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ABSTRACT

We investigate the tidal interaction between a low-mass planet and a self-gravitating protoplanetary disk by means
of two-dimensional hydrodynamic simulations. We first show that considering a planet as freely migrating in a disk
without self-gravity leads to a significant overestimate of the migration rate. The overestimate can reach a factor of 2
for a disk having 3 times the surface density of the minimummass solar nebula. Unbiased drift rates may be obtained
only by considering a planet and a disk orbiting within the same gravitational potential. In the second part, the disk
self-gravity is taken into account. We confirm that the disk gravity enhances the differential Lindblad torque with
respect to the situation where neither the planet nor the disk feels the disk gravity. This enhancement only depends on
the Toomre parameter at the planet location. It is typically 1 order of magnitude smaller than the spurious one induced
by assuming a planet migrating in a disk without self-gravity.We confirm that the torque enhancement due to the disk
gravity can be entirely accounted for by a shift of Lindblad resonances and can be reproduced by the use of an aniso-
tropic pressure tensor. We do not find any significant impact of the disk gravity on the corotation torque.

Subject headinggs: accretion, accretion disks — hydrodynamics — methods: numerical —
planetary systems: formation — planetary systems: protoplanetary disks

1. INTRODUCTION

Since the discovery of the first exoplanet (Mayor & Queloz
1995), theories of planet-disk interaction have received renewed
attention. Using the analytic torque expression of Goldreich &
Tremaine (1979) at Lindblad and corotation resonances, Ward
(1997, and references therein) has elaborated a theory of planet-
disk tidal interaction which shows that a planet embedded in a
protoplanetary disk should experience an orbital decay toward
the central object. For low-mass protoplanets, the timescale of this
inward migration (usually known as type I planetary migration) is
much smaller than the disk lifetime, by typically 1 or 2 orders of
magnitude (Ward 1997). This is a challenge to current theories
of planetary formation, since it seems very unlikely that a giant
planet can be built up before its protoplanetary core has reached
the vicinity of the central star.

Most of recent works dealing with planet-disk interactions have
therefore proposedmechanisms that could slowdownor stop type I
migration. Menou & Goodman (2004) considered realistic models
of T Tauri�-disks instead of the customary power-lawmodels and
found that type I migration can be significantly slowed down at
opacity transitions in the disk. Masset et al. (2006b) showed that
surface density jumps in the disk can trap low-mass protoplanets,
thereby reducing the type I migration rate to the disk’s accretion
rate. Paardekooper & Mellema (2006) found that the migration
may even be reversed in disks of large opacity. More recently,
Baruteau & Masset (2008) have shown that, in a radiatively in-
efficient disk, there is an excess of corotation torque that scales
with the initial entropy gradient at corotation. If the latter is suf-
ficiently negative, the excess of corotation torque can be positive
enough to reverse type I migration.

A common challenge is in any case to yield precise estimates
of themigration timescale. Nevertheless, a very common simpli-
fication of numerical algorithms consists of discarding the disk

self-gravity. Apart from a considerable gain in computational cost,
this is justified by the fact that protoplanetary disks have large
Toomre parameters, so that the disk self-gravity should be un-
important. Even in disks that are not subject to the gravitational
instability, neglecting the self-gravity may have important con-
sequences on planetary migration, as we shall see.

Thus far, a very limited number of works have taken the disk
self-gravity into account in numerical simulations of planet-disk
interactions. Boss (2005) performed a large number of disk sim-
ulations in which the self-gravity induces giant planet formation
by gravitational instability. His calculations are therefore short,
running for a few dynamical times, and involve only verymassive
objects. The planets formed in these simulations excite a strongly
nonlinear response by the disk, and anymigration effects are prob-
ably marginal or negligible. Furthermore, Nelson& Benz (2003a,
2003b) included the disk self-gravity in their two-dimensional
simulations of planet-disk interactions. The authors find that the
migration rate of a planet that does not open a gap is slowed down
by at least a factor of 2 in a self-gravitating disk. Nonetheless,
Pierens & Huré (2005, hereafter PH05) reported an analytical
expression for the shifts of Lindblad resonances due to the disk
gravity, and found that the disk gravity accelerates type I planetary
migration. The apparent contradiction between these findingsmo-
tivated our investigation.

This work is the first part of a series of studies dedicated to the
role of self-gravity on planetary migration. In the present paper,
we focus on the impact of self-gravity on the migration of low-
mass objects, that is, on type I migration. This study will be ex-
tended beyond the linear regime in a future publication.

The paper is organized as follows. The numerical setup used
in our calculations is described in x 2. We study in x 3 the de-
pendence of the differential Lindblad torque on the disk surface
density, without andwith disk self-gravity.We confirm in this sec-
tion that the disk gravity accelerates type I migration, and check
that this acceleration can be exclusively accounted for by a shift of
Lindblad resonances. In x 4, we show that the increase of the dif-
ferential Lindblad torque due to the disk gravity can be reproduced
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with an anisotropic pressure tensor. We investigate in x 5 the im-
pact of the disk self-gravity on the corotation torque. We sum up
our results in x 6.

2. NUMERICAL SETUP

We study the impact of the disk self-gravity on the planet-disk
tidal interaction by performing a large number of two-dimensional
hydrodynamic simulations. Notwithstanding the need for a gravita-
tional softening length, the two-dimensional restriction provides a
direct comparisonwith the analytical findings of PH05 and enables
us to achieve a wide exploration of the parameter space (mainly in
terms of disk surface density, disk thickness, and planet mass).

2.1. Units

As usual in numerical simulations of planet-disk interactions,
we adopt the initial orbital radius rp of the planet as the length
unit, the mass of the central object M� as the mass unit and
(GM�/r

3
p )

�1/2 as the time unit, G being the gravitational constant
(G ¼ 1 in our unit system).We denote Mp as the planet mass and
q as the planet to primary mass ratio.

2.2. A Poisson Equation Solver for the Code FARGO

Our numerical simulations are performedwith the code FARGO.
It is a staggered mesh hydrocode that solves the Navier-Stokes and
continuity equations on a polar grid. It uses an upwind transport
scheme with a harmonic, second-order slope limiter (van Leer
1977). Its particularity is to use a change of rotating frame on
each ring of the polar grid, which increases the time step signifi-
cantly (Masset 2000a, 2000b), thereby lowering the computa-
tional cost of a given calculation.

2.2.1. Implementation

We implemented a Poisson equation solver in FARGO as fol-
lows. Using the variables (u ¼ log r, ’), where r and ’ denote
the polar coordinates, the potential V of the disk, as well as the
radial and azimuthal accelerations gr and g’ derived from it, in-
volves convolution products (Binney & Tremaine 1987). They
can therefore be calculated at low computational cost using fast
Fourier transforms (FFTs), provided that a grid with a logarithmic
radial spacing is used. Our Poisson equation solver calculates gr
and g’ with FFTs.

To avoid the well-known alias issue, the calculation of the
FFTs is done on a grid whose radial zones number is twice that of
the hydrodynamics grid, the additional cells being left empty of
mass. Thus, the mass distribution of the hydrodynamics mesh
cannot interact tidally with its adjacent replications in Fourier
space (Sellwood 1987), and it remains isolated. Because of the
2� periodicity, such a precaution is not required in the azimuthal
direction.

Furthermore, a softening parameter "SG is adopted to avoid
numerical divergences, the same way as the planet potential is
smoothed. We point out that "SG must scale with r so that the ex-
pressions of gr and g’, smoothed over the softening length "SG,
indeed involve convolution products. The expressions of gr and
g’ are given in Appendix A.

Finally, we present a test problem. For a two-dimensional disk
with a uniform surface density �, gr reads

gr(r)¼ 4G�
E(vmax)� K(vmax)

vmax

þ K(umin )� E(umin )

� �
; ð1Þ

where K and E denote the complete elliptic integrals of the first
and second kinds, respectively, where umin ¼ rmin/r and vmax ¼
r/rmax , and rmin (rmax ) denote the disk inner (outer) edge (see

PH05). We performed a self-gravitating calculation with � ¼
2 ; 10�3, rmin ¼ 0:4rp, and rmax ¼ 2:5rp. The radial zones number
is Nr ¼ 512, and we took a very small softening length ["SG(rp) is
100 times smaller than the grid radial spacing at r ¼ rp]. Figure 1
shows the agreement between the result of our calculation and
the analytical expression of equation (1). The close-up displays gr
around r ¼ rp, for different softening length to mesh resolution
ratios, "/�r, at r ¼ rp. This shows the good convergence of our
numerical calculation toward the analytical expectation when the
softening length tends to zero.

2.2.2. Numerical Issues

The implementation of the disk self-gravity addresses two is-
sues. The first one concerns the convergence properties of our
results. We performed preliminary runs to check the torque con-
vergence, without and with self-gravity. The computational do-
main is covered with Nr zones radially between rmin ¼ 0:4rp and
rmax ¼ 2:5rp, and N’ zones azimuthally between ’ ¼ 0 and 2�.
For a comparative purpose, a logarithmic radial spacing is also
used for the calculations without self-gravity. We adopted disk
parameters and a planet mass that are representative of our study,
namely, a Q ¼ 8 Toomre parameter at the planet location, and a
Mp ¼ 5 ; 10�6M� planet mass. A complete description of our
model parameters is deferred to x 2.3. We evaluate the torque
obtained without self-gravity (�NOG) and with self-gravity (�FSG)
for several pairs (Nr;N’). The relative difference of these torques
is displayed in Figure 2a. We see in particular that the torque con-
vergence is already achieved for Nr ¼ 512 and N’ ¼ 1536, val-
ues that we adopted for all the calculations of this paper.
Furthermore, since the softening length "SG varies from one

ring to another, the FFTalgorithm does not ensure an exact action-
reaction reciprocity. Thus, the disk self-gravity may worsen the
conservation of the total angular momentum (that of the system
{gas+planet}). To investigate this issue, we performed calcula-
tionswith a planetmigrating in a diskwithout andwith self-gravity.
For these calculations only, the disk is inviscid, and reflecting
boundaries are adopted. As for the above convergence study, we
adopted a Mp ¼ 5 ; 10�6M� planet mass, and a Q ¼ 8 Toomre
parameter at the planet location. The value of "SG(rp) is the
one used in our calculations hereafter (see x 2.3). We display in

Fig. 1.—Radial self-gravitating acceleration gr(r), in absolute value, for a uni-
form surface density field. The analytical expression of gr (see eq. [1]) is com-
pared with the result of a self-gravitating calculation with a small softening length
(see text).We point out that gr(r) is positive at the inner edge, then it becomes nega-
tive (here from rk 0:75). The close-up reveals the influence of the softening length
on the agreement between the numerical calculation and the analytical expectation
(see text).
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Figure 2b the torques on the planet (�planet) and on the whole sys-
tem (�planetþgas), for both calculations. If the code were perfectly
conservative, the ratio�planetþgas/�planet would cancel out, to within
machine precision. This ratio is typically �0.5% without self-
gravity, and �3% with self-gravity. Although, as expected, the
conservation of the total angular momentum is worse with self-
gravity, it remains highly satisfactory.

2.3. Model Parameters

In the runs presented hereafter, the disk surface density� is ini-
tially axisymmetric with a power-law profile, �(r) ¼ �p(r/rp)

��,
where �p is the surface density at the planet’s orbital radius. The
reference value of � is 3/2. We therefore expect the corotation
torque, which scales with the gradient of (the inverse of ) the disk
vortensity, to cancel out for a nonYself-gravitating disk (Ward
1991; Masset 2001).

The vertically integrated pressure p and� are connected by an
isothermal equation of state, p ¼ �c2s , where cs is the local iso-
thermal sound speed. The disk aspect ratio is h(r) ¼ H(r)/r ¼
cs(r)/r�K(r), where H(r) is the disk scale height at radius r, and
�K denotes the Keplerian angular velocity. We take h to be uni-
form, ranging from h ¼ 0:03 to 0.05, depending on the calcula-
tions. We use a uniform kinematic viscosity �, which is 10�5 in
our unit system.

The gravitational forces exerted on the disk include

1. The gravity of the central star.
2. The gravity of an embedded planet, whose potential is a

Plummer one with softening parameter " ¼ 0:3H(rp).
3. The disk self-gravity, whenever it is mentioned. The self-

gravity softening length "SG is chosen to scale with r, and to be
equal to " at the planet’s orbital radius, which yields "SG(r) ¼
"(r/rp). Since h is taken to be uniform, H(r) scales with r, and
"SG(r) ¼ 0:3H(r). We comment that "SG(rp) is very close to the
recent prescription of Huré & Pierens (2006) for the softening
length of a flat, axisymmetric self-gravitating disk. From now on,
whenever wemention the softening length, we will refer to it as ".

The disk’s initial rotation profile�(r) is slightly sub-Keplerian,
the pressure gradient being accounted for in the centrifugal bal-
ance. When the disk self-gravity is taken into account, it reads

�(r)¼ �2
K(r) 1� (1þ �)h2

� �
� gr(r)

r

� �1=2

: ð2Þ

We comment that gr(r) is not necessarily a negative quantity.
When it is so, the disk rotates slightly faster with self-gravity
than without. In a two-dimensional truncated disk, gr is positive
at the inner edge and becomes negative at a distance from the inner
edge that depends on�.We checked that, whatever the values of �
used in this paper, gr is always negative in a radial range around
the planet’s orbital radius that is large enough to embrace all
Lindblad resonances (except the inner Lindblad resonance of
m ¼ 1 for � ¼ 0, as can be inferred from Fig. 1).

As stated in x 2.2.2, our calculations are performed on a grid
with a logarithmic radial spacing, even when the disk self-gravity
is not taken into account. The resolution is therefore the same in all
our calculations. The computational domain is covered withNr ¼
512 zones radially between rmin ¼ 0:4rp and rmax ¼ 2:5rp, and
N’ ¼ 1536 zones azimuthally between ’ ¼ 0 and 2�.

3. DEPENDENCE OF THE DIFFERENTIAL LINDBLAD
TORQUE ON THE DISK SURFACE DENSITY

Our study is restricted to the linear regime, which enables us to
compare the results of our calculations with analytical predic-
tions. For this purpose, we consider a q ¼ 5 ; 10�6 planet to
primary mass ratio. According to Masset et al. (2006a) for a
two-dimensional calculation, the flow in the planet vicinity re-
mains linear as long as

rBT"; ð3Þ

where rB ¼ GMp/c
2
s (rp) is the planet’s Bondi radius and " is the

softening length. Equation (3) translates into qTqlin, with qlin ¼
0:3h3 in our units. For a h ¼ 5% disk aspect ratio, qlin � 4 ; 10�5

so that our planet mass is well inside the linear regime. For a h ¼
3% disk aspect ratio, qlin � 8 ; 10�6, and our planet mass ap-
proximately fulfills the linearity condition. Note that the linearity
criterion given by equation (3) ensures that the torque � exerted
by the disk on the planet scales with q2. We focus in this section
on the scaling of � with �p, scaling that is expected, for a nonY
self-gravitating disk, as long as the planet does not open a gap. The
gap clearance criterion, recently revisited by Crida et al. (2006)
reads in our unit system as

3

4
h

q

3

� ��1=3

þ 50
�

q
� 1: ð4Þ

Fig. 2.—Left: Relative difference of the torques obtained without self-gravity (�NOG), and with self-gravity (�FSG), for different grid resolutions (see text). Right: Torque
exerted on a Mp ¼ 5 ; 10�6 M� planet mass, and on the system {gas+planet}. Torques are depicted for a calculation without self-gravity (long-dashed and dash-dotted
curves) and with self-gravity (solid and dotted curves).
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The left-hand side of equation (4) is �100, hence we expect to
check � / �p in our calculations without self-gravity.

The runs presented hereafter lasted for 20 orbits, which was
long enough to get stationary values of the torque. For the cal-
culations without self-gravity, the torque evaluation takes all the
disk into account, it does not exclude the content of the planet’s
Hill sphere. We checked that excluding it or not makes no differ-
ence in the torque measurement. This is consistent with the fact
that, for the planet mass considered here, we do not find any ma-
terial trapped in libration around the planet, be it inside a circum-
planetary disk (a fraction of the planet’s Hill radius) or inside a
Bondi sphere.

3.1. Case of a NonYSelf-Gravitating Disk

Wefirst tackle the case of a nonYself-gravitating disk.Wemea-
sure the specific torque � ¼ �/q on the planet for six different
values of �p, ranging from�p ¼ 2 ; 10�4 to 2 ; 10�3. This cor-
responds to varying the initial disk surface density at the planet’s
orbital radius from one to 10 times the surface density of themin-
imummass solar nebula (MMSN). Two situations are considered
(see also Table 1):

1. On the one hand, the planet does not feel the disk gravity; it
is held on a fixed circular orbit, with a strictly Keplerian orbital
velocity. In this case, referred to as the fixed case, both the planet
and the disk feel the star gravity but do not feel the disk gravity.
The disk non-Keplerianity is exclusively accounted for by the
radial pressure gradient. This is the configuration that has been
contemplated in analytical torque estimates (see, e.g., Tanaka et al.
2002).

2. On the other hand, the planet feels the disk gravity. In other
words, we let the planet evolve freely in the disk, so its angular
velocity, which reads

�p(rp) ¼ �2
K(rp)� gr(rp)=rp

� �1=2
; ð5Þ

is slightly greater than Keplerian. In this case, which we call the
free case, the planet feels the gravity of the star and of the disk
while, as previously stated, the disk does not feel its own gravity.
Contrary to the fixed case, the free case is not a self-consistent con-
figuration since the planet and the disk do not orbit under the same
gravitational potential. Nevertheless, this situation is of interest as
it corresponds to the standard scheme of all simulations dealing
with the planet-disk tidal interaction.

We show in Figure 3 the specific torques (in absolute value)
obtained with the fixed and free cases, for a h ¼ 0:05 disk aspect
ratio. In the fixed situation, there is an excellent agreement with
the expectation � / �p, and, not surprisingly, the torques are
bounded by the two- and three-dimensional analytical estimates
of Tanaka et al. (2002). Nonetheless, the free case reveals two
unexpected results. For a given surface density, the absolute value

of the torque is larger than expected from the fixed case. More-
over, it increases faster than linearly with the disk surface density.
The two latter results can be explained with the relative posi-

tions of the Lindblad resonances (hereafter LRs) in the fixed and
free cases. We display in Figure 4a the locations r ILR (rOLR) of
an inner (outer) LR, when the planet is on a fixed orbit. They are
given by r ILR ¼ ��1(� ILR) and rOLR ¼ ��1(�OLR), with �(r)
being the disk’s rotation profile (solid curve), and �ILR (�OLR)
being the frequency of the ILR (OLR), simply deduced from the
planet frequency �p.
When the planet is on a free orbit (Fig. 4b), its frequency is

slightly larger than in the fixed case. Thus, the frequencies of the
LRs are also larger in the free case, which induces a spurious in-
ward shift of all the resonances. The OLRs get closer to the orbit,
which increases the (negative) outer Lindblad torque. The ILRs
are shifted away from the orbit, which reduces the (positive) inner
Lindblad torque. Thus, the (negative) differential Lindblad torque
is artificially larger in the free case.
The inward shift of the LR, which we denote by �R, has been

evaluated analytically by PH05. A simple estimate can be obtained
as follows.Wedenote byR� the nominal position of the resonances
without disk gravity. We assume that the disk’s rotation profile is
strictly Keplerian. The shift �R being induced by the increase of the
planet frequency, we have �R /R� ¼ �2��p(rp)/3�K(rp), where
��p(rp) is the difference of the planet frequencies between the free
and fixed cases. Using equation (5) and a first-order expansion, we
are left with

�R

R�
¼ gr(rp)

3rp�
2
K(rp)

: ð6Þ

A more accurate expression for �R /R� is given by PH05 (see
their eq. [7c]). Equation (6) shows that the shift of the LR scales
with gr(rp), and hence with �p. This explains why the torque in
the free case increases faster than linearly with the disk sur-
face density. The relative shift of the resonances �R /R� typi-
cally amounts from�3 ; 10�4 to�3 ; 10�3 for our range value

TABLE 1

Planet’s Angular Velocity �p(rp) and Disk’s Rotation

Profile �(r) for a NonYSelf-Gravitating Disk

Parameter Fixed Case Free Case

�p(rp) ............... �K(rp)
�
�2

K(rp)�
gr(rp)

rp

�1/2

�(r) .................. �K(r) 1� (1þ �)h2½ �1/2 �K(r) 1� (1þ �)h2½ �1/2

Note.— In both cases, the initial planet’s angular velocity is strictly Keplerian.
For all the runs presented here, gr(rp) < 0, so that �p(rp) is slightly greater in the
free case than in the fixed case.

Fig. 3.—Specific torque � exerted on a Mp ¼ 5 ; 10�6M� planet mass by a
nonYself-gravitating disk, with a h ¼ 5% aspect ratio. Diamonds refer to the fixed
case (the planet is held on a fixed circular orbit, with a strictly Keplerian angular
velocity), while asterisks refer to the free case (the planet freely evolves in the disk,
the planet’s angular velocity is greater than Keplerian). The solid line corresponds
to a proportional fit of the fixed case data, and shows the excellent agreement be-
tween our results of calculations and the expectation � / �p in the fixed case. The
twodotted lines depict the two- and three-dimensional analytical estimates of Tanaka
et al. (2002).
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of surface densities, corresponding, however, to a torque rela-
tive discrepancy between �12% and �120% (see Fig. 3).

We are primarily interested in a quantitative comparison of the
torques in the fixed and free cases. Nonetheless, since the shift of
the LR scales with gr(rp), it depends on the mass distribution of
the whole disk. Thus, the torque discrepancy between the fixed
and free cases also depends on gr(rp), and hence on �p, �, rmin,
and rmax. In particular, we point out that if the planet is close
enough to the disk’s inner edge, then gr(rp) can be positive (see
Fig. 1, for � ¼ 0). This shifts all the LR outward (instead of in-
ward) and reduces the torque. We have checked this prediction
with an appropriate calculation (not presented here).

In our study, only �p is a free parameter. The index of the un-
perturbed surface density profile, �, is fixed indeed to 3/2, as ex-
plained in x 2.3. Our values of rmin and rmax are those customarily
used in numerical simulations of planet-disk interactions (see,
e.g., de Val-Borro et al. 2006). Thus, a useful quantitative com-
parison of the torques between the free and fixed cases can be
provided just by varying �p. In particular, one may think the
torque discrepancy to be significant only for high values of �p.
Nevertheless, such a discrepancy depends both on the surface
density �p and on the disk aspect ratio h. As explained in Ap-
pendix B, we expect the relative difference of the torques be-
tween the free and fixed situations to scale with (Qh)�1, where
Q is the Toomre parameter at the planet’s orbital radius,

Q ¼ cs�

�G�

h i
rp

� h=mD; ð7Þ

where � is the horizontal epicyclic frequency, defined as � ¼
2�r�1 d(r 2�)/dr½ �

	 

1/2
, and mD ¼ �r 2p�p/M�. Equation (7) can

be recast as Q ¼ h /��p in our units.
To study the impact of h on previous results, we performed

another set of calculations with h ¼ 0:03. Figure 5 confirms that
the relative difference of the torques scales with the inverse of
Qh. It yields an estimate of the error done on the torque evalua-
tion when involving the strongly biased free situation rather than
the self-consistent fixed situation. For instance, for a h ¼ 3% disk
aspect ratio, the free situation can overestimate the torque by as
much as a factor of 2 in a disk that has only �3 times the disk
surface density of the MMSN. Moreover, the torque relative dif-

ference is less than 20% as long asQhk 2:5, and hence as long as
the Toomre parameter at the planet location is approximately
greater than 50 if h ¼ 0:05, or 80 if h ¼ 0:03. Remember that
these estimates depend on the precise value of gr(rp), and hence
on the mass distribution of the whole disk. They are provided
with fixed, but customarily used values of �, rmin, and rmax.

To avoid the above torque discrepancy, one must ensure that
the planet and the disk feel the same gravitational potential. The
workaround depends onwhether the disk is self-gravitating or not,
and whether the planet freely migrates in the disk or not:

1. The disk is not self-gravitating. The planet’s angular ve-
locity should therefore be strictly Keplerian:

A. The planet evolves freely in the disk. Thus, its an-
gular velocity, given by equation (5), is slightly greater than
Keplerian. Aworkaround could be to subtract the axisymmetric
component of the disk surface density to the surface density be-
fore calculating the force exerted on the planet by the disk. This
would cancel out gr(rp), and the planet’s angular velocity would
remain strictly Keplerian.

Fig. 4.—Location of two Lindblad resonances in the fixed case (left ) and in the free case (right): the ILR ofm ¼ 6 (�ILR ¼ (6/5)�p), and the OLR of m ¼ 5 (�OLR ¼
(5/6)�p). The disk’s rotation profile �(r) is depicted without self-gravity (solid curve) and with self-gravity (dashed curve, right ). In the latter case, gr(r) is given by a
calculation with�p ¼ 5 ; 10�2, a value exaggerated to improve legibility. Note also that the pressure buffer has been discarded in both profiles, for the sake of simplicity.
The vertical arrow at r ¼ 1 indicates the planet location, it reaches the upper curve in the free case (right), since the planet feels the disk gravity. The ILR and OLR are lo-
cated, respectively, at r ILR ¼ ��1(�ILR ) and rOLR ¼ ��1(�OLR ). The nominal position of the resonances (that of the fixed case) is indicated by light gray dash-dotted
lines on the right panel to appreciate their shift, highlighted by a horizontal arrow.

Fig. 5.—Relative difference of the torques between the free andfixed situations,
as a function of Qh (see text and eq. [7]).
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B. The planet is held on a fixed circular orbit, with nec-
essarily a Keplerian angular velocity. This is a self-consistent
situation.

2. The disk is self-gravitating. The planet’s angular velocity
should therefore be given by equation (5):

A. The planet evolves freely in the disk. This is a self-
consistent situation.

B. The planet is held on a fixed circular orbit. This situa-
tion is self-consistent only if the planet’s fixed angular velocity
is given by equation (5).

From now on, whenever calculations without disk gravity are
mentioned, they refer to the fixed situation.We call them the NOG
calculations.

3.2. Case of a Self-Gravitating Disk

We study how the results of x 3.1 differ when the disk gravity
is felt both by the planet and the disk. The planet is still held on
a fixed circular orbit at r ¼ rp; its angular velocity is given by
equation (5). As in the situation without disk gravity, the planet’s
initial velocity is that of a fluid element that would not be subject
to the radial pressure gradient (see Table 2).

Taking the disk self-gravity into account induces two shifts of
Lindblad resonances (PH05): (i) a shift arising from the axisym-
metric component of the disk self-gravity, and (ii) a shift stemming
from the nonaxisymmetric component of the disk self-gravity. We
therefore performed two series of calculations:

1. Calculations that involve only the axisymmetric part of
the disk self-gravity. We will call these the axisymmetric self-
gravitating calculations (ASG calculations). Their computational
cost is the same as that of a calculation without disk gravity since
only one-dimensional FFTs are performed. The results of these
calculations are presented in x 3.2.1.

2. Fully self-gravitating calculations (FSG calculations),
which are more computationally expensive as they involve two-
dimensional FFTs. Their results are presented in x 3.2.2.

3.2.1. Axisymmetric Self-Gravitating Calculations

We display in Figure 6 the torques obtained with the NOG,
ASG, and FSG calculations, when varying�p. Wewill comment
the results of the FSG calculations in x 3.2.2. The torques obtained
in the ASG situation, which we denote by �ASG, are hardly distin-
guishable from the torques without disk gravity, denoted �NOG. A
straightforward consequence is that �ASG scales with �p with a
good level of accuracy. We point out however that the torque
difference �ASGj j� �NOGj j is slightly negative and decreases
with �p (not displayed here). The relative difference �ASGj j�j
�NOGj jj/ �NOGj j varies from �0:2% for �p ¼ 2 ; 10�4, to �2%
for �p ¼ 2 ; 10�3.

The interpretation of these results is as follows. In the ASG
situation, the positions of the LR related to the Fourier component

with wavenumberm are the roots of equation (see PH05, and ref-
erences therein)

DASG(r) ¼ �2(r)� m2 �(r)� �p

� �2þ m2c2s (r)=r
2 ¼ 0; ð8Þ

where, contrary to the NOG situation,�(r) and�p depend on gr
(see Table 2). As in x 3.1, the increase of the planet frequency
implies an inward shift of the LR, which increases the differen-
tial Lindblad torque (see Fig. 4b). Furthermore, as pointed out
in Figure 7a, the increase of the disk frequency causes an outward
shift of all LR, which reduces the differential Lindblad torque.
Accounting for the axisymmetric component of the disk gravity
therefore leads to two shifts of the resonances, acting in opposite
ways. Figure 7b shows that both shifts do not compensate exactly:
the LR are slightly2 moved away from corotation with respect to
their nominal position without disk gravity. This is in qualitative
agreement with PH05, who found a resulting shift which is nega-
tive for inward resonances, and positive for outward resonances
(see their �R1þ �R3 expression). The sign of the shift results from
the fact that the disk’s rotation profile decreases more slowly with
self-gravity than without,3 and explains why �ASGj j� �NOGj j is
negative. The absolute value of this shift increases with�p, which
means that �ASGj j� �NOGj jj j increases with �p.

3.2.2. Fully Self-Gravitating Calculations

We now come to the results of the FSG calculations depicted
in Figure 6. The torques obtained with the FSG calculations, de-
noted by �FSG, are larger than �ASG and �NOG. Moreover, �FSGj j
grows faster than linearly with the disk surface density, a result
already mentioned by Tanigawa & Lin (2005).
These results can be understood again in terms of shifts of the

LR. Besides the shift due to the slight increase of the planet and
of the disk frequency, the FSG situation triggers another shift stem-
ming from the additional nonaxisymmetric term�2�G�m/r in the
dispersion relation of density waves (in the WKB approximation,

TABLE 2

Planet’s Angular Velocity �p(rp) and Disk’s Rotation Profile �(r),
Without and With Disk Gravity

Parameter Without Disk Gravity With Disk Gravity

�p(rp) .... �K(rp)
�
�2

K(rp)�
gr(rp)

rp

�1/2

�(r) ....... �K(r) 1� (1þ �)h2½ �1/2
�
�2

K(r) 1� (1þ �)h2½ �� gr(r)

r

�1/2

Fig. 6.—Specific torque on a Mp ¼ 5 ; 10�6M� planet mass, obtained with
axisymmetric and fully self-gravitating calculations, with a h ¼ 5% disk aspect
ratio. Torques achieved without disk gravity (see x 3.1) are also displayed, for
comparison.

2 To improve the legibility of Figs. 4 and 7, the disk’s rotation profile with
self-gravity is depictedwith a value of �p that is 25 times greater than the maximal
value of our set of calculations.

3 We comment that this statement is not straightforward since it involves both
the sign and the variations of function gr; here again we checked that this state-
ment is valid in a radial range around the orbit that is large enough to concern all
LR.
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see PH05). The positions of the LRassociatedwithwavenumberm
are this time the roots of equation

DFSG(r) ¼ DASG(r)� 2�G�(r)m=r ¼ 0; ð9Þ

where DASG is given by equation (8). PH05 showed that

1. This nonaxisymmetric contribution moves inner and outer
LRs toward the orbit, with respect to their location in the ASG
situation. This explains why �FSGj j> �ASGj j and implies that the
torque variations at inner and outer resonances have opposite
signs.

2. The shift induced by the nonaxisymmetric part of the disk
self-gravity dominates that of its axisymmetric component. There-
fore, it approximately accounts for the total shift due to the disk
gravity, and explains why �FSGj j> �NOGj j � �ASGj j.

3. This shift increases with �p, so that �FSGj j increases faster
than linearly with �p.

Our results of calculations are in qualitative agreement with the
analytical work of PH05. Before coming to a quantitative com-
parison in x 3.3.2, we focus on the relative difference of the torques
between the FSG and NOG situations. From previous results, we
assume that the only shift of the LR is due to the nonaxisymmetric
part of the disk gravity. Interestingly, this shift does not feature gr,
so it does not depend on the mass distribution of the whole disk. It
only depends on the surface density at the planet location. Since
the torque variations at inner and outer resonances are of opposite
sign, we expect the relative difference of the torques to scale with
Q�1, for high tomoderate values of Q. This is shown inAppendix
C. It differs from the (Qh)�1 scaling obtained in Figure 5, where
the torque variations at inner and outer resonances were of iden-
tical sign.

In Figure 8, we plot this relative difference as a function of Q
for previous results and for another series of runs performed with
a h ¼ 0:03 disk aspect ratio. The departure from the expected
scaling occurs for QP 6. The behavior at low Q will be tackled
in x 3.3.2. Figure 8 yields a useful estimate of the torque increase
due to the disk gravity, or, differently stated, of the torque under-
estimate if one discards the disk gravity. Such an estimate depends
only on the Toomre parameter at the planet location, whatever the
global mass distribution of the disk. The torques’ relative differ-
ence is typically 1 order of magnitude smaller than in the situation
of a planet freelymigrating in a nonYself-gravitating disk (Fig. 5).

It amounts typically to 10% for Q � 10. ForQk 50, accounting
for the disk gravity or not has no significant impact on the torque
measurement.

Our results confirm that the disk gravity accelerates type I mi-
gration. Thismight sound contradictorywith the results of Nelson
&Benz (2003a, 2003b), who found that the disk self-gravity slows
downmigration for a planet that does not open a gap. The authors
compared, however, the results of their self-gravitating calcula-
tions (where both the planet and the disk feel the disk gravity) to
those obtained with the misleading situation of a planet freely mi-
grating in a disk without self-gravity. As shown by Figure 9, or as
can be inferred from Figures 3 and 6, comparing both situations
would lead us to the same conclusion. There is therefore no con-
tradiction between their findings and ours. From now on, we do
not distinguish the gravity and self-gravity designations, since the
planet and the disk orbit within the same potential in our calcula-
tions.Whenever calculations with disk gravity are mentioned, they
refer to the FSG situation.

3.3. Comparison with Analytical Results

3.3.1. An Analytical Estimate

We propose in this section a simple analytical estimate of the
relative difference of the torques between the FSG and NOG

Fig. 7.—Same as Fig. 4, except that we examine the shift of the LR when the disk is self-gravitating (its rotation profile is now the solid, top curve). Left: The planet
does not feel the disk gravity; the frequency of the planet, and therefore that of the LR, is the same as in Fig. 4a. Right: Both the planet and the disk feel the disk gravity; the
frequencies of the planet and of the LR are those of Fig. 4b.

Fig. 8.—Relative difference of the torques obtainedwith the fully self-gravitating
calculations (�FSG) and the calculations without disk gravity (�NOG), as a function of
the Toomre parameter Q at the planet location.
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situations. This estimate concerns high to moderate values of
the Toomre parameter at the planet location. We assume that
the only shift of the LR in the FSG situation arises from its non-
axisymmetric contribution. This comes to approximating the
NOG and ASG situations, which is a reasonable assumption
from Figure 6. Furthermore, since this shift has same order of
magnitude at inner and outer LR (PH05), we focus on the one-
sided Lindblad torque and use a local shearing sheet approxi-
mation. We set up local Cartesian coordinates (x; y) with origin
at the planet position, with the x- and y-axes pointing toward the
radial and azimuthal directions. Our x-coordinate is taken to be
normalized:

x ¼ r � rp

H(rp)
¼ r � rp

hrp
: ð10Þ

As is usually done in the shearing sheet framework, we discard
the radial dependence of the disk surface density and scale height
(Narayan et al. 1987). In a nongravitating disk, the LR associated
with wavenumber m are therefore located at

xNOG ¼ 2

3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	 2

p
	

; ð11Þ

where 	 ¼ mh, � ¼ þ1 for outer resonances, and � ¼ �1 for in-
ner resonances. In the FSG situation, LRs are located at x NOGþ
�xFSG, where the shift �xFSG is evaluated by DFSG(xNOG þ
�xFSG) ¼ 0. Using equations (8), (9), and (11), a first-order expan-
sion yields

�xFSG ¼ � 2

3�Q

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	 2

p : ð12Þ

We comment that equation (7b) of PH05 reduces to our equa-
tion (12) for a surface density profile decreasing as r�3/2.

In the linear regime, the one-sided Lindblad torque � amounts
to a summation over m of the Fourier components �m. In the
shearing sheet approximation, since all quantities depend on m

through 	, the summation over m is approximated as an integral
over 	,

� ¼ 1

h

Z 1

0

T x ¼ xL; 	ð Þ d	; ð13Þ

where xL denotes the positions of the LR and T is themth Fourier
component of the one-sided Lindblad torque, given by (see e.g.,
Ward 1997)

T (x; 	 ) ¼ K
	 2�2(x; 	 )ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 	 2
p

(1þ 4	 2)
; ð14Þ

whereK is a constant.We assume that equation (14) can be used
whether the disk is self-gravitating or not (Goldreich & Tremaine
1979). The forcing function� in equation (14) is approximated in
a standard way as a function of the Bessel K0 and K1 functions,

�(x; 	 ) ¼ K1( xj j	 )þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	 2

p
K0( xj j	 ): ð15Þ

We furthermore approximate�(x; 	 ) as ( xj j	 )�1, to within a nu-
merical factor of order unity (Abramowitz & Stegun 1972). This
approximation is valid when 	P 1, and hence for low m-values.
With a first-order expansion inQ�1, the difference of the one-

sided Lindblad torques between the FSG and NOG situations
reads

�FSG � �NOG � 1

h

Z 1

0

@T

@x

� �
x¼ xNOG; 	

�xFSG d	: ð16Þ

Combining equation (11) and (16), we are left with

�FSG � �NOG

�NOG

����
����¼ 2I

3Q
; ð17Þ

where

I ¼ 3

R 1
0

	 3
.

(1þ 	 2)5=2(1þ 4	 2)
h i

d	

R 1
0

	 2
.

(1þ 	 2)3=2(1þ 4	 2)
h i

d	

¼ 2
ffiffiffi
3

p
� log (7þ 4

ffiffiffi
3

p
)ffiffiffi

3
p

� �=3
� 1:21: ð18Þ

Not surprisingly, the relative difference of the one-sided
Lindblad torques scales with the inverse of Q. This is the same
scaling as for the relative difference of the differential Lindblad
torques, assuming high to moderate values of Q (see Appendix C
and Fig. 8). Note that, unlike the analysis of PH05, the present
analysis, which is restricted to the shearing-sheet framework,
enables one to exhibit the Q�1 scaling given by equation (17).

3.3.2. Results

We come to a quantitative comparison of our results of calcu-
lations with our analytical estimate, given by equation (17), and
the analytical results of PH05, who estimated the dependence of
the differential Lindblad torque on the disk mass for a fully self-
gravitating disk (see their Fig. 4b). Another series of FSG calcu-
lations was performed with disk parameters similar to those of
PH05, namely, a h ¼ 5% disk aspect ratio and a planet mass cor-
responding to the linear regime (its value is precise hereafter). We
vary the disk surface density at the planet’s orbital radius from
�p ¼ 4 ; 10�4 to 10�2. This corresponds to varying Q from 40

Fig. 9.—Specific torque variation with time, with and without disk gravity. In
each case, two situations are depicted: the fixed case (the planet is on a fixed orbit
with the appropriate angular velocity, see Table 2) and the free case (the planet is
free tomigrate in the disk). Except the self-gravitating calculationwith a free planet,
the calculations are those of Figs. 3 and 6 for�p ¼ 2 ; 10�3.When the planet in on
a free orbit without self-gravity, the torque oscillates with a large amplitude. This
is due to the slight increase of the planet frequency:�p(rp), which is initially strictly
Keplerian, is given by eq. (5) during its time evolution.
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to 1.6. The runs lasted for 10 planet’s orbital periods, which was
long enough to get stationary torques for the largest values of Q,
but short enough to avoid a significant growth of nonaxisymmetric
perturbations for the lowest values of Q, probably due to swing
amplification (Toomre 1964).

As we aim at comparing the results of two-dimensional calcu-
lations with analytical expectations (for which there is no soften-
ing parameter), we investigated how much our calculation results
depend on the softening length. For this purpose, the calculations
were performedwith three values of ": 0.1, 0.3, and 0.6H(rp). The
planet mass is Mp ¼ 4:4 ; 10�6M� for " ¼ 0:3 and 0.6 H(rp),
whereas Mp ¼ 10�6M� for " ¼ 0:1H(rp). This choice ensures
that the Bondi radius to softening length ratio does not exceed
�10% for each value of ".

Each calculation was performed with and without disk gravity,
so as to compute the relative difference of the torques between
both situations. The reason why we compute this relative dif-
ference is that it does not depend on the details of the torque
normalization, be it for the numerical or the analytical results.
Nonetheless, PH05 only calculated the normalized torque in the
FSG situation as a function of the disk mass. We then evaluated
their normalized torquewithout disk gravity by extrapolating their
torque with disk gravity in the limit where the disk mass tends to
zero.

Figure 10 displays the relative difference of the torques be-
tween the FSG situation (�FSG) and the NOG situation (�NOG),
obtainedwith our calculations, the analytical expectation of PH05
and our analytical estimate. This relative difference grows faster
than linearly with �p, although a linear approximation is valid at
low surface density, as already stated in x 3.2.2. Our linear esti-
mate is in agreement with the results of calculations with " ¼
0:6H(rp) up toQ � 3, where it leads to a torque enhancement that
is typically half the one estimated by PH05. Furthermore, our cal-
culation results depend heavily on ", especially at high �p. For a
given value of �p, the relative difference of the torques decreases
as " increases. Differently stated, increasing the softening length
reduces �FSG more significantly than �NOG.

We finally comment that our calculation results with " ¼
0:1H(rp), which matches the mesh resolution in the planet vi-
cinity, are in quite good agreement with the analytical prediction

of PH05. Surprisingly, the relative differences obtained with our
calculations are greater than their analytical expectation. We
checked that doubling the mesh resolution in each direction
does not alter the relative differences measured with our calcu-
lations, as already pointed out in x 2.2.2 (see Fig. 2a). We show
in Appendix D that this result can be explained by the failure of
theWKB approximation for low values of the azimuthal wave-
number. The relative difference between the results of our cal-
culations and the predictions of PH05 is �15% for Q � 8, and
does not exceed �30% for Q � 2. This satisfactory agreement
confirms that the impact of the disk gravity on the differential
Lindblad torque may be exclusively accounted for by a shift of
Lindblad resonances.

4. MODELING THE NONAXISYMMETRIC
CONTRIBUTION OF THE DISK SELF-GRAVITY
WITH AN ANISOTROPIC PRESSURE TENSOR

In x 3, we investigated the impact of the disk gravity on the
differential Lindblad torque for low-mass planets. The torque of
an ASG calculation (where only the axisymmetric component of
the disk self-gravity is taken into account) is close to that of a
NOG calculation (without disk gravity). However, a FSG calcu-
lation (which also involves the nonaxisymmetric contribution of
the self-gravity) displays a significant increase of the torque, which
can be exclusively accounted for by a shift of the LR.

We propose in this section to model this torque enhancement
for low-mass planets. Our model aims at calculating only the axi-
symmetric part of the disk self-gravity, and applying an additional
shift of the LR that mimics the one of its nonaxisymmetric part.
Altering the location of the LR amounts to modifying the dis-
persion relation of the density waves. The dispersion relations
of the ASG and FSG cases differ only by the �2�G�m /r term
(in the WKB approximation, see equations [8] and [9]). There
is however no straightforward way to add an extra term propor-
tional tom in the dispersion relationDASG of the ASG situation.
We propose to multiply the m2c2s /r

2 term of DASG by a constant,
positive factor 1� �, with � > 0 to ensure that LRs are shifted
toward the orbit. This can be achieved by multiplying the azi-
muthal pressure gradient @’P by 1� � in the Navier-Stokes
equation or, differently stated, by assuming an anisotropic pres-
sure tensor, for which the pressure in the azimuthal direction reads
P’ ¼ (1� �)Pr, where Pr, the pressure in the radial direction, is
given byPr ¼ �c2s .We call� the anisotropy coefficient.When an
ASG calculation includes the anisotropic pressure model, we will
call it an ASG+AP calculation. We comment that the rotational
equilibrium of the disk, which involves the radial pressure gra-
dient, is not altered by this model.

We now explain how to take the adequate value for the an-
isotropy coefficient. As in x 3, we assume an initial surface den-
sity profile that scales with r�3/2, which induces a negligible4

vortensity gradient, and hence a negligible corotation torque.
Thus, the torques obtained with our calculations only include
the differential Lindblad torque. We denote by �FSG, �ASG, and
�ASGþAP the differential Lindblad torques obtained with the
FSG, ASG, and ASG+AP calculations. Our model aims at
imposing

�ASGþAP � �ASG ¼ �FSG � �ASG: ð19Þ

Fig. 10.—Relative difference of the torques between with the FSG situation
(�FSG) and the NOG situation (�NOG) as a function of the disk surface density�p.
We compare the results of our calculations (each symbol refers to a different value
of the softening length ") with the analytical results of PH05 (dashed curve), and
our analytical estimate (dash-dotted curve, see text and eq. [17]). The vertical dotted
lines display different values of the Toomre parameter at the planet location.

4 With a uniform disk aspect ratio, the vortensity gradient vanishes for a nonY
self-gravitating disk while it is negligible, but does not cancel out, for a self-
gravitating disk.
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A first-order expansion of the left-hand side of equation (19)
with �, and of its right-hand side with Q�1 leads to

� ¼ 
Q�1; ð20Þ

where


 ¼
(@�FSG=@Q

�1)Q�1¼ 0

(@�ASGþAP=@�)�¼ 0

: ð21Þ

The parameter 
 depends only on the softening length to disk
scale height ratio � ¼ "/H . We calculated it for � ¼ 0:1, 0.3, and
0.6 for small, fixed values of � andQ�1, which we denote with a
zero subscript. For each value of �, we performed an ASG, an
ASG+AP, and a FSG calculation with q ¼ 10�6 and h ¼ 5%,
corresponding to a Bondi radius to softening length ratio of
�2:7%. Furthermore, we adopted�p ¼ 5 ; 10�4, yieldingQ�1

0 �
0:03. The ASG+AP calculation had �0 ¼ 0:01. Using equa-
tion (21), the parameter 
 was therefore calculated by


 ¼ �0Q0

�FSG � �ASG

�ASGþAP � �ASG

: ð22Þ

We display in Table 3 the values of 
 for � ¼ 0:1, 0.3, and 0.6.
We note that our anisotropic pressure model should be applied
only when Q > 
, to satisfy the constraint 1� � > 0. This is
not a stringent constraint, since 
 < 1 for these values of �.

We comment that the value of m for which the resonance shifts
induced by the self-gravity and by the anisotropic pressure are
equal is beyond the torque cutoff. Several reasons may conspire
for that:

1. For a given shift, the relative torque variation is larger for
resonances that lie closer to the orbit, which gives more weight to
the high-m component.

2. The shifts estimated by a WKB analysis may dramatically
differ from the real shifts (see Appendix D), especially at low-m,
where significant torque is exerted.

3. The torque expression for an anisotropic pressure has not
been worked out in the literature, and may differ from the stan-
dard expression (Ward 1997), with the consequence that equal
shifts will not yield equal torque variations.

4.1. Validity of the Anisotropic Pressure Model

Wefirst test the validity of ourmodel by performing a series of
calculations with Q ranging from 1.5 to 8. From equation (7), Q
can be set by varying either h or�p. Varying h however alters the
ratio rB/", which controls the flow linearity in the planet vicinity.
We therefore fixed h ¼ 0:05 and varied�p. The planet to primary
mass ratio is q ¼ 10�6, the softening length is " ¼ 0:3H(rp). For
each value of Q, we performed a FSG, an ASG, and an ASG+AP
calculation, for which the anisotropy coefficient is � ¼ 
/Q, with

 ¼ 0:61 (see Table 3). The results are displayed in Figure 11.
As expected from the first-order expansion inQ�1 used to derive

equation (20), the difference between the torques of the FSG and
ASG+AP calculations increases when Q decreases. The relative
difference is �0:4% for Q ¼ 8, �10% for Q ¼ 2:5, and reaches
�25% for Q ¼ 1:5. The anisotropic pressure model therefore re-
produces the torque of a FSG calculation with a good level of ac-
curacy up to Q � 4.
The robustness of our model is furthermore tested against the

onset of nonlinearities, by varying the planet to primary mass
ratio q. The Toomre parameter at the planet location is fixed at
Q ¼ 8. A series of ASG, ASG+AP, and FSG calculations was
performed with q ranging from 10�6 to 7 ; 10�6, and hence with
rB/" ranging from �2:7% to �18:7%. Figure 12 displays the
specific torque as a function of q for each calculation. The torques
obtained with the FSG and ASG+AP agree with a good level of
accuracy. Their relative difference, shown in the close-up, in-
creases almost linearly from�0:4% to�4%, due to the onset of
nonlinearities.
These results indicate that the anisotropic pressure model suc-

ceeds in reproducing the total torque obtained with a fully self-
gravitating disk, as far as a low-mass planet, a high to moderate

Fig. 11.—Specific torque exerted on aMp ¼ 10�6M� planet mass, as a func-
tion of the Toomre parameterQ at the planet location. We display the torques ob-
tained with ASG calculations ( plus signs), FSG calculations (asterisks), and
ASG+AP calculations (diamonds).

TABLE 3

Calculation of Anisotropy Coefficient:

Values of 
 for Different Values of �

� ¼ "/H 


0.1................................................. 0.32

0.3................................................. 0.61

0.6................................................. 0.94

Fig. 12.—Specific torque as a function of the planet to primary mass ratio.
Calculations obtained with the anisotropic pressure model (ASG+AP) are com-
paredwith axisymmetric self-gravitating calculations (ASG) and fully self-gravitating
calculations (FSG). The close-up displays the relative difference of the torques be-
tween the FSG and ASG+AP situations. For all these calculations,Q ¼ 8 at the
planet location (the disk mass is �0.024M�).
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Toomre parameter, and a surface density profile scaling with
r�3/2 are considered. With these limitations, these results pre-
sent another confirmation that the impact of the disk gravity on
the differential Lindblad torque can be entirely accounted for
by a shift of the LR.We suggest that in the restricted cases men-
tioned above, the anisotropic pressure model could be used as a
low-computational cost method to model the contribution of the
disk gravity. We finally comment that, not surprisingly, these re-
sults do not differ if the planet freely migrates in the disk, which
we checked with long-term FSG and ASG+AP calculations (not
presented here).

5. COROTATION TORQUE ISSUES

Hitherto, we have considered an initial surface density profile
that scales with r�3/2, which induces a negligible vortensity gra-
dient, and hence a negligible corotation torque. This assumption
ensured that the torques derived from our calculations accounted
only for the differential Lindblad torque. It enabled a direct com-
parison with analytical expectations focusing on the differential
Lindblad torque. We release this assumption and evaluate the
impact of the disk self-gravity on the corotation torque�C , in the
linear regime. For a disk without self-gravity, �C can be estimated
by the horseshoe drag expression (Masset et al. 2006a), which
reads (Ward 1991, 1992; Masset 2001)

�C ¼ 3

4
x4s�

2(rc)�(rc)
d ln (�=B)

d ln r

� �
r¼ rc

; ð23Þ

where xs is the half-width of the horseshoe region, rc denotes the
corotation radius, and B ¼ (2r)�1d(r 2�) /dr is half the vertical
component of the flowvorticity.We denote by�C;ASG,�C;ASGþAP,
and �C;FSG the corotation torques in the ASG, ASG+AP, and FSG
situations. The same quantities without the ‘‘C’’ subscript refer to
the total torque in the corresponding situation.

We performed the same set of ASG, ASG+AP, and FSG cal-
culations as in x 4.1, but with a flat initial surface density profile
(we vary the planet to primary mass ratio q, for Q ¼ 8). An ad-
ditional NOG calculation was also performed for q ¼ 5 ; 10�6.
The results of these calculations are displayed in Figure 13. The
torques of the NOG and ASG calculations are hardly distinguish-
able, their relative difference being �2%, similarly as in x 3.2.1,
where � ¼ 1:5. This difference should therefore be attributed
to the differential Lindblad torque rather than to the corotation
torque. It confirms that the corotation torque is not altered by
the axisymmetric component of the disk gravity.

Furthermore, the torques of the FSG runs are significantly
larger than those of the ASG+AP runs. Their relative difference
varies from�11% to�17%. We do not expect this difference to
arise from the differential Lindblad torque, despite the change of
�. The differential Lindblad torques should therefore differ from
�0:4% to �4%, as for � ¼ 1:5 (close-up of Fig. 12). This re-
veals that the FSG situation, or the ASG+AP situation, or both,
boosts the (positive) corotation torque.

We expect in fact the ASG+AP situation to enhance the co-
rotation torque. Masset et al. (2006a) have estimated xs for a disk
without self-gravity, in the linear regime. Their estimate reads
xs � 1:16rp(q/h)

1/2. In the limit where the planet mass vanishes,
a fluid element on a horseshoe separatrix has a circular trajectory
and is only sensitive to the azimuthal gradient of the disk pressure.
The above estimate of xs therefore holds for anASG+AP calcula-
tion if one substitutes h with (1� �)1/2h, which we checked by
a streamline analysis. Thus, we expect the anisotropic pressure

model to slightly increase the half-width of the horseshoe zone,
thereby increasing the corotation torque as

�C;ASGþAP ¼ �C;ASG

1� �
; ð24Þ

with �C;ASG given by equation (23), and � ¼ 
/Q.
To investigate whether the FSG situation also increases the

corotation torque, we evaluate the quantity (�C;FSG � �C;ASGÞ/
�C;ASG, which can be recast as

�C;FSG � �C;ASG

�C;ASG
¼ �C;FSG � �C;ASGþAP

�C;ASG

þ �C;ASGþAP � �C;ASG

�C;ASG
: ð25Þ

Using equation (24), the second term on the right-hand side of
equation (25) reads �/(1� �), and is�8:4%. Moreover, for the
sake of simplicity, we neglect the relative change of the differ-
ential Lindblad torques. This assumption is grounded for the small-
est planet masses that we consider, for which, as stated above, this
change does not exceed�1%. The first term on the right-hand side
of equation (25) therefore reads (�FSG � �ASGþAP)/�C;ASG. The
quantity �C;ASG can be connected with �ASG , using the estimate
of Tanaka et al. (2002) for a flat surface density profile. This con-
nection is motivated by the fact that both the differential Lindblad
torque, and the corotation torque are almost identical in the NOG
and ASG situations. This leads to �C;ASG � �1:56�ASG. Equa-
tion (25) finally reads

�C;FSG � �C;ASG

�C;ASG
¼ � �FSG � �ASGþAP

1:56�ASG

þ �

1� �
: ð26Þ

This ratio is displayed in the close-up of Figure 13. It shows
that the FSG situation slightly enhances the corotation torque,
but this enhancement does not exceed �4:5% for the highest
planet mass that we consider. For the smallest planet masses, it
is negligible with respect to the increase of the corotation torque
triggered by the ASG+AP situation. Thus, the large difference
between the torques of the ASG+AP and FSG calculations can be
exclusively accounted for by the boost of the corotation torque in
the ASG+AP situation.

Fig. 13.—Specific torque as a function of the planet to primary mass ratio, for
a flat initial surface density profile. The square corresponds to an additional NOG
calculation performed with q ¼ 5 ; 10�6. The close-up displays the relative dif-
ference of the corotation torques between the ASG and FSG situations (see text
and eq. [26]).
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The slight increase of the corotation torque in the FSG calcu-
lations should be compared to that of the differential Lindblad
torque, which typically amounts to �17% (for � ¼ 1:5, see
Fig. 12). This comparison indicates that the disk self-gravity
hardly changes, if at all, the corotation torque.

6. CONCLUDING REMARKS

The present work investigates the impact of the disk self-
gravity on the type I migration.We show that the assumption cus-
tomarily used in planet-disk calculations, namely, a planet freely
migrating in a disk without self-gravity, can lead to a strong over-
estimate of the migration rate. We provide a simple evaluation of
this overestimate (Fig. 5). The drift rate can be overestimated by
as much as a factor of 2. Such a factor is inappropriate for the ac-
curate calculation of migration rates, which is the main motiva-
tion of many recent studies of planet-disk interactions. The planet
and the diskmust therefore orbit within the same potential to yield
unbiased estimates of the drift rate. Avoiding a spurious shift of
resonancesmay be evenmore crucial in a nonbarotropic situation.
In this case, the corotation torque depends strongly on the distance
between orbit and corotation (Baruteau & Masset 2008), so that
an ill-located corotation would yield meaningless drift rates.

The inclusion of the disk self-gravity in our calculations con-
firms that the disk gravity accelerates type I migration. We solve
the contradiction between the statements of Nelson&Benz (2003a,
2003b) and Pierens & Huré (2005) regarding the impact of the
disk self-gravity on the migration rate. The increase of the differ-

ential Lindblad torque due to the disk gravity is typically 1 order
of magnitude smaller than the spurious one induced by a planet
freely migrating in a nonYself-gravitating disk. We provide a
simple evaluation of this torque increase (Fig. 8), which depends
only on the Toomre parameter at the planet location, whatever
the mass distribution of the whole disk. Furthermore, we argue
that it can be entirely accounted for by a shift of the Lindblad res-
onances and be modeled with an anisotropic pressure tensor. This
model succeeds in reproducing the differential Lindblad torque of
a self-gravitating calculation, but increases the corotation torque.
This model enables us to conclude that there is no significant im-
pact of the disk self-gravity on the corotation torque, in the linear
regime.
In a future work, we will extend our study beyond the linear

regime. Preliminary calculations show that, regardless of the planet
mass, the disk gravity speeds up migration. It would also be of
interest to extend this study in three dimensions. In the linear
regime, we do not expect the torque relative increase due to the
disk gravity to be altered in three dimensions. However, three-
dimensional calculations, involving the gas self-gravity, should
be of considerable relevance for intermediate planet masses when
a circumplanetary disk builds up, in particular to assess the fre-
quency of type III migration.

We thank the anonymous referee for a careful and insightful
report.

APPENDIX A

EXPRESSIONS OF gr AND g’

In this section, we give the expressions of the radial and azimuthal self-gravitating accelerations gr and g’, smoothed over the soft-
ening length "SG. We use the variables (u ¼ log (r/rmin), ’), where rmin denotes the inner edge radius of the grid. With this set of co-
ordinates, gr(u; ’) reads

gr(u; ’) ¼ �Ge�u=2

Z umax

0

Z 2�

0

Sr u0; ’0ð ÞKr u� u0; ’� ’0ð Þ du0 d’0

þG�(u; ’)Kr(0; 0)�u�’; ðA1Þ

where Sr and Kr are defined as

Sr(u; ’) ¼ �(u; ’)eu=2 and Kr(u; ’) ¼
1þ B2 � e�u cos(’)

2 cosh(u)� cos(’)½ �þ B2euf g3=2
: ðA2Þ

In equations (A1) and (A2), G denotes the gravitational constant, umax ¼ log(rmax/rmin) with rmax being the outer edge radius of the
grid, � is the disk surface density, �u and �’ are the mesh sizes, Kr(0; 0) ¼ 1/B, and B ¼ "SG/r. Since "SG / r (see x 2.2.1), B is
uniform over the grid. The second term on the right-hand side of equation (A1) is an additional corrective term that ensures the
absence of radial self-force. Similarly, g’(u; ’) reads

g’(u; ’) ¼ �Ge�3u=2

Z umax

0

Z 2�

0

S’ u0; ’0ð ÞK’ u� u0; ’� ’0ð Þ du0 d’0; ðA3Þ

where S’ and K’ are given by

S’(u; ’) ¼ �(u; ’)e3u=2 and K’(u; ’) ¼
sin(’)

2 cosh(u)� cos(’)½ � þ B2euf g3=2
: ðA4Þ

In the particular case where only the axisymmetric component of the disk self-gravity is accounted for, which involves the axisym-
metric component of the disk surface density �̄(u) ¼ (2�)�1

R 2�
0

�(u; ’)d’, g’ cancels out and

gr(u)¼�Ge�u=2

Z umax

0

S̄r u0ð ÞK̃r u� u0ð Þ du0 þ G�̄(u)�uK̃r(0); ðA5Þ

where S̄r(u) ¼ (2�)�1
R 2�
0

Sr(u; ’) d’ and K̃r(u) ¼
R 2�
0

Kr(u; ’) d’.
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APPENDIX B

RELATIVE DIFFERENCE OF THE TORQUES BETWEEN THE FREE AND FIXED SITUATIONS
(WITHOUT DISK GRAVITY)

We denote by �� the difference of the one-sided Lindblad torques between the free and fixed cases. This difference can be written as

�� ¼
X
m

@T

@ x

� �
xL

�x; ðB1Þ

where x ¼ r � rp, �x is the shift of the Lindblad resonances induced by the free case, T is themth Fourier component of the one-sided
Lindblad torque (see e.g., Ward 1997, or eq. [14]), and xL is the location of the Lindblad resonances in the fixed situation:

xL ¼
2

3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	 2

p
	

hrp; ðB2Þ

where 	 ¼ mh, � ¼ þ1 for outer resonances, and � ¼ �1 for inner resonances. Approximating the summation over m as an integral
over 	, equation (B1) can be recast as

�� ¼
Z

@xT=Tð ÞT�x d	: ðB3Þ

In equation (B3), T depends on x through the square of the forcing function �, which is usually approximated as a function of the
Bessel functions K0 and K1 (see, e.g., Ward 1997, or eq. [15]). Furthermore, �(x; 	) can be approximated as hrp/ xj j	, to within a nu-
merical factor of order unity (Abramowitz & Stegun 1972). Thus, T / x�2 and @ xT /T / x�1. At the location of Lindblad resonances,
given by equation (B2), this yields @ xT /T / �h�1. Moreover, T / ��ph

�3. The shift �x, which has same sign for inner and outer
Lindblad resonances, scales with�p. The difference of the differential Lindblad torques is eventually obtained by summing equation (B3)
at inner and outer Lindblad resonances,

��ILRþ ��OLR / �p h
�1

Z
TOLR � TILRð Þ d	 / �ph

�1�ph
�3 / �2

p h
�4: ðB4Þ

Since the differential Lindblad torque scales with �ph�2, the relative difference of the differential Lindblad torques between the free and
fixed cases scales with �ph

�2, and hence with (Qh)�1.

APPENDIX C

RELATIVE DIFFERENCE OF THE TORQUES WITH AND WITHOUT DISK GRAVITY

The calculation of the difference �� of the one-sided Lindblad torques between the fully self-gravitating and nongravitating situa-
tions is similar to the one derived in Appendix B. The difference �� is given again by equation (B3), where �x is this time the shift in-
duced by the FSG situation. This shift has an opposite sign at inner and outer Lindblad resonances: �x/ ��p [see the �R2 expression of
PH05, or skip to equation (12), where, however, x ¼ (r � rp)/hrp]. Furthermore, assuming that the expression of T given by equa-
tion (14) can be applied for a self-gravitating disk (Goldreich & Tremaine 1979), we still have @ xT /T / �h�1. Since the differential
Lindblad torque scales with �ph�2, we find

��ILR þ ��OLR / �p h
�1

Z
TOLR þ TILRð Þ d	 / �ph

�1�ph
�2 / �2

p h
�3: ðC1Þ

The relative difference of the differential Lindblad torques between the FSG and NOG cases therefore scales with �ph
�1, and hence

with Q�1.

APPENDIX D

NUMERICAL AND ANALYTICAL SHIFTS OF LINDBLAD RESONANCES INDUCED BY THE DISK SELF-GRAVITY

We studied in x 3.3.2 the relative difference of the torques between the FSG and NOG situations. In particular, we find that our cal-
culations with " ¼ 0:1H(rp), whichmatches the mesh resolution in the planet vicinity, display a relative difference that is stronger than
the one obtained with the estimate of PH05, which however does not involve a softening parameter. We give hereafter more insight
into this result.

We propose to evaluate for each azimuthal wavenumber m the shift of the Lindblad resonances induced by our FSG calculations,
and compare it with its theoretical expression given by equation (12). This theoretical expression predicts that the shifts at inner and
outer resonances are of opposite sign, their absolute value, which we denote by �x th;m, being identical. We furthermore denote by
�xnum;m the shift (in absolute value) inferred from our calculations, and � i

FSG;m (�o
FSG;m) the mth Fourier component of the inner (outer)
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Lindblad torque of a FSG calculation.We use similar notations for a NOG calculation, and we drop hereafter them subscripts for the sake
of legibility. A first-order expansion yields

� i
FSG ¼ � i

NOG þ @ x�
i
NOG�xnum and �o

FSG ¼ �o
NOG� @ x�

o
NOG�xnum: ðD1Þ

To estimate the quantities @ x�
i
NOG and @ x�

o
NOG, we performed an additional NOG calculation, which we call the NOGO calculation,

for which we imposed a slight, known shift of the resonances. This was done by fixing the planet’s angular velocity at�p � ��p, with
��p ¼ 10�5�p. This slight decrease of the planet’s angular velocity, with respect to the NOG situation implies an outward shift of in-
ner and outer Lindblad resonances that reads �xo ¼ (2��p)/(3h�p), an expression that is independent of m. With similar notations as
before for the NOGO calculation, and using again a first-order expansion, we have

� i
NOGO ¼ � i

NOG þ @ x�
i
NOG�xo and �o

NOGO ¼ �o
NOGþ @ x�

o
NOG�xo: ðD2Þ

Combining equations (D1) and (D2), we are finally left with

�xnum ¼ (� i
FSG� �o

FSG)� (� i
NOG� �o

NOG)

(� i
NOGOþ �o

NOGO)� (� i
NOGþ �o

NOG)
�xo: ðD3Þ

We plot in Figure 14 the ratio �xnum/�x th as a function of the azimuthal wavenumber m, for �p ¼ 2 ; 10�3 (Q � 8). We first com-
ment that the ratio is negative for m � 6, positive beyond, with a divergent behavior at the transition. We checked that this behavior
is caused by a change of sign of the denominator5 of equation (D3), which is negative for m � 6 and positive beyond. Furthermore,
the ratio �xnum/�x th is significantly greater than unity for m ranging from �7 to �20, that is for the dominant Lindblad resonances.
Differently stated, the dominant Lindblad resonances are more shifted by our calculations than analytically expected by PH05, which
explains why the torque enhancement is more important with our calculations.

Beyond, the ratio is close to unity for a rather large range of high m-values. This confirms that for high values of m the WKB ap-
proximation yields analytical estimates that are in good agreement with the results of numerical simulations. However, since our cal-
culations involve a softening parameter, the ratio does not converge when increasingm, and slowly tends to zero. We checked that the
value of m for which the ratio becomes lower than unity increases when decreasing the softening length. This explains why the torque
enhancement is increasingly important at smaller softening length, as inferred from Figure 10.
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Pierens, A., & Huré, J.-M. 2005, A&A, 433, L37 (PH05)

Fig. 14.—Ratio of �xnum, the shift of Lindblad resonances obtained with our FSG calculations (see eq. [D3]), and of �x th, its analytically expected value (see eq. [12]).

5 This denominator corresponds to the difference of the differential Lindblad torques between the NOG and NOGO situations, expected to be positive for all m.

BARUTEAU & MASSET496 Vol. 678



Sellwood, J. A. 1987, ARA&A, 25, 151
Tanaka, H., Takeuchi, T., & Ward, W. R. 2002, ApJ, 565, 1257
Tanigawa, T., & Lin, D. N. C. 2005, in Protostars and Planets V, ed. V. Mannings
et al. (Tucson: Univ. Arizona Press), 8466

Toomre, A. 1964, ApJ, 139, 1217

van Leer, B. 1977, J. Comput. Phys., 23, 276
Ward, W. R. 1991, in LPI Conf. Abs. 22, 1463
———. 1992, in LPI Conf. Abs. 23, 1491
———. 1997, Icarus, 126, 261

TYPE I MIGRATION IN SELF-GRAVITATING DISK 497No. 1, 2008


