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ABSTRACT

We show that a large-scale, weak magnetic field threading a turbulent accretion disk tends to be advected inward,
contrary to previous suggestions that it will be stopped by outward diffusion. The efficient inward transport is a
consequence of the diffuse, magnetically dominated surface layers of the disk, where the turbulence is suppressed and
the conductivity is very high. This structure arises naturally in three-dimensional simulations of magnetorotationally
unstable disks, and we demonstrate here that it can easily support inward advection and compression of a weak field.
The advected field is anchored in the surface layer but penetrates themain body of the disk, where it can generate strong
turbulence and produce values of � (i.e., the turbulent stress) that are large enough to match observational constraints;
typical values of the vertical magnetic fieldmerely need to reach a few percent of equipartition for this to occur. Overall,
these results have important implications for models of jet formation that require strong, large-scale magnetic fields to
exist over a region of the inner accretion disk.

Subject headinggs: accretion, accretion disks — galaxies: jets — magnetic fields — MHD — X-rays: binaries

1. INTRODUCTION

Early theoretical work on accretion disks argued that a large-
scale magnetic field (of, for example, the interstellar medium)
would be dragged inward and greatly compressed by the accreting
plasma (Bisnovatyi-Kogan & Ruzmaikin 1974, 1976; Lovelace
1976). Figure 1 illustrates this concept by showing a sketch of
an ordered magnetic field threading an accretion disk, in which
inward advection has caused the magnetic field lines to bunch to-
gether into an ‘‘hourglass’’ shape. This was thought to be a simple
mechanism for generating dynamically significant fields in the
inner disk.

In the present paper, we revisit this issue, building off the recent
work of Bisnovatyi-Kogan & Lovelace (2007). Our motivation
for doing so is that in the intervening years, the early theoretical
arguments have been challenged. More detailed models of tur-
bulent disks suggested that a large-scale, weak magnetic field
such as that shown in Figure 1 in fact will diffuse outward rapidly
(van Ballegooijen 1989; Lubow et al. 1994) if the turbulent mag-
netic diffusivity and turbulent viscosity are of a similar order of
magnitude, as they are expected to be (Parker 1971; Bisnovatyi-
Kogan & Ruzmaikin 1976; Canuto & Battaglia 1988): the turbu-
lence responsible for driving the accretion also leads to enhanced
reconnection of the large-scale radial field across the thickness
of the disk, thereby causing the vertical field to diffuse away. This
cast doubt on the idea that weak fields could be dragged inward
and compressed by advection. At the same time, it was known that
the angular momentum loss to magnetohydrodynamic (MHD)
outflows from a disk threaded by a sufficiently strong large-scale
field could more than offset the outward diffusion and lead to a
rapid, implosive increase of the field in the central region of the
disk (Lovelace et al. 1994). However, it seemed to be the case
that growth of a strongmagnetic field ‘‘from scratch,’’ due to con-
tinual advection of a weak field, was impossible in a thin disk.
Although this conclusion has been occasionally challenged (e.g.,
Ogilvie & Livio 2001), it is still generally accepted, which has

led to the recent suggestion that special conditions (extremely
nonaxisymmetric regions of strong field in an otherwise weakly
magnetized disk) are required for the field to be advected inward
(Spruit & Uzdensky 2005).

At the same time, recent three-dimensional MHD simulations
have been performed that allow this issue to be addressed com-
putationally. These simulations resolve the largest scales of mag-
netorotational turbulence and therefore self-consistently include
the turbulent viscosity and diffusivity (without having to prescribe
their values a priori). Most simulations performed to date have
investigated conditions in which the accreting matter does not
contain any net magnetic flux and where no magnetic field is sup-
plied at the boundary of the computational domain. However, in
one simulation, weak poloidal flux injected at the outer boundary
was clearly observed to be dragged into the central region of the
disk, leading to the buildup of a strong central magnetic field
(Igumenshchev et al. 2003). A similar process, albeit transient,
may occur in simulations without a net magnetic flux; there, radial
stretching of locally poloidal field lines in the initial configuration
often leads to large-scale poloidal fields and jet structures in the
inner disk (e.g., Hirose et al. 2004; De Villiers et al. 2005; Hawley
& Krolik 2006; see also the discussion in Igumenshchev et al.
[2003] and McKinney & Narayan [2007], and especially the
simulations of McKinney & Gammie [2004] and Beckwith et al.
[2008], which explore the effect of different initial field geometries
on the formation of jets). The extent to which any of the advection
of magnetic field lines seen in numerical simulations requires the
presence of a thick disk or nonaxisymmetric conditions is unclear.

In light of these numerical results, we return to the question of
inward advection of magnetic fields in this paper, allowing for the
possibility that the disk is thin and axisymmetric and asking once
again whether advection of a weak field is possible under these
conditions. The mechanisms that we discuss here can occur in
sufficiently ionized regions of any accretion disk; although they
are perhaps most widely applicable to disks around black holes
(where the large-scale magnetic field arises entirely within the
accreting plasma), they are relevant for disks around many other
types of accreting objects as well.

The organization of this paper is as follows. In x 2, we analyze
the advection of a large-scale field in an accretion disk and point
out the importance of the vertical structure of the disk, which was
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not taken into account in most previous studies. On the basis of
an earlier suggestion (Bisnovatyi-Kogan & Lovelace 2007), we
show that the thin, highly conducting surface layer of the disk,
where turbulence is suppressed, allows a large-scale magnetic
field to be advected inward and compressed. In x 3, we argue that
the resulting magnetic flux through the main body of the disk (due
to the large-scale field being advected inward) can produce values
of the turbulent � parameter that are in accord with observational
data. This is in contrast with numerical simulations of turbulent
disks without a net imposed magnetic flux, which are unable to
generate a large enough turbulent stress. Finally, in x 4, we derive
detailed conditions for the field strength, geometry, and ionization
fraction that are required for the field to be advected inward and
show that these are typically weak constraints. The conclusions of
this work are summarized in x 5.

2. MAGNETIC FIELD ADVECTION AT THE SURFACE
OF AN ACCRETION DISK

The evolution of the magnetic field B in an accretion disk
(averaged over the short timescales of the turbulence) is assumed
to be described by the induction equation,

@B

@t
¼ : < v < B� �: < Bð Þ; ð1Þ

where v is the plasma velocity, � ¼ c2 /(4��) is the magnetic
diffusivity, c is the speed of light, and � is the conductivity.4

We assume a disk with half-thickness H P r in cylindrical co-
ordinates. The main body of the disk is turbulent, and we take the
effective diffusivity to be � � �, where � is the turbulent viscosity.
The turbulence is widely thought to be due to the magnetorota-
tional instability (Balbus & Hawley 1991, 1998; Velikhov 1959;
Chandrasekhar 1960), which roughly occurs when the magnetic
energy density is less than the thermal energy density. We there-
fore assume a weak magnetic field, such that this condition holds
in the main body of the disk.

However, the time-averaged magnetic field is not expected to
vary strongly across the disk thickness, due to the buoyancy of
the field and the condition: = B ¼ 0 (in more physical language,
the field is not influenced by the vertical gravity that keeps disk
material confined near the equatorial plane). Thus, the mass den-
sity of the gas will typically decrease with height z more rapidly
than will the time-averaged magnetic field strength, and at a
height�H above the midplane, the magnetic energy density will
become strong enough compared to the thermal energy density
that turbulence will be suppressed. The boundary between the
turbulent and nonturbulent regions is likely to be ‘‘fuzzy,’’ due
to the leakage of some magnetic flux through the disk surface
(e.g., Galeev et al. 1979), but at a certain height, the plasma will
become completely nonturbulent. In this paper, we will use the
terms ‘‘base of the nonturbulent region’’ and ‘‘surface layer of
the disk’’ interchangeably; however, it should be noted that we
are explicitly defining these regions to be above the boundary
layer and therefore fully a part of the nonturbulent corona (see
Fig. 2).
This suppression of turbulence above a weakly magnetized

disk has been observed in a variety of MHD simulations (e.g.,
Miller & Stone 2000; De Villiers et al. 2003; Hirose et al. 2004;
McKinney & Gammie 2004; Fromang & Nelson 2006), includ-
ing those with radiation (Hirose et al. 2006) and even those in
which the radiation pressure is comparable to the gas pressure
(Krolik et al. 2007). However, MHD simulations of fully radiation-
dominant disks (Turner 2004) are less clear, and the applicability
of our work in this case requires further analysis. Nonetheless,
even above a radiation-dominated region of the disk, we expect
that the turbulence will be suppressed in many situations; we
discuss this issue further in x 4.
Figure 2 shows a schematic drawing of the considered geometry.

The lack of turbulence at a height h � H near the disk surface
causes this layer to become highly conductive; the diffusivity will
decrease from its turbulent value in the main body of the disk
(� � � � 1012 cm2 s�1 for typical parameters) to the Spitzer value
associated with electrons scattering off of ions, which is given
by �S � 200(Ts /keV)

�3=2 cm2 s�1, where Ts is the surface tem-
perature.5 This suggests that the second term on the right-hand
side of equation (1) can be ignored in the upper disk layers.
Specifically, the relative importance of the two terms (advection
compared to diffusion) at any point in the disk is determined by
the local magnetic Reynolds number, Rem ¼ Hur /�, where ur is
the local radial speed and H is the relevant length scale (here we
make the reasonable assumption that the time-averaged magnetic
field does not vary significantly in the radial direction on length
scales shorter than H ). We can therefore use the Shakura &
Sunyaev (1973) disk solution to find that a typical value of the
magnetic Reynolds number at the surface of the disk, where tur-
bulence is suppressed, is given by

Rem � 108�m5=8ṁ3=8r̂�5=8f �5=8
� 102H=r

� �3Us: ð2Þ

Here, � � 1 is the dimensionless ‘‘viscosity’’ parameter in the
main body of the disk (i.e., the magnitude of the turbulent stress
divided by the thermal pressure), m is the mass of the central
object in units of solar masses, ṁ is the accretion rate in units of
the Eddington luminosity divided by the speed of light squared,
r̂ is the radius in units of the Schwarzschild radius, f� P 1 is a

Fig. 1.—Sketch of the magnetic field threading an accretion disk, showing the
increase of the field due to its assumed inward advection with the gas (as proposed
in early theoretical models).

4 Note that in a turbulent disk, there can also be an additional term in eq. (1)
that we have not included here, which would represent the contribution of a tur-
bulent dynamo to the growth of the large-scale field. We ignore this term because
we are only interested in the growth of the magnetic field that is due to advection,
and therefore any local, dynamo-generated field that may be produced is ‘‘extra’’ to
that which we discuss in this section.

5 In actuality, other nonideal MHD effects, the Hall electromotive forces in
particular, may be more important than the Spitzer diffusivity, as we show in x 4.3.
However, the Hall effect usually does not oppose inward advection of themagnetic
field, and even if it does, it will not be important unless the field is very weak.
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dimensionless function of r̂ that depends on the stress at the
inner boundary of the disk (e.g., Agol & Krolik 2000), and Us

is the ratio of the radial speed at the disk surface to that in the
main, turbulent body of the disk. This last term can be smaller
than unity, but not small enough to prevent the conclusion that,
typically, Rem 31 at the surface of the disk, and diffusion of the
magnetic field can be neglected. This is in contrast with the main
body of the disk, where Rem � H /r (if we assume that the mag-
netic field is not strong enough to affect the accretion speed) and
diffusion of themagnetic field therefore dominates over advection
(Lubow et al. 1994; Lovelace et al. 1994; Heyvaerts et al. 1996).

We can easily demonstrate that advection in the surface layer
of the disk is able to support the overall growth of the magnetic
field. If we integrate equation (1) over a circular surface r � r0
that covers the top side of the disk (z ¼ h, where h is the height
at which turbulence is first suppressed), we can take � � 0, and
Stokes’ theorem therefore implies that

d�p

dt
¼ r0

I
d� vzhBrh � vrhBzhð Þjr¼r0

; ð3Þ

where �p is the poloidal magnetic flux through this surface and
the h subscript indicates that the quantity is evaluated at z ¼ h.
If the right-hand side of this equation has the same sign as �p,
then the magnetic flux interior to radius r0 will grow.

If we assume axisymmetry (or, alternatively, treat subsequent
quantities as being appropriately averaged over the azimuth) and
take z > 0 for definiteness, the condition for magnetic flux growth
in equation (3) simplifies to

vrh < Brh=Bzhð Þvzh; ð4Þ

provided that magnetic field with the appropriate polarity is avail-
able to be accreted.

Although turbulent stress cannot contribute directly to the ac-
cretion at z ¼ h, coupling between the main, turbulent body of
the disk and the surface (as well as angular momentum loss to
a wind or jet) will tend to produce vrh < 0. Also, simulations
indicate that for an MHD outflow or jet (vzh � 0), the magnetic
field structure has Brh /Bzh � 0 (Ustyugova et al. 1999, 2000).
Thus, equation (4) is in general likely to be satisfied, a point that
we will discuss more rigorously in x 4.

In summary, our arguments in this section are a simple con-
sequence of the fact that magnetic fields are sustained by the flow
of current, not the flow of mass. In order to prevent inward advec-
tion of magnetic fields, turbulent diffusionmust oppose advection
throughout the entire inward-accreting portion of the disk, so
that no currents are allowed to accrete inward. Even a small sliver
of nonturbulent (i.e., highly conducting) material that advects
inward at the surface layer can support the magnetic field, even
though it may only contain a small fraction of the disk’s mass.
A related issue was noticed by Ogilvie & Livio (2001), who
argued (on mathematical grounds) that the relevant radial velocity
for magnetic field advection is one that has been weighted by 1/�
and averaged over height. Here we present a physical model for
the behavior of � with height and show that in a disk where the
magnetic diffusivity is due to turbulence, the contrast between
the diffusivity inside and outside the turbulent region is likely to be
so sharp that the condition for magnetic flux growth reduces to
equation (4), which is satisfied inmany parts of a typical accretion
disk.

3. EFFECT OF THE ADVECTED MAGNETIC FIELD
ON THE TURBULENT � PARAMETER

Given the apparent ease with which a large-scale magnetic
field can advect inward in an accretion disk, it is natural to con-
sider the influence of this magnetic field on the disk dynamics.

Fig. 2.—Sketch of the disk and the instantaneous poloidal magnetic field lines considered in this work. The toroidal field component is not shown. The inset shows a
rough illustration of the vertical profile of the conductivity, � zð Þ, in units of the coronal value, � hð Þ. At the base of the corona (z ¼ h), turbulence is suppressed and the
conductivity is very high; therefore, if the material in this region advects inward with themain body of the disk, the large-scale magnetic field will be advected inward as well.
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In particular, in this sectionwe discuss how the advectedmagnetic
fieldmight be expected to affect the turbulence in themain body of
the disk, as embodied in the � parameter of Shakura & Sunyaev
(1973). Since the turbulence is thought to be magnetic in nature
and in particular to be due to the magnetorotational instability
(MRI; Balbus & Hawley 1991, 1998), the effect is likely to be a
significant one.

King et al. (2007) have recently pointed out that observation-
ally determined values of �, based primarily on studies of out-
bursts in dwarf novae and X-ray transients, tend to lie in the range
�0.1Y0.4. If we recall that � is a measure of the turbulent mag-
netic stress scaled by the thermal pressure in the main body of the
disk, it is clear that a significant amount of turbulent magnetic
energy must exist in these accretion disks during the outburst
phase. King et al. (2007) noted a potential puzzle, which is that
numerical simulations of the MRI in which the instability is al-
lowed to develop entirely on the basis of a local seed field (i.e.,
where there is no externally imposed magnetic flux through the
computational region) tend to give saturation values of the stress
that are much too small to match the observations, with typical
values of � � 0:01 regardless of the strength of the seed field
(Hawley et al. 1996; Balbus&Hawley 1998; and note that Pessah
et al. [2007] and Fromang & Papaloizou [2007] have shown that
even these values may be significant overestimates, due to nu-
merical resolution effects).

However, in simulations with an externally imposed vertical
magnetic field, the turbulent stress due to the MRI depends crit-
ically on the seed field strength. In particular, � is found to in-
crease with the net imposed vertical field Bz (Hawley et al. 1995;
Balbus & Hawley 1998). Shearing box simulations suggest a
rough empirical relationship of � � 2� �z;ext

� ��1=2
, where �z;ext

is the ratio of the thermal pressure in the disk to the magnetic
pressure of the externally imposed vertical field (this is a sim-
plified version of a more general equation found in Pessah et al.
[2007], which is based on MRI simulations by Sano et al. [2004]
but also agrees with the earlier results of Hawley et al. [1995]).
Thus, values of � � 0:1Y0.4 simply indicate a moderately strong
(but still significantly subequipartition) vertical field, perhaps
with �z;ext � 250Y4000.

King et al. (2007) ruled out this mechanism because they be-
lieved there was no obvious source for such an externally im-
posed field in real accretion disks (whereas Pessah et al. [2007]
believed it to be possible, but attributed the field to internally
generated MRI fluctuations rather than an external source). How-
ever, if large-scale magnetic fields can be advected inward in a
disk, and if, furthermore, these fields are maintained by currents
flowing in the nonturbulent surface layer of the disk, as we have
argued, then MRI simulations with an externally imposed ver-
tical field are in fact the most relevant for comparisons with real
accretion disks. The net vertical field is anchored in the surface
layer, and the main, turbulent body of the disk sees this field as a
fixed, ‘‘externally imposed’’ seed field.

We therefore conclude that a typical value for the vertical mag-
netic field in an accretion disk undergoing an outburst, on the basis
of observations, is �2%Y6% of the equipartition field strength
(i.e., �z;ext is �250Y4000) and that there is no difficulty recon-
ciling the observationally determined values of � with numerical
simulations of the MRI. Also, as noted by King et al. (2007), the
observationally determined values of � are weighted averages
over the entire accretion disk. Thus, it is certainly possible that
advection could lead to much larger field strengths in a partic-
ular region. The field strengths in quiescent disks are similarly
unconstrained.

An interesting effect of the dependence of � on the strength
of the large-scale magnetic field is that the viscous and thermal
timescales in the disk (which depend inversely on �) should
change with time, in response to the history of magnetic field
advection. This process may explain some of the wide range of
variability on many different timescales that has been seen in
accreting black holes, in particular in the bright X-ray binary
GRS 1915+105 (e.g., Belloni et al. 2000), where the various
modes of variability seem to repeat in a semiregular pattern over
a period of months to years that has been suggested to be a sig-
nature of magnetic processes (Tagger et al. 2004).
A large-scale magnetic field may be expected to have other

effects on an accretion disk besides those discussed above. If the
field is strong enough, it can begin to affect the disk dynamics
directly (through removal of angular momentum via a wind or
jet); we will consider the case in which the advected field builds
up to dynamically significant values in a future paper. However,
the important point we make in this section is that even when the
large-scale field is dynamically weak, it can have a significant
effect on the disk dynamics indirectly, through its influence on
the turbulent stress in the main body of the disk.

4. DETAILED ANALYSIS OF THE CONDITIONS
FOR MAGNETIC FIELD ADVECTION

In x 2, we showed that advection of a large-scale magnetic
field dominates over diffusion in the nonturbulent surface layer of
an accretion disk and that, if equation (4) is satisfied, the advection
can lead to a concentration of magnetic flux in the inner region
of the disk. In this section, we present a more rigorous analysis of
the conditions under which equation (4) is satisfied. In x 4.1, we
consider the forces that act between the main body of the disk and
the material at the base of the nonturbulent region, which deter-
mine whether or not this region is actually a true ‘‘surface layer’’
that participates in someway in the accretion flow (i.e., whether or
not vrh < 0 there; clearly, at some height above the disk, the radial
velocity may no longer be inward). In x 4.2, we use these results
to derive conditions for the magnetic field geometry that allow
inward advection of magnetic fields to proceed, and in x 4.3, we
derive more general constraints on the field strength and ioniza-
tion fraction that are required in order for a highly conducting
nonturbulent surface layer to exist in the first place. (In general,
the above constraints are weak, and whether or not advection can
occur is primarily a question of geometry; a vertical or ‘‘dipole-
type’’ seed field provided in the outer regions of the disk will often
be sufficient to advect inward on its own.) Finally, in x 4.4, we
consider the ultimate outcome of the advection of a large-scale
magnetic field and the types of disks inwhich itmight generally be
expected to occur. Readers not interested in the detailed analysis
that we present in the rest of this section may wish to skip to the
conclusions of this paper in x 5.

4.1. Forces Acting on the Nonturbulent
Surface Layer of the Disk

For an axisymmetric accretion disk in which the specific an-
gular momentum profile is time-independent (which can be true
even in a time-dependent disk if orbits are nearly circular), a
general equation for the local radial velocity is

vr ¼ � @

@r
r 2Tr�
� �

þ @

@z
r 2T�z
� �

þ r 2�vz
@v�
@z

� �
r�

@

@r
rv�
� �� ��1

:

ð5Þ
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This expression is obtained by combining the conservation of
mass and conservation of angular momentum equations for a
magnetized fluid. Here � is the mass density and Tr� and T�z
are components of the stress tensor, including both large-scale
magnetic and small-scale turbulent stresses. If we evaluate this
equation at z ¼ h (the height in the disk at which turbulence is
first suppressed), and if the gravitational and centrifugal forces
are assumed to balance in this region (i.e., if we assume circular
orbits in Newtonian gravity), then, to first order in h/r,

vrh �
@

@r
r 2BrB�

� �
h
þ @

@z
r 2B�Bz

� �
h

� �
2�r�hvKð Þ�1 þ 3h

r
vzh;

ð6Þ

where vK is the Keplerian velocity on the equatorial plane. The
first term represents the effect of the stress due to the time-
averaged magnetic field, and the second term represents a cen-
trifugal effect that drives outflowing material away from the inner
disk. Competition between these two processes determines the
vertical profile of the radial velocity in the nonturbulent region
of the disk.

The analysis leading up to equation (6) is quite general, and
we therefore make liberal use of it in the following sections. The
only exception to its generality is the assumption of circular orbits,
which may not be valid if the base of the nonturbulent region
occurs at a height h in the disk where the density is so low that
radiation pressure or magnetic forces begin to become important
in the radial momentum equation. This is effectively a constraint
on the magnetic field strength, and we therefore discuss it further
in x 4.3. In the meantime, note that equation (5) does not assume
circular orbits (provided that the disk is stationary) and that the
derivation leading from equation (5) to equation (6) will still be
roughly valid, provided only that the spatial derivatives of the
azimuthal velocity v�h in the nonturbulent region are of the same
order of magnitude as their Keplerian counterparts.

4.2. Conditions on the Magnetic Field Geometry

A straightforward way to derive a condition on the magnetic
field geometry is to combine equations (4) and (6). If we do this
and assume that the stress due to the time-averaged magnetic field
removes angular momentum from the disk surface (i.e., attempts
to drag the surface layer inward with the main body of the disk) in
any amount, then a sufficient condition for growth of magnetic
flux in the inner disk is

Brh

Bzh

� 3h

r

� �
vzh k 0; ð7Þ

provided that magnetic field with the appropriate polarity is avail-
able to be accreted.

When equation (7) is satisfied, magnetic flux growth can oc-
cur through a combination of radial and vertical advection at the
surface of the disk. However, we are primarily interested in radial
advection, which is the only sustainableway in which magnetic
field lines anchored in the surface layer can build up flux in the
inner disk. In particular, when equation (4) is satisfied, we can
identify three regimes of interest:

1. If vrh < 0 � (Brh /Bzh)vzh, magnetic flux growth occurs
through a combination of inward radial advection and vertical
advection at the surface of the disk.

2. If vrh < (Brh /Bzh)vzh < 0, magnetic flux growth occurs via
inward radial advection, even though it is partially opposed by
vertical advection.

3. If 0 < vrh < (Brh /Bzh)vzh, magnetic field is advected ra-
dially outward at the surface of the disk, but magnetic flux growth
still occurs in the inner disk because of vertical advection at z � h.

We are primarily interested in the first two regimes, where mag-
netic flux growth occurs at least partially because of inward radial
advection, and where equation (7) does not necessarily apply.
Thus, for the rest of this section, we ignore the third regime and
derive more stringent conditions that specifically guarantee in-
ward radial advection.

As discussed in x 2, the first regime is likely to bemore relevant
than the second (Ustyugova et al. 1999, 2000), and we therefore
consider it now, returning to the second regime at the end of this
section. We thus have (Brh /Bzh)vzh � 0 and require vrh < 0 for
inward radial advection. If we use equation (6) and defineHB �
@ ln(B�hBzh)/@z
� ��1

as the scale height of the vertical magnetic
stress, we find that a sufficient condition is

�B�hBzh k
3

2

vzh
vrh i

HB

H

�h
�0

h

r

Ṁ�K

r
; ð8Þ

where �0 is themass density on the equatorial plane, Ṁ is the local
mass accretion rate, �K � vK /r is the Keplerian angular velocity,
and vrh i � Ṁ /(4�r�0H ) is an appropriately height-averaged in-
ward radial velocity in themain body of the disk (i.e., the standard
radial velocity in a one-dimensional vertically integrated disk
model). In interpreting this equation, it is instructive to note
that (Ṁ�K /r)

1=2 � 1:8 ; 108m�1=2ṁ1=2r̂�5=4 G is a fiducial field
strength, but a maximum one, since h/r and especially �h /�0 can
be very small parameters.6

Equation (8) is a ‘‘sufficient’’ condition for magnetic field ad-
vection in the sense that it makes the conservative assumption
that large-scale magnetic stresses in the vertical direction are the
only way in which the surface layer can be dragged inward. In
particular, it does not include the large-scale BrB� stress at the
disk surface, which transports angular momentum radially and
also tends to give vrh < 0 (although for a thin disk, the vertical
stress is usually most important).

The apparent dependence on the field strength in equation (8)
disappears when the equation is analyzed more carefully. In par-
ticular, we show in Appendix A that the definition of h as the
height in the disk at which MRI turbulence is first suppressed
allows us to write

�h
�0

� B2
zh

8�p0
; ð9Þ

where Bzh � Bzhj j þ (H /r) B�h

		 		 represents a magnetic field
strength that is roughly equal to the time-averaged vertical field
Bzh, and we define p0 � �0(H�K)

2; for a weak field, p0 is roughly
equal to the thermal pressure on the equatorial plane of the disk.
By combining equations (8) and (9) and assuming h � H , we
find that a sufficient condition for inward advection of magnetic
fields is

� B�hBzh

B2
zh

k
HB

H

vzh
vK

; ð10Þ

6 Although we can generally assume that h � H to within a factor of a few, the
distinction between those two heights must be retained when evaluating the mass
density, and it is important to use the correct value, �h, which appears in eq. (8). This
is because the mass density typically falls off very sharply with height, and thus �h
may be many orders of magnitude smaller than both �H and �0.
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which has no direct dependence on the field strength; as long as
the geometry is favorable, arbitrarily weak magnetic fields can
provide enough stress to drive inward radial advection at the
surface layer of the disk, and the fields will therefore be advected
inward and compressed. The essential physical point is simply
that the magnetic field must be strong compared to the gas at
z � h (in order to suppress the MRI), so it is therefore able to
drive accretion at this location, regardless of how weak it is in
an absolute sense.7

If we ignore the sign of B�hBzh, equation (10) is relatively
trivial to satisfy. For example, we can estimate the ratio of vertical
magnetic stress to energy density on the left-hand side of equa-
tion (10) that might arise naturally in a disk (i.e., without an ex-
ternally imposed seed field) by looking at numerical simulations
of the MRI. We focus on the work of Miller & Stone (2000),
who studied a vertically stratified disk in the shearing box ap-
proximation and tabulated the properties of the magnetic field in
the nonturbulent corona above the disk. We find typical values of
B�hBzh

		 		/B2
zh k 0:05 in these simulations. This should be com-

pared to the right-hand side of equation (10), whose magnitude
is given by�� H /rð Þ2 HB /Hð Þ vzhj j/ vrh iwhen the large-scale field
is dynamically weak (or, alternatively, HB /r times the ratio of vzh
to the disk sound speed). This is clearly a very small number if we
make the approximation thatHB P H (i.e., that the scale height of
the twisted toroidal field can be comparable to or smaller than that
of the mass density); the validity of this approximation is dis-
cussed in Appendix B. Intuitively, the approximation HB P H
can be thought of as arising from the presence of a voltage source
(Keplerian shear) that is applied in the radial direction, with the
resulting current confined to flow in a region above�h (the height
at which the plasma first becomes highly conductive) but below
�a few ; H (the height at which the mass density becomes low
enough so that orbits are no longer circular and therefore the
applied voltage is significantly reduced).

The easewithwhich equation (10) can be satisfied suggests that
not only will we have vrh < 0 in a typical accretion disk, but the
accretion flow may also reach a steady state in which the main,
turbulent body of the disk drags the nonturbulent surface layer
inward at the same speed as itself ; i.e., vrhj j � vrh i. In fact, if we
start with equation (6) and go through the same analysis as above
but require that vrh � � vrh i rather than vrh < 0, then instead of
equation (10), we obtain

� B�hBzh

B2
zh

k
HB

H

vrh i
H�K

1þ 3h

r

vzh
vrh i

� �
; ð11Þ

where the right-hand side is typically ��HB /r for a dynamically
weak field. Like equation (10), this condition is modest if we
assume that the disk is thin, and thus we may expect that ad-
vection of magnetic fields proceeds at the same speed as turbulent
accretion in the main body of the disk. In fact, equation (11) sug-
gests that advection of magnetic fields in the surface layer could
proceed faster than the disk accretion speed, but as we discuss in
Appendix B, this is unlikely to be sustainable.

The only qualification to what we have said so far concerns the
sign of B�hBzh. In particular, equation (8) shows that B�hBzh P 0
is required in order for the field to advect inward; the exact
condition is @(B�Bz)h /@z < 0, which states that the large-scale
magnetic field must remove angular momentum from the non-
turbulent surface layer. This is a strict requirement for disks in
which vzh � 0. We expect that @(B�Bz)h /@z < 0 will be satisfied
in many parts of an accretion disk, but not necessarily all. It
will be satisfied in regions in which the magnetic field has a
dipole-type symmetry (where Br and B� are odd functions of z
and Bz is an even function), which is often assumed for the large-
scale magnetic field advected inward in an accretion disk (see
Fig. 1). However, in a region of the disk that has a quadrupole-
type field symmetry (where Br and B� are even functions of z
andBz is an odd function), asmay occur when the large-scale field
extending out of the disk is generated primarily by magneto-
rotational turbulence (e.g., Brandenburg et al. 1995), some re-
gions will likely have @(B�Bz)h /@z > 0. In these regions, angular
momentum will not be removed vertically from the surface of
the disk, and inward radial advection of the magnetic field may
be difficult to sustain. Correspondingly, we find that one of the
simulations described in detail in Miller & Stone (2000) has
@(B�Bz)h /@z < 0, but the other does not, so the material (and
magnetic field) in the nonturbulent region may not advect in-
ward in this second case.
On the other hand, if there is a weak vertical seed field in the

outer part of the disk, shear and MRI turbulence will create azi-
muthal field from it, and the condition @(B�Bz)h /@z < 0 should
be satisfied automatically, while the condition in equation (10)
will be unchanged.We therefore view this as the most favorable
way to induce magnetic field advection in a disk. The large-
scale magnetic field introduced into the disk at large distances
may be supposed to come from the interstellar medium (in the
case of supermassive black holes) or from a companion star (in
the case of X-ray binaries and other stellar-mass systems).
To conclude this section,we consider the second regime formag-

netic field advection that we alluded to in our earlier discussion of
equation (4), in which the geometry is such that (Brh /Bzh)vzh < 0,
and inward radial advection requires vrh < (Brh /Bzh)vzh in order
to overcome vertical advection and produce a concentration of
magnetic flux in the inner region of the disk. If the disk is thin,
with 3h/rT Brh /Bzhj j, a sufficient condition for this to occur can
be obtained by replacing h/r with �Brh /3Bzh in equation (8) and
propagating this change through subsequent expressions. In par-
ticular, equation (10) becomes

� B�hBzh

B2
zh

k
HB

H
� Brh

Bzh

� �
vzh

H�K

; ð12Þ

where we have (�Brh /Bzh)vzh > 0 by definition, so the right-
hand side of the equation is, in general, positive. This condition
can be satisfied for Brh /Bzhj j � 1, provided that vzh is not too
close to the sound speed.

4.3. Conditions on the Magnetic Field Strength
and Ionization Fraction

From the analysis of the previous subsection, an arbitrarily
weak seed field threading an accretion disk should be able to
advect inward along the disk surface. But what really happens
for arbitrarily weak fields? Are there field strengths below which
some of our underlying assumptions in this paper break down?
An important assumption in this paper is that the region above

the disk is nonturbulent and therefore highly conducting; it is this

7 This statement is independent even of the Spitzer diffusivity; our expres-
sion for vrh in eq. (6) means that we can rewrite the condition Rem 3 1 (which
must be satisfied at the base of the nonturbulent region in order for advection
to dominate the Spitzer diffusivity there) as (H /HB)B�hBzh /B2

zh þ vzh /vK
		 		3

10�11m�5=8ṁ�3=8 r̂ 5
=8f �3=8

� (102H /r)�2. Clearly, this equation will be satisfied in
almost any accretion disk, provided that eq. (10) is not pathologically close to
an equality. More importantly for our purposes, there is no dependence on the
magnetic field strength; even when microscopic effects such as Spitzer diffusivity
are taken into account, arbitrarily weak fields appear to be capable of advecting
inward along the surface layer of a fully ionized accretion disk (but see x 4.3).
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region in which the magnetic field can advect inward. Clearly, a
nonturbulent region is likely to exist somewhere above an ac-
cretion disk, but the question is whether it occurs at a low enough
height to be treated as the ‘‘surface layer’’ of the disk, as we do in
this paper. Equation (9) and the usual assumption that the mass
density decreases with height much more rapidly than the mag-
netic energy density suggest that the nonturbulent region should
occur within a few scale heights, even for a very weak seed field
on the equatorial plane. However, if the magnetic energy density
begins to drop off rapidly with height, the turbulence may not be
suppressed until a very large distance above the disk. This may be
what happens in the radiation-dominated simulations of Turner
(2004), in which the magnetic energy density begins to fall off at
z k 3H and there is no clear evidence for a nonturbulent region
anywhere within the simulation domain (which extends out to
z � 8H).

It is difficult to predict when this type of behavior will occur,
but when it does, our assumption that the nonturbulent region
occurs ‘‘within the disk’’ may break down. In particular, orbits
may not be circular, so that equation (6) is no longer strictly valid.
Considering radial force balance and using equation (9), we find
that if the disk is sufficiently thin, magnetic forces are unlikely
to be strong enough to disrupt circular orbits at the base of the
nonturbulent region (although they may certainly do so higher
up in the corona); the conditions for magnetic forces to be neg-
ligible at z � h are B2

zh /B
2
h 3 (H /r)2 and B2

zh / BrhBzhj j3H /r,
both of which are easily satisfied by the Miller & Stone (2000)
simulations (here B2

zh � B2
zh was defined in x 4.2, and in the sec-

ond expression we have assumed that the scale height of BrhBzhj j
can be approximated as �H ). Radiation pressure is therefore the
only realistic concern; in order for orbits to remain circular, we
require �hv

2
K to dominate over the radiation pressure. Assuming

that the temperature at z � h is given by the effective surface
temperature of a Shakura & Sunyaev (1973) disk, we can use
equation (9) to derive

Bzh 310�2m
�1=2
8 ṁ1=2r̂

�3=2
3 f 1=2� 102H /r

� �
G ð13Þ

as the condition for circular orbits, where r̂3 � r̂/103 and m8 �
m/108 (i.e., we have scaled the fiducial value to that which
would occur at a distance of 103 Schwarzschild radii from a
supermassive black hole of mass 108 M�).

Limits on the magnetic field strength resulting from equa-
tion (13) are plotted in Figure 3 for typical Shakura & Sunyaev
(1973) accretion disks with � � 10�4, which we take to be a
worst-case lower limit for the turbulent stress (note in any case
that the dependence on � is very weak). In fact, � is not inde-
pendent of the field strength; using the relation � � 0:5B2

0 /8�p0
between the turbulent magnetic stress and the turbulent mag-
netic energy density B2

0 /8� in the main body of the disk (which
is a robust result of MRI simulations; e.g., Hawley et al. 1995;
Sano et al. 2004; Blackman et al. 2008), we can rewrite equa-
tion (13) as a constraint on the field geometry:

B2
zh

B2
0

34 ; 10�6 ��0
g cm�3

� ��1

m�1ṁr̂�2f�: ð14Þ

Limits on this ratio for typical Shakura & Sunyaev (1973) ac-
cretion disks are plotted in Figure 4, again with the assumption
that � � 10�4. In the radiation-dominated region of the disk,
�0 / ��1, so the right-hand side of equation (14) has no depen-
dence on the magnetic field strength, whereas in the gas pressureY
dominated region, the dependence occurs through ��3=10, which
we have fixed to the assumed worst-case value. Thus, although
equation (14) technically represents a joint limit on the equa-
torial plane field strength and the vertical magnetic geometry,
the condition on the geometry is more important.

In a conservative analysis, equation (13) can be compared to the
large-scale magnetic field that might be supplied to the outer disk
(from, say, the interstellar medium or a companion star) in order
to determine whether or not orbits are circular in this region.
However, equation (14) may be a more appropriate expression if
we allow for the possibility that buoyant rising of magnetic fields
from the turbulent disk into the nonturbulent corona can affect the
magnitude of Bzh; for example, the simulations of Miller &
Stone (2000) have B2

zh /B
2
0 k 0:02 (even without any net imposed

vertical field) and thus should easily satisfy equation (14).
As mentioned in x 4.1, even when the orbits are not circular,

equation (6) and the subsequent analysis may still be valid to an
order of magnitude, and so we do not view the constraints on the
magnetic field discussed here as fundamental lower limits. On

Fig. 3.—Minimum values of the vertical magnetic field,Bzh, that are required
in order for the large-scale field to overcome radiation pressure and be advected
inward in the nonturbulent surface layer of an accretion disk. Constraints are
shown for black hole masses of 10 and 108 M� and for dimensionless accretion
rates between ṁ ¼ 0:1 and ṁ ¼ 10 (note that the Eddington accretion rate cor-
responds to ṁ ¼ 	�1, where 	 is the radiative efficiency of the disk and 	 � 0:06 for
a simplified treatment of accretion onto a Schwarzschild black hole). We assume a
Shakura&Sunyaev (1973) diskwith f� ¼ 1 at the inner boundary and� ¼ 10�4 as
a worst-case lower limit for the turbulent stress. Solid lines show regions in which
the Shakura & Sunyaev (1973) assumptions about pressure and opacity sources in
the disk are good to at least 50%; dotted lines are used to connect through transition
regions in which the Shakura & Sunyaev (1973) solution breaks down.

Fig. 4.—Same as Fig. 3, but for the minimum values of the ratio B2
zh /B

2
0

( between the energy density of vertical magnetic fields at the disk surface and
turbulent fields on the equatorial plane) that are required in order for advection
of the large-scale magnetic field to overcome radiation pressure.
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the other hand, one might reasonably expect that the effect of
radiation pressure is to drive material radially outward from the
hot inner disk and thereby prevent the nonturbulent surface layer
and its associated magnetic field from accreting; in that case, cir-
cular orbits can indeed be viewed as a strict requirement. Con-
versely, other mechanisms that might produce noncircular orbits,
such as advection-dominated flows at either high or low accretion
rates (Abramowicz et al. 1988; Narayan&Yi 1994, 1995), tend to
enhance the inward radial velocity and therefore do not prevent
inward advection of magnetic fields from occurring. In these
cases, equation (10) should have vK replaced by the actual az-
imuthal velocity v�, which makes the equation more difficult to
satisfy but does not change our overall conclusions.

Even if orbits in the nonturbulent region are circular, other
constraints may come about that could affect the ability of this
layer to advect magnetic fields inward. In particular, our discus-
sion so far has implicitly assumed that the disk is fully ionized.
We do not discuss partially ionized disks in depth in this paper,
but we point out two important issues. First, the diffusivity as-
sociated with electrons scattering off of neutrals (as well as other
nonideal MHD effects) may become more important than the
electron-ion Spitzer diffusivity, and second, there may not be
enough free electrons in the nonturbulent surface layer of the
disk to support the advected magnetic field.

We consider nonideal MHD effects first. Following Pandey &
Wardle (2007), a more general version of equation (1) that in-
cludes the relevant nonideal MHD terms is

@B

@t
¼ : < v0 < B� 4��

c
J þ �2

n J < Bð Þ < B

�2�i�inc

� �
; ð15Þ

where v0 ¼ v� J/nee is the plasma velocity modified by the
Hall drift, J � c/4�ð Þ: < B is the current density, ne is the elec-
tron number density, e is the proton charge, �n and �i are the
neutral and ion mass densities, and �in is the ion-neutral collision
frequency. The last two terms in equation (15) represent the effects
of ohmic diffusion (i.e., the scattering of electrons off of ions
and neutrals) and ambipolar diffusion, respectively.

We use equations inDraine et al. (1983) andBalbus&Terquem
(2001) to estimate the importance of the nonideal MHD effects.
For simplicity, we assume a priori that the plasma is weakly ion-
ized and that the electron and ion number densities are the same.
We take ‘‘worst-case’’ approximations of quantities involving the
magnetic field (for example, : < Bj jh � Bh /H), assume that the
plasma temperature is given by the effective surface tempera-
ture of a Shakura & Sunyaev (1973) disk, and make use of equa-
tion (9) to substitute for the density when needed. Fiducial values
are given for a distance of 103 Schwarzschild radii from a 108M�
black hole, where the surface temperature is of order 2000 K and
thus the disk should be weakly ionized. For diffusive processes,
we can calculate an effective magnetic Reynolds number, Rem,
in the nonturbulent surface layer of the disk (see x 2). When
Rem 31, advection of the magnetic field will dominate. For
ohmic diffusion, we find that this condition can be approximately
written as

ni

nn
3 5 ; 10�15m

�9=8
8 r̂

�7=8
3 Dohm; ð16Þ

where ni /nn is the ionization fraction at the base of the nonturbulent
region (i.e., the ratio of ion to neutral number densities) and we
have defined a parameter Dohm � (10�)�1ṁ1=8f 9

=8
� (102H /r)�3U�1

s

that contains terms of lesser importance. Here, Us � vrhj j/ vrh i is

likely to be �1, as per our discussion in x 4.2. For ambipolar
diffusion, the condition becomes

ni

nn

Bzh

G

� �2

310�3m�1
8 r̂

�5=2
3 Damb; ð17Þ

where Damb � (10�)�1 f�(10
2H /r)
0 Bh /5Bzhj j2U�1

s and 
0 �

(1þ mn /mi); here 
 is the mean mass per particle, expressed
in units of the proton mass, andmn /mi is the ratio of neutral to ion
masses.
We therefore see that ambipolar diffusion imposes a joint

constraint on the ionization fraction and magnetic field strength
that is generally muchmore important than the limit imposed by
ohmic diffusion; this is a direct result of the low densities ex-
pected in the nonturbulent surface layer that we consider in this
paper. For a partially ionized disk that is able to overcome ohmic
diffusion and satisfy equation (16), magnetic fields can advect
inward, but equation (17) shows that stronger initial seed fields
than those indicated in equation (13) and Figure 3 (for the con-
straint imposed by circular orbits) are generally required. How-
ever, in these applications it is important to keep in mind that the
ionization fraction that appears in the above equations is calcu-
lated at the surface of the disk (as opposed to the main disk body),
where interstellar cosmic raysmay inflate the ionization rate above
the values that one would usually expect (Gammie 1996).
From equation (15), we see that the Hall effect, which occurs

because of the drift of the magnetic field with respect to the ions
as it is carried along by the electrons, may also be important, not
only for partially ionized disks, but also for fully ionized ones.
However, the Hall effect does not cause diffusion of the magnetic
field and therefore does not necessarily oppose inward advection.
In fact, if the radial component of the current density is positive at
the surface of the disk, the Hall drift enhances inward advection
rather than opposes it; this occurs when @B�h /@z < 0, a condition
that is already met by the dipole-type fields discussed in x 4.2. In
geometries in which the Hall effect opposes inward advection,
however, the condition for it to be negligible is

ni

nn

Bzh

G
32 ; 10�8m�1

8 r̂
�3=2
3 DHall; ð18Þ

where DHall � 10�ð Þ�1
f�(10

2H /r)�1
 Bh /5Bzhj jU�1
s . This equa-

tion also applies for a fully ionized disk if we replace ni /nn by
�1/2. Note that the Hall effect is generally more important in a
fully ionized accretion disk than the electron-ion Spitzer diffu-
sivity discussed in x 2, and in some cases (especially for stellar-
mass objects), it may even impose a stronger constraint on the
magnetic field strength than that imposed by equation (13) for
circular orbits.
Finally, we consider the possibility that in the diffuse surface

layer of a weakly ionized disk, there may not be enough free
electrons available to carry the current that is necessary to sup-
port the large-scale magnetic field. By making similar assump-
tions as above and also assuming that the velocity of electrons is
limited to their thermal speed, we find that
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is required to produce enough current to support the magnetic
field, which is generally a weaker constraint than that imposed
by ambipolar diffusion. (Note that stronger magnetic fields are
actually easier for the nonturbulent surface layer to support; this is
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because strong fields suppress turbulence at a lower height above
the disk, where the electron density is larger.)

4.4. The Outcome of Advection

In summary, we find that weak, large-scale magnetic fields can
be advected inward in the surface layer of an accretion disk. The
most important condition necessary for this is @ B�Bz

� �
h
/@z < 0

(i.e., the vertical magnetic stress must extract angular momentum
from the disk surface). This may occur most easily if a weak,
dipole-type seed field is supplied at the outer regions of the disk.
This field threads the disk and acts as a catalyst for the pro-
duction of the toroidal fields that in turn provide the required
geometry for further inward advection.

Although the constraints on the field strength discussed in x 4.3
are modest, we can nonetheless imagine that a weak, dipole-type
magnetic field (relatively close to the lower limit) is supplied in the
outer region of the disk and ask the following question: How easy
will it be for the field to remain at the required level as it is ad-
vected inward and compressed? From equation (13), we find that,
roughly, the vertical field must increase faster thanBz / r�3=2 in
the gas pressureYdominated region of a Shakura & Sunyaev
(1973) disk in order to satisfy the requirement for advection to
continue; this limit becomes Bz / r�5=2 in the inner, radiation-
dominated region (where H is approximately constant). This
growth seems difficult to sustain, which suggests the interest-
ing possibility that an advected magnetic field may temporarily
‘‘stall’’ at some large radius when it becomes too weak to advect
inward, and advection will only continue once enough magnetic
flux has built up at this location. On the other hand, as we have
seen in discussing equation (14), even if the advected field does
not increase in strength fast enough on its own, it may be rea-
sonable to assume that the local dynamo can produce strong
enough surface fields (through magnetic buoyancy) to meet these
conditions, and thus advection will continue in either case.

As discussed in x 1, a sufficiently strong magnetic field thread-
ing the disk can lead to inward radial advection of the field driven
by the main body of the disk, too, due to extraction of angular
momentum from the main body of the disk to a wind or jet
(Lovelace et al. 1994). However, the field strengths required
for this process are much larger; the field must drive accretion in
the dense body of the disk (rather than in a low-density surface
layer). In fact, advection of magnetic fields in the surface layer
is always more efficient, provided that the disk is thin and the
vertical field is subequipartition.

Although advection in the main body of the disk must take
place fast enough to overcome turbulent diffusion, advection in
the nonturbulent region is limited by the much smaller speeds as-
sociated with the microscopic diffusivity. Magnetic fields can ad-
vect inward in the nonturbulent surface layer even when vrhj jT
vrh i, and the advection can therefore take place on timescales
longer than a viscous timescale. Thiswill lead to a gradual buildup
of field in the inner disk. In the case of angular momentum ex-
traction from the main body of the disk, advection of magnetic
fields always occurs at least as fast as the viscous timescale, and
sustained advection requires that the magnetic field be strong
enough to completely overwhelm turbulent diffusion; otherwise, a
steady state will be reached inwhich only a small concentration of
magnetic field develops in the inner disk. Thus, we may expect
a disk to experience gradual advection of large-scale magnetic
fields on long timescales in the surface layer, with occasional
brief bursts of fast or implosive accretion (Lovelace et al. 1994)
associated with the presence of a strong magnetic field in a local
region of the disk that extracts angular momentum from the main
disk body.

It is interesting to note that advection of magnetic fields in the
surface layer is more efficient for thin disks than thick ones, as
can be seen, for example, from equation (8). This is because the
surface layer is tightly coupled to themain body of the disk, rather
than being part of a detached corona. On the other hand, turbulent
advection of magnetic fields in the main body of the disk is more
efficient if the disk is thick (since Rem � H /r, as discussed in x 2).
We therefore conclude that magnetic field advection is possible
for many disks but most efficient for thin ones.

5. CONCLUSIONS

This paper reanalyzes the advection of a large-scale, weakmag-
netic field in an accretion disk. We consider the vertical structure
of the disk, which strongly influences the vertical profile of the
conductivity, as pointed out by Bisnovatyi-Kogan & Lovelace
(2007). In the thin, diffuse surface layers of the disk, the mag-
netic energy density is large enough compared to the thermal
energy density that magnetorotational turbulence is suppressed.
As a consequence, magnetic field lines threading the surface layer
can be advected inward with the main body of the disk, without
being opposed by turbulent diffusion.

No special conditions are required for the field to be advected
inward, except that it meet the rather modest constraints outlined
in x 4. The required field strengths are relatively weak, and the
primary constraint on the field geometry is simply that it must help
the nonturbulent surface layer to accrete inward (i.e., the vertical
magnetic stress must extract angular momentum from this layer,
in virtually any amount). This can be accomplished either via
coupling between the main, turbulent body of the disk and the
surface, or via a wind or jet. The simplest way for this condition to
be met is if the accretion flow is provided with a weak, large-
scale vertical seed field threading the outer region of the disk
(which could come from the interstellar medium or a companion
star), although in some cases, the proper geometrymay be attained
entirely as a result of fields produced via the local magneto-
rotational dynamo. Once a weak, large-scale field with the proper
geometry is in place, the field will be advected inward along the
disk’s surface layer and will be strengthened as it is compressed
along with the accretion flow.

The presence of a large-scale magnetic field anchored in the
surface layer will drive strong magnetorotational turbulence in
themain body of the disk, which can consequently produce values
of the � parameter (i.e., the turbulent stress) that are large enough
to match observational constraints. We find that typical vertical
fields on the order of a few percent of equipartition are required for
this to occur. Because the field is advected inward and anchored in
the surface layer, there is no need to worry about maintaining the
required vertical fields via internal magnetorotational fluctuations
(as suggested by Pessah et al. 2007). We propose that long-
term changes in � (in response to the history of magnetic field
advection) should be explored as a possible source of the long-
term evolution in the variability patterns seen in the light curves
of X-ray binaries such as GRS 1915+105 (see, e.g., Tagger et al.
2004).

The mechanisms we discuss in this paper are relevant to many
different kinds of accreting objects. In the outer part of the disk
(far away from the central star or black hole), our work should
be applicable as long as the disk is sufficiently ionized (see x 4.3).
Closer to the inner part of the disk, our work is most obviously
applicable to black holes, where the large-scale magnetic field
arises entirely within the accreting plasma. However, it may
also be relevant to the case in which a large-scale field from a
magnetized central star penetrates the disk; previous suggestions
that outward radial diffusion of the field may be an important
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process in such systems (e.g., Lovelace et al. 1995; Bardou &
Heyvaerts 1996; Agapitou & Papaloizou 2000; Uzdensky et al.
2002) should be examined in light of our work. Finally, the ap-
plicability of our work to radiation-dominated regions of the disk
may require further analysis, because it is unclear as to whether
the vertical structure of these regions can support the inward ad-
vection of magnetic fields (although we argue here that it can).
Future numerical simulations may eventually be able to address
this point.

Also, we have assumed axisymmetric disks in this paper, but
the equations that we have derived apply more generally if they
are averaged over azimuth (with the introduction of appropriate
correction factors). Thus, a magnetic field with an azimuthally
averaged strength and azimuthally averaged geometry that roughly
meets the criteria in x 4 is likely to be able to advect inward in an
accretion disk. Nonaxisymmetric advection of a large-scale mag-
netic field (e.g., as envisioned by Spruit & Uzdensky 2005) is
clearly consistent with the mechanism we have proposed in this
paper, but we have also shown that advection is equally plausible
in an axisymmetric disk, without having to assume any special
conditions. More numerical simulations that investigate disks in
which a large-scale magnetic field is supplied at the outer bound-
ary are clearly needed.

Finally, our work has important implications for models of jet
formation that require strong, large-scale magnetic fields to exist
over a region of the inner accretion disk. As was suggested more
than 30 years ago, these magnetic fields can arise in the inner disk
via a very simple process: advection of a weak field from outside.
This opens up the possibility formagnetically dominated outflows
(i.e., Poynting jets) to exist in the inner regions of disks around a
wide variety of accreting objects. In addition, the radial stretching
of field lines produced by advection may allow winds accelerated
by the magnetocentrifugal effect (Blandford & Payne 1982) to
exist over a wide range of radii. This is in contrast to the results of
numerical simulations in which no magnetic fields are supplied at
the outer boundary, wherein jets only form in an extremely narrow
inner regionwhere the energeticsmay be dominated by relativistic
effects that require the presence of a rotating black hole.
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an NSF Astronomy and Astrophysics Postdoctoral Fellowship
under award AST-0602259. The work of R. L. was supported in
part by NASA grants NAG5-13220 and NAG5-13060 and by
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APPENDIX A

PHYSICAL CONDITIONS AT THE BASE OF THE NONTURBULENT REGION ABOVE AN ACCRETION DISK

In this section we derive equation (9), which defines the base of the nonturbulent surface layer of the accretion disk and is used
throughout the main body of the paper.

We are interested in conditions at z ¼ h, the height in the disk at which the magnetorotational instability (MRI) is first suppressed.
The fundamental condition for suppression of the MRI is that the Alfvén speed must be large enough so that fluid elements linked by
the magnetic field will be drawn back together faster than orbital shear drives them apart; in aWKB (small wavelength) analysis, MRI
modes with wavenumber k are found to be suppressed when k = vA k �K, where vA is the local Alfvén speed (e.g., Balbus & Hawley
1998) and we have assumed circular orbits (relaxing this assumption would simply replace�K with the actual local angular velocity of
the disk). If we take the WKB approximation to its limit and make the usual assumption that the MRI will be completely suppressed
when no unstable wavelength fits within the disk (e.g., Balbus & Hawley 1991) and further consider that the largest wavelengths that
fit within the disk are of order �a few ; H in the vertical direction and �a few ; r in the azimuthal direction, then applying this
condition to the material at z ¼ h shows that MRI turbulence will be suppressed when

vAzð Þh þ
H

r
vA�
� �

h
k H�K; ðA1Þ

where (vAz)h � Bzh /(4��h)
1=2 and (vA�)h is defined equivalently. Rearranging this equation gives, approximately,

�hP
B2
zh

8�H2�2
K

; ðA2Þ

where the equality holds at z � h (the height at which turbulence is first suppressed), but the equation also appliesmore generally if h is
redefined to be any height within the nonturbulent region. Here we have defined a modified vertical magnetic field strength
Bzh � Bzhj j þ (H /r) B�h

		 		. In the main body of the paper, we generally assume that Bzh � Bzhj j, but the full expression should be used
when the toroidal field is extremely strong (Bzh � Bzhj j appears to be a good approximation for the magnetic fields seen in the sim-
ulations of Miller & Stone [2000], however).

If we define p0 � �0(H�K)
2, equation (A2) becomes

�h
�0

P
B2
zh

8�p0
; ðA3Þ

which is the equivalent of equation (9). If the large-scale magnetic field is weak enough so as to not significantly affect the dynamics in
the main body of the disk (in particular, if thermal pressure supports the disk vertically against gravity), then p0, which appears in
equation (A3), should be interpreted as the thermal pressure. However, the assumption of weak fields is not required, and equation
(10), which is derived from equation (A3), applies when the field is strong, as well as when it is weak. Only in the parts of the main
body of the paper where we combine equation (9) with the Shakura & Sunyaev (1973) solution are we assuming that the large-scale
magnetic field is dynamically weak.
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Equation (A3) is not the same as assuming that the magnetic and thermal energy densities are comparable at z � h, which is sometimes
quoted as the condition for suppression of theMRI.We note, however, that the condition on the Alfvén speed ismore fundamental, and the
condition on the magnetic energy density is merely derived from it under a specific set of circumstances in the main body of the disk. In
fact, analytical studies of both stratified and unstratified disks generally suggest that the condition k = vA k �K is most important for MRI
suppression, regardless of the overall magnetic energy density (Blaes & Balbus 1994; Gammie & Balbus 1994; Kim & Ostriker 2000).
Thus, we believe that equation (A3) is correct.

In fact, what is most clear from the above MRI studies is that the stability criteria in each coordinate direction are roughly independent;
for example, a strong toroidal field does not significantly affect themost unstable vertical wavelengths. Thus, if wewere to suppose that the
MRI is suppressed when the local magnetic and thermal energy densities are equal, it would be reasonable to assume that the appropriate
condition is B2

zh k 8�ph (i.e., that it involves the vertical rather than the total magnetic energy density), in which case we would derive
ph /p0 P B2

zh /8�p0 rather than equation (A3) as the condition for MRI suppression; here the subscripts have their usual meanings. We
therefore see that the two possible conditions are essentially the same for a disk that is dominated by gas pressure up to z � h; one
would simply need to modify equation (A3) by introducing a ratio of temperatures T0 /Th on the right-hand side, which is generally no
more than a factor of a few. Only if the disk is radiation-dominated at z � h is there a significant difference between the two conditions
for suppression of MRI turbulence. In the case of a radiation-dominated disk, our use of equation (A3)means that we are assuming that the
MRI can be suppressed in the surface layer of the disk even when the magnetic pressure is weaker than the radiation pressure there.

APPENDIX B

MAGNETIC FIELD ADVECTION IN QUASI-STATIONARY ACCRETION DISKS

Our work in this paper is concernedwith accretion disks that are fundamentally time-dependent. In particular, we are studying situations
in which a large-scale magnetic field is being dragged inward and causing the magnetic flux in the inner region of the disk to change in
accordance with equation (3). Such disks are complicated to study analytically, and for this reason we used order-of-magnitude
approximations to reach some of our conclusions in x 4.2 (in particular, to estimateHB, the scale height of the vertical magnetic stress).

In this section, we will give arguments for these approximations by considering the simplified case of a ‘‘quasi-stationary’’ disk. By this
wemean a disk that is allowed to vary on the long (viscous) timescales at whichmagnetic field advection takes place but that is assumed to
quickly adjust its structure on shorter timescales (in response to the changing magnetic flux), so that in most respects it can be treated as
stationary.

We begin by evaluating the �-component of the induction equation (eq. [1]) at z ¼ h (where the magnetic diffusivity is negligible)
in an axisymmetric disk, which gives

@B�h

@t
¼ @

@z
v�Bz � vzB�

� �
h
� @

@r
vrB� � v�Br

� �
h
: ðB1Þ

If we assume locally circular orbits in Newtonian gravity and evaluate spatial derivatives of the orbital velocity v� to first order in h/r,
we can combine equation (B1) with the condition : =B ¼ 0 to derive

@B�h

@t
� � 3

2
�K Brh þ

h

r
Bzh

� �
� @

@z
vzB�

� �
h
� @

@r
vrB�

� �
h
: ðB2Þ

The first term in this equation represents the production of azimuthal field via Keplerian shear and is generally the most important
effect; it leads to the creation of B� on a characteristic timescale of ���1

K (i.e., the orbital timescale). Therefore, in accordance with our
quasi-stationary approximation, we can assume that the disk quickly adjusts its value of B�h in response to the magnetic field advection so
that @B�h /@t is negligible on our timescales of interest. We can therefore rewrite equation (B2) as

@B�h

@z
� � 3

2

�K

vzh
Brh þ

h

r
Bzh

� �
� B�h

@ ln vzh
@z

� B�h

r

vrh
vzh

@ ln vrhB�h

� �
@ ln r

� �
: ðB3Þ

We can simplify this equation by assuming that �vz is constant with height so that there is no net buildup of mass in the vertical outflow.
This is a reasonable assumption for thin disks for the timescales of interest. Thus, @ ln vzh /@z ¼ �@ ln �h /@z. Numerical simulations
show that this quantity is, in turn, well estimated by�H�1 throughout the atmosphere of the disk, even in time-dependent systems in
which radiation and magnetic fields help to provide vertical support against gravity (Hirose et al. 2006; Krolik et al. 2007). Equation (B3)
then becomes

@B�h

@z
� � �K

vzh
Brh þ

h

r
Bzh

� �
� B�h

H
1þ H

r

vrh
vzh

@ ln vrhB�h

� �
@ ln r

� �
: ðB4Þ

If we combine this equation with the definition of HB, use: = B ¼ 0, and then ignore terms of order�H /r (assuming that the logarithmic
radial derivatives are of order unity, which should be true except at boundary regions where the magnetic field structure changes
dramatically), we obtain

HB � H
fB

1� fB
; ðB5Þ
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where fB � (vzh /H�K)(�B�h /Brh) is typically a positive number in anymagnetic field geometry (due toKeplerian shear).We therefore see
that unless vzh approaches the sound speed, we have HB P H for typical generic field geometries. This corresponds to our ap-
proximation in the main body of the paper. Furthermore, since vzh is simply the initial speed at which material is launched off the disk
surface (before it enters any jet acceleration region), we do not expect it to be large; a reasonable estimate might be vzh � vrh i, where
vrh i � �(H /r)H�K is the speed at which material in the main body of the disk accretes inward. In that case, we would haveHBTH ,
which is even more favorable for inward advection.

The above analysis shows that the vertical magnetic stress potentially available at z ¼ h in an accretion disk is more than enough to
drag the surface layer inward. In fact, if we consider equation (11) in light of these results, the immediate suggestion is that the surface
layer can advect inward much faster than the main body of the disk. The problem with this conclusion, however, is that the above
analysis only considered the atmosphere on its own, without regard to the main body of the disk below it. A large shear between the
main body of the disk and the surface layer is unlikely to be stable. Although the physics in the interface between the turbulent body of
the disk and the nonturbulent region above it is complicated, we can estimate the effects of a large vertical shear in vr in the case of
ideal MHD. We use the r-component of equation (1), which is

@Brh

@t
¼ @

@z
vrBz � vzBrð Þh; ðB6Þ

so that there is a term Bzh@vrh /@z that tends to produce Brh on a typical timescale of (@vrh /@z)
�1. Thus, a large vertical shear in vr will

rapidly change the radial magnetic field, and thereby the vertical stress, in accordance with equation (B4), in the appropriate direction
for the shear to be reduced. This suggests that very small values of HB are not sustainable, and although it is difficult to predict the
exact behavior, we expect that in the general case the base of the nonturbulent surface layer will advect inward at a similar speed as that
of the main body of the disk. Note that turbulent stresses may also play a role in this region in ensuring that the disk and surface layer
advect inward together (similar to a ‘‘friction’’ term).We do not consider their effect here, except to note that they are probably smaller
than the large-scale magnetic stresses. (Recall that the large-scale magnetic energy density is by definition comparable to the thermal
pressure at z ¼ h, whereas the turbulent vertical stresses are likely to be smaller by a factor of ��.)
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