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ABSTRACT

We conduct a systematic survey of the regions in which distant satellites can orbit stably around the four giant
planets in the solar system, using orbital integrations of up to 109 yr. In contrast to previous investigations, we use a
grid of initial conditions on a surface of section to explore phase space uniformly inside and outside the planet’s Hill
sphere (radius rH; satellites outside the Hill sphere sometimes are also known as quasi-satellites). Our confirmations
and extensions of old results and new findings include the following: (1) many prograde and retrograde satellites
can survive out to radii ∼0.5rH and ∼0.7rH, respectively, while some coplanar retrograde satellites of Jupiter and
Neptune can survive out to ∼rH; (2) stable orbits do not exist within the Hill sphere at high ecliptic inclinations
when the semimajor axis is large enough that the solar tide is the dominant non-Keplerian perturbation; (3) there
is a gap between ∼rH and 2rH in which no stable orbits exist; (4) at distances � 2rH stable satellite orbits exist
around Jupiter, Uranus, and Neptune (but not Saturn). For Uranus and Neptune, in particular, stable orbits are
found at distances as large as ∼10rH; (5) the differences in the stable zones beyond the Hill sphere arise mainly
from differences in the planet/Sun mass ratio and perturbations from other planets; in particular, the absence of
stable satellites around Saturn is mainly due to perturbations from Jupiter. It is, therefore, likely that satellites at
distances � 2rH could survive for the lifetime of the solar system around Uranus, Neptune, and, perhaps, Jupiter.

Key words: celestial mechanics – minor planets, asteroids – planets and satellites: formation – planets and
satellites: general
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1. INTRODUCTION

Most of the satellites of the four giant planets in the so-
lar system can be divided into two groups, usually called the
regular and irregular satellites. Regular satellites orbit close
to the planet (within ∼0.05rH, where rH is the Hill radius3),
and move on nearly circular, prograde orbits that lie close to
the planetary equator. Irregular satellites are found at distances
∼0.05rH–0.6rH, with large orbital eccentricities and inclina-
tions, on both prograde and retrograde orbits. An alternative
division between regular and irregular satellites is given by
the critical semimajor axis (e.g., Goldreich 1966; Burns 1986),
acrit = (

2μJ2R
2a3

p

)1/5
; those with a > acrit are classified as ir-

regular satellites. Here J2 is the planet’s second zonal harmonic
coefficient (augmented by any contribution from the inner reg-
ular satellites) and R is the planet’s radius. This critical radius
marks the location where the precession of the satellite’s orbital
plane is dominated by the Sun rather than by the planet’s oblate-
ness. The current number ratios of irregular to regular satellites
are 55/8 for Jupiter, 35/21 for Saturn, 9/18 for Uranus, and
7/6 for Neptune (e.g., Jewitt & Haghighipour 2007). The regu-
lar satellites are likely to have formed within a circumplanetary
disk of gas and solid bodies. The kinematic differences between
regular and irregular satellites suggest that the latter must have
formed through a quite different mechanism, most likely cap-
ture from the circumstellar disk (for a recent review, see Jewitt
& Haghighipour 2007).

The search for irregular satellites of the giant planets has
been fruitful in recent years, owing mainly to modern high-
sensitivity, large-scale CCDs (e.g., Gladman et al. 1998, 2000,

3 The Hill radius is defined as rH = ap(μ/3)1/3, where ap is the semimajor
axis of the planet orbit and μ ≡ mp/(mp + M�) with mp being the planet mass.

2001; Holman et al. 2004; Kavelaars et al. 2004; Sheppard
& Jewitt 2003; Sheppard et al. 2005, 2006). By 2007, 106
irregular satellites of the giant planets had been discovered,
compared with 53 regular satellites. Two features stand out in the
distributions of orbital parameters of these irregular satellites.
First, retrograde irregular satellites extend to larger semimajor
axes than prograde ones (∼0.6rH compared to ∼0.4rH); second,
satellites with orbital inclination in the range ∼60◦–130◦ relative
to the ecliptic are absent.

A number of authors have shown that these features can be
explained reasonably well by the requirement that the satellite
orbits be stable. Hénon (1969, 1970) studied the planar circular
restricted three-body problem in Hill’s (1886) approximation,
where the mass ratio μ → 0 while the radii of interest shrink to
zero as μ1/3. He showed that prograde satellite orbits are stable
up to a mean distance from the planet ∼0.4rH, while retrograde
satellite orbits can be stable at much larger distances from
the planet. Thus, it is not surprising that retrograde satellites are
found at larger distances than prograde ones. Hamilton & Krivov
(1997) studied the dynamics of distant satellites of asteroids in
heliocentric orbits using a “generalized Tisserand constant” and,
among other conclusions, confirmed that retrograde orbits are
more stable than prograde ones. Carruba et al. (2002) used a
combination of analytic arguments and numerical integrations
to show that high-inclination orbits inside the Hill sphere exhibit
large eccentricity oscillations (Kozai oscillations; Kozai 1962)
due to secular solar perturbations. They found that orbits with
inclinations (relative to the planetary orbital plane) between 55◦
and 130◦ are generally unstable, thus explaining the absence
of irregular satellites on high-inclination orbits. Nesvorný et al.
(2003) performed detailed orbital integrations of the four giant
planets plus a grid of test-particle satellites for intervals of 106–
108 yr. They confirmed that retrograde satellites can be stable at
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larger radii than prograde ones, and that highly inclined orbits
are unstable. They argued that the largest semimajor axes at
which satellites of the four giant planets could survive for times
comparable to the lifetime of the solar system were ∼0.7rH
for retrograde satellites and ∼0.4rH for prograde ones, and that
these upper limits were achieved only for nearly circular orbits
close to the plane of the ecliptic.

Other authors have examined the possibility that stable
satellite orbits exist with mean distance from the planet � rH. In
the planetocentric frame, the dominant force on such satellites is
due to the Sun, rather than the planet.4 Nevertheless, the satellite
remains close to the planet because it is in a 1:1 resonance in
the sense that its heliocentric mean longitude librates around
that of the planet; the resulting orbit relative to the planet is
a retrograde ellipse with an axis ratio of 2:1 with the short
axis pointing toward the Sun, and synodic period equal to the
planet’s orbital period. The analytical theory of such orbits is
described by Jackson (1913), Lidov & Vashkov’yak (1994a,
1994b), Mikkola & Innanen (1997), Namouni (1999), Mikkola
et al. (2006), and others. Hénon’s (1970) numerical analysis
of Hill’s approximation to the planar circular restricted three-
body problem suggests that stable retrograde satellites can exist
at arbitrarily large distance from the planet. Benest (1971)
confirmed that stable retrograde orbits at large distances persist
in the elliptic restricted three-body problem, where the mass
ratio and eccentricity were chosen to match those of Jupiter.
Wiegert et al. (2000) demonstrated that the retrograde satellites
of Uranus and Neptune could be stable for up to 109 yr at
distances up to ∼10rH, suggesting that primordial objects of
this type could still exist in the solar system although none are
currently known.

Despite the number and quality of these investigations, there
are several unanswered questions that lead us to revisit the
problem of orbital stability of satellites at large distances from
the host planet.

1. Wiegert et al. (2000) found stable satellite orbits beyond
the Hill radius only for Uranus and Neptune, not Jupiter
or Saturn. What is the reason for this difference? The
possibilities include differences in the planetary masses
and orbital eccentricities, or different perturbations from
neighboring planets.

2. Wiegert et al. (2000) explored orbits outside the Hill radius,
while Nesvorný et al. (2003) explored orbits inside the Hill
radius (indeed, in the former paper the integrations were ter-
minated when the particles entered the Hill sphere of radius
rH around the planet, while in the latter paper the integra-
tions were terminated when the particles exited The Hill
sphere). Are there stable satellite orbits that cross the Hill
sphere?

3. As we shall describe further in Section 2, the grids of initial
conditions used by Nesvorný et al. and Wiegert et al. do not
provide a complete exploration of the phase space in which
stable satellite orbits exist.

The primary goal of this paper is to map out the entire stability
region in phase space—both inside and outside the Hill sphere—
in which satellite orbits can survive around the four giant planets
for times comparable to the age of the solar system (our main
integrations last for up to 100 Myr). We describe our setup in
Section 2, and present the results in Section 3. We conclude and
discuss our results in Section 4.

Following Fabrycky (2008), we shall define a “satellite” of
a planet to be a small body whose distance from the planet

4 Hence these are sometimes called “quasi-satellites” (Lidov & Vashkov’yak
1994a, 1994b; Mikkola & Innanen 1997).

never exceeds the semimajor axis of the planet, ap. This
definition excludes bodies on Trojan orbits around the triangular
Lagrange points, bodies on horseshoe orbits, and objects such
as asteroid 2003 YN107 (Connors et al. 2004), which oscillates
between a horseshoe orbit and an orbit centered on the Earth.
This definition seems simple and reasonable to us, but other
definitions are common in the literature. Many authors define
“satellite” to be an object that always remains within the Hill
sphere of the planet or whose Jacobi constant constrains it to
remain within the last closed zero-velocity surface around the
planet. Benest (1971) defines a satellite to be a body whose
heliocentric orbital frequency is the same as the planet’s, but
whose synodic frequency around the planet is nonzero. Wiegert
et al. (2000) use the term “quasi-satellite” for an object that
remains outside the Hill sphere but whose heliocentric longitude
difference from the planet never exceeds 120◦ and regularly
passes through zero. However, the term “quasi-satellite” is
confusing because it is also used for objects such as 2003 YN107
that spend part of their time on horseshoe orbits, and thus are
only temporarily satellites in our sense.

2. METHODS

Although all of our results are based on direct numerical
integrations of the N-body problem (the Sun, one or four giant
planets, plus a test particle orbiting one planet), we shall find
it useful to interpret our results in terms of the coordinates and
notation used by Hénon (1970) in the exploration of satellite
orbits in Hill’s approximation.

2.1. Hill’s Approximation

When studying satellite motions near a planet (r � rH), it
is conventional to employ a nonrotating planetocentric coor-
dinate system, which we denote as (xyz). However, in Hill’s
approximation to the circular restricted three-body problem, it
is more convenient to use a rotating planetocentric coordinate
system (ξηζ ), where ξ , η, and ζ are scaled coordinates in the
rotating frame in which the planet is at the origin, the ξ axis
is along the direction opposite the Sun, and the ζ axis is per-
pendicular to the Sun–planet orbital plane. In Hill’s formulation
the unit of length is μ1/3ap, and the unit of time is n−1, where

n ≡ [
G(M� + mp)

/
a3

p

]1/2
is the mean motion of the planet.

As usual, the orbit of the planet in the inertial frame is counter-
clockwise as viewed from the positive z or ζ axis. In Hill’s
coordinate system the collinear Lagrangian points L1 and L2 are
located at η = ζ = 0, ξ = ±3−1/3 	 0.6934, and the Hill radius
is rH = 3−1/3. Similar definitions are used in this paper when
the planet orbit is eccentric and/or perturbed by other planets;
in this case, the ξ axis points away from the instantaneous posi-
tion of the Sun, the ζ axis is perpendicular to the instantaneous
orbital plane of the planet around the Sun, and ap is the initial
semimajor axis of the planet.

In the circular restricted three-body problem, Hill’s approxi-
mation is achieved by taking the limit μ → 0, where the equa-
tions of motion reduce to (e.g., Hénon 1974; Murray & Dermott
1999)

ξ̈ = 2η̇ + 3ξ − ξ

(ξ 2 + η2 + ζ 2)3/2
,

η̈ = −2ξ̇ − η

(ξ 2 + η2 + ζ 2)3/2
,

ζ̈ = −ζ − ζ

(ξ 2 + η2 + ζ 2)3/2
. (1)
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There exists an integral of motion for these equations,

Γ = 3ξ 2 +
2

(ξ 2 + η2 + ζ 2)1/2
− ζ 2 − (ξ̇ 2 + η̇2 + ζ̇ 2) , (2)

which corresponds to the Jacobi constant in the circular re-
stricted three-body problem.

For the moment let us restrict ourselves to motion in the
Sun–planet orbital plane, so ζ = ζ̇ = 0 at all times. Then to
study orbital motions we may use a surface of section defined by
η = 0, η̇ > 0. The trajectory in the four-dimensional (ξ, η, ξ̇ , η̇)
phase space is then represented by a set of points in the (ξ, ξ̇ )
plane, and for a given value of the Jacobi constant Γ, the other
two phase-space coordinates can be derived from

η = 0, η̇ =
(

3ξ 2 − ξ̇ 2 +
2

|ξ | − Γ
)1/2

. (3)

We define “prograde” and “retrograde” in the rotating frame
unless otherwise noted. Thus retrograde orbits have ξ < 0 in
this surface of section, and prograde orbits have ξ > 0.

A drawback of this surface of section is that a different plot
is needed for each value of the Jacobi constant Γ. To obtain
a global view of the dynamics, we use a different surface of
section defined by η = 0, ξ̇ = 0, η̇ = (3ξ 2 + 2/|ξ | − Γ)1/2.
A trajectory is represented by a point in the (Γ, ξ ) plane. This
surface of section was introduced by Hénon (1969; 1970), and
we shall call it the Hénon surface of section or Hénon diagram.
The Hénon diagram, like any surface of section, will not show
orbits that do not cross it; the usefulness of the Hénon diagram
derives from the observation that most stable orbits periodically
pass close to the point η = ξ̇ = 0—for example, this occurs
for nearly Keplerian orbits close to the planet when their line of
apsides precesses past the Sun–planet line. The orbits not shown
on the Hénon diagram include those confined to some resonant
islands, which should occupy a small fraction of phase space,
and escape orbits, which we are not interested in anyway.

Figure 1 (left panel) is a Hénon diagram modeled on
Figure 12 of Hénon (1970). The Lagrange points are at (Γ, ξ ) =
(34/3,±3−1/3) = (4.32675,±0.69336). Forbidden regions, in
which η̇2 = 3ξ 2 + 2/|ξ | − Γ would be negative, are shaded in
gray. The stable regions of phase space, as estimated by Hénon,
are denoted by vertical stripes. The diagram shows that retro-
grade satellites (ξ < 0) have a larger stable region than prograde
satellites (ξ > 0), a conclusion consistent with the numerical
studies described in Section 1. Moreover, the stable band in
this diagram that begins at (Γ, ξ ) = (−1.4,−1.2), and stretches
downward to the left shows that retrograde satellites can be sta-
ble at distances much larger than the Hill radius; in fact, this
band continues to arbitrarily large negative values of Γ and ξ
(see Figure 13 of Hénon 1970), so retrograde satellites can be
stable at arbitrarily large distances from the planet, at least in
Hill’s approximation to the planar circular restricted three-body
problem.

In future discussions we divide the stable regions in Figure 1
into three branches: the inner prograde branch (ξ > 0), the inner
retrograde branch (ξ < 0 and Γ > 0), and the outer retrograde
branch (ξ < 0 and Γ < 0).

A simple and rather complete way to sample initial conditions
in the planar three-body problem is to use the Hénon diagram,
i.e., to sample uniformly in the (Γ, ξ ) plane. As described above,
this approach is based on the assumption that most stable orbits
periodically have their apocenter or pericenter on the Sun–planet
line. Note that, even without invoking Hill’s approximation,

the question of which initial conditions on the Hénon diagram
correspond to stable orbits is well-posed. Accordingly, we may
present our stability results in terms of the Hénon diagrams, even
though our orbit integrations do not use Hill’s approximation.

We may compare this approach to the grids of initial con-
ditions used in other investigations of the stability of satel-
lite orbits. The initial conditions for the “high-resolution sur-
vey” of Nesvorný et al. (2003) were chosen from a grid of
planet-centered osculating Keplerian orbital elements, with the
semimajor axis a given typically by a/rH = 0.1–1, eccen-
tricity e = 0–0.75, inclination i = 0◦–180◦, argument of
pericenter ω = 0◦, 90◦, and the other elements distributed
uniformly between 0◦ and 360◦. The right panel of Figure 1
shows similar initial conditions on the Hénon diagram (i = 0◦
or 180◦ and ω = 0◦ or 180◦). The conversions from os-
culating elements to (Γ, ξ ) were done using Equations (8)
and (10) in Hénon (1970). It is clear that the initial conditions
sampled in Nesvorný et al. do not provide a complete explo-
ration of the phase space in which stable satellite orbits could
exist; in particular, they completely missed the stable region that
extends beyond the Hill sphere (of course, such orbits are also
excluded from their study by their artificially imposed escape
criterion r > rH). In fact, most of the stable orbits beyond the
Hill sphere have hyperbolic osculating elements. In Figure 1
we plot the boundaries that separate regions of hyperbolic oscu-
lating elements from those with elliptical osculating elements,
where the latter are shaded by a dotted pattern. The functional
forms of these boundaries are

Γ = 2ξ 2 − 23/2|ξ |1/2 , (ξ < 0) , (4)

Γ = 2ξ 2 + 23/2|ξ |1/2 , (0 � ξ � 21/3) , (5)

Γ = 2ξ 2 + 23/2|ξ |1/2 , (ξ < −21/3) . (6)

The initial conditions explored by Wiegert et al. (2000)
were chosen from a grid of heliocentric osculating Keplerian
elements, these being the same as the elements of the host planets
except for the eccentricity and inclination. The eccentricity was
typically chosen in the range e = 0–0.5 and inclination in
the range 0◦–30◦. With this procedure, zero-inclination orbits
appear in the Hénon diagram along the locus

Γ = 2/|ξ | − ξ 2 with ξ = −eμ−1/3 , (7)

where the expression for Γ is evaluated using Hill’s approxima-
tion. The grid sampled by Wiegert et al. for i = 0 is also shown
in the right panel of Figure 1, converted from the heliocentric
frame using Hill’s units (but without Hill’s approximation); for
clarity, only Jupiter and Uranus are shown. Although the ini-
tial conditions of Wiegert et al. do probe the stability region
found by Hénon beyond the Hill sphere, the coverage is far
from complete.

To extend our study to three-dimensional orbital motions we
use a surface of section at η = ζ = ξ̇ = 0, η̇ > 0. In the rotating
frame, we define the initial inclination angle I by

tan I = ζ̇

η̇

∣∣∣∣
t=0

, (8)

such that the initial η and ζ component velocities are

η̇ = cos I

(
3ξ 2 +

2

|ξ | − Γ
)1/2

, ζ̇ = sin I

(
3ξ 2 +

2

|ξ | − Γ
)1/2

.

(9)
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Figure 1. Sampling of initial conditions in terms of the Hénon diagram. The gray-shaded regions are forbidden. The Lagrange points L1 and L2 are marked by ∗. The
horizontal dashed line at ξ = 0 separates retrograde orbits from prograde ones (as defined in the rotating planetocentric frame). Left: the region shaded by vertical
lines is an approximate reproduction of the stable region as estimated in Hénon (1970). The dotted region is where the osculating Kepler elements correspond to bound
elliptical orbits (a > 0, e < 1). Right: curved lines represent the initial conditions derived using osculating elements in the high-resolution survey of Nesvorný et al.
(2003), color-coded according to eccentricity. Solid and long-dashed lines represent orbits which are prograde and retrograde in the nonrotating planetocentric frame,
respectively. There are two sets of lines for each eccentricity corresponding to argument of pericenter ω = 0◦ and 180◦, respectively. The short segments at the lower
right below L1 are extensions of the e = 0.50 and 0.75 branches which are prograde in the nonrotating frame. Thus orbits that are retrograde in the rotating frame can
be prograde in the nonrotating frame. The initial conditions for zero-inclination orbits sampled by Wiegert et al. (2000) are shown as filled circles for Uranus and open
circles for Jupiter.

(A color version of this figure is available in the online journal.)

Since η̇ > 0, the inclination is restricted to the range −90◦ <
I < 90◦.

Therefore each point in the (Γ, ξ ) plane represents a unique
set of initial conditions for a given inclination. The usefulness
of the Hénon diagram, in this case, is based on the assumption
that most stable orbits periodically have their line of apsides and
their line of nodes simultaneously on the Sun–planet line. This
assumption is not always valid: it requires that the argument of
pericenter ω is periodically 0 or π , while a satellite trapped
in the Kozai resonance has an argument of pericenter that
librates around 1

2π or 3
2π (Kozai 1962; Carruba et al. 2002). We

estimate the incompleteness in our survey due to such orbits in
Section 3.2.

Because the equations of motion are symmetric around the
ζ = 0 plane, we may further restrict the inclination to the
range 0◦ � I < 90◦. As in the two-dimensional case, we
define “prograde” and “retrograde” in the rotating frame unless
otherwise noted. Thus retrograde orbits have ξ < 0 and prograde
orbits have ξ > 0 at this surface of section η = ζ = ξ̇ = 0,
η̇ > 0.

2.2. Numerical Orbit Integrations

Even in the two-dimensional case, we expect that the stable
regions for distant satellites of the giant planets will be somewhat
different from those derived by Hénon (1970) and shown
in Figure 1, since (1) Hénon’s results are based on Hill’s
approximation μ → 0, while the giant planets have μ in the
range 0.00096 (Jupiter) to 0.000044 (Uranus); (2) Hénon’s
results assume that the planet orbit is circular, while the giant
planets have eccentricities between 0.0086 and 0.056; (3) both
the satellites and their host planets are subject to perturbations
from the other planets. We must carry out long-term numerical

integrations of the satellite orbits to assess the influence of these
effects on the stability region shown in Figure 1.

We sample the initial conditions using a fine grid on the
Hénon diagram, with dΓ = 0.1 and dξ = 0.06. This is shown
as the dotted grid in Figure 2. We then convert them to the
nonrotating (xyz) planetocentric coordinate system where we do
the integrations of satellite orbits. We require that in the rotating
frame the Sun is always located at the −ξ axis, and the angular
velocity of the rotating frame equals the instantaneous angular
velocity of the Sun relative to the planet in the nonrotating
planetocentric frame; thus the angular speed of the rotating
frame is time-varying if the planet’s orbit is eccentric, and the
direction of the ζ axis may vary if the planet’s orbit is perturbed
by other planets. We use a unit of length μ1/3ap and unit of
time n−1 to scale the coordinates/velocities between the two
frames, where ap is taken to be the initial semimajor axis of
the planet.

The system to be numerically integrated is composed of the
four outer giant planets (or sometimes just one of them), the Sun,
and a satellite around one of the planets; the satellite is treated as
a massless test particle. We use a second-order Wisdom–Holman
symplectic scheme (Wisdom & Holman 1991), as implemented
in the SWIFT software package (Levison & Duncan 1994).
Following Nesvorný et al. (2003), we have modified the SWIFT
code such that the integration of the planets is done in the
Jacobi coordinate system, while that of the satellites is done
in the nonrotating planetocentric coordinate system. We tried
different timesteps to optimize between speed and accuracy,
and found dt = 20 days is short enough to produce the correct
results with reasonable computational cost, for all four planets.

One potential concern is that the Wisdom–Holman symplec-
tic scheme, as we have implemented it, is designed for nearly
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Figure 2. Hénon diagrams for Jupiter under various circumstances (see Section 3.1 for details). The satellite orbital plane initially coincides with Jupiter’s. In each
panel, the dotted region is the grid of initial conditions in the (Γ, ξ ) plane. The two blank regions in the upper-right corner are forbidden. The filled circles in different
colors represent the initial conditions of orbits that survive for various times.

(A color version of this figure is available in the online journal.)

Keplerian orbits relative to the planet and might break down at
large distances from the planet, where the orbits are nearly Kep-
lerian relative to the Sun. However, the characteristic orbital pe-
riod at large distances is equal to the planetary orbital period, and
this is much longer than the orbital periods of satellites inside
the Hill radius that the integrator is designed to follow, so even
a crude integrator should work well. Moreover, our ability to
reproduce the Hénon diagram (compare Figure 1 and the lower
right panel of Figure 2), the long-term stability of many of our or-
bits, and the similarity of the characteristic orbit shapes to those
found by Hénon (see Section 3.1), all indicate that, even at the
largest distances probed here, the symplectic integrator seems to
work pretty well. As a further check, we have used the Bulirsch–
Stoer integrator to follow satellite orbits around Uranus for 106

yr and found almost identical results to the Wisdom–Holman
integrator.

We terminate the integration if the distance of the satellite
from the planet exceeds the semimajor axis of the planet since at
this point the satellite has escaped according to our definition at

the end of Section 1, or if the distance is less than the semimajor
axis of the outermost regular satellite of each planet (being
Callisto, Iapetus, Oberon and Triton respectively), since at this
point the satellite lifetime against ejection or collision with the
regular satellite or the planet is likely to be short. Any test
particles that cross either of these two radii are considered lost.
We have experimented with including the quadrupole moment
J2 of the planet (including the contribution from the inner regular
satellites), but this has no detectable effect on our results.

3. RESULTS

3.1. Two-Dimensional Hénon Diagrams

We first study cases in which the initial velocity vectors
of satellites lie in the planet orbital plane, i.e., ζ = ζ̇ = 0.
As we have described, this is different from Hénon’s problem
(Hénon 1970) because (1) we do not use Hill’s approximation,
(2) planets such as Jupiter have nonzero eccentricity, and (3)
there are gravitational perturbations from other planets.
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Figure 3. Two-dimensional Hénon diagrams for the four planets. Each orbit is integrated up to 108 yr under the gravitational influence of its host planet, the Sun, and
the other three giant planets. Notations are the same as in Figure 2.

(A color version of this figure is available in the online journal.)

As an illustration we show how the stable region changes
under various conditions in Figure 2, for satellites around Jupiter
and an integration time of 106 yr. We consider four situations: (1)
Jupiter moves on its actual (slightly eccentric) orbit, including
perturbations from the other three giant planets (upper left); (2)
the planar restricted three-body problem, in which Jupiter travels
on an orbit with its current eccentricity of 0.048 and the other
planets are absent (upper right); (3) the planar circular restricted
three-body problem, in which Jupiter travels on a circular orbit
with its current semimajor axis (bottom left); (4) the same as
(3) except that the planet mass is 1/100 of the Jupiter mass
(bottom right).

By comparing Figures 1 and 2 it is clear that case (d) in
the bottom right panel best reproduces the original Hénon
diagram; this is not surprising since μ 	 10−5 is smallest so
Hill’s approximation is satisfied best, and the other conditions
assumed in Hénon’s (1970) problem (circular planet orbit, no
other planets) are also satisfied. When using the actual Jupiter
mass in (3), the outer retrograde stable region (i.e., the lower-left
branch) shifts and shrinks. The overall stability region shrinks

further—but does not vanish—when Jupiter’s orbit is eccentric
as in case (2), and for the most realistic case (1).

Note that 106 yr is only a small fraction of the life-
time of the solar system, and possible erosion of the sta-
ble region over longer times is somewhat indicated by the
presence of a few red and blue dots in the upper panels of
Figure 2, indicating orbits that are unstable on timescales of
104 and 105 yr.

These illustrative calculations show that some Jovian satel-
lites orbiting well outside the Hill radius can survive for at
least 106 yr, although the stable region is substantially smaller
than in Hill’s approximation to the circular restricted three-
body problem and appears to erode slowly with time. They
also show that the stable region is larger (relative to the Hill
radius) if the planet mass μ is smaller, suggesting that the
stable regions of the other giant planets may be larger than
Jupiter’s.

We now extend these calculations in the following ways:
(1) we examine satellite orbits around all four giant planets,
using the actual planetary orbits including perturbations from
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Figure 4. Two-dimensional Hénon diagrams for Saturn only (left) and Uranus only (right); the effects of the other three planets are not included in the integrations. In
contrast to the results in Figure 3, Saturn can host stable outer retrograde orbits, and most of the satellites that survive for 106 yr also survive for 108 yr around both
planets.

(A color version of this figure is available in the online journal.)

the three other planets; (2) since stable orbits are found at
the most negative Jacobi constant (Γ = −6) examined in
Figure 2, we extend the grid of initial conditions to Γ = −16;
(3) we extend the integration time from 106 yr to 108 yr.

The results are shown in Figure 3. There are large regions
of inner retrograde/prograde orbits that are stable for 108 yr.
For Jupiter, there are a few outer retrograde orbits that survive
for 108 yr; Wiegert et al. (2000) found no orbits that survived
for � 107 yr, but this may reflect their less complete coverage
of phase space. For Saturn, the outer retrograde stable region
completely disappears in less than 106 yr, a conclusion already
reached by Wiegert et al. For Uranus and Neptune, in contrast,
there is a large stable region of outer retrograde orbits remaining
after 108 yr. We expect that the stable regions around Jupiter,
Uranus, and Neptune will shrink somewhat further between
108 yr and 5 × 109 yr, the approximate age of the solar system,
so we integrated some outer retrograde satellite orbits around
these three planets for 109 yr. We found that about a third of
the Jovian orbits and over half of the outer retrograde orbits for
Uranus and Neptune shown in Figure 3 still survive. Thus it is
very likely that Uranus and Neptune could still host primordial
satellites on such orbits to the present time. It is likely, but not
certain, that similar satellites could survive around Jupiter, at
least in small volumes of phase space.

The shrinkage of the stable region of the outer retrograde
branch between 106 and 108 yr, as well as the lack of stable
outer retrograde orbits around Saturn, appear to be mainly due
to perturbations from the other planets. To demonstrate this, we
ran two 108 yr integrations for Saturn only and Uranus only.
The results are shown in Figure 4; in this case, Saturn can host
stable outer retrograde satellites for at least 108 yr, and there is
almost no difference in the size of the stable region between 106

and 108 yr for either planet.
The stable region around Uranus is larger than the one around

Saturn in Figure 4, and the stable regions around Uranus and
Neptune are larger than the one around Jupiter in Figure 3.
These differences are probably caused mostly by their different
planet-to-Sun mass ratios μ. As μ increases, the outer retrograde
stability branch in the lower left of the Hénon diagram shrinks,

and shifts upward (see Hénon 1965; 1970; or compare the two
lower panels of Figure 2).

We also notice that in Figure 2(d) and in the right panel
of Figure 4 there is a little tail or branch to the stable region
around (Γ, ξ ) = (−5,−2.5). We suspect this comes from
Hénon’s periodic family g3 (Hénon 1969), which bifurcates
from the periodic retrograde orbits at (Γ, ξ ) = (−2,−1.2) and
passes close to the point (Γ, ξ ) = (−5,−2.5) (see Hénon 1970,
Figure 13).

What do these stable orbits look like? In Hill’s approxima-
tion, the stable (outer and inner) retrograde and inner pro-
grade orbits are generated from the periodic f and g fami-
lies respectively using the terminology of Hénon (1969). We
show examples of stable orbits (i.e., those that survived for
108 yr) around Uranus in Figure 5. For each example orbit, we
plot the instantaneous locations for the first one million years
as dots with the two stars marking the starting and ending loca-
tions. We also plot the trajectory for several revolutions. Each
orbit is plotted in both the nonrotating planetocentric x–y plane
(left column) and the rotating ξ–η plane (right column). In the
rotating frame, the inner prograde orbit (top panel) is elongated
along the Sun–planet axis while the inner retrograde orbit (mid-
dle panel) is elongated perpendicular to the Sun–planet axis.
The outer retrograde orbit (bottom panel) is also elongated per-
pendicular to the Sun–planet axis and oscillates about the planet
as an ellipse with an axis ratio of approximately 2:1 (compare
Figure 11 of Hénon 1970), as one would expect from epicycle
theory.

Note that the stable retrograde orbits with ξ close to −0.6934
in Figure 3 regularly cross the Hill radius. Hence such orbits are
missed by the surveys of both Wiegert et al. (2000) and Nesvorný
et al. (2003), who terminate their integrations if r < rH or
r > rH, respectively.

3.2. Three-Dimensional Hénon Diagrams

We now extend the initial conditions in Section 3.1 to three
dimensions by including the scaled vertical coordinate ζ . As
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Figure 5. Examples of stable orbits around Uranus. All orbits initially lie in the orbital plane of Uranus. Dots are instantaneous locations for the first 106 yr, plotted
at intervals of 100 yr, with the green and red stars marking the starting and ending locations. We also plot a few revolutions as red curves. The left column is in the
nonrotating planetocentric frame and the right column is in the rotating planetocentric frame. In the left column, the blue circles indicate the Hill sphere. Upper: an
inner prograde orbit; middle: an inner retrograde orbit; bottom: an outer retrograde orbit.

(A color version of this figure is available in the online journal.)

discussed in Section 2.1, we consider a surface of section
η = ζ = ξ̇ = 0, η̇ > 0 at t = 0. Similar to the two-
dimensional case, we sample the initial conditions using a fine
grid in the (Γ, ξ ) plane, and use Equation (9) to generate initial
velocities. We choose a sequence of inclinations in the rotating
frame, I = 15◦, 30◦, 45◦, 60◦, 75◦. Each satellite orbit is then
integrated for 108 yr along with the four giant planets and the
Sun.

The general behavior when incorporating inclination is the
erosion of stable regions in the Hénon diagram. As an example,
we show the results for Uranus in Figure 6. The outer retrograde
orbits quickly become unstable when the initial inclination
exceeds ≈ 20◦. The inner retrograde stable region erodes with
increasing inclination and disappears at I � 75◦. The inner
prograde stable region can survive even at I ≈ 75◦. This
asymmetry between inner retrograde and prograde orbits is due,
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Figure 6. Examples of three-dimensional Hénon diagrams for Uranus. The initial inclinations I = 15◦, 30◦, 45◦, 60◦, 75◦ in the rotating frame. The notation is the
same as in Figures 2 and 3. The stable regions shrink as the inclination increases. In particular, no stable outer retrograde orbit exists for I � 30◦.

(A color version of this figure is available in the online journal.)
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Figure 7. Examples of three-dimensional Hénon diagrams for Uranus. In these diagrams the surface of section is taken when the satellite is at maximum height
above the planet’s orbital plane (in contrast to Figure 6 where the surface of section is taken when the satellite crosses the plane). The initial inclinations
I ∗ = 15◦, 30◦, 45◦, 60◦, 75◦ in the rotating frame.

(A color version of this figure is available in the online journal.)

in part, to the definition of inclination in the rotating frame.5

However, even when inclination is defined in the nonrotating

5 When translated into the nonrotating planetocentric frame, the inclinations
of “prograde” (“retrograde”) orbits are actually smaller (larger) than in the
rotating frame. As we already noted in Figure 1, under certain circumstances
retrograde orbits in the rotating frame can even be prograde in the nonrotating
frame.

frame such an asymmetry may still be present (see Ćuk &
Burns 2004 for a discussion of the dynamical reasons for the
asymmetry).

To separate the destabilizing effects of inclination from the
effects of perturbations from other planets, we also ran these
three-dimensional simulations for Uranus without the other
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Figure 8. Spatially accessible regions of stable satellite orbits for Jupiter. The left column is in the nonrotating planetocentric frame and the right column is in the
rotating planetocentric frame. The bottom two panels show expanded views of the inner portions of the upper two panels. In each panel, retrograde orbits and prograde
orbits are plotted separately in the left and right halves, with “prograde/retrograde” defined in each frame used. The blue circles show the Hill sphere and the smaller
central red circles show the inner boundary in the numerical integrations (the orbital radius of the outermost regular satellite, in this case Callisto). The extreme
thinness of the zone of stable retrograde orbits outside the Hill sphere is an artifact of our simulations, which sampled the initial inclinations only at 0◦, 15◦, . . ..
(A color version of this figure is available in the online journal.)

Figure 9. Spatially accessible regions of stable satellite orbits for Saturn. The notation is the same as in Figure 8.

(A color version of this figure is available in the online journal.)

planets. We found that for I � 20◦, perturbations from other
planets do play a major role in eroding the region of stable
outer retrograde orbits, as illustrated by comparing the upper
left and lower right panels of Figure 6, which show the Hénon
diagram for I = 15◦ with and without the other planets.

However, for I = 30◦, 45◦, 60◦, 75◦ the results for Uranus
alone are almost identical to the realistic case which includes
perturbations from the three other planets. This result suggests
that bound retrograde orbits outside the Hill sphere may not
exist at all for I � 20◦. This is expected because the Coriolis
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Figure 10. Spatially accessible regions of stable satellite orbits for Uranus. The notation is the same as in Figure 8.

(A color version of this figure is available in the online journal.)

Figure 11. Spatially accessible regions of stable satellite orbits for Neptune. The notation is the same as in Figure 8.

force, which stabilizes outer retrograde orbits by bending their
trajectory toward the planet in the rotating frame, is reduced
when the inclination angle I increases. This shrinkage of the
stable outer retrograde branch with inclination is already noticed
by comparing the right panel of Figure 4 (I = 0) and the bottom-
right panel of Figure 6 (I = 15◦).

Note that the inclinations I are planetocentric and measured
in the rotating frame. For low-inclination orbits along the

outer retrograde branch they can be converted to heliocentric
inclinations i using the approximate formula for small e

i ≈ 2eI , (10)

where e is the heliocentric eccentricity. Thus our stability region
I � 20◦ corresponds roughly to i � 4◦ for e ≈ 0.1, the typical
heliocentric eccentricity of surviving satellites for Uranus and
Neptune (see Figure 12); this is in reasonable agreement with the
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Figure 12. Upper left: heliocentric angular velocities of the stable outer irregular satellites as a function of angular distance from the planet, as viewed from the Sun
in the nonrotating frame. Upper right: histograms of the difference between the heliocentric satellite semimajor axis and the planet semimajor axis for the stable
outer irregular satellites, where the peaks of these distributions are arbitrarily scaled. Bottom: histograms of the heliocentric eccentricity for the stable outer irregular
satellites. The sampling of points is the same as we used to produce the spatial stability regions in Section 3.3.

(A color version of this figure is available in the online journal.)

estimate of Wiegert et al. (2000) that most of their long-lived
orbits had i � 2◦, especially considering that our sampling
of initial conditions is more complete than theirs. Mikkola &
Innanen (1997) and Mikkola et al. (2006) estimate analytically
that the outer retrograde orbits are unstable if i > e (for a
circular planet orbit), which implies instability if I � 30◦. Our
own results show that all the test particles with initial positions
outside the Hill sphere cross the escape radius ap well before
104 yr for I � 30◦.

As described at the end of Section 2.1, a limitation of these
results is that the Hénon diagram we have used will not display
orbits trapped in a Kozai resonance, or other stable orbits whose
argument of pericenter does not periodically pass through 0
or π . To estimate the contribution of such orbits, we have
constructed a different set of three-dimensional Hénon diagrams
in which the initial conditions are changed from our usual choice
η = ξ̇ = ζ = 0, η̇ > 0 to η = ξ̇ = ζ̇ = 0, η̇ > 0 (i.e., when the
orbit is at its maximum height above the planet’s orbital plane,

rather than crossing the orbital plane). In this case, we define
the initial inclination I ∗ in the rotating frame by

tan I ∗ = ζ

ξ

∣∣∣∣
t=0

. (11)

The results are shown in Figure 7, which should be compared to
Figure 6. Each point in either set of Hénon diagrams corresponds
to a unique orbit, but orbits appearing in the Hénon diagrams of
one figure at a given value of (Γ, ξ, I ) may or may not appear
in the other figure, where they will have the same value of Γ
but possibly different values of ξ and inclination. The stable
regions are somewhat larger in Figure 7 at a given inclination—
for example, a few outer retrograde satellites survive for 108

yr at I ∗ = 30◦—but the conclusions described above are not
significantly altered. In the following discussion, we neglect
stable orbits that do not appear in our fiducial Hénon diagrams
(i.e., using the surface of section η = ξ̇ = ζ = 0, η̇ > 0); thus
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we may slightly underestimate the size of the stable regions.
More discussion on orbits trapped in the Kozai resonance inside
the Hill sphere can be found in Carruba et al. (2002).

3.3. Spatial Stability Regions

We now project the phase-space volume that hosts stable
orbits onto coordinate space, to explore where stable satellites
might be found.

We plot the positions of stable orbits in the two-dimensional
plane with coordinates

[
(x2 + y2)1/2, z

]
(nonrotating frame) or[

(ξ 2 + η2)1/2, ζ
]

(rotating frame). Prograde and retrograde orbits
are plotted separately on the left and right sides of a given figure
panel, where “prograde” and “retrograde” are defined in the
frame used. We plot the position of each stable (up to 108 yr)
point in the Hénon diagram at uniformly spaced times (every
Myr) between 5 × 107 and 108 yr in Figures 8 (Jupiter) to 11
(Neptune).

The stability regions within the Hill sphere are very similar to
those shown in Figures 9–12 of Nesvorný et al. (2003), though
slightly larger because we show instantaneous position rather
than semimajor axis. For Jupiter and Saturn, the stable prograde
orbits generally extend to ∼0.5rH; the stable retrograde orbits
can extend further to ∼0.7rH, and nearly coplanar retrograde
orbits even extend to ∼rH for Jupiter. For Uranus and Neptune,
both the prograde and retrograde stable orbits can extend a little
bit further relative to the Hill sphere. No stable orbits exist at
high latitudes, presumably because of Kozai oscillations (Kozai
1962; Carruba et al. 2002; Nesvorný et al. 2003).

It is also notable that there are stable regions beyond the
Hill sphere for Jupiter, Uranus and Neptune, as we discussed in
previous sections. This is particularly the case for Uranus and
Neptune. Most of these distant stable satellites are concentrated
close to the orbital plane of the planet as for Jupiter, although
the appearance of a very thin layer in Figures 8 (Jupiter) to 11
(Neptune) is somewhat an artifact of the coarse sampling of in-
clinations in our initial conditions (I = 15◦, 30◦, 45◦, 60◦, 75◦).
Stable satellites can be found as far as ∼5rH from Jupiter and
even ∼10rH for Uranus and Neptune, and as high as 2.5rH above
the orbital plane for the latter two planets. In the following sec-
tion, we discuss briefly the strategy of searches for these distant
satellites.

4. DISCUSSION AND CONCLUSIONS

We have conducted a systematic survey of the stable regions
of satellites around giant planets in the solar system, using nu-
merical orbital integrations that include gravitational perturba-
tions from the other planets. We confirm previous results for
satellites within the Hill sphere: stable retrograde satellites can
exist further out than prograde satellites (e.g., Hénon 1970;
Hamilton & Krivov 1997; Nesvorný et al. 2003); and stable or-
bits cannot exist at high inclinations (e.g., Carruba et al. 2002;
Nesvorný et al. 2003).

We also confirm and extend the conclusions of Wiegert et al.
(2000) that distant retrograde satellites (“retrograde” as defined
in the rotating frame) can survive well beyond the Hill sphere
for at least 108–109 yr, and probably for the lifetime of the solar
system. Uranus and Neptune are the most promising host planets
for such distant satellites, since their stability regions have the
largest extent (e.g., Figures 10–11). Jupiter has a smaller stable
region (Figure 8), and Saturn appears to have no stable regions
beyond the Hill radius (Figure 9).

Remarkably, there is a gap between the inner and outer
stability zones for retrograde satellites, extending from about
rH to 2rH, in which almost no stable orbits exist.

To check whether any of the proposed distant satellites have
already been discovered as Centaurs, we take the positions and
velocities of the known Centaurs from the IAU Minor Planet
Center6 that have planetocentric distances smaller than the
semimajor axes of each of the four giant planets at the last
observed epoch. There are 31 Centaurs (Jupiter 1; Uranus 16;
Neptune 14) that satisfy the criterion. We numerically integrated
these objects along with the Sun and giant planets for 108 yr, but
none of them survived as satellites according to the definition in
Section 1.

Searches for satellites far beyond the Hill radius can be carried
out either with dedicated deep, wide-angle surveys around the
giant planets, or through all-sky surveys such as the Panoramic
Survey Telescope and Rapid Response System and the Large
Synoptic Survey Telescope. The most promising search areas
are close to the orbital plane of the planet, since only low-
inclination orbits survive (e.g., compare Figure 3 and Figure 6).
In Figure 12 (upper left panel) we show the heliocentric angular
velocity of the stable outer retrograde satellites as a function of
angular distance from the planet as viewed from the Sun, for
Jupiter (black), Uranus (blue), and Neptune (red) respectively,
sampled every Myr between 5 × 107 and 108 yr.

In the upper right and bottom panels of Figure 12, we show
histograms of the difference in heliocentric semimajor axis from
their host planet and heliocentric eccentricities for the stable
outer retrograde satellites. These distributions can be used to
cull a large sample for potential satellites. Once a candidate
is identified with reliable orbit elements, a long-term orbital
integration should be run to confirm its satellite nature.

The discovery and characterization of satellites beyond the
Hill sphere would provide rich information about the early
formation of the solar system. Fabrycky (2008; also see,
Kortenkamp 2005) recently performed simulations of capture
of neighboring planetesimals from the circumstellar disk during
slow planet growth, and found that such distant satellites are a
natural outcome for Uranus and Neptune. Thus an inventory
of this potential population of bodies would enhance our
understanding of the formation of planets and their satellites
in the early solar system, and the properties of the primordial
planetesimal disk.

This research was supported in part by NASA grant
NNX08AH83G. We thank Dan Fabrycky and the anonymous
referee for comments that greatly improved the paper.
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