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ABSTRACT

We consider the accretion process in a disk with magnetic fields that are dragged in from the interstellar medium by
gravitational collapse. Two diffusive processes are at work in the system: (1) ‘‘viscous’’ torques exerted by turbulent
andmagnetic stresses, and (2) ‘‘resistive’’ redistribution of mass with respect to the magnetic flux arising from the im-
perfect conduction of current. In steady state, self-consistency between the two rates of drift requires that a relation-
ship exists between the coefficients of turbulent viscosity and turbulent resistivity. Ignoring any interactions with a
stellar magnetosphere, we solve the steady-state equations for a magnetized disk under the gravitational attraction of
a mass point and threaded by an amount of magnetic flux consistent with calculations of magnetized gravitational
collapse in star formation. Our model mean field equations have an exact analytical solution that corresponds to
magnetically diluted Keplerian rotation about the central mass point. The solution yields the strength of the magnetic
field and the surface density as functions of radial position in the disk and their connection with the departure from
pure Keplerian rotation in representative cases. We compare the predictions of the theory with the available obser-
vations concerning T Tauri stars, FU Orionis stars, and low- and high-mass protostars. Finally, we speculate on the
physical causes for high and low states of the accretion disks that surround young stellar objects. One of the more
important results of this study is the physical derivation of analytic expressions for the turbulent viscosity and tur-
bulent resistivity.

Subject headinggs: accretion, accretion disks — MHD — planetary systems: protoplanetary disks —
solar system: formation — stars: formation — turbulence

1. INTRODUCTION

It is universally acknowledged that magnetization is crucial to
the accretion mechanism in circumstellar disks via the magneto-
rotational instability (MRI) first studied in the nonlinear regime
by Hawley & Balbus (1991; see Balbus & Hawley 1998 for a re-
view). Since this accretion is the process by which most stars ac-
cumulate their masses from the gravitational infall of collapsing,
rotating, molecular cloud cores (see, e.g., Shu et al. 1987; Evans
1999), and since planets are believed to form from the resulting
circumstellar disks (e.g., Lissauer 1993; Papaloizou & Lin 1995;
Lin & Papaloizou 1996; Goldreich et al. 2004), a better under-
standing of the mechanism of disk accretion (e.g., Lynden-Bell
& Pringle 1974; Pringle 1981) is desirable for further progress in
the fields of star and planet formation. Moreover, bipolar out-
flows and jets are ubiquitous in young stellar objects (YSOs; see
Bachiller 1996; Reipurth & Bally 2001), while the best contem-
porary theories for the underlying collimated winds intimately
involve the combination of rapidly rotating disks and strong mag-
netic fields, either threading the disk itself or belonging to the cen-
tral host star (Königl & Pudritz 2000; Shu et al. 2000). A major
uncertainty in the former models is the strength and geometry of
the disk magnetic fields.

In this paper, we consider the global problem of the mass,
angular-momentum, and magnetic-flux redistribution in disks
around young stars that are threaded by interstellar fields dragged
in by the process of gravitational collapse and infall. In a future ex-
tension of this work, we wish to include the interaction of such

magnetized accretion disks at their inner edges with the stellar
magnetosphere generated by dynamos operating in the central
objects. Such interactions include the loss of angular momentum
carried in any outflowing wind that develops at the surface of the
parts of the disk that rotate sufficiently close to Keplerian rotation,
a process that is examined in this paper only in terms of whether a
wind’s presence is implied by the prevailing circumstances.While
separate pieces of this problem have been attacked by other
groups (e.g., Goodson et al. 1999; Krasnopolsky & Königl 2002;
Küker et al. 2004; Long et al. 2005), our study includes for the
first time a perspective that combines analytical calculations with
the likely levels of magnetic field brought into the disk of a YSO
by gravitational collapse and infall (Galli et al. 2006; Shu et al.
2006).

Our paper builds on the prescient study of Lubow et al. (1994,
hereafter LPP94) concerning the possibility of disk winds in ac-
cretion disks. What distinguishes our work from theirs is our con-
cern with the much stronger magnetic fields resulting from the
process of star formation than assumed by LPP94 (see x 3).
Although LPP94 use a kinematic approximation that assumes
explicitly an inward drift speed and implicitly a Keplerian ro-
tation curve, neither assumption turns out to affect the generality
of their solutions of the linear induction equation. Nevertheless,
when fields are dynamically strong, a solution of the full mag-
netohydrodynamic (MHD) problem is required. Thus, an added
component of our study is a physical formula for the viscosity as-
sociated with the MRI (see xx 2.1 and 4.1). In other words, while
LPP94 treat magnetic fields as a passive contaminant to an im-
posed accretion flow, we regard them as underlying the MRI dy-
namics that drives disk accretion. Our own theoretical work on the
interaction of an electrically conducting accretion disk with a YSO
magnetosphere that produces an X-wind and a funnel flow is in-
complete because we previously ignored the magnetization of the
accretion disk (see the review of Shu et al. 1999 and the criticisms
of Ferreira et al. 2006).
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1.1. Governing Equations

We wish to calculate the effects of a systematically oriented,
poloidal, mean magnetic field gathered from the interstellar me-
dium that threads vertically through a circumstellar disk that sur-
rounds a newly born star. This field is pinched radially inward by
viscous accretion through the thin disk driven by theMRI (Fig. 1).
To transform the usual 2.5D equations of nonideal MHD (with
steep vertical stratification in z combined with full radial depen-
dences in $ and axisymmetric motions in the tangential direc-
tion ’) to 1.5D (integration over z) requires that we explicitly
treat the vacuum fields above and below the disk all the way out
to infinity, which is a crucial missing ingredient in all numerical
simulations of the MRI to date when global fields are present.
Fortunately, this transformation can be implemented using the
Green’s function technique used by van Ballegooijen (1989) and
LPP94 (see also Shu&Li [1997] and Shu et al. [2004], whowere
unaware of the earlier related work on accretion disks until the
preparation of the present paper). In 1.5D, the formulation in terms
of integrodifferential equations is then standard.

Terquem (2003; see also Fromang et al. 2005) made the in-
teresting suggestion that toroidal magnetic fields in YSO disks
might be strong enough to stop the so-called type I migration of
planets and planetary embryos with Earth-like masses. The or-
igin of such mean toroidal fields is unclear since they require un-
closed z-currents and are subject to buoyant vertical loss through
the Parker (1966) instability, but similar effects could arise for
accretion-pinned poloidal distributions. The toroidal fields that
arise in this paper from the stretching of radial fields by differen-
tial rotation vanish in the mean when we integrate over z. We
shall treat their fluctuating effects on the turbulent transport of
angular momentum andmatter across field lines as diffusive terms
in the nonideal equations of MHD with ‘‘anomalous’’ values for
the coefficients of kinematic viscosity � and electrical resistivity �
(see xx 2.1 and 4.1).

In such a mean field MHD treatment, the evolution of gas and
magnetic field occurs in a thin, axisymmetric, viscously accret-
ing disk surrounding a young star that we represent as a station-
ary and gravitating point of massM� at the origin of a cylindrical
coordinate system ($; ’; z). We denote the disk’s surface den-
sity by �, the radial velocity of accretion in the plane by u, the
angular velocity of rotation about the z-axis by�, the component

of the magnetic field threading vertically through the disk by Bz,
and the radial component of the magnetic field just above the
disk that responds to the radial accretion flow by Bþ

$. This self-
gravitating, magnetized system satisfies the time-dependent equa-
tion of continuity,
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the torque equation, including phenomenologically the effect of
turbulent viscous stresses (/�),
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and the induction equation for the vertical component of the mag-
netic field, including the effect of finite resistivity �,
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where, according to Shu & Li (1997),
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In the vertical averaging over the thickness of the disk to ar-
rive at equation (4), we have effectively replaced � local@B$/@z
by its mean value above the midplane of the disk, �Bþ

$ /z0, an
operation that defines what we mean by average �. We shall
later consider what we mean by the effective half-height of the
disk, z0 (see Appendix C), but for the time being we are content
with the intuitive concept. Although it might be mathematically
more elegant to absorb the combination �/z0 into a single variable
denoted, say, by a symbol R, we retain the more cumbersome
notation to keep better contact with the conventionalmicrophysics
of electrical resistivity. In any case, we assume that z0 is much
smaller than the local disk radius $.
In equation (2), the first term on the right-hand side represents

the mass per unit area, �, divided into the radial component of
Lorentz force per unit area due tomagnetic tension, J’Bz/c, where
J’ is the current density integrated over the thickness of the disk
and equals cBþ

$ /2� by Ampere’s law. The second and third terms
on the right-hand side represent the contributions to the force per
unit mass associated with the stellar gravity of point massM� and
the self-gravity of the gas of surface density� in the disk. To low-
est order in the aspect ratio, z0/$T1, we have neglected the
pressure forces of thematter and the magnetic field (see Shu&Li
1997). The important astrophysical point is that the centripetal
acceleration on the left-hand side of equation (2) is not given a
priori but arises in response to the forces of (1) magnetic tension,
(2) stellar gravity, (3) self-gravity of the disk gas, and (4) gas and
magnetic pressure forces. We have ignored (4) explicitly, and we
shall presently ignore (3) also. The rationale is that (3) and (4) are
generally small in comparison with the stellar gravity term. Their
inclusion would only yield small corrections at the expense of
rendering the resulting problem intractable except by numerical
attack. In contrast, themagnetic tension force is always present at

Fig. 1.—Schematic diagram of accretion flow in a disk threaded by magnetic
flux accumulated by the process of star formation.
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a level dictated by the amount (and distribution) of magnetic flux
threading the disk.

The kernel in equation (5) is given by

K0(� ) �
1

2�

I
1� � cos ’

(1þ � 2 � 2� cos ’)3=2
d’: ð6Þ

The function K0(� ) is plotted in Figure 1 of Shu et al. (2004)
with mathematical properties described in their Appendix A. It
has the asymptotic behaviors

K0(0) ¼ 1; K0(� ) ! � 1

2� 3
as � ! þ1: ð7Þ

On a microscopic level, field diffusion in lightly ionized gases
involves, in principle, three nonideal effects (see Wardle & Ng
1999): ohmic resistivity (because ions are knocked off field lines
by collisions), the Hall effect (because electrons move differently
than ions under electromagnetic fields and collisions), and am-
bipolar diffusion (because neutrals do not feel electromagnetic
forces directly, but are subject to them indirectly because of col-
lisions with the ions). For an axisymmetric problem, the Hall term
vanishes, and the remaining two effects can be accorded the same
treatment by defining an effective resistivity � given by the sum of
the ohmic resistivity �ohm and the contribution from ambipolar
diffusion �B2

z /4��, where � is a representative local volume den-
sity and � is the mean collision time for momentum exchange be-
tween a neutral particle and a sea of charged particles or particulates
(if charged dust grains are important):

� ¼ �ohm þ �B2
z

4��
: ð8Þ

For mean field magnetohydrodynamics, we assume that the same
relation applies phenomenologically, and henceforth, when we
speak of the ‘‘resistivity,’’ we mean the effective value given by
equation (8), appropriately generalized to include turbulent fluc-
tuations. In Appendix Awe comment on some alternative formu-
lations of the turbulent diffusive processes that result in the same
conclusions when the system is in steady state.

1.2. Steady State

In steady state with a spatially constant mass accretion rate
Ṁd , the equations of continuity, torque, and advection-diffusion
of magnetic field simplify to

$�u ¼ const � � Ṁd

2�
; ð9Þ

Ṁd$
2� ¼ �2�$ 3��

d�

d$
; ð10Þ

Bzu ¼ �Bz

Ṁd

2�$�
¼ � �Bþ

$

z0
; ð11Þ

whereas the centrifugal balance and the radial magnetic field Bþ
$

just above the disk plane are still given by equations (2) and (5)
with no modifications except that there is no time dependence
in the arguments of � and Bz. Elimination of Ṁd from equa-
tions (10) and (11) then yields the self-consistency requirement

�
Bþ
$

z0Bz

¼ � �

�

d�

d$
: ð12Þ

In choosing the integration constants as above, we are im-
plicitly allowing the origin (the star) to be a sink for mass but

not for magnetic flux (or for angular momentum). To make this
clearer, multiply equation (4) by 2�$ d$ and integrate in ra-
dius from the origin to a position just outside the star Rþ

� (which
we will ultimately let ! 0þ). The result yields

d��

dt
¼ �2�R� Bzuþ

�Bþ
$

z0

� �
$¼Rþ

�

; ð13Þ

where �� is the magnetic flux accreted by the star. The assump-
tion that equation (11) holds outside the star, in which the radial
advection of magnetic field is everywhere balanced by the ra-
dial diffusion associated with diffusive effects, then implies that

d��

dt
¼ 0; ð14Þ

i.e., all the magnetic flux that is brought in by the gravitational
collapse involved in star formation is contained in the disk, if
the star plus disk forms a closed system. We emphasize that equa-
tion (14) is an assumption, not a deduction from first principles.
It is astronomical observations, not theory, that tell us that little
interstellar flux is brought inside stars. Indeed, Mestel & Spitzer
(1956) already recognized more than 50 years ago that stellar
fields would measure in the megagauss range if even a small frac-
tion of the original interstellar flux were to appear on a young
star’s surface (see also Shu et al. 2004, 2006).

In this context, it is important to realize that magnetic recon-
nection will only destroy field lines that close within the disk. In-
deed, the annihilation offield loops is essential for fluid transport
through the disk, as discussed in x 4.1 below. In contrast, the
open, mean magnetic fields pictured in Figure 1 have roots that
extend to the interstellar medium. These field lines are respon-
sible for the flux (integral of Bz over the area of the disk), and this
flux cannot be lowered without modifying the interstellar cur-
rents (assumed to vanish at all finite distances in the derivation of
eq. [5]), for example, by arbitrarily adding spatially large loops
of current that yield a flux of opposite sign to the original inter-
stellar value.5

In what follows, then, we choose to write equation (12) as

Bþ
$ ¼ �2Bz; ð15Þ

where we define the dimensionless auxiliary variable � by

�2 � � z0�

$�

$

�

d�

d$

� �
: ð16Þ

For realistic configurations, we expect Bþ
$ � Bz; i.e., we antic-

ipate that� is an order unity quantity. Since$��1d�/d$ is also

5 One might still worry about the fate of open field lines with a fixed flux that
connects a rapidly rotating disk with a slowly rotating interstellar cloud. Would
not such field lines get twisted up in time and torque down the disk? The answer is
yes, but for disturbances traveling a poloidal distance�s along a field line out of
the plane of the disk, the change in azimuthal angle�’ experienced by a loaded
field line is approximately given by the disk rotation rate times the Alfvén cross-
ing time across the region: �’ � �(�s/vA). During the infall stage, the mass
loading is so considerable that the ability even to form a disk is in jeopardy (see,
e.g., Galli et al. 2006). After infall has stopped, the Alfvén speed vA is very large
near but above the disk, and it decreases as the field line begins to penetrate the
interstellar cloud. In this stage, all the twist is at the cloud end; virtually none is at
the disk end. In other words, eq. (25) below will hold to good approximation.
There is little continued torquing of the disk because the rate of angular momen-
tum transport per unit area by torsional Alfvén waves is limited by the angular
momentum density �$2� times the Alfvén speed vA ¼ B/ 4��ð Þ1/2, with the small
� above the disk of the formermore than canceling the

ffiffiffi
�

p
in the denominator of the

latter.
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of order unity, the resistivity �must be smaller than the (turbulent)
viscosity � by a factor given roughly by the local aspect ratio of
the disk, i.e.,

�

�
� z0

$
T1: ð17Þ

Equation (17) is in agreement with the assertion in equation (39)
of LPP94 that the dimensionless ratio of interest is not �/� but
(�/�)($/z0), which must be of order unity for magnetic fields to
be bent by an order unity amount from the vertical direction.
The contrary assertion by Rüdiger & Shalybkov (2002) arises be-
cause they arbitrarily assume a uniformly rotating halo of conduct-
ing matter in which the differentially rotating disk is embedded.
Some aspects of the problem that Rüdiger & Shalybkov consider
could apply to the interaction of the inner edge of an accretion
disk with a uniformly rotating stellar magnetosphere (e.g., Küker
et al. 2004). The latter is the context of X-wind theory. In the
next subsection, we give an explicit justification of the order-of-
magnitude estimate in equation (17) when the disk mass is small
enough to allow us to ignore its self-gravity.

1.3. Exact Solution when Self-Gravity of the Disk Is Neglected

If wemay ignore the last term (disk self-gravity) in equation (2)
in comparison to the other terms on the right-hand side (magnetic
tension and stellar gravity), then the condition of centrifugal force
balance becomes

$� 2 ¼ � BzB
þ
$

2��
þ GM�

$ 2
; ð18Þ

where Bþ
$ is given by equation (5). Consider now the important

case when � is appropriate for a thin disk in quasi-Keplerian
rotation,

� ¼ f
GM�

$ 3

� �1=2

; ð19Þ

where f is a constant less than 1 because of partial support of
the disk against the stellar gravity by the magnetic tension of the
poloidal magnetic fields that thread through it, brought into the
system by the process of star formation. In order for these con-
ditions to be mutually compatible, equation (18) requires

Bz ¼ ��1 2�(1� f 2)GM�$
�2�


 �1=2
: ð20Þ

The substitution of equation (20) into equations (15) and (5)
now results in a linear integral equation for�1/2 when� is known,

�($)�1=2($) ¼
Z 1

0

K0

r

$

� �
��1(r)�1=2(r)

dr

$
: ð21Þ

Because �1/2 enters linearly into equation (21) and � enters
nonlinearly, the above relationship yields a constraint on the al-

lowable solutions for both� and�. Consistentwith equation (19),
suppose, for example, that � is given by a power law:

�($) ¼ C$�2l; ð22Þ

where C and l are constants. Then, equation (21) requires �2 to
be a positive dimensionless constant:

�2 ¼ Il �
Z 1

0

K0(�)�
�l d�: ð23Þ

The integral Il has a finite value for l between �2 and 1 with
I0 ¼ 1. Table 1 gives a tabulation of numerical values for the as-
tronomically interesting range of l from 0 to 1 where � is a de-
clining function of radius. The last row shows the inclination angle
i that the surface fieldmakeswith respect to the vertical direction as
computed from tan i ¼ Bþ

$ /Bz and equation (25) below.
Equations (23) and (19) now allow us to deduce from equa-

tion (16) the required relationship between the resistivity and
viscosity as

�

�
¼ 3

2 Il

z0

$

� �
; ð24Þ

which supplies the missing numerical coefficient to our previ-
ous estimate (eq. [17]). The Prandtl combination �/� is required
in a steady-state accretion disk to have the specific ratio given
by equation (24) if u ¼ �3�/2$ arising from the viscous trans-
port of angular momentum (see eqs. [9] and [10]) is the same
drift speed needed for the resistive diffusion of matter across
stationary field lines, u ¼ �(�/z0)B

þ
$ /Bz (see eq. [11]). The two

formulae for the drift velocity express succinctly why � only
needs to be a small fraction of �: unlike viscosity, resistivity is
not acting to mix quantities on a large scale of $; instead, it is
trying to annihilate the oppositely directed mean radial fields
B$ on either side of the midplane distributed on a small scale z0.
If we consider the diffusivity associated with the radial distribu-
tion of the current J’ (Appendix A), then that diffusivity �J is
approximately equal to �.
The corresponding relationship between the radial component

of the magnetic field at the upper surface of the disk and the ver-
tical component at the midplane is given by equation (15) as

Bþ
$ ¼ IlBz: ð25Þ

The vertical field is itself given by equation (20) when we
know the surface density from equation (22), i.e.,

Bz ¼ I
�1=2
l 2�(1� f 2)GM�C


 �1=2
$�(1þl ): ð26Þ

To obtain the identification of the coefficient C, we note that
equation (10) implies

� ¼ Ṁd

3��
: ð27Þ

TABLE 1

Values of Il and Inclination Angle i

Values

Parameter l = 0 0.1 0.2 1/4 0.3 5/16 3/8 0.4 1/2 0.6 0.7 0.8 0.9 1

Il ........................... 1 1.149 1.326 1.428 1.542 1.573 1.742 1.818 2.188 2.726 3.598 5.304 10.34 1
i (deg)................... 45 49.0 53.0 55.0 57.0 57.5 60.1 61.2 65.4 69.9 74.5 79.3 84.5 90
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Thus, the adoption of equation (22) is an implicit assumption
that the viscosity varies as a power law of$ in steady state given
by

� ¼ Ṁd

3�C

� �
$2l: ð28Þ

To make further progress, we need to have a physical theory
for the kinematic viscosity � (see xx 2.1 and 4.1). This will al-
low the last unknown quantities l and C to be eliminated from
our power-law solution for �, �, and Bz. We discuss first, how-
ever, in xx 1.4 and 1.5 two results that hold for more general
diffusivities.

1.4. Disk Winds

There are two criteria necessary for a cold wind to be mag-
netocentrifugally driven from the surface of a rotating disk (see
the review of Königl & Pudritz 2000).Without detailed specifica-
tions of the physics of the viscosity or the resistivity, equation (25)
allows us to confirm the conclusion reached by LPP94 concerning
the first criterion:

Bþ
$

Bz

¼ Il �
1ffiffiffi
3

p ; ð29Þ

so that the footpoint field would then bend with an inclination
angle i from the vertical by more than 30� (Chan & Henriksen
1980; Blandford & Payne 1982). Table 1 shows that the above
criterion is comfortably satisfied for any disk where the surface
density declines with radius, l > 0. In particular, l ¼ 1/4 in equa-
tion (26) corresponds to the famous case Bz / $�5/4 considered
by Blandford & Payne (1982) and yields i ¼ 55:0�. LPP94 state
their wind-launching criterion in the form that (�/�)($/z0), which
equals 3/(2Il) according to equation (24), should be less than
1:52

ffiffiffi
3

p
. This result is almost identical to criterion (29). LPP94’s

calculation is for a finite disk with nonzero inner and outer radii,
embedded in a background field of uniform strength pointing in
the vertical direction, whereas our calculation is formally for an
infinite disk with a trapped interstellar flux. The negligible astro-
physical difference between 1.52 and 3/2 implies that none of
these idealizations matter to the first criterion for driving a disk
wind.

Unfortunately, the satisfaction of the magnetic criterion (29)
by itself is not a sufficient condition for the appearance of a sig-
nificant disk wind. Equation (48), derived from the consideration
of vertical hydrostatic equilibrium, shows that if the fractional
departure from Keplerian rotation 1� f 2 is large in comparison
with the aspect ratio, A � z0/$ divided by Il, then the square of
the characteristic thermal speed in the disk interior, a2, is given
by

a2 � Il

2
A(1� f 2)

GM�

$
: ð30Þ

On the other hand, in order to drive a disk wind, the square of
the thermal speed at the disk surface, a2

s , must be greater than a
fraction (say, 1

4
) times the virial imbalance between the gravita-

tional potential and twice the specific kinetic energy in disk
rotation:

a2
s >

1

4
(1� f 2)

GM�

$
: ð31Þ

The 1
4
on the right-hand side has the following approximate jus-

tification. Parker’s solution for a thermally driven spherical wind

gives one factor of 1
2
(see Parker 1963); this 1

2
becomes 1

4
because

a particle in Keplerian rotation already has 1
2
of the energy needed

to escape. No other factors are then included because magneto-
centrifugal effects do not help MHD winds in making the sonic
transition (see the discussion of Shu et al. 1994).

Except for the effects of heating by external irradiation, the
square of the thermal speed a2

s of the gas at the disk surface is
likely to be small in comparison with its value a2 in the disk in-
terior when the disk is vigorously accreting, the condition needed
to allow equation (48) to hold. Inequality (31) is then inconsistent
with equation (30), implying that strong disk winds cannot be
driven when 1� f 2 much exceeds the small number A (the disk
aspect ratio z0/$). Otherwise, the surface that corresponds to
smooth slow-MHD crossing would lie at so many scale heights
above some nominal disk surface that the associated mass-loss
rate would become negligibly small. LPP94 avoided this prob-
lem by their implicit assumption that the fields threading the
disk were weak and therefore had no effect on the disk’s as-
sumed Keplerian rotation. Wardle & Königl (1993) examined
the same issue in a local treatment of the launch region for disk
winds assuming ambipolar diffusion to be the physical mecha-
nism that loads field lines. They reported that the effect is present,
but compensating factors exist that allow wind mass-loss rates to
be a small fraction of the disk accretion rate, with a very sensitive
dependence on the ratio of the orbit time to the ion-neutral colli-
sional time � (see Fig. 12 of their paper). The global treatment
given in this paper, which includes an assessment of the likely
levels of magnetic field strength to result from the process of star
formation, indicates that the problem ismore severe, perhaps even
insurmountable for FU Orionis and T Tauri stars, although the
situation may yet be rescued for the outer disk regions of em-
bedded low- and high-mass protostars whereA is not so small (see
x 3).

Font et al. (2004) propose that photoevaporation is a more
likely source of the slow, warm disk wind observed by Kwan
et al. (2005) inTTauri stars. A photoevaporativewind could reach
a higher terminal velocity, but not a largermass-loss rate ( limited
by the X-ray, EUV, or FUV photon flux reaching the surface of
the disk at radii of a few AU or greater), because of the boost to
the gas by magnetocentrifugal fling after the sonic transition is
made. The combined effect could lead to a significant loss of an-
gular momentum from the system in the late stages of YSO evo-
lution that is not taken into account in our treatment. In other
words, outer disk winds may realistically arise even if 1� f 2 is
not small.

1.5. Viscous and Resistive Dissipation Rates

In steady state, the net emergent radiation from the upper and
lower surfaces of a thin disk, after accounting for the irradiation
of the central star, has to carry away the sum of the energies
generated by viscous and resistive dissipation, whose rates per
unit area are

� ¼ �� $
d�

d$

� �2

¼ 3

2
f 2 GM�Ṁ�

2�$ 3

� �
; ð32Þ

Y � J’E’ ¼ cBþ
$

2�

� �
� u

c
Bz

� �
¼ (1� f 2)

GM�Ṁd

2�$3
: ð33Þ

In the above, J’ ¼ cBþ
$ /2� and E’ ¼ �uBz/c are, respectively,

the mean current density (integrated over z) and electric field in
the ’-direction in the rest frame of the plasma tied to mean Bz

relative to which the bulk of the matter in the disk is drifting at
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radial velocity u ¼ �Ṁd/2�$� ¼ �3�/2$ ¼ �(�/z0)B
þ
$ /Bz.

To perform the last step in equation (33), we have used equa-
tions (18) and (19) to eliminate Bþ

$Bz/2� and �.
An alternative expression, Y ¼ �(Bþ

$ )
2/2�z0, makes more ap-

parent that Y represents the resistive dissipation, which feeds on
the magnetic tension. In contrast, the viscous dissipation� feeds
on the disk shear. In the former case, a Lorentz force drives elec-
tric currents that generate heat by friction between the various
charged and noncharged species; in the latter, heat is generated
by fluid elements ‘‘rubbing’’ tangentially against each another.
We speculate that a fraction of the energy released by resistive
dissipation in the disk may go into accelerating suprathermal par-
ticles that give protoplanetary disks higher ionization rates than
conventionally estimated (cf. Goldreich & Lynden-Bell 1969 vs.
Sano et al. 2000).

The coefficient 3f 2/2 in equation (32) differs from the stan-
dard result by the factor f 2 because the rotation law is only quasi-
Keplerian, and implies a local rate of energy release 3 times as
great as one might have expected from the loss of orbital energy
because of accretion (see, e.g., Lynden-Bell & Pringle 1974).
The difference ismade up by a viscous torque that transfers energy
from the inner disk to the outer disk, a debt that has to be repaid if
we were to examine the details of the interaction of the disk near
its inner edgewith a star offinite size and, perhaps, magnetization.
For example, if one applies a zero torque condition at an inner
boundary Rx corresponding to a stellar magnetopause that co-
rotates at the angular rate �(Rx) ¼ f (GM�/R

3
x )

1/2, then standard
arguments (Lynden-Bell & Pringle 1974) show that the total vis-
cous energy dissipated by bringing matter through our accretion
disk from infinity to Rx equals

1

2
f 2 GM�Ṁd

Rx

: ð34Þ

In contrast, if we multiply equation (33) by 2�$ d$ and
integrate from Rx to 1, we derive that the rate of resistive dis-
sipation of energy in the disk equals

(1� f 2)
GM�Ṁd

Rx

: ð35Þ

The sum of the viscous and resistive dissipation rates, equa-
tions (34) and (35), equals

1� 1

2
f 2

� �
GM�Ṁd

Rx

; ð36Þ

which is not the total rate of gravitational potential energy release,
GM�Ṁd /Rx, because an amount R2

x�
2(Rx)/2 ¼ f 2GM�/2Rx is

still retained by each gram of disk matter at the disk /stellar-
magnetopause boundary as specific orbital energy. In actual prac-
tice, as will be shown in a future publication, f is raised to unity as
the latter boundary is crossed by the swing of Bþ

$Bz from positive
to negative values and inner-edge effects (assuming the magne-
topause is not squashed by the accretion flow to the stellar sur-
face in quasiYsteady state), soGM�/2Rx of specific energy in the
accreting matter is available for budgeting in a funnel flow or
X-wind (Shu 1995). Note that in this description, electromag-
netic fields, although responsible for the microphysics of vis-
cous and resistive dissipation, act on the macroscale merely as
catalysts for converting gravitational energy into other forms.
These other forms, in steady state, involve no change of the mag-
netic energy because the magnetic fields have been assumed to re-
main constant in time.

Let us compare the expressions (32) and (33) that hold at radii
$3Rx. Then we easily calculate that heat generation by vis-
cous dissipation dominates over resistive dissipation when f >
2/5ð Þ1/2 ¼ 0:6325. The resistive contribution is typically not neg-
ligible; for example, it is 37.5% of the viscous contribution when
f ¼ 0:8. In spirit, if not in detail, our ideas then follow those of
Lynden-Bell (1969), and we can imagine ‘‘resistive accretion
disks’’ as well as their ‘‘viscous’’ counterparts (cf. the FU Orionis
model of x 3).

2. VISCOSITY ASSOCIATED WITH MRI

Returning to our quest for the viscosity � to be used in our
power-law solution in x 1.3, we would like to benefit from the
many numerical simulations that have been performed of the
MRI since the pioneering studies of Balbus and Hawley. How-
ever, few experiments have been done that are of direct relevance
to the problem in star formation that we address in this paper.
Most simulations miss one or the other of the crucial ingredients
of being both global and having nonzero net flux.When field lines
extend to infinity (necessary to have nonzero net flux), rather than
close within the system, consideration of the behavior of the field
within a few vertical scale heights of a spatially thin disk suffices
only if one has included knowledge ofwhat those fields do at large
distances. The application of boundary conditions at smaller dis-
tances will generally exert extraneous stresses. Because of these
difficulties, many simulations are both local and have zero net
flux, in that a small portion of a shearing sheet or layer is threaded
bymean vertical magnetic fields Bz inputted initially to vary sinu-
soidally in the radial direction. Radial mixing and reconnection
can destroymost of the initial vertical field in such simulations, so
that the turbulent state reached asymptotically in time is largely
independent of the assumptions of the ‘‘initial’’ state. The finely
resolved study by Silver & Balbus (2006) does include the effect
of a systematically directed field Bz of a single sign, but their
simulation is not global (and therefore does not develop a Bþ

$
comparable toBz), and it is performed for a gas pressure 800 times
larger than the magnetic pressure, i.e., with implied magnetic
fields that are too weak to be useful for our studies here.
Stone et al. (1996) and Miller & Stone (2000) performed, to

our knowledge, the only well-known simulations of a thin disk
threaded by a systematic, large-scale, nonzero, vertical field Bz.
The computations were semiglobal in spanning a larger than
usual, but still limited, range of z. (The work by Fleming et al.
[2000] assumes periodicity in the z-direction, which does not
faithfully represent the dynamics of a thin disk.) The thin-disk
cases with nonzero net flux behave completely differently from
the other more frequently studied configurations, whose initial
states have only toroidal fields, or, at least, zero average Bz. The
systems in the simulations of Stone et al. (1996) and Miller &
Stone (2000) quickly become magnetically dominated, unlike
the usually considered circumstance where the gas pressure is
much greater than themagnetic pressure. The rapid evolution then
prevented the authors from examining the astrophysical conse-
quences of the configuration most likely to be relevant to investi-
gations in star formation.

2.1. Turbulent Viscosity

In the absence of relevant numerical simulations, we give the
following order-of-magnitude argument on the basis of mixing-
length ideas (Prandtl 1925). When a radial field B$ is present in
a field of differential rotation, we expect that field to be sheared
and yield an azimuthal component B’. The tendency for electri-
cally conducting fluids to flow along the field direction suggests
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that fluctuations in the radial velocity �u will be related to the
horizontal fields and the shear rate by

B’�u � B$$
d�

d$
�$; ð37Þ

where �$ is the radial mixing length and has the same sign as
�u. Note that the induced B’ has systematically the opposite sign
as B$ if d�/d$ is negative. The systematics of B’ relative to B$

lead to the desired ‘‘viscous’’ torque.
Differentially rotating fluid parcels displaced from their equi-

librium positions that preserve their specific angular momentum
gyrate in epicycles about a guiding center characterized by an epi-
cyclic frequency 	 that numerically equals � in a quasi-Keplerian
disk (Binney & Tremaine 1987, p. 120). Although other forces
are also at play in a magnetized accretion disk, we assume that
mixing-length scales of greatest interest for the transport of an-
gular momentum have a correlation time between �$ and �u that
is similarly given by ���1, i.e.,

�u � ��$: ð38Þ

Equation (37) can now be written

B’ � B$
$

�

d�

d$
: ð39Þ

The component of Maxwell stress responsible for exerting torque,
B$B’/4�, integrated over the thickness of the disk, can then be
approximated as

F (Bþ
$ )

2

2�

$

�

d�

d$
z0; ð40Þ

where F is a form factor that comes from the vertical integra-
tion, and that also corrects for all the order-of-magnitude ap-
proximations used to arrive at this point. If the term (40) is the
dominant contribution to the ‘‘viscous’’ stress modeled in equa-
tion (3), then the associated ‘‘kinematic viscosity’’ equals

� ¼ F (Bþ
$ )

2z0

2���
: ð41Þ

A more picturesque ‘‘derivation’’ of equation (41) that ex-
plains why the correlations do not involve quadratic products
of fluctuating quantities (they actually do) and why the mixing
length �$ seemingly dropped out of the calculation (it should
not) is given in x 4.1.We proceed here to build confidence in the
case by first demonstrating that the adoption of equation (41)
leads to reasonable astrophysical results.

To follow the flux redistribution, our problem is formulated
using Bz rather than B

þ
$ , so in steady state we set B

þ
$ ¼ IlBz (cf.

eq. [25]) and get

� ¼ D
B2
z z0

2���
; ð42Þ

where D is a dimensionless coefficient given by D ¼ I 2l F. Al-
though F is the more fundamental quantity, as we shall see in a
later study of the interaction of disks with stellar magnetospheres,
we shall use D in this paper as the relevant dimensionless param-
eter to obtain � from observations and simulations (see the dis-
cussion of Appendix B). As long as F is not too small compared
to unity,D is an order unity quantity, provided the entire disk layer
undergoes vigorous mixing from the MRI.

With � given by equation (42), equation (27) yields the fol-
lowing expression for the vertical magnetic field:

Bz ¼
2f

3DA

� �1=2
GM�Ṁ

2
d

$5

� �1=4

; ð43Þ

where we have used equation (19) to express the angular rota-
tion rate � and where A � z0/$ is the aspect ratio of the local
disk height to disk radius. From equations (20) and (48), we are
then able to recover the surface density as

� ¼ f

1� f 2

Il

3�DA

� �
Ṁd

(GM�$)1=2
: ð44Þ

Equation (42) holds with nonzero D only as long as (1) good
magnetic coupling exists, and (2) the criterion for the MRI in-
stability is satisfied, that the magnetic pressure be smaller than
the gas pressure. If we define a fiducial square of the thermal ve-
locity a2($) by the gas pressure at themidplane,P($; 0), divided
by the characteristic volume-density in the disk, �($)/2z0($),
equations (43) and (44) imply that the ratio of the magnetic pres-
sure to gas pressure at the disk’s midplane is then given by

B2
z z0

4��a2
¼ (1� f 2)

2Il

AGM�

a2$

� �
; ð45Þ

where we have expressed z0 ¼ A$. On the other hand, analysis
of the vertical hydrostatic equilibrium of the disk using the
method of Wardle & Königl (1993; see also Ogilvie 1997; Shu
& Li 1997) gives (see Appendix C):

a2 ¼ 1

2
Il(1� f 2)Aþ A2

 �GM�

$
: ð46Þ

In principle, a proper physical treatment would require us to ob-
tain a2($) by computing the volumetric viscous and resistive
heating as a function of z and balance it against the heat trans-
ported by radiative transfer and thermal convection vertically out
of the disk. Once we have obtained a2($), we could then solve
equation (46) as a quadratic equation for the disk aspect ratio A.
Such a physically involved treatment is beyond the scope of
the present paper, and for the astronomical and pedagogical sake
of obtaining numerical examples, we shall assume the luxury
of specifying A($) semiempirically as a power law (see x 2.3).

The justification for approximating A as a power law follows.
If disks are spatially thin, A is small compared to unity. There are
then two different regimes of physical interest. The first case arises
when the departure (1� f 2) from Keplerian rotation is small and
the first-term on the right-hand side of equation (46) is negligible
in comparisonwith the second term, resulting in the approximation

A � a

ffiffiffiffiffiffiffiffiffiffi
2$

GM�

r
for 1� f 2T

A

Il
: ð47Þ

In case (47), the contribution of the magnetic pressure is ignor-
able for the vertical hydrostatic equilibrium, and the draw of the
stellar gravity toward the midplane keeps a cool accretion disk
spatially thin. The second case arises when the departure from
Keplerian rotation (1� f 2) is not small and the first-term on the
right-hand side of equation (46) dominates over the second:

A � 2

Il

a2$

GM�(1� f 2)

� �
for 1� f 23

A

Il
: ð48Þ
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In case (48), the disk is kept spatially thin, not by stellar grav-
ity but by the inward press of the component of magnetic
pressure B2

$/8�, which increases outward from the midplane
z ¼ 0, where its value is 0, to the surface, where its value is
(Bþ

$)
2/8� ¼ I 2l B

2
z /8�.

From the community experience in disk thermal physics, it is
well known that numerical solutions frequently show two types
of power-law solutions for the vertically averaged temperature
/a2($), namely, a2 / $�3/4 for passive, irradiated disks, and
a2 / $�1/2 for active, accretion-powered disks. For a2 / $�3/4,
case (47) yields A($) / $1/8 and case (48) yields A($) / $1/4.
For a2 / $�1=2, case (47) yields A($) / $1/4 and case (48)
yields A($) / $1/2. Therefore, a power-law description for disk
flaring, A($) / $ n, with n ¼ 1/4 typically or n ¼ 1/8 or 1/2 at
the extremes, has a theoretical basis.

Apart from the issue of sufficient ionization, the requirement
for MRI being present in the midplane is that the left-hand side
of equation (45) should be less than unity. This requirement is
automatically satisfied for all our disks because the substitution
of equation (46) into the right-hand side of equation (45) gives a
value (1� f 2)/½(1� f 2) I 2l þ AIl�, which is always smaller than
1 for Il � 1, i.e., for l � 0 (Table 1). In particular, in the regime
where equation (48) holds, � from equation (42) becomes

� ¼ 2D

I 2l

a2

�

� �
; ð49Þ

which has the same form as the Shakura & Sunyaev (1973) vis-
cosity, � � �ssa

2/� with �ss ¼ 2D/I 2l . The strongly magnetized
disks of this paper therefore both automatically satisfy the crite-
rion that MRI exist in the midplane and have equivalent Shakura-
Sunyaev �-values of order unity if D � 1. By compressing the
midplane gas density and pressure to higher values than gravity
can achieve alone, such disks always operate at nearly the maxi-
mum efficiency for viscous transport, if D � 1, without shutting
down the MRI. Aficionados ofMRI like to say that it is present in
thin disks for arbitrarily low levels ofmagnetic field; now they can
add that it is present for arbitrarily high values too, provided
Il ¼ Bþ

$ /Bz � 1.
For later reference in discussions of disk fragmentation, we re-

cord that the local dimensionless mass-to-flux ratio in the disk is
given by (see Nakano & Nakamura 1978; Basu & Mouschovias
1994; Shu & Li 1997; Krasnopolsky & Gammie 2005)

k � 2�G1=2�

Bz

¼ Il

1� f 2

2f

3DA

� �1=2
Ṁ 2

d $
3

GM 3
�

� �1=4

: ð50Þ

The supercritical condition k > 1 is necessary, but not sufficient,
for local disk fragmentation. We must also examine, at least, the
Toomre (1964)Q parameter, which for gaseous disks must be less
than unity for local gravitational instability. Thus, also for later ref-
erence, we note that associated with equation (46) is a ToomreQ,
which is given by the formula Q ¼ �a/�G� for a disk in quasi-
Keplerian rotation. In principle, a should be computed from the
considerations of heat balance outlined earlier, but for fiducial
purposes, we use the value of a associated with case (48):

Q ¼ 3ffiffiffiffiffiffi
2Il

p D A(1� f 2)

 �3=2 M�

Ṁd

GM�

$ 3

� �1=2
" #

: ð51Þ

In what follows, we take the combination k > 1 and Q < 1 as
necessary indicators of local gravitational instability. With a

‘‘standard’’ flaring law, A / $1/4, both criteria favor the outer
regions of a disk for the possible occurrence of disk fragmentation.
Finally, for arbitrary values of f, equations (27) and (24) give

the viscosity and resistivity generated by the MRI instability in
the disk as

� ¼ AD(1� f 2)

f Il
(GM�$)1=2; ð52Þ

� ¼ 3A2D(1� f 2)

2 f I 2l
(GM�$)1=2: ð53Þ

Apart from the factors involving A, D, and f, these expressions
show that the natural scaling for both diffusivities is the specific
angular momentum of the matter in Kepler orbits, (GM�$)1/2.
Note especially the lack of any parametric dependence on the
assumed mass accretion rate Ṁd .

2.2. Enclosed Disk Mass, Magnetic Flux,
and Angular Momentum

Tomake equations (43) and (44) consistent with equations (26)
and (22), the productDA has to be a power law of$.We adopt the
natural assumptions thatD equals a constant and the disk flares as
a power law, so that the aspect ratio A(r) at radius r is related to its
value A($) at radius $ by the formula

A(r) ¼ A($)(r=$)n; ð54Þ

where n is the flaring exponent, which is positive definite if
shadowing does not occur. Had we adopted these assumptions
from the start, together with the hypothesis (42), we could have
shown that not only are the discovered power-law solutions
possible in steady state, but they are unique. The relationship
between the exponent n and the exponent l in equation (22)
can be found from equation (44) with A($) / $n, namely,
�2l ¼ �n� 1/2, or

l ¼ (1þ 2n)=4: ð55Þ

For later reference we note from Table 1 that Il ¼ 1:573, 1.742,
or 2.188 for disks with low, typical, or high power-law flaring,
n ¼ 1/8 and l ¼ 5/16 (i.e., � / $�5/8), n ¼ 1/4 and l ¼ 3/8
(i.e., � / $�3/4), or n ¼ 1/2 and l ¼ 1/2 (i.e., � / $�1),
respectively.
We wish now to compute the enclosed mass in the disk inside

a radius $,

Md($) � 2�

Z $

0

�(r)r dr

¼ 4Il

3(3� 2n)

� �
f

1� f 2

� �
1

DA($)

� �
Ṁd

(GM�=$ 3)1=2
:

ð56Þ

Thus,Md($) is a multiple of the mass that accretes through the
disk during a Keplerian rotation period at that radius. This mul-
tiple depends on the combination (DA)�1 and on the effective
value of f. Except for a numerical factor of order unity, we easily
verify the interpretation that the enclosed mass Md($) results
from accretion at a rate Ṁd over a viscous diffusion timescale
$2/�.
According to the discussion in x 1.2, the magnetic field brought

in by infall is contained as magnetic flux threading the disk.
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Inside any radius$ where the disk is in steady state the enclosed
magnetic flux is given by

�d($) � 2�

Z $

0

Bz(r)r dr

¼ 2�
4

3� 2n

� �
2f

3DA($)

� �1=2
GM�Ṁ

2
d $

3
� �1=4

: ð57Þ

If the disk’s mass is negligible in comparison with the star’s, the
system’s dimensionless mass-to-flux ratio enclosed inside $
equals

k�($) � 2�G1=2M�

�d($)
¼ 3� 2n

4

� �
3DA($)

2f

� �1=2
GM 3

�
Ṁ 2

d $
3

 !1=4

:

ð58Þ

Infall models with field freezing until small radii yield k� �
1Y4 (Galli et al. 2006), consistent with the polarization findings
of Girart et al. (2006) of an hourglass shape in NGC 1333 IRAS
4A. Field slippage during the collapse reduces the enclosed flux
for a low-mass protostar by a further factor of 2Y3 at the radii
�300 AU that their disks are likely to occupy (see Fig. 3 of Shu
et al. [2006] when Rohm in that paper has a value�10 AU). Thus,
in x 3 we adopt an enclosed mass-to-flux value of k0 ¼ 4 for the
system as a typical outcome of the star and disk formation process.
If insufficient time has elapsed for the disk to reach steady state
inside the radius where k� ¼ k0, investigations of the affected
regions should make use of the time-dependent equations with
which we began this paper (x 1.1).

It is extremely informative to compute the enclosed mass at a
radiusR� where k�(R�) ¼ k0, i.e., at a radius where the disk con-
tains the entire flux brought in by star formation:

Md(R�)¼
(3� 2n) Il

8k2
0

" #
M�

1� f 2
: ð59Þ

For the typical case, n ¼ 1/4, l ¼ 3/8, and Il ¼ 1:742, equa-
tion (59) becomes

1� f 2 ¼ 0:5444

k2
0

 !
M�

Md(R�)
: ð60Þ

For a closed system in which infall has ceased, so that k0 re-
mains a fixed constant, disk accretion must decrease Md(R�)
relative to M�, and therefore the departure from Keplerian ro-
tation, (1� f 2), must grow with time. This trend arises because
viscosity drains mass from the disk onto the star, while resistiv-
ity can only cause the redistribution of flux within the disk but
cannot change the total, making the specific magnetization (in-
verse k) rise with time. In x 3 we combine equation (60) with an
assumption of a disk’s ‘‘age’’ to estimate the numerical value of
the important parameter f.

To appreciate concisely the dynamical consequences of disk
magnetization, we note that equations (50) and (58) imply the in-
teresting reciprocity relationship

k($)k�($) ¼ 3� 2n

4

� �
Il

1� f 2

� �
; ð61Þ

where the right-hand side is a constant that depends only on f
and l ¼ (1þ 2n)/4. Except for such constants, a similar rela-

tionship was derived by Shu et al. (2004) in their analysis of
magnetic levitation of pseudodisks by strongly magnetized cen-
tral objects (see their eq. [65]). Although disks differ from pseu-
dodisks in being (partially) centrifugally supported, and although
the inner parts of a magnetized disk differ from a split monopole
in their detailed interaction with the outer parts of the same mag-
netized disk, the principles are qualitatively similar and provide
physical insight into why suchmagnetic support ( levitation of the
outside by the inside) causes the rotation to occur at sub-Keplerian
rates.

Finally, if the mass is mostly inM�, the enclosed angular mo-
mentum of the parts of the disk that are in steady-state accretion
is given by

Jd ¼ 2�

Z $

0

�(r)r 2�(r)r dr ¼ f
3� 2n

4� 2n

� �
Md($)(GM�$)1=2:

ð62Þ

Equations (57), (56), and (62) show that the enclosed disk flux,
mass, and angular momentum represent a sequence of decreasing
central concentration.

2.3. Seminumerical Formulae

For the convenience of the reader, we express the results of the
analytical theory in the following seminumerical form:

Bz($) ¼ 8:89 ; 10�3D�1=2 M�
0:5 M	

� �1=4

;
Ṁd

2 ; 10�6 M	 yr�1

� �1=2

; f 1=2
0:1

A($)

� �1=2 $

100 AU

� ��5=4
G; ð63Þ

�($) ¼ 0:740D�1 M�

0:5 M	

� ��1=2
Ṁd

2 ; 10�6 M	 yr�1

� �

;
f

1� f 2

� �
0:1

A($)

� �
$

100 AU

� ��1=2
g cm�2; ð64Þ

Md($) ¼ 4:18 ; 10�3D�1 M�

0:5 M	

� ��1=2
Ṁd

2 ; 10�6 M	 yr�1

� �

;
f

1� f 2

� �
0:1

A($)

� �
$

100 AU

� �3=2
M	; ð65Þ

Jd($) ¼ 0:629D�1 Ṁd

2 ; 10�6 M	 yr�1

� �

;
f 2

1� f 2

� �
0:1

A($)

� �
$

100 AU

� �2

M	 km s�1 AU;

ð66Þ

�($) ¼1:81 ; 1019D
M�

0:5 M	

� �1=2

;
1� f 2

f

� �
A($)

0:1

� �
$

100 AU

� �1=2
cm2 s�1; ð67Þ

� ($)¼1:56 ; 1018D
M�

0:5 M	

� �1=2

;
1� f 2

f

� �
½A($)0:1�2 $

100 AU

� �1=2
cm2 s�1; ð68Þ
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k($)¼ 0:135D�1=2 M�

0:5 M	

� ��3=4
Ṁd

2 ; 10�6 M	 yr�1

� �1=2

;
f 1=2

1� f 2

� �
0:1

A($)

� �1=2 $

100 AU

� �3=4
; ð69Þ

k�($) ¼ 8:07D1=2 M�
0:5 M	

� �3=4
Ṁd

2 ; 10�6 M	 yr�1

� ��1=2

; f �1=2 A($)

0:1

� �1=2 $

100 AU

� ��3=4
; ð70Þ

Q ¼ 56:4D
M�

0:5 M	

� �3=2
Ṁd

2 ; 10�6 M	 yr�1

� ��1

;
(1� f 2)3

f

� �1=2
A($)

0:1

� �3=2 $

100 AU

� ��3=2
: ð71Þ

3. ASTRONOMICAL EXAMPLES
FROM STAR FORMATION

To give astronomical context to the theory developed so far,
we consider four examples of interest in current-day star forma-
tion: (1) a T Tauri star, (2) an embedded low-mass protostar,
(3) an FUOrionis star, and (4) an embedded high-mass protostar.
Models 1, 2, and 3 have a central star of mass 0.5M	, and differ
only in accreting at rates equal, respectively, to 1 ; 10�8 M	 yr�1

(Gullbring et al. 1998), 2 ; 10�6 M	 yr�1 (Young et al. 2003;
Young & Evans 2005), and 2 ; 10�4 M	 yr�1 (see Popham et al.
1996, who, however, have a different explanation for sub-Keplerian
rotation near the star than this paper). Model 4, the high-mass pro-
tostar, has amass accretion rate that is scaled relative tomodel 2, the
low-mass protostar, by their masses (see, e.g., Stauber et al. 2007),
i.e., both M� and Ṁd are taken to be a factor of 50 larger. In each
YSO disk, we assume a standard flaring law (see, e.g., the dashed
curve in Fig. 1b of D’Alessio et al. 1999),

A($) ¼ 0:1($=100 AU)1=4: ð72Þ

We assign tage ¼ 3 ; 106 yr (Haisch et al. 2001), 1 ; 105 yr
(Jijina et al. 1999), 100 yr (Herbig 1977), and 1 ; 105 yr (Osorio
et al. 1999) as the fiducial ages, respectively, of the T Tauri star,
low-mass protostar, FU Orionis outburst, and the high-mass pro-
tostar. We now compute a viscous-accretion radius R� such that
Md(R�)/Ṁd ¼ tage. To ensure the approximate validity of the
steady-state assumption, we then set R� ¼ R�, where R� is de-
fined as before to equal the radius that contains all the flux, i.e.,
k�(R�) ¼ k0. Since Md(R�) ¼ Md(R�) ¼ Ṁdtage in this formal-
ism, the departure from Keplerian rotation can be computed from
equation (60) to equal

1� f 2 ¼ 0:5444M�

k2
0 Ṁdtage

: ð73Þ

For protostars still building up their mass, we expect Ṁdtage to
be comparable toM�. On the other hand, for T Tauri stars or FU
Orionis objects, we have Ṁdtage small compared toM�. Thus, for
k0 of order 4, we anticipate the departures fromKeplerian rotation
to be more substantial for T Tauri and FU Orionis stars than for
low- or high-mass protostars.
The surface density�must drop faster with$ than any nega-

tive power law in the outer parts of the disk in order to vanish, by
definition, at some true outer disk edge Rd . Therefore, unlike the
assumption being made at R� , the term represented by the right-
hand side of equation (3) must change sign in the outermost parts
of the disk, leading to a viscous movement outward of Rd with
time, carrying to large distances much of the system’s angular
momentum. Hence, the enclosed angular momentum, calculated
from equation (62) with$ ¼ R�, may not yield a representative
estimate of the system’s true total store of angular momentum
because it is the least centrally concentrated of the trio: magnetic
flux, mass, and angular momentum.
The numerical values of the relevant input parameters are now

tabulated in columns (2)Y(5) of Table 2; the output bulk param-
eters from the theory are tabulated in columns (6)Y(11). In accor-
dance with the discussion of x 2.3 we have chosen k0 ¼ 4 for all
four cases. This choice results in f ¼ 0:957 for the low-mass and
high-mass protostar models, making magnetocentrifugally driven,
cold, disk winds, unassisted by photoevaporation, difficult but not
impossible at radii much less than 100 AU for these systems, ac-
cording to the criterion (31) for appreciable disk winds. If we had
chosen a smaller value, say 2, for k0, then f would have equaled
0.812, and a powerful diskwind in protostars at any radii other than
the inner disk-edge, where magnetospheric interactions dominate,
would have been almost as unlikely as the f ¼ 0:658 and f ¼ 0:386
cases tabulated for the T Tauri stars and FU Orionis systems with
k0 ¼ 4.

3.1. Discussion of Bulk Properties

In Table 2 we have chosen the numerical value of D to make
R� ¼ R� / D 4=5 reasonable. It is informative in this regard that
D ¼ 1 works for the two protostar and FU Orionis models (per-
hapsD ¼ 0:3 would be better), but only a relatively small value,
D ¼ 10�2:5, does as well for the T Tauri model (see, e.g., Andrews
&Williams 2007). The enclosed disk massMd(R�) is independent
of the numerical value ofD, whereas the enclosed angular momen-
tum J d(R�) varies as D

2/5.
In the case of the FU Orionis model, we are contemplating a

transient accretion event that has occurred during the past 100 yr
and that has swept most of the mass and the magnetic flux to
within a radius�R� ¼ 16:2 AU, inside of which the system is in
quasiYsteady outburst. In this case, R� ¼ R� is likely to be con-
siderably smaller that Rd , where most of the system angular mo-
mentum may still reside. In the other cases, we think of R� ¼ R�

as being the effective ‘‘outer radius’’ of the system, large enough
to contain the magnetic flux that was dragged into the system by

TABLE 2

Parameters of Four Model Systems

Object

(1)

M�
(M	)

(2)

Ṁd

(M	 yr�1)

(3)

tage
(yr)

(4)

D

(5)

f

(6)

R� = R�

(AU)

(7)

Md (R�)

(M	)

(8)

J d (R�)

(M	 AU km s�1)

(9)

k(R�)

(10)

Q(R�)

(11)

T Tauri star ............................ 0.5 1 ; 10�8 3 ; 106 10�2.5 0.658 298 0.0300 5.12 0.480 4.47

Low-mass protostar................ 0.5 2 ; 10�6 1 ; 105 1 0.957 318 0.200 51.4 3.20 0.381

FU Ori.................................... 0.5 2 ; 10�4 1 ; 102 1 0.386 16.5 0.0200 0.473 0.320 3.36

High-mass protostar ............... 25 1 ; 10�4 1 ; 105 1 0.957 1520 10.0 39700 3.20 0.463
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the star formation process, but small enough so that the available
viscosity is able to establish a quasiYsteady state if the angular
momentum contained in the system is comparable to that tabu-
lated as J d(R�).

Near the disk edge Rd where � becomes vanishingly small
and Bz matches interstellar values, radial magnetic-buoyancy ef-
fects with interchange and/or Parker instabilities may lead to a
net loss of flux from the disk. Continuing infall that brings in ad-
ditional mass and flux from the cloud-core surroundings may
counteract such tendencies. Moreover, equations (56) and (57)
show that the outer parts of disks contain relatively more mass
than flux, so stripping of the outer parts by edge effects, or by tidal
encounters with other stars, or by photoevaporation from the far-
ultraviolet produced by themostmassive clustermembers in dense
clusters (Adams et al. 2006) cannot do much to alleviate the
problem of the growing magnetization of the entire disk. In what
follows, we ignore the complications that may arise from all such
environmental effects.

One could try to justify very small values of D ¼ 10�3 to
10�2 in T Tauri models on the basis that only the top and bot-
tom 10 g cm�2 of a disk (from ionization by scattered X-rays;
see Igea & Glassgold 1999), containing a total � of 2000 or
200 g cm�2 (which apply roughly at 1 and 5 AU of the ‘‘mini-
mum solar nebula’’), are active in the accretion process (Gammie
1996). Such small values for the effective D are not out of the
question if T Tauri disks have substantial ‘‘dead zones’’ where the
ionization is too low to couple to magnetic fields except, possibly,
for thin surface layers. The surface density ratio of active zone to
dead zone need not be as small as 10�2:5 (see x 3.2) to result in
such a value forD, if accretion in a thin surface layer has an intrin-
sically smaller efficiency than fully turbulent MRI (see the dis-
cussion in x 4.2).

A related problem arises when we apply equation (46) to
our T Tauri model, which results in the expression a �
2:64($/AU)�3/8 km s�1. An isothermal sound speed of 2.64 km
s�1 corresponds to a temperature in molecular gas of�1900 K,
a value that is unlikely to hold even in the midplane at 1 AU. The
difficulty arises becausewe took the first term/A in equation (46)
to be dominant, which requires vigorous inward accretion to sus-
tain the assumed Bþ

$ /Bz ¼ Il ¼ 1:742 that accounts for the sub-
stantial departure fromKeplerian rotation f ¼ 0:658 computed in
Table 2, yet we took the diffusion constant D to equal a paltry
10�2:5. The inconsistency disappears if we assume that the inner
disks of T Tauri stars are dead to the MRI except for their super-
ficial layers. With no magnetic coupling in the deeper layers, f
would be much closer to unity in the midplane than indicated in
Table 2, and the second term /A2 in equation (46) would dom-
inate. We then easily compute that midplane temperatures at
1 AU would be closer to 600 K, and dropping as ($/AU)�1/2,
more in line with conventional estimates. However, we end with
a nonstandard picture in which the central dead layers of T Tauri
disks rotate at near-Keplerian speeds, while the active superficial
layers tend to be very sub-Keplerian. This picture raises specu-
lative conjectures that we defer to x 4.2.

The enclosed masses Md(R�) for the T Tauri and FU Orionis
models, which are independent of the choice of effective D (as
long as it is a constant as a function of$), are similar to standard
estimates. The disk mass of the low-mass protostar is comparable
to the masses found by Jørgensen et al. (2007 and references
therein) and exceeds a value equal to the ‘‘maximum solar neb-
ula’’ when self-gravitational instabilities would need to be con-
sidered (Shu et al. 1990). The diskmasses of high-mass protostars
are not observationally well studied because of their rarity and
consequent larger distances. If the high disk masses for the two

protostar models were real, gravitational instabilities could lead
to disk fragmentation because k(R�) andQ(R�) are, respectively,
greater and less than unity in their outer disks.

In contrast, the FU Orionis and T Tauri models are stable to
disk fragmentation by both the magnetic and Toomre criteria,
k < 1 andQ > 1.While these conclusions do depend somewhat
on the specific choices made for D, the formation of either gas-
eous giant planets or brown dwarfs by gravitational instability
at tens of AU or smaller can probably be ruled out in the model
T Tauri system. Thermal cooling is not sufficiently rapid to help
(Rafikov 2007). Certainly, close-in brown dwarf companions
that could have been easily detected by the Doppler method seem
difficult to produce in all our models, which is an after-the-fact
explanation for the so-called brown dwarf desert (Marcy&Butler
2000; Halwachs et al. 2000). Our speculations in this regard are
consistent with the intuitive notion that large-angular-momentum
cases aremore prone tomaking binaries by gravitational fragmen-
tation, whereas small-angular-momentum cases are more prone to
making planetary systems by the embryonic core accumulation of
solids (Lin 2006).

3.2. Disk Surface Densities and Magnetic Fields

Figure 2 shows � (in units of g cm�2) and Bz (in units of G),
computed from equations (44) and (43), as functions of $ (in
units of AU) for the four model systems. Hexagons have been
placed as stop signs on the formal plots to indicate that the curves
for radii larger than R� ¼ R� should be ignored in any realistic
applications. Consistent with Table 2, we have chosenD ¼ 1 for
the two protostars and FUOrionis, andD ¼ 10�2:5 for the T Tauri
model.

In the low-mass protostar model, Bz is 302 G, 1.09 G, and
8.74 mG at $ ¼ 0:05, 3, and 100 AU, respectively, for D ¼ 1.
In the high-mass protostar model, they are higher by a factor
503/4 ¼ 18:8 at each radius. The first value in a low-mass proto-
star, 302 G at 0.05 AU, is compatible with a more-or-less smooth

Fig. 2.—Vertical component of the magnetic field Bz (solid curves) and the
surface density� (dashed curves) plotted against the radius$ in the steady-state
disks of the four models of Table 2. The hexagons mark the location where R� ¼
R� in the T Tauri (red curves), low-mass protostar (black curves), FU Orionis (blue
curves), and high-mass protostar (green curves) models. The slopes are�11/8 and
�3/4, respectively, for log Bz and log� vs. log$.
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matching (after enhancement in the X-region) with the inferred
field strength of the stellar magnetopause (see Shu et al. 1994),
yielding yet another indication why disk truncation occurs inside
such radii when the stellar field increases inward much more
strongly than the extrapolated disk field.

The second value, 1.09G at 3AU, is compatiblewith the paleo-
magnetism measured for the chondrules of primitive meteorites,
whose parent bodies are believed to originate in the asteroid belt
(reviewed by Stacey 1976; Levy & Sonett 1978; Cisowski &
Hood 1991). In theX-windmodel,whose predictions on this point
have received strong support from the recent Stardust comet-
samplemission (McKeegan 2006; Zolensky et al. 2006), the heat-
ing of the chondrule-likematerials and refractory inclusions found
inmeteorites, and now comets, occurs close to the proto-Sun (Shu
et al. 1996, 1997). Nevertheless, when ferromagnetic chondrules
are thrown out to the asteroid belt, they should not encounter fields
that are much stronger than the inferred paleomagnetism result of
1Y10 G (Stacey 1976; Levy & Sonett 1978; Cisowski & Hood
1991).

The third value, 8.74 mG at 100 AU, offers an inviting target
for Zeeman measurements if appropriate sources of maser emis-
sion can be found in protostellar disks. Even more promising for
such studies, because maser emission in ringlike configurations
has already been found (Hutawarakorn&Cohen 2005; Edris et al.
2007), are the large disk fields predicted for high-mass protostars
if their mass accretion rates scale anything like their mass even at
radii of a few hundred AU.

Consider now the FUOrionis model. At$ ¼ 0:05AU, not far
from the putative stellar surface, the vertical magnetic field is
predicted to be 1.92 kG ifD ¼ 1, somewhat higher than the value
for Bz � 1 kG inferred from observations for the inner disk of FU
Orionis itself (Donati et al. 2005). A disk that is 4 times thicker, as
may happen for the hot inner regions,would eliminate the discrep-
ancy. Moreover, the same observations claim that the inner re-
gions of the disk in FU Ori rotate at a speed 2Y3 times lower than
the Keplerian value, consistent with f ¼ 0:386 in our model. A
more detailed study of this system is warranted, but we caution
that precise modeling would need to take into account the interac-
tion of the magnetized accretion disk with the (squashed) stellar
magnetosphere. If the mass accreted onto the star per FU Orionis
event is Md(R�) � 0:02 M	 independent of D, as modeled in
Table 2, then it takes tens of such events to accumulate the entire
mass of the star, in accord with the astronomical statistics of such
objects (Hartmann & Kenyon 1996; but see also Herbig et al.
2003).

Figure 2 shows that the surface densities for the T Tauri model
disk are 42.9 and 7.63 g cm�2 at 1 and 10 AU, respectively, if
D ¼ 10�2:5. These are smaller values for the planet formation
zones of terrestrial and giant planets than given by conventional
minimum solar nebulae (Hayashi et al. 1985) because a compara-
ble disk mass is spread over a much larger area (but see x 4.2).
Note that the inferred magnetic field strength at 3 AU is 1.13 G,
which is compatible with the chondritic values, and indeed has
not changed much from the case of the low-mass protostar. The
near equality arises because the low-mass protostar and T Tauri
models have about the same flux and the same radius, although
their disk masses differ by a factor of 6.67 and their angular mo-
menta by a factor of 10 (for the chosen values of D). Thus, Fig-
ure 2 shows that the surface densities differ by a factor of a little
over 6, but the two Bz curves lie almost on top of one another all
the way out to about the same position for the two hexagons.
This result makes graphic the point that the T Tauri disk rotates
slower than the low-mass protostar disk because the former is
more strongly magnetized relative to the disk mass. Indeed, one

could heuristically imagine the low-mass protostar evolving into
the T Tauri system if the excess mass and excess angular mo-
mentum could be put into an orbiting stellar companion without
changing the magnetic flux distribution.
With D equal to a strict constant, the surface densities corre-

sponding to low, typical, and high power-law flaring, A($) /
$1/8, $1/4, and $1/2, are respectively � / $�5/8, $�3/4, and
$�1, consistent with the power-law range deduced from the ther-
mal dust-emission of YSOdisks (Andrews&Williams 2007), but
shallower than some of those inferred from CO brightness as re-
viewed by Dutrey et al. (2007) or the law � / $�3/2 associated
with conventional minimum solar nebulae (Hayashi et al. 1985).
However, for T Tauri stars, once one allows the possibility thatD
might be substantially smaller than unity because of physical con-
siderations other than fully developed MRI turbulence (see be-
low), then there is no reason to think that D would be a spatial
constant. On the other hand, we may do well to recall that the
steeper, empirical, log-log slope is derived from the inferred dis-
tribution of solids, which may, as seems to be implied by the
cometWild results (McKeegan 2006; Zolensky et al. 2006), have
been affected relative to the gas by the recycling of rock from the
hot disk regions near the proto-Sun to the rest of the solar nebula,
aswell as by themigration of planets. In any case, wewould be the
first to admit that our models do not allow for a straightforward
recovery of models that look like the ‘‘minimum solar nebula.’’
Probably no viscous accretion disk can ‘‘succeed’’ in this regard
(see Fromang et al. 2002).
Vorobyov & Basu (2006) suggest that FU Orionis outbursts

are associated with spiral gravitational instabilities in a protostellar
disk.We are sympathetic to the view that such self-gravitational
disturbances can play a role in the early evolution of protostars
that are still in the main infall stage that builds up the final system
mass (Shu et al. 1990). We are, however, agnostic when it comes
to the issue of whether FU Orionis systems represent such early-
stage objects or not. Accurate estimates of the outburst disk masses
in FU Orionis systems—whether they are closer to ‘‘minimum’’ or
‘‘maximum’’ values—can prove to be observationally decisive in
this debate.

4. HIGH AND LOW STATES OF ACCRETION

In x 3 we have presented the astrophysical case that there are
high states of accretion where D is of order unity (FU Ori, low-
and high-mass protostars) and low states where D is much less
than unity (T Tauri stars). Indeed, even low-mass protostars (or,
at least, the so-called Class I sources) may alternate between high-
and low-states of mass accretion (White et al. 2007). In x 4.1 we
speculate that the MRI is fully developed in high states, and we
consider mechanisms that may allow turbulent values of � and �,
in a situation with dynamically strong mean fields, to achieve the
saturated ratio of equation (24) in steady state. Likewise, in x 4.2
we discuss the weak-turbulence conditions likely to prevail on
scales smaller than a vertical scale height z0 in low states, focusing
in particular on the form of MRI likely to be present when dead
zones are bottlenecks to rapid disk accretion, with the activity
being concentrated in thin surface layers (Gammie 1996).

4.1. Magnetic Loops and Their Dynamics

To picture how rapid transport of matter and magnetic fluctua-
tions across strong mean field lines that are anchored externally
is possible, we adopt a mental image of field loops on a scale
smaller than z0. This mental image can be given a physical cor-
respondence in the equations of magnetohydrodynamics in axial
symmetry, but the task becomes much harder if the current
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associated with the loop has structure in the ’-direction. We ig-
nore this complication in the heuristic discussion based on a
diagram (Fig. 3) that shows only one field loop, born of a single
mean field line, that has complete freedom to move as if there
were no constraints from neighboring field lines and other loops.
Because we make no attempt to be quantitative except for a single
order-of-magnitude calculation, this mental image can suggest pos-
sible interpretations without misrepresenting, hopefully, the com-
plex, nonlinear dynamics of fully developed, 3D MRI turbulence.

Consider a process that bends, pinches, and twists a field line
into a loop that eventually disconnects from its parent field line
by resistive dissipation (bottom set of diagrams in Fig. 3). The
loop is then advected to the next set of field lines, to which it re-
connects, relaxes, and gets into position to form another loop. To
visualize what is happening in this figure, recall that magnetic
field lines never end, but are directed continuously from point to
point on a given line, except during reconnection, when oppo-
sitely directed fields can annihilate, leaving the remaining frag-
ments to join up in a new field-line configuration. In a random
field of fluid turbulence with a straight and uniform distribution
of the mean field, a loop is as likely to get transported away from
the star as toward it; i.e., the loops do a random walk, and the en-
tire process is describable as a ‘‘diffusion’’ acrossmean field lines.
The process has directionality and becomes a diffusive flux when
the mean field has a spatial curl defined by the mean accretion
flow, as drawn in the diagram.

Note that the entire‘‘bend-pinch-disconnect and twist-reconnect’’
process requires helical turbulence in three dimensions, with dif-
ferential rotation providing the critical ‘‘twist’’ part of the process.
Similar diagrams were drawn by Parker (1955) in his famous
proposal for the mechanism of dynamo action. In the present
context, the ‘‘twist’’ also implies an outward transport of angular
momentum if it is accompanied by the shearing of the radial
field B$ to give an azimuthal component B’. In this manner, the
entire sequence of steps provides both an effective viscosity for

angularmomentum transport and an effective resistivity for matter
tomove fromone set of field lines to another. In 2D, ‘‘bend-pinch-
disconnect’’ gives a loop that can transport angular momentum if
the shear of differential rotation generates a B’ from the local B$

(a ‘‘2.5D’’ process). But the loop, without an additional vortical
‘‘twist’’ in the third direction (requiring an ‘‘eddy’’ motion out
of the page, azimuthally in the drawing), has the wrong orien-
tation to attach to the next set of mean field lines (top set of
diagrams in Fig. 3 with the fourth ‘‘reconnect’’ step forbidden
by the large red cross). Thus, the loop will be trapped between the
thicket of nonzero mean field lines, and it will eventually retrace
steps 3-2-1 and merge back onto the original field line (or with
other loops carrying the same sense of current), causing the matter
to become reattachedmore or less to the samefield location except
for the slight diffusion associated with dissipation by the micro-
scopic collisional resistivity. In such a situation, the fluctuations
associated with MHD turbulence are probably better described
as a random collection of Alfvén waves rather than as a diffusing,
merging, set of magnetic loops.

The 3D process appears in many MRI simulations when the
plasma 
 is large compared to unity (�100; see Appendix B). It
remains to be seen whether it persists in the presence of a mean
field as dynamically strong as we advocate in this paper. In any
case, the random walk of magnetic loops, carrying an associated
current, can move through the thicket of mean field lines faster
than individual particles or particulates can get knocked off one
set of field lines by physical collisions to attach onto the next set
of field lines, allowing for ‘‘viscous’’ and ‘‘resistive’’ diffusiv-
ities that are larger than conventional microscopic values. The
magnetic dissipation process is sometimes described by hyper-
resistivity, i.e., turbulent transport of current, not field, which
was originally proposed to describemagnetic relaxation in plasmas
(Strauss 1976; Diamond & Malkov 2003). Appendix A shows
how the simplest mathematical model of a diffusion of ’-current
rather than a diffusion of z-field yields the same practical results as
x 2, but with a Prandtl ratio �J /� � 1 rather than �/�T1.

In a pure-loop picture, the derivation of x 2.1 really applies
then to the loop dynamics of Figure 3. In other words, B$ of that
derivation is really �B$ of the loop, with the change in sign of
�B$ from the top to the bottom of the loop being irrelevant be-
cause the �B� that is produced by shearing will have the correct
compensating sign as already noted in the discussion of x 2.1.We
then assume �B$ � Bþ

$ and �u�B’ � $(d�/d$)�$�B$, with
the corresponding Maxwell stress calculated from the quadratic
correlation of �B$�B’ assuming �u � ��$ as in x 2.1. The es-
timate for � then goes through as before, with the large uncer-
tainties in proportionality constants absorbed inF and eventually
D. Consistent with the discussion of the formulation of the mean
field MHD equations in x 1.1, we then have a mathematical sep-
aration in which there is no mean B’ when averaged over z, but
there are local fluctuations �B’ whose correlations with �B$ do
not average to zero.

The estimate for � � A� with A ¼ z0/$T1 might follow
because all detached and nondetached loops can transport angu-
lar momentum but only a fraction of the detached ones have the
right geometry and orientation to reconnect with mean down-
stream field lines, yielding an effective resistivity � that is much
smaller than the turbulent viscosity �. The exact relation (24),
which includes an extra factor of 3/2Il, then presumably arises
because, in steady state, the rotation law is quasi-Keplerian and
the surface density has a power-law index �2l (eq. [22]). The
fact that the scale of the turbulent mixing length �$ was left un-
specified in x 2.1 (in actuality, a spectrum of such scales and
shapes) may give the problem the necessary degree of freedom

Fig. 3.—Schematic diagram of scenarios by which field loops are created by
magnetohydrodynamic turbulence when the mean field is strong: in 2D by
stretch, pinch, disconnect (top) and in 3D by stretch, pinch, disconnect and twist,
reconnect, relax (bottom). The depiction is themeridional plane ($; z), except for
the twist indicated by the block arrow, which occurs out of the plane of the paper
in the ’-direction because of differential rotation. Note the bias for forming the
loop on the side closer to the star because of the accretion flow. This bias causes
the diffusive flux to flow in the correct direction relative to the curl of mean B.
Because the loop in the top diagram does not experience the twist operation, it has
the wrong orientation to reconnect with the mean field downstream of the mean
accretion flow since the fields point up on both sides of the target contact point.
The twist in the bottom diagram gets the fields oriented in opposite directions at
the target reconnection point, which results in the green ‘‘yes’’ sign to proceed to
steps 4 and 5.
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to make matters come out exactly right. At some basic level, the
macrophysics of fully developed MRI makes angular momen-
tum transport the driving energy-release mechanism behind the
inward fluid drift in disk accretion. The formation rate, merger
rate, and geometry of magnetic loops may be regulated to yield
a turbulent resistivity, � ¼ (3A/2Il)�, that is well below the naive
Prandtl ratio � � � because no energy source exists to cause gas to
diffuse across flux tubes faster than the saturated value. Con-
versely, if � were to fall below the level (3A/2Il)�, the resultant
pileup of mean field lines waiting to diffuse inward (see LPP94,
whose solution for the induction equation remains valid inde-
pendent of any implicit or explicit assumptions about �) would
presumably cause a shift in the numbers and kinds of loops
generated until � approaches the saturated level. However, more
rigorous theoretical studies and/or numerical simulations are
needed if we are to gain confidence that MRI dynamics under
the circumstances envisaged in this paper can truly satisfy the
diffusivity-ratio constraint implied by equation (24) with � given
by equation (42). If such studies show that equation (24) cannot be
achieved, then a possible resolution for real systems is to alternate
between trying to satisfy u ¼ �3�/2$ and u ¼ �(�/z0)B

þ
$ /Bz,

making relaxation oscillations between the two conditions the real
cause of low states and high states, with FUOrionis outbursts and
their decay as the transition phenomenon.

In our enthusiasm for magnetic loops, we should not forget
that Alfvén waves can also carry angular momentum, depositing
it in the matter when they dissipate. If the MRI is operating at
maximum efficiency, it is easy to show that the frequency asso-
ciated with Alfvén waves of wavenumber scale z�1

0 is compa-
rable to �. For larger wavenumbers (smaller scales), the Alfvén
wave frequency is larger than the natural eddy turnover frequency
�, leading us to a picture of the generation of Alfvén waves by the
bending or twisting of protoloops of scale z0 that do not detach
from their mean field lines, before these wavelike disturbances
propagate, go into a free cascade, and dissipate from interactions
of the type described by Goldreich & Sridhar’s (1997) theory of
MHD turbulence. It is unlikely that the competition with loop de-
tachment and merging from such wave-transport effects could be
adequately described by diffusion equations at a macro level.

4.2. Two-dimensional MHD Turbulence and Layered Accretion

Creating loops of field and chopping them off from mean field
lines by turbulent fluid motions may not be possible when the
coupling to magnetic fields is weak, and the MRI transport mech-
anism becomes confined to surface layers where the ionization
level is still sufficiently high (the situation in T Tauri disks). The
formation of the loops themselves becomes difficult because the
restricted height practically available for z-motions may make
the fluid effectively two-dimensional. In particular, lifting parcels
of gas against their own weight in the z-direction either to bend
field lines or to twist them, added to the energy needed to stretch
and pinch magnetic fields, may prove relatively difficult in thin
surface layers compared to the same processes near the midplane
where the vertical gravity vanishes. In other words, the MRI is an
intrinsically 3D instability, and it cannot operate efficiently in a 2D
magnetofluid except as artificial ‘‘channel flows’’ (see, e.g.,
Goodman &Xu 1994) where the following considerations still
apply.

In circumstances where the flow is confined to 2D, the tur-
bulent resistivity � is ‘‘quenched,’’ becoming proportional to its
microscopic collisional value, although enhanced by a factor
(�B/B) 2 when the fluctuations are large (Cattaneo & Vainshtein
1991; Gruzinov & Diamond 1994, 1996; Diamond et al. 2005).

Nomatter how intricately turbulence distorts magnetic field lines
in the remaining two (horizontal) directions, electrically con-
ducting particles cannot get off the field lines about which they
gyrate, unless they are knocked off by microscopic physical col-
lisions. In 2D MHD turbulence, an inverse cascade of squared
magnetic potential exists alongside the familiar energy cascade
to smaller scales. This inverse cascade reflects a competition be-
tween the tendencies of velocity fluctuations to chop up isocon-
tours of magnetic potential, thus producing smaller scales, and of
magnetic loops to aggregate because of the attractive force be-
tween parallel lines of current, thus producing larger scales. Thus,
field lines never get chopped up systematically into small loops
that can be reconnected much more quickly than the laminar
dissipation of the mean fields. In layered accretion, therefore, the
transport of mass and angular momentum are subordinate to the
diffusion offield, and the effective turbulent � in the active surface
layers may be constrained to be compatible with the microscopic
collisional value of �. Because the entire layer is not involved in
the relevant diffusive processes, a formulation that integrates
through the vertical thickness cannot do justice to the real prob-
lem, which has a bimodal vertical stratification.
At a minimum, we should consider instead a two-layer de-

scription and introduce surface densities�s and�m that describe
respectively the columns through the upper and lower (active or
live) surface layers and a middle (inactive or dead) layer, which
sum to the total � of the current formulation. In this picture, the
values cited for the surface densities andmagnetic field strengths
in x 3.2 probably refer more to the active layer than they do to the
total. Although the layer thickness expressed in terms of�s may
be more-or-less fixed by the (external) sources of ionization, the
magnetic field strength Bz is potentially adjustable as a function
of $ to give a constant accretion rate Ṁd in steady state, which
yields an advantage of such a description of layered accretion
over that given originally by Gammie (1996).
Our current calculations yield no constraint on the possible

surface density of the inactive layer �m. Magnetic fields have
freedom to move with respect to the nearly unionized gas in �m

that rotates at near Keplerian speeds. Shear instabilities arising
from upper and lower surfaces that rotate slower than the mid-
plane layers could lead to breaking radial buoyancy waves that
provide torques to redistribute the angular momentum of the
‘‘dead gas’’ (Vishniac & Diamond 1989). The coupling pro-
vided by the excitation of waves in dead zones has been explic-
itly demonstrated in the simulations by Fleming & Stone (2003)
and Wünsch et al. (2006). In a more simplified approach that
would not attempt to resolve the internal structure of the upper
and lower layers, the layer with surface density�s, would be de-
scribed by the equations given in this paper, except again for a
frictional term coupling them to �m. With �m included as a fric-
tional load, the net effect would be as a variable D in the single-
layer description of the total surface density�. In other words, � is
slaved to � in�s in the active, but geometrically thin, surface lay-
ers, and � is given by its collisional value. Then D is simply a
defined quantity in the current formula (42) for the relationship
between �, Bz, z0, �, and total �. Such a two-layer model, with
enough microphysics to specify the collisional value of � in a
complex, dusty, plasma, would allow us to calculate the variation
of the effective D with $ in our current one-layer description.
Figure 4 gives the estimate by Sano et al. (2000) of the micro-

scopic collisional value of � in the midplane of a Hayashi model
solar nebula with dust of unagglomerated interstellar size and
ionized by Galactic cosmic rays. The collisional resistivity in
the inner disk ($ < 3 AU) is consistent with the magnitude
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�1020 cm2 s�1 cited by Shu et al. (2006) as needed for dynamic
disk formation. The collisional resistivity beyond �10Y20 AU
is lower than the values needed for the low-mass protostar model
(long-dashed line with D ¼ 1) or for the T Tauri model (short-
dashed lines with D ¼ 10�2 and D ¼ 10�3). In the interpretation
of this section, then, once disk formation has occurred, its ac-
cretion resistivity would need to arise from MRI turbulence
at large radii, whereas interior to 10Y20 AU, dead zones may be
present and collisional resistivities may be adequate for the
needed field diffusion even in the thin surface layers where vis-
cous accretion is active.

An interesting question then arises as to what can initiate a
transition between a low state and a high state of accretion. It is
natural to expect the transition to originate at a boundary be-
tween dead zones and live zones. By definition, such boundaries
are not thin layers in any description where vertical stratification
matters. The electric fields experienced by charged particles forced
by collisions to rotate in the dead zone relative to the magnetic
field, at speeds characterizing the large slip between the magneti-
cally coupled active layer�s and themagnetically decoupled layer
�m, may generate suprathermal particles. These suprathermal par-
ticles might produce the ionization that converts �m into a better
conductingmedium.Unfortunately, the existing numerical simula-
tions of dead zones do not help usmuch in the latter regard because
the acceleration of suprathermal particles requires a kinetic treat-
ment, not just a (magneto)hydrodynamic one. Moreover, the large
slip is missing in the local simulations of Fleming & Stone (2003),
and the magnetic field is missing in the global simulations of
Wünsch et al. (2006). Heating by the resulting enhanced accretion
may further enhance the development of the three-dimensional
turbulence of the type with which we started the discussion of this
section. The boundary would then eat its way radially into the
zones that were previously dead. An interesting theoretical goal

would be to see how this transition between low states and high
states works in detail and whether an FU Orionis outburst begins
inside-out or outside-in since sufficiently ionized regions from
conventional sources exist on both sides of normal dead zones.

5. SUMMARY AND CONCLUSIONS

The discussion of x 4 represents our attempt to resolve the
conflicts imposed by the following separate issues:

1. the existence of a definite relationship between � and � in
steady state,

2. the evidence that the common diffusion coefficient D has a
value of order unity in some systems and much less than unity in
others,

3. the fact that MHD turbulence has a very different character
in 2D compared to 3D,

4. the suggestion that � may be limited to have essentially its
microscopic collisional value in layered accretion, and

5. the difficulty of weak magnetic coupling when ‘‘dead
zones’’ arise in YSO disks.

Our suggestions in x 4 are therefore as much a road map of
needed future research as they are a catalog of the mysteries of
the present and the past.

In retrospect, the biggest mystery concerns the most observa-
tionally well studied disks associated with star formation, those
in T Tauri systems. We may phrase the conundrum as follows.
Diffusive processes cannot remove angular momentum or mag-
netic flux from the system; they can only redistribute them within
the system. In a closed system, TTauri stars represent an end game
for viscous resistive disks whosemass steadily drains into the cen-
tral star, but whose magnetic flux and angular momentum, inher-
ited by gravitational collapse from the interstellar medium, remain
more-or-less trapped in the surrounding disk. Such a situation
must result eventually in a magnetically dominated disk. To pre-
vent the residual disk from spreading to very large radii in a fixed
amount of time, then, demands inefficient diffusion (smallD). The
astronomical challenge therefore becomes to explain why there
are two physical states of accretion, an active state (protostars,
FUOrionis outbursts), characterized by aDwith amore ‘‘natural’’
value�1, and an inactive state (T Tauri stars), characterized by
a DT1.

The conventional assessment is that ‘‘dead zones’’ provide the
resolution for why the mass accretion rate is so low in T Tauri
disks observationally, orwhy the effectiveDT1 in our language.
But if this is the correct answer, thenwhy shouldD ever be as large
as unity in other contexts, the most obvious being FU Orionis
outbursts? These disks have even higher column densities of disk
matter that can shield external sources of ionization, principally,
X-rays and cosmic-rays. Why are they not even more full of dead
zones? We have proposed exploring the possibility that the high
states of disk accretion correspond to the removal of such barriers.
Perhaps a fraction of the energy released in the resistive dissipa-
tion of stressed fields accelerates suprathermal particles and thus
provides a level of in situ ionizationmuch in excess of the sources
considered in conventional solar nebula models. Thus, the MRI
mechanism, properly generalized to include the dissipation of
currents generated by the stressing of mean fields from viscous
accretion, may contain its own solution to the challenge posed by
low ionization (see also Fromang et al. 2002). Heating from en-
hanced accretion may also help with the ionization of trace spe-
cies such as lithium and potassium. Indeed, since any bootstrap
mechanism allows the potential of a runaway—more ionization!

Fig. 4.—Comparison of collisional resistivity (solid curve) applicable to the
Sano et al. (2000) model of the minimum solar nebula, which includes the effects
of cosmic grains of typical interstellar size (a ¼ 0:1 �m) with the required tur-
bulent values in the models of x 3 of a low-mass protostar (long-dashed line) with
D ¼ 1 and a T Tauri star (short-dashed lines) withD ¼ 10�2 (top) andD ¼ 10�3

(bottom). The hexagons mark the corresponding locations of R� where the disk
holds the trapped flux corresponding to a dimensionless mass-to-flux ratio k0 ¼ 4.
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more coupling ! more ionization, etc.—this proposal also offers
an opportunity, perhaps, to understand why disk accretion in YSOs
can alternate between low and high states of accretion, character-
ized generically by T Tauri stars and FU Orionis outbursts.

The complementary difficulties noted above are related to a
serious problem noticed by King et al. (2007). The effective �ss

in a Shakura-Sunyaev prescription for disk viscosity has to be of
order 0.1Y0.4 to explain the empirical facts known about thin,
fully ionized, accretion disks in many astronomical contexts, yet
the equivalent� from almost all MRI simulations to date is lower
typically by 1 or more orders of magnitude (e.g., as summarized
by Gammie & Johnson 2005 and modeled by Fromang et al.
2002). By coincidence, low values for �ss � 10�2 are empiri-
cally acceptable for modeling T Tauri disks (see, e.g., Hartmann
et al. 1998), because such disks have extensive dead zones in
which only a small fraction of the total surface density is actively
accreting. But if the estimates from MRI simulations were ap-
plied only to the active layers, the net effective value of �ss (in
the sense of a combined two-layer model) would have beenmore
like 10�4 than 10�2.

Among the possible resolutions mentioned by King et al.
(2007) are stronger magnetic fields and global rather than local
simulations for the MRI that occurs in realistic systems. The re-
sults of the present paper (see especially the discussion of xx 2.1
and 4.1) strongly support such a resolution of the existing par-
adox, at least for the field of star formation. Most MRI simula-
tions ignore the presence of a nonzero magnetic flux that threads
through the disk, carried in by the process of gravitational col-
lapse. As demonstrated in this paper, the presence of an exter-
nally supplied magnetic field makes the self-consistent dynamics
considerably more subtle than the simplest notion of the MRI
extant in the literature. In particular, the accretion flow generates,
on either side of the midplane, a mean radial field B$ from the
mean vertical fieldBz because of the inward drift and the imperfect
tendency toward field freezing. This mean radial field, whose
surface value is denoted by the symbolBþ

$ in this paper andwhose
properties can be deduced only by a global calculation that takes
proper consideration of the vacuum conditions above (and below)
the plane of the disk, sets the scale for turbulent fluctuations (if
MRI arises) and has three important consequences.

First, as emphasized in x 4.1, the resultant poloidal-field con-
figuration can spawnmagnetic loops, possessing a radial compo-
nent of the magnetic field �B$ whose amplitude is proportional
toBþ

$ . The loop can be stretched in the azimuthal direction by the
differential rotation in the disk to produce an azimuthal field �B’

that has a systematic orientation with respect to �B$. The corre-
lation of �B$ and �B’ then exerts a Maxwell stress much larger
than the corresponding values obtained in simulations of MRI
where there is no external field Bz to set a scale for Bþ

$. The

Maxwell stress leads to angular momentum transport that yields
the original accretion responsible for the generation of mean Bþ

$
from mean Bz.
Second, the resultant poloidal-field configuration introduces

current flows that can be dissipated by resistive effects. An im-
portant finding of our study, extending the work of LPP94, is
that the ratio of the effective resistivity � to the turbulent vis-
cosity � must have a well-specified value in steady state that
depends on the local aspect ratio of the disk (vertical thickness
to radius). The exploration of the implications of this result for
the turbulent microphysics of the problem, in particular, how the
microscopic dynamics of the current loops can automatically ad-
just to the requirements of themacroscopic problem, needs further
theoretical study, best supplemented by numerical simulation.
Third, the resultant poloidal-field configuration produces a

change in the radial force balance, giving a deviation from the
traditionally invoked Keplerian profile. This deviation is not
easily detectable observationally because the resulting rotation
law has in steady state the same power-law dependence with ra-
dius as a true Kepler law, but the coefficient is smaller. Thus, even
if it were present, observers would tend to attribute the result to the
mass of the central object being smaller than its actual value, or to
the disk being inclined by a lesser amount than in reality. Never-
theless, it would be illuminating to find such an effect in the YSO
disks that have the smallest mass-to-flux ratios. Indeed, a deduc-
tion of sub-Keplerian rotation of the disk may already have been
made in the case of FUOrionis (Donati et al. 2005), but the proper
interpretation of the phenomenon in this case may be complicated
by the interaction of the disk field with the imperfectly squashed
stellar fields of the central object. Finally, it has not escaped our
attention that significant departures from true Keplerian rotation
of a YSO diskmay have important consequences for the problems
of binary-star and planetary-system formation and evolution,
particularly with regard to the difficult issues of orbit migration
and eccentricity pumping (e.g., Sari & Goldreich 2004). The
inward drift of solids from sub-Keplerian regions into the dead
zones of the problem, which rotate more nearly at Keplerian
speeds, may give an additional reason to focus on the importance
of dead zones for the problems of planetesimal and planet for-
mation (e.g., Youdin & Shu 2002; Pudritz &Matsumura 2004).
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acknowledges support from CONACyT 48901 and PAPIIT-UN-
AM IN106107; A. G., from NSF grant AST 05-07423; and P. D.,
from US Department of Energy grant FG02-04ER 54738.

APPENDIX A

ALTERNATIVE FORMULATIONS FOR TURBULENT DIFFUSION

A turbulent, magnetized medium may not behave in the assumed model fashion, with diffusive fluxes proportional to a scalar
diffusivity times the rate of spatial variation of the mean quantity that is being spread (Fick’s law). For example, Pessah et al. (2006)
perform a quasi-linear analysis of the MRI with third-order closure in a simple shearing-box geometry. They claim that the turbulent
viscous stress�$’ depends on the rate of shear by a non-Fickian power p that is different from 1. If we denote ($/�)@�/@$ by�S, then
theirmodel yields�$’ ¼ ��̂��S p with p between 3 and 4.However, in a field of quasi-Keplerian rotationwhere� / $�3=2, S is simply
the number 3/2. Thus, the Pessah et al. formalism satisfies, in practice, the usual Newtonian relationship, �$’ ¼ ��$@�/@$, where
� ¼ (3/2) p�1�̂. This simple transformation allows the translation of all of our results into the language of Pessah et al.

A similar remark applies to the induction equation (4). Instead of the diffusion of vertical field, some mean field formulations of
turbulent MHD (see x 4.1) envisage the diffusion of tangential current (per unit length). From Ampere’s law, J’ ¼ (c/2�)Bþ

$ , and the
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diffusion of mean current is equivalent to the diffusion of the mean radial field. Then, instead of equation (4), we might postulate a
diffusion equation of the form

@Bþ
$

@t
þ 1

$

@

@$
$Bþ

$u
� �

¼ 1

$

@

@$
�J$

@Bþ
$

@$

� �
; ðA1Þ

where �J is the diffusivity for the turbulent diffusion of current. In steady state, radial force balance in a field of quasi-Keplerian rotationwill
still require Bþ

$ ¼ IlBz / $�(5þ2n)=4 (see xx 1.3 and 2). In this case, the above equation is equivalent to equation (4) if we identify

�J ¼
4Il

(5þ 2n)

�

z0=$

� �
¼ 6

5þ 2n

� �
�; ðA2Þ

where we have used equation (24). For n ¼ 1/4, the relationship between �J and � is then �J ¼ 1:09 �, a result that we might call the
‘‘Prandtl hypothesis’’ because it differs only slightly from the naive guess that diffusion processes in a turbulent mediumhave equal steady-
state diffusivities (see the discussion in LPP94). Thus, what seems more relevant than the specific turbulent diffusivities are the turbulent
fluxes, and how those fluxes relate to the spatial derivatives of mean-flow quantities.

APPENDIX B

THE VALUE OF D FROM MRI SIMULATIONS

In Table 3, we list the ratio of magnetic stress to magnetic energy density from Table 1 of Stone et al. (1996, hereafter S96) and from
Table 1 of Miller & Stone (2000, hereafter MS00). Double angle brackets indicate time and volume averages (mostly over 2 scale
heights) for the two smallest values of the initial midplane 
-parameter, 
(0), in these papers. S96 use periodic boundary conditions in
all three directions and a vertical box height 3 times the initial pressure scale heightH. MS00 employ an outgoing boundary condition
at the top of a box of height 5H . In the table, two averages are included for the results of MS00, which apply to the regions jzj < 2H
(fourth row) and jzj > 2H (fifth row). Empty entries occur when the required information is not given in the original papers.

In the simulations, Bx and By contain only fluctuating components, whereas Bz and total B contain both mean and fluctuating com-
ponents, with the mean components being systematically destroyed by numerical reconnection as the simulations proceed because the
starting distribution of Bz alternates in sign radially. If we equate the tangential Maxwell stress per unit circumferential length (which
dominates the corresponding expressions for the Reynolds stress) to an equivalent viscous stress in the usual manner, we obtain the
following expression for � for the case of quasi-Keplerian rotation:

� ¼ z0

3���
hhBxByii: ðB1Þ

Introducing a factor of hhB2ii on top and bottom to express the relevant ratios in the form of Table 3, we can now identify the coefficientD
in equation (42) as

D ¼ 1

6�

hhBxByii
hhB2ii

hhB2ii
hhB2

z ii
: ðB2Þ

The results in Table 3 give values ofD that differ by an order of magnitude, indicating that the MRI simulations are sensitive to the
assumed boundary conditions and to the size of the computational box. As a formal result, the last column of Table 3 seems to suggest
that D is, at best, 0.2. However, as emphasized in the text, simulations with net magnetic flux equal to zero do not correspond to the
situation of interest for our study.

APPENDIX C

VERTICAL STRUCTURE OF STRONGLY MAGNETIZED DISKS

Inside a thin disk, the condition of vertical hydrostatic equilibrium reads

@

@z
P þ B2

$ þ B2
z

8�

� �
¼ � GM�z�

$3
; ðC1Þ

TABLE 3

Estimates of D

Run 
(0) hhBxByii/hhB2ii hhB2ii=hhB2
z ii D

S96 IZ1 ............................ 100 0.145 26.7 0.2

S96 IZ3 ............................ 25 0.139 . . . . . .

MS00 ZN2 ....................... 100 0.0716/0.0958 . . . . . .

MS00 ZN1 ....................... 25 0.0111/0.00586 40/26 0.03/0.01
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whereP is the thermal gas pressure andB$ is a function of z equal to 0 at z ¼ 0 and to Bþ
$ at the disk’s surface, whereasBz may be taken

to be a constant over the same range of z. If we integrate equation (C1) from z ¼ 0 to the surface under the boundary conditions that
P(0) ¼ a2�/2z0 (which defines what we mean by a2) and P ¼ 0 at the disk’s surface (which defines what we mean by the surface), we
get

I 2l B
2
z

8�
� a2�

2z0
¼ � GM��z0

4$ 3
; ðC2Þ

where we have defined z0 by requiring the integral of z� from z ¼ 0 to the surface of the disk yield (z0/2)(�/2). With Bþ
$ ¼ IlBz, the

equation of radial force balance (eq. [18]) reads

IlB
2
z

2��
¼ (1� f 2)

GM�

$ 2
: ðC3Þ

Elimination of B2
z from equations (C2) and (C3), with z0 ¼ A$, then gives equation (46).
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Rüdiger, G., & Shalybkov, D. A. 2002, A&A, 393, L81
Sano, T., Miyama, S. M., Umebayashi, T., & Nakano, T. 2000, ApJ, 543, 486
(S00)

Sari, R., & Goldreich, P. 2004, ApJ, 606, L77
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Shu, F., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., & Lizano, S. 1994, ApJ,
429, 781

Shu, F. H. 1995, Rev. Mex. AA Ser. Conf., 1, 375
Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARA&A, 25, 23
Shu, F. H., Allen, A., Shang, H., Ostriker, E. C., & Li, Z. Y. 1999, in The Origin
of Stars and Planetary Systems, ed. C. Lada & N. Kylafis (Dordrecht:
Kluwer), 193

Shu, F. H., Galli, D., Lizano, S., & Cai, M. 2006, ApJ, 647, 382
Shu, F. H., & Li, Z.-Y. 1997, ApJ, 475, 251
Shu, F. H., Li, Z.-Y., & Allen, A. 2004, ApJ, 601, 930

SHU ET AL.552 Vol. 665



Shu, F. H., Shang, H., Glassgold, A. E., & Lee, T. 1997, Science, 277, 1475
Shu, F. H., Shang, H., & Lee, T. 1996, Science, 271, 1545
Shu, F. H., Tremaine, S., Adams, F. C., & Ruden, S. P. 1990, ApJ, 358, 495
Shu, F. H., et al. 2000, in Protostars and Planets IV, ed. V. Mannings, A. P.
Boss, & S. S. Russell (Tucson: Univ. Arizona Press), 789

Silver, L. J., & Balbus, S. A. 2006, in SF2A-2006: Proc. Annual Meeting of the
French Society of Astronomy and Astrophysics, ed. D. Barret, F. Casoli, G.
Lagache, A. Lecavelier, & L. Pagani (Meudon: Obs. Paris), 107

Stacey, F. D. 1976, Annu. Rev. Earth Planet. Sci., 4, 147
Stauber, P., Doty, S. D., van Dishoeck, E. F., Jørgensen, J. K., & Benz, A. O.
2007, A&A, in press

Stone, J. M., Hawley, J. F., Gammie, C. F., & Balbus, S. A. 1996, ApJ, 463,
656 (S96)

Strauss, H. R. 1976, Phys. Fluids, 19, 134
Terquem, C. 2003, MNRAS, 341, 1157
Toomre, A. 1964, ApJ, 139, 1217

van Ballegooijen, A. A. 1989, in Accretion Disks and Magnetic Fields in
Astrophysics, ed. G. Belvedere (Dordrecht: Kluwer), 99

Vishniac, E. T., & Diamond, P. H. 1989, ApJ, 347, 435
Vorobyov, E. I., & Basu, S. 2006, ApJ, 650, 956
Wardle, M., & Königl, A. 1993, ApJ, 410, 218
Wardle, M., & Ng, C. 1999, MNRAS, 303, 239
White, R. J., Greene, T. P., Doppmann, G.W., Covey, K. R., &Hillenbrand, L. A.
2007, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil
(Tucson: Univ. Arizona Press), 117
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