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ABSTRACT

We consider transverse oscillations of coronal loops that have both variable circular cross-sectional area and plasma
density in the longitudinal direction. The primary focus of this paper is to study the eigenmodes of these oscillations.
Implementing the method of asymptotic expansions with the ratio of the loop radius to length as a small parameter, a
second-order ordinary differential equation is derived describing the displacement of the loop axis. Together with the
boundary conditions at the tube ends that follow from the frozen-in condition, this equation constitutes the Sturm-
Liouville problemdetermining the eigenfrequencies and eigenmodes.Our results are relevant to themagnetoseismological
method of estimating the coronal density scale height by using the observed ratio of the fundamental frequency and first
overtone of loop kink oscillations. It is shown that this method is very sensitive to the tube expansion factor, which is the
ratio of the tube radii at the apex and footpoints. The estimated scale height is a monotonically decreasing function of
the expansion factor.

Subject headinggs: MHD — Sun: corona — Sun: magnetic fields — Sun: oscillations

1. INTRODUCTION

Transverse oscillations of coronal magnetic loops are one of
themost spectacularmanifestations of thewavemotion in the solar
atmosphere. These oscillations were observed by the TRACE
spacecraft and first reported by Aschwanden et al. (1999) and
Nakariakov et al. (1999). Nakariakov et al. (1999) interpreted
these oscillations as fast kinkmodes ofmagnetic flux tubes. For a
recent review on MHD waves and oscillations in the solar atmo-
sphere see, e.g., Banerjee et al. (2007). The transverse oscilla-
tions of coronal loops are especially interesting for theorists and
coronal seismologists, since they provide an ideal diagnostic
signature of the fine structure of the corona. In a pioneering work
by Nakariakov & Ofman (2001), they were used to estimate the
magnitude of magnetic field in coronal loops.

In the initial theoretical works, the simplest model of coronal
loopswas used. Thismodelwas a straight homogeneousmagnetic
tube with fixed ends. Later, more realistic and complex models
were developed. In particular, Andries et al. (2005b) andGoossens
et al. (2006) numerically studied the effect of the longitudinal den-
sity stratification on the transverse oscillations of coronal loops.
Dymova & Ruderman (2005, 2006a) showed that, in the thin-tube
approximation, frequencies and eigenfunctions of the fast kink
mode in a magnetic tube with longitudinally stratified plasma
density are determined by the classical Sturm-Liouville problem.

Recently,Verth&Erdélyi (2008) generalized the results obtained
by Dymova & Ruderman by also allowing the cross-sectional area
of the flux tube to vary in the longitudinal direction. In their deri-
vation they assumed that the expansion factor, which is the ratio
of the tube radii at the apex point and at the footpoint, is small.
The aim of this paper is to derive the equation determining the
eigenvalues and eigenfrequencies of longitudinally stratifiedmag-
netic tubes with variable cross sections that is valid for arbitrary
expansion factors. The paper is organized as follows. In x 2 we
discuss general properties of an equilibrium configuration with
expanding magnetic tubes. In x 3 the linearized ideal MHD
equations will be transformed to magnetic flux coordinates. In
x 4 the equation describing the eigenfrequencies and eigenfunc-
tions of loop kink oscillations is derived. In x 5 the implication of

our results for coronal seismology is discussed. Section 6 con-
tains the summary of the results obtained and our conclusions.

2. EQUILIBRIUM CONFIGURATION

We consider an equilibrium configuration in the form of a
straight magnetic tube with variable cross section and the dens-
ity varying along the tube (see Fig. 1). In what follows we use
cylindrical coordinates r,’, and zwith the z-axis coinciding with
the tube axis. The tube ends are frozen in a dense photospheric
plasma at z ¼ �L. The tube radius R varies along the tube, R ¼
R(z). The plasma density � has a jump at the tube boundary and
depends on z, so that � ¼ � i(z) for r < R(z) and � ¼ �e(z) for
r > R(z).
The tube is assumed to be thin, R/L ¼ O(�), where �T1. The

equilibrium magnetic field has two components, r and z, and is
independent of ’, so that B ¼ B(r; z). It follows from the sole-
noidal condition that B can be expressed in terms of the flux
function  ,

Br ¼ � 1

r

@ 

@z
; Bz ¼

1

r

@ 

@r
: ð1Þ

The electrical current, J ¼ : < B/�0, where �0 is the magnetic
permeability of free space, is in the ’-direction, J ¼ Je’ , where
e’ is the unit vector in the’-direction. Then, the r-component of
the Lorentz force, J < B, is equal to JBz. We assume that Bz 6¼ 0
everywhere and use the cold plasma approximation. Then it
follows from the equilibrium equation, J < B ¼ 0, that J ¼ 0,
i.e., the magnetic field is potential. This implies that  satisfies
the equation

r
@

@r

1

r

@ 

@r

� �
þ @ 2 

@z2
¼ 0: ð2Þ

The equation of the tube boundary is  (r; z) ¼  0, where  0 is
constant. In what follows we assume that B ! B1 ez as r ! 1,
where B1 > 0 is a constant and ez is the unit vector in the
z-direction.
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We obtain an example of the potential magnetic field satisfying
this condition if we take

 ¼ 1=2ð ÞB1r2 þ  � rJ1(r=l ) cosh (z=l ); ð3Þ

where  � and l are arbitrary constants and J1(x) is the Bessel
function of the first kind and first order. The parameter l can be
considered as the characteristic scale of variation of the magnetic
equilibrium field. Then,

Br ¼ �  �
l
J1

r

l

� �
sinh

z

l

� �
;

Bz ¼ B1 þ  �
l
J0

r

l

� �
cosh

z

l

� �
; ð4Þ

where J0 is the Bessel function of the first kind and zeroth order.
Let j1 be the first positive root of J1(x) so that J1(j1) ¼ 0. Then,
since J 0

0(x) ¼ �J1(x), where the prime indicates the derivative,
J0(x) takes its minimum value at x ¼ j1, and J0(x) takes its max-
imum value of 1 at x ¼ 0. Now, taking

�lB1 <  � cosh (L=l ) < lB1=j J0( j1)j � 2:5lB1; ð5Þ

we obtain Bz > 0 everywhere. Equation (4) takes an especially
simple form if we take lkL and restrict the attention to the tube
interior and its vicinity assuming rTL. Then, using the approx-
imate expressions for the Bessel functions valid for small values
of the argument (see, e.g., Abramowitz & Stegun 1964),

J0(x) � 1; J1(x) �
x

2
; ð6Þ

we obtain

Br � �  �r

2l2
sinh

z

l

� �
; Bz � B1 þ  �

l
cosh

z

l

� �
: ð7Þ

The approximate equation of the tube boundary is

R(z) � l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 0

l2B1 þ l � cosh (z=l)

s
; ð8Þ

where  0 is a positive constant. Note that the tube expands
[R(0)>R(� L)] when � > 0, while it contracts [R(0)<R(� L)]
when  � < 0. In what follows we assume that  � > 0, i.e., the
tube expands. The condition that the tube is thin, R(z)TL, takes
the form

 0TL2(B1 þ  �=l ): ð9Þ

The tube radius at the footpoints, Rf ¼ R(� L), is given by

Rf � l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 0

l2B1 þ l � cosh (L=l )

s
: ð10Þ

The tube expansion factor, k ¼ R(0)/Rf , is given by

k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lB1 þ  � cosh (L=l )

lB1 þ  �

s
: ð11Þ

After some algebra, the condition that Bz > 0 given by equa-
tion (5) can be rewritten in the approximate form

k2 < k2m � ½1� J0( j1)� cosh (L=l )
1� J0( j1) cosh (L=l )

ð12Þ

� 1:4 cosh (L=l )

1þ 0:4 cosh (L=l )
: ð13Þ

We see that km is a monotonically increasing function of L/l,
km ! 1 when L/l ! 0, and km ! ½1� 1/J0( j1)�1/2 � 1:87 as
L/l ! 1. Using equations (10) and (11) we can rewrite equa-
tion (8) for R(z) as

R(z) ¼ Rf k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh (L=l )� 1

cosh (L=l )� k2 þ k2 � 1
� �

cosh (z=l )

s
: ð14Þ

We have to emphasize the important property of this particular
model: it can describe only magnetic tubes with relatively small
expansion factors, definitely smaller than 1.87. Note, however,
that this restriction is related to a particular background state that
we only consider as an example. The derivation of the govern-
ing equation is free from any restrictions of this type except that
R(z)TL for any z.

In what follows we consider an arbitrary magnetic field given
by equations (1) and (2). However, we impose the restriction that
Bz > 0 everywhere and that the characteristic scale of the mag-
netic field variation is L. Since the tube is thin, R(z)/L ¼ O(�),
�T1, the second condition implies that, in the vicinity of the
magnetic tube, we can approximate  by the first term of its ex-
pansion in the Taylor series. Since the tube axis is a magnetic
field line,  ¼ const at r ¼ 0. Then, it follows that the approx-
imate expression for  is

 ¼ 1

2
r2h(z): ð15Þ

Fig. 1.—Sketch of the equilibrium configuration.
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Using equation (1) we obtain the approximate expressions for
the magnetic field components,

Br ¼ � r

2
h 0(z); Bz ¼ h(z): ð16Þ

Recall that equations (15) and (16) are only valid in the vicinity
of the magnetic tube, where r /L ¼ O(�). Using equation (16), we
obtain

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
r þ B2

z

q
¼ Bz þ O(�2) ¼ h(z)þ O(�2 ): ð17Þ

It also follows from the magnetic flux conservation that

h(z)R2(z) ¼ const: ð18Þ

3. TRANSFORMATION OF LINEAR MHD EQUATIONS
TO FLUX COORDINATES

To describe the plasma motion we use the linear ideal MHD
equations for a cold plasma,

@ 2x
@t2

¼ 1

�0�
(: < b) < B; ð19Þ

b ¼ : < (x < B ); ð20Þ

where x ¼ (�r; �’; �z) is the plasma displacement and b ¼
(br; b’; bz) is the magnetic field perturbation.

Introducing the parallel and perpendicular components of x
and b,

�k ¼ x = B=B; �? ¼ (Bz �r � Br �z)=B; ð21Þ

bk ¼ b = B=B; b? ¼ (Bzbr � Br bz)=B; ð22Þ

and the magnetic pressure perturbation

P ¼ 1

�0

Bbk ¼
1

�0

b = B; ð23Þ

we rewrite equations (19) and (20) in components as

�0�

B

@ 2�?
@t2

¼ �0Br

@

@z

P

B2

� �
� �0Bz

@

@r

P

B2

� �

þ rBr

@

@r

b?

rB

� �
þ Bz

@

@z

b?

B

� �
; ð24Þ

�0�
@ 2�’
@t2

¼ Br

r

@(rb’)

@r
þ Bz

@b’
@z

� �0

r

@P

@’
; ð25Þ

Bb? ¼ Bz

@(B�?)

@z
þ Br

r

@(rB�?)

@r
; ð26Þ

b’ ¼ @(Br�’)

@r
þ @(Bz�’)

@z
; ð27Þ

�0P ¼ Br

@(B�?)

@z
� Bz

r

@(rB�?)

@r
� B2

r

@�’
@’

: ð28Þ

Note that �k ¼ 0.
Nowweuse as an independent variable instead of r, so that r ¼

r( ; z). For an arbitrary function f we have the following relations,

@f

@r
¼ rBz

@f

@ 
;

@f

@z
¼ @f

@z
� rBr

@f

@ 
: ð29Þ

When deriving these relations we have used equation (1). Dif-
ferentiating the identity  ¼  (r ( ; z); z) with respect to z and
using equation (1), we obtain

@r

@z
¼ Br

Bz

: ð30Þ

Differentiating the identity r ¼ r ( (r; z); z) with respect to z and
using equations (1) and (30) yields

@r

@ 
¼ 1

rBz

: ð31Þ

Using equations (29)–(31) and the equation : = B ¼ 0, we
transform equations (24)–(28) to

@ 2u

@t2
¼ B2Br

�

@Q

@z
� rB4

�

@Q

@ 
þ rB2Bz

�0�

@

@r

b?

rB

� �
; ð32Þ

@ 2�’
@t2

¼ Bz

�0r�

@(rb’)

@z
� B2

r�

@Q

@’
; ð33Þ

b? ¼ Bz

rB

@(ru)

@z
; ð34Þ

b’ ¼ rBz

@

@z

�’
r

� �
; ð35Þ

Q ¼ Br

�0B
2

@u

@z
� r

�0

@u

@ 
� Bzu

�0rB
2
� 1

�0r

@�’
@’

; ð36Þ

where

u ¼ B�?; Q ¼ P

B2
: ð37Þ

Eliminating b? and b’ from equations (32)–(35), we obtain the
system of two equations for u, �’ , and Q,

@ 2u

@t2
¼ rB2Bz

�0�

@

@z

Bz

r2B2

@(ru)

@z

� 	

þ B2

�
Br

@Q

@z
� rB2 @Q

@ 

� �
; ð38Þ

@ 2�’
@t2

¼ Bz

�0 r�

@

@z
r2Bz

@

@z

�’
r

� �� 	
� B2

r�

@Q

@’
: ð39Þ

These equations together with equation (36) constitute the closed
system of equations for the variables u, �’, and Q. It is valid for
any equilibrium magnetic field determined by equations (1) and
(2). If we now take  and B given by equations (15) and (16),
then this system of equations is substantially simplified. In that
case,

r ¼

ffiffiffiffiffiffiffiffi
2 

h(z)

s
: ð40Þ

Then, using equations (16), (17), and (40), we reduce equa-
tions (36), (38), and (39) to

@ 2u

@t2
¼ h

ffiffiffi
h

p

�

h

�0

@ 2

@z2
uffiffiffi
h

p
� �

�
ffiffiffiffiffiffi
2 

p h 0

2

@Q

@z
þ h2

@Q

@ 

� �� 	
;

ð41Þ
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@ 2�’
@t2

¼ h
ffiffiffi
h

p

�

1

�0

@ 2 �’
ffiffiffi
h

p� �
@z2

� hffiffiffiffiffiffi
2 

p @Q

@’

" #
; ð42Þ

Q ¼ �1

�0

ffiffiffiffiffiffiffiffi
2h 

p h 0 

h2
@u

@z
þ 2 

@u

@ 
þ uþ h

@�’
@’

� �
: ð43Þ

This system of equations will be used in x 4 to derive the equa-
tion determining the eigenmodes and eigenfrequencies of the
kink oscillations of the magnetic tube. Since equations (15) and
(16) are only valid in the vicinity of the magnetic tube, equa-
tions (41)–(43) are also only valid in this vicinity.

4. STURM-LIOUVILLE PROBLEM
FOR KINK OSCILLATIONS

As already stated above, we assume that the tube is thin. This
implies that the characteristic scale of the variation of perturba-
tions in the longitudinal direction is much larger than that in the
radial direction. This observation inspires us to introduce the
stretching variable in the longitudinal direction, � ¼ �z. In what
follows we consider only kink oscillations and look for eigen-
modes. Therefore, we take perturbations of all variables pro-
portional to exp (� i!t þ i’). Let us introduce the characteristic
Alfvén speed inside the tube, VA ¼ B0 /(�0�0)

1/2, where B0 and
�0 are the typical values of the magnetic field and density inside
the tube, respectively. Then, the typical frequency of kink oscil-
lations is �VA/L, which is much smaller than the reciprocal of
the Alfvén time calculated using the tube radius, ��1

A ¼ VA/R(0).
This implies that one needs to introduce the scaled frequency
� ¼ ��1!.

Now equations (41)–(43) are rewritten as

��2�2u ¼ h
ffiffiffi
h

p

�

�
�2

h

�0

@ 2

@� 2
uffiffiffi
h

p
� �

�
ffiffiffiffiffiffi
2 

p �2

2

dh

d�

@Q

@�
þ h2

@Q

@ 

� �	
; ð44Þ

��2�2�’ ¼ h
ffiffiffi
h

p

�

�2

�0

@ 2 �’
ffiffiffi
h

p� �
@� 2

� ihffiffiffiffiffiffi
2 

p Q

" #
; ð45Þ

Q ¼ �1

�0

ffiffiffiffiffiffiffiffi
2h 

p �2
 

h2

dh

d�

@u

@�
þ 2 

@u

@ 
þ uþ ih�’

� �
: ð46Þ

The system of equations (44)–(46) contains the small parameter
�2. This inspires us to look for a solution to this system in the
form of expansions in power series with respect to �2. We as-
sume that u and �’ are the quantities of the order of unity. Then, it
follows from equation (45) that Q is of the order of �2, and we
write the expansions for u, �’, and Q as

u ¼ u1 þ �2u2 þ : : :;

�’ ¼ �’1 þ �2�’2 þ : : :;

Q ¼ �2Q1 þ �4Q2 þ : : :: ð47Þ

Substituting equation (47) in equations (44)–(46) and collecting
the largest terms in each of these equations, we obtain

h

�0

@ 2

@� 2
u1ffiffiffi
h

p
� �

� h2
ffiffiffiffiffiffi
2 

p @Q1

@ 
þ ��2

h
ffiffiffi
h

p u1 ¼ 0; ð48Þ

1

�0

@ 2 �’1
ffiffiffi
h

p� �
@� 2

� ihffiffiffiffiffiffi
2 

p Q1 þ
��2

h
ffiffiffi
h

p �’1 ¼ 0; ð49Þ

2 
@u1

@ 
þ u1 þ ih�’1 ¼ 0: ð50Þ

Eliminating �’1 from equations (49) and (50) yields

Q1 ¼
2 

h�0

@ 2

@� 2
þ �0��

2

h2

� �
@U

@ 
; ð51Þ

where

U ¼
ffiffiffiffiffiffi
2 

h

r
u1: ð52Þ

Substituting this expression in equation (48), we arrive at

@ 2

@� 2
þ �0��

2

h2

� �
4 

@

@ 
 
@U

@ 

� �
� U

� 	
¼ 0: ð53Þ

It follows from the frozen-in conditions that

U ¼ 0 at � ¼ ��L: ð54Þ

The Sturm-Liouville problem

@ 2f

@� 2
þ �0��

2

h2
f ¼ 0; f ¼ 0 at � ¼ ��L ð55Þ

describes individual oscillations of magnetic field lines with the
Alfvén frequency. In what follows we assume that the frequencies
of the tube kink oscillations are not close to any of the Alfvén
frequencies. Then, it follows from equation (53) that

4 
@

@ 
 
@U

@ 

� �
� U ¼ 0: ð56Þ

It is straightforward to obtain that the general solution of equa-
tion (56) is

U ¼ U1(�) 
1=2 þ U2(�) 

�1=2; ð57Þ

where U1(�) and U2(�) are arbitrary functions satisfying
U1(� �L) ¼ U2(� �L) ¼ 0.

The equation of the tube boundary in the flux variables is
 ¼  0, so that the interior and exterior of the tube are deter-
mined by  <  0 and  >  0, respectively. Since the solution
inside the tube has to be regular at  ¼ 0, it is given by

U ¼ U1(�) 
1=2: ð58Þ

In the case of a tube with a constant cross section, the plasma
motion caused by the kink oscillation outside the tube practically
decays at a distance of a few tube radii. We look for oscillations
of a tube with variable cross section having the same property.
Then, the solution in the region  >  0 is

U ¼ U2(�) 
�1=2: ð59Þ

Note that a weaker condition that perturbations decay as r ! 1
is not sufficient to obtain equation (59). The reason for this is that
equation (57) is only valid in the tube vicinity, i.e., for rTL,
and cannot be used for r ! 1.

To derive the equation describing the tube oscillations we have
to use the boundary conditions at the tube boundary. The first of
these conditions is the kinematic boundary condition �?� ¼ �?þ,
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where �?� ¼ lim ! 0�0�?. In the lowest order approximation
with respect to �2, it reduces to

U� ¼ Uþ: ð60Þ

It follows from this condition and equations (58) and (59) that

U2(�) ¼  0U1(�): ð61Þ

The second boundary condition is the dynamic boundary con-
dition P� ¼ Pþ. In the lowest order approximation, it reduces to

Q1� ¼ Q1þ: ð62Þ

Using equations (51), (58), (59), and (61), we obtain from
equation (62)

d2U1

d� 2
þ �2

C2
k

U1 ¼ 0; ð63Þ

where

C2
k ¼ 2B2(z)

�0½� i(z)þ �e(z)�
: ð64Þ

To obtain equation (64) we have used the approximate relation
from equation (17).

It follows from equations (18), (37), (52), and (58) that

U1 ¼ const
�?
R(z)

þ O �2
� �

: ð65Þ

Hence, in the lowest order approximation with respect to �2, we
can substitute

� ¼ �?
R(z)

ð66Þ

forU1 in equation (63). Then, returning to the original variable z,
we conclude that the eigenfrequencies and eigenmodes of the
tube kink oscillations are determined by the Sturm-Liouville
problem

d2�

dz2
þ !2

C2
k

� ¼ 0; � ¼ 0 at z ¼ �L; ð67Þ

where Ck(z) is given by equation (64). This result is a generali-
zation of the result obtained by Dymova & Ruderman (2005) for
a tube with a constant cross section.

As we have already mentioned in x 1, recently the transverse
oscillations of a longitudinally stratified tube with a variable cross
section was studied by Verth & Erdélyi (2008). These authors
derived the equation determining the eigenmodes and eigen-
functions of kink tube oscillations assuming that the tube ex-
pansion is small. To assess the accuracy of the approximate
equation derived by Verth & Erdélyi (2008), we compare the
frequencies calculated using equation (67) valid for an arbitrary
expansion factor and the equation of Verth & Erdélyi valid only

for expansion factors close to unity. When doing so we assume
that there is no density stratification. For the magnetic field we
use the model described in x 2 as an example. We take l ¼ L/3.
Then, in accordance with equation (13), the restriction for the
expansion factor is k < km � 1:67. The results of our calcula-
tions are presented in Figure 2. The dependencies of the funda-
mental frequency and the frequency of the first overtone are shown.
We see that both frequencies decrease when k increases. It is not
surprising at all, because the total magnetic tension at fixed z,
which is proportional to B2(z)R2(z) � R�2(z), decreases [recall
that B(z)R2(z) � const]. Note the very good agreement between
the results obtained with the use of equation (67) valid for an
arbitrary expansion factor and those obtained with the use of the
equation valid only for expansion factors close to unity. Hence,
although Verth & Erdélyi (2008) derived their equation under
the assumption k� 1T1, it seems that it remains valid for
k� 1 � 1. Finally, we note a very unusual situation: the equation
derived in this paper for an arbitrary expansion factor is simpler
than the equation derived byVerth&Erdélyi (2008) for expansion
factors close to unity.
We have to emphasize that the comparison of our results with

the results obtained by Verth & Erdélyi (2008) as well as the cal-
culation of dependences of !1 and !2 on k has been carried out
for only one particular equilibrium state. Of course, the numerical
values will change if we consider another equilibrium state, in
particular, if we choose another value of l. However, we antici-
pate that qualitatively the results will be the same.

5. IMPLICATION FOR CORONAL SEISMOLOGY

Verwichte et al. (2004) reported two cases of observation of
transverse coronal loop oscillations where both the fundamental
mode and first overtone were detected. The frequency of the first
overtone was smaller than the double frequency of the funda-
mental mode. Andries et al. (2005a) suggested that this effect was
caused by the density variation along the loop. Assuming that the
plasma in the coronal loop is isothermal and that the loop has the
shape of a semicircle in the vertical plane, they used the ratio of
frequencies of the fundamental harmonic and first overtone to
estimate the density scale height.

Fig. 2.—Dependencies of frequencies of the fundamental kink mode, !1, and
the first overtone, !2 , on the expansion factor k. The solid curves were obtained
using eq. (67) of this paper, while the dashed curves were obtained using the ap-
proximate equation by Verth & Erdélyi (2008).
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Recently, Van Doorsselaere et al. (2007) reported a new case
of simultaneous observation of the fundamental mode and first
overtone in the transverse coronal loop oscillation. They also
revisited the observations reported by Verwichte et al. (2004)
using an improved technique that reduces the uncertainties in the
determination of the oscillation periods.

Dymova & Ruderman (2006b) studied the effect of the loop
shape on the determination of the density scale height using the
ratio of frequencies of the fundamental harmonic and first over-
tone. They considered a loop with the shape of an arc of a circle
and found that the dependence of the calculated density scale
height on the loop shape is fairly strong. McEwan et al. (2008)
studied the dependence of the ratio of the fundamental frequency
and the frequency of the first overtone on the atmospheric scale
height in an exponentially stratified loop.

In this paper we study the effect of cross-sectional area varia-
tion on the determination of density scale height.We assume that
the loop has the shape of a half-circle of radius 2L/�. The plasma
is assumed to be isothermal with the same temperature inside and
outside the loop, so that � i ¼ �̂ ie

�h/H and �e ¼ �̂ee
�h/H , where

h is the height in the atmosphere andH is the density scale height.
Since

h ¼ 2L

�
cos

�z

2L
;

we obtain

� i ¼ �̂ i exp � 2L

�H
cos

�z

2L

� �
;

�e ¼ �̂e exp � 2L

�H
cos

�z

2L

� �
: ð68Þ

We once again consider a particular magnetic field configuration
described in x 2. Then, using equation (14) determining R(z), the
relation B(z)R2(z) ¼ const, and equation (68), we obtain

Ck ¼ Ck f exp � L

�H
cos

�z

2L

� �

;
cosh (L=l )� k2 þ k2 � 1

� �
cosh (z=l )

k2½ cosh (L=l )� 1�
; ð69Þ

where Ck f ¼ Ck( � L) is the value of Ck(z) at the footpoints. In
our calculations we took l ¼ L/3, which reduces equation (69) to

Ck ¼
Ckf

k2
exp � L

�H
cos

�z

2L

� �
; 1þ 0:11 k2 � 1

� �
½cosh (3z=L)� 1�


 �
: ð70Þ

After that we used the same procedure as inDymova&Ruderman
(2006b).We fixed k and solved equation (67) numericallywithCk

given by equation (70). As a result, we found the dependence
of the ratio of the first overtone to the fundamental harmonic,
!2 /!1, as a function ofL/H . Since both!2 /!1 and the loop height
2L/� are known from the observations reported by Verwichte
et al. (2004) and Van Doorsselaere et al. (2007), we can even-
tually determine the scale height H. Recall that, in accordance
with the improved analysis by Van Doorsselaere et al. (2007),
!2 /!1 ¼ 1:82 and 2L ¼ 218 Mm in the first case reported by

Verwichte et al. (2004), while !2 /!1 ¼ 1:58 and 2L ¼ 228 Mm
in the second case. In the case reported byVanDoorsselaere et al.
(2007; case three) these quantities were given by !2 /!1 ¼ 1:795
and 2L ¼ 400 Mm. For k ¼ 1 these values give H ¼ 68, 30,
and 109 Mm for the first, second, and third cases, respectively.
Then we calculated H for k varying from 1 to 1.65. As a result,
we found the dependencies of H on the expansion factor k for
these three cases. The results of our calculations are presented in
Figure 3.We see that the scale height is a decreasing function of k.

Van Doorsselaere et al. (2007) discussed why the obtained
scale height of the loop considered in their paper was more than
two times larger than the hydrostatically expected value 50 Mm.
We can see that one possible explanation is that they did not take
the loop expansion into account. We obtain H � 50 Mm for this
loop if we take k � 1:5, which is definitely not an unrealistic
value. On the other hand, we note that the estimate of the scale
height obtained by Van Doorsselaere et al. (2007) is consistent
with the independent estimate given byAschwanden et al. (2000).
So it is quite possible that, in this particular case, the expansion
factor was very close to unity.

6. SUMMARY AND CONCLUSIONS

In this paper we have studied the fast kink oscillations of
longitudinally stratified magnetic tubes with circular variable
cross-sectional area. The tube axis was assumed to be straight,
and the tube ends to be frozen in the dense photospheric plasma.
We considered a thin tube with the ratio of the tube radius to
length of the order of �T1. We restricted our study to the
eigenmodes with all quantities proportional to e�i!t. Then we
used the method of asymptotic expansions to derive the second-
order ordinary differential equation for the displacement of the
tube axis. This equation is a generalization of the correspond-
ing equation derived by Dymova & Ruderman (2005) for longi-
tudinally stratified magnetic tubes with a constant radius. The
boundary conditions at the tube ends and this equation together
constitute the Sturm-Liouville problem that determines the eigen-
frequencies and eigenfunctions of the tube kink oscillations.

We discussed the implications of our results on coronal seis-
mology. We concentrated on the method of estimation of the
coronal scale height H using the ratio of periods of the funda-
mental kink mode and the first overtone that was suggested by

Fig. 3.—Solid and dash-dotted curves show the dependencies of the scale
heightH on the expansion factor k for the two cases reported by Verwichte et al.
(2004). The dashed curve shows the dependence of H on k for the case reported
by Van Doorsselaere et al. (2007).
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Andries et al. (2005a). We showed that this method is very sen-
sitive to the tube expansion factor k, which is the ratio of the
tube radii at the apex and footpoints. Our main result is that the
estimated coronal scale height is a monotonically decreasing
function of k. A particularly striking example is related to the es-
timate of the coronal scale height presented by Van Doorsselaere
et al. (2007). These authors considered one of the observations of
coronal loop kink oscillations and, using the observational data,
foundH � 109Mm. To obtain this estimate they used the model

of a coronal loop with a constant radius. We showed that H �
50 Mm if we assume that the loop expands and take k � 1:5.

Thisworkwas inspired bydiscussions at aworkshop inBern or-
ganized by ISSI. The authors acknowledge the financial support
from STFC and EPSRC. R. E. acknowledges M. Kéray for pa-
tient encouragement and is also grateful toNSF,Hungary (OTKA,
K67746).
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