulges which
then induce non-Keplerian effects on the star-planet orbit itself.
The resulting apsidal precession accounts for ∼95% of the total
apsidal precession in the best cases (Figure 1). Hence, we find
that the internal density distribution, characterized by k2p, has
a large and clear signal, not to be confused with any other
parameters or phenomena. We urge those modeling the interior
structures of extrasolar planets to tabulate the values of k2p for
their various models.

Encouraged by this result, we calculated full photometric light
curves like those expected from the Kepler mission to determine
the realistic observability of the interior signal. We estimate that
Kepler should be able to distinguish between interiors with and
without massive cores (Δk2p � 0.1) for very hot Jupiters with
eccentricities around e ∼ 0.003 (Figure 6). Eccentricities this
high may occur for some of the very hot Jupiters expected to
be found by Kepler, though these planets usually have highly
damped eccentricities. Much stronger constraints on apsidal
precession can be obtained by combining Kepler photometry
with precise secondary transits observed in the infrared. In cases
where apsidal precession is not observed, the data can set strong
upper limits on planetary eccentricities.

In analyzing Kepler’s photometric signal of apsidal preces-
sion, we find that transit timing variations are an almost negligi-
ble source of signal, though transit timing has been the focus of
many observational and theoretical papers to date. The effect of
“transit shaping” has ∼30 times the photometric signal of transit
timing for apsidal precession (see Figure 3, Pál & Kocsis 2008;
Jordan & Bakos 2008)). At orientations where transit timing and
shaping are weakest, the changing offset between primary and
secondary transit times can be used to measure k2p (Figure 4). It

may also be possible to measure k2p from high-precision multi-
color photometry by directly detecting the planetary asphericity
in transit. Such a measurement does not require a long baseline
or an eccentric orbit.

Very hot Jupiters are also excellent candidates for detecting
tidal semimajor axis decay, where we find that relatively small
period changes of Ṗ � 1 ms yr−1 should be detectable.
This could constitute the first measurements (or constraints)
on tidal Q∗ for a variety of individual stars. We note that
Kepler measurements of transit timing and shaping for eclipsing
binaries should also provide powerful constraints on stellar
interiors through apsidal motion and binary orbital decay (due
to tides, if the components are asynchronous).

Accurately measuring the interior structure of distant extraso-
lar planets seems too good to be true. Nevertheless, the exquisite
precision, constant monitoring, and 3.5-year baseline of the
Kepler mission combined with the high sensitivity of transit
light curves to small changes in the star-planet orbit make this
measurement plausible.

Our focus on Kepler data should not be interpreted to mean
that other observations will be incapable of measuring k2p. In
fact, the opposite is true since the size of the apsidal precession
signal increases dramatically with a longer baseline. Combining
Kepler measurements with future ground- and space-based
observations can create a powerful tool for measuring k2p. In the
far future, many planets will have measured apsidal precession
rates (like eclipsing binary systems have now) and inferred
k2p values. Incorporating these measurements into interior
models holds promise for greater understanding of all extrasolar
planets.
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Joshi, Y. C., et al. 2008, arXiv:0806.1478
Joshi, Y. C., et al. 2009, MNRAS, 392, 1532 (arXiv:0806.1478)
Kallrath, J., Milone, E. F., Kallrath, J., & Milone, E. F. (eds.) 1999, Eclipsing

Binary Stars: Modeling and Analysis (New York: Springer)
Kjeldsen, H., Bedding, T. R., & Christensen-Dalsgaard, J. 2009, IAU Symp.,

253, Transiting Planets, ed. F. Pont, D. D. Sasselov, & M. J. Holman
(Dordrecht: Kluwer), 309

Knutson, H. A., et al. 2007a, Nature, 447, 183 (arXiv:0705.0993)
Knutson, H. A., Charbonneau, D., Noyes, R. W., Brown, T. M., & Gilliland, R.

L. 2007b, ApJ, 655, 564 (arXiv:astro-ph/0603542)
Koch, D., et al. 2006, Ap&SS, 304, 391

Kopal, Z. 1959, in The International Astrophysics Series, Close Binary Systems
(London: Chapman and Hall)

Kopal, Z., ed. 1978, Astrophysics and Space Science Library, Vol. 68, Dynamics
of Close Binary Systems (New York: Springer)

Kozai, Y. 1959, AJ, 64, 367
Lanza, A. F., et al. 2009, A&A, 493, 193 (arXiv:0811.0461)
Laughlin, G., Marcy, G. W., Vogt, S. S., Fischer, D. A., & Butler, R. P. 2005, ApJ,

629, L121
Lee, J. W., Kim, S.-L., Kim, C.-H., Koch, R. H., Lee, C.-U., Kim, H. I., & Park,

J.-H. 2009, AJ, 137, 3181 (arXiv:0811.3807)
Levrard, B., Correia, A. C. M., Chabrier, G., Baraffe, I., Selsis, F., & Laskar, J.

2007, A&A, 462, L5 (arXiv:astro-ph/0612044)
Levrard, B., Winisdoerffer, C., & Chabrier, G. 2009, ApJ, 692, L9

(arXiv:0901.2048)
Loeb, A. 2005, ApJ, 623, L45 (arXiv:astro-ph/0501548)
Loeb, A. 2009, New Astron., 14, 363
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