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ABSTRACT

Measurements and analysis of large-scale turbulent irregularities in the atmosphere are reported. Results were
obtained from precision measurement of atmospheric temperature fluctuations at 24 and 70 feet above ground for a
variety of wind velocities at the Mount Wilson Observatory. Measurements were made as wind blew air past de-
tectors, at frequencies of 0.01Y10 Hz, corresponding to distances in the atmosphere between about 1 and 250 m.
Analysis shows that large-scale turbulences fit the Greenwood-Tarazano model well, and notably better than the von
Karman model of turbulence.

Subject headinggs: atmospheric effects — techniques: interferometric — turbulence

1. INTRODUCTION

Fluctuations in the atmosphere of refractive index for optical
and infrared wavelengths are associated largely with random tem-
perature variations, and these irregularities impose fundamental
difficulties on astronomical observations (see Appendix A). A
good deal of effort has therefore been invested in measuring the
characteristics of these random eddies and how their effects may
be minimized. A different reason to study them comes from at-
mospheric science and interest in understanding how turbulent
flow is generated in the troposphere. The two interests necessarily
merge since temperature is a scalar quantity that is both created
and moved about by turbulent velocity components.

One can measure temperature fluctuations in the atmospheric
boundary layer directly using tower-mounted sensors. Such mea-
surements have been made in the past. A pioneering program in
the USSR made simultaneous tower and airborne measurements
using identical sensors (Tsvang 1963). The aircraft flew a level
path into thewind at an altitude of 70mnear the tower. Thiswas the
same height as the temperature and wind vector sensors mounted
on the tower. Because the aircraft speed was more than 10 times
the ambient wind speed, the irregularities appeared to be frozen
during its transit. The aircraft data thus provided a snapshot of
the eddies along a line at 70 m. By contrast, the tower readings
changed stochastically with time as the wind carried the eddies
past the sensor and as they evolved in response to turbulent ve-
locity components. Comparisons of the two records showed that
their power spectra were remarkably similar. This seemed to val-
idate the Taylor hypothesis, which posits that the irregularities
are frozen and carried past a sensor at constant speed. On the other
hand, this agreement was limited to regions of the spectrum that
are dominated by the inertial range of the turbulence.

In the succeeding years, temperature sensors have becomemore
accurate, more sensitive, and provide faster response times. In ad-
dition, powerful data processing techniques have been developed
that can now run on personal computers.

Our measurement program on Mount Wilson has exploited
this progress and probed the high-frequency portions of temper-
ature fluctuation spectra with some precision (Short et al. 2003).
Interpretation of such data in terms of turbulence models must be
done carefully. The structure of atmospheric irregularities requires
a three-dimensional description. We use a small array of sensors,
each of which provides a one-dimensional time series that is cre-
ated as the wind blows the eddies past an observation point and as
they are rearranged by turbulence. Our basic approach is to exploit

the Taylor hypothesis, but to also use a small array of sensors and
to establish bounds on results that reflect the limitations of this
assumption.
At frequencies above approximately 0.1 Hz, the temperature

spectrum is influenced primarily by small eddies in the inertial
range of turbulence. This is the region in which progressive sub-
division dominates the process, and it is accurately described by
Kolmogorov’s model of turbulent eddies. Our measurements sim-
ply confirm the spectral results expected from that model.
By contrast, the low-frequency components in our spectra be-

have quite differently. They are influenced primarily by large
eddies in the hierarchy of turbulent fluctuations. Large eddies are
the first to be created in the spontaneous transition from laminar
to turbulent flow. This initiation of turbulent flow by ambient
winds is not currently understood by hydrodynamicists. We hope
to shed some light on it with the present measurements. Large-
scale eddies are also important for the design and performance
of interferometers as the baselines of these instruments increase
(Wheelon 2001, p. 229). Experimental evidence indicates that the
operation of current interferometers is influenced by these large
eddies (Buscher et al. 1995; Davis et al. 1995). We exploit our
low-frequency measurements to study turbulence that is relevant
to such problems.

2. INSTRUMENTATION

Some temperature fluctuation measurements at the Mount
Wilson Observatory by the Infrared Spatial Interferometer (ISI)
group have already been reported (Short et al. 2003). The mea-
surements relied on temperature sensors mounted on two tele-
scoping masts that could reach to a height of 70 feet when fully
extended. Five identical temperature sensors were mounted on
each mast. When the masts were fully extended the five sensors
provided readings every 15 feet at heights of 9, 24, 39, 54, and
70 feet. All observations were thus made in the boundary layer
of the atmosphere.
An anemometer was installed at the top of one mast. Its read-

ings represented most accurately the wind speed conditions for
the uppermost temperature sensor, but were assumed to ap-
proximate the speed at lower heights. The individual temper-
ature sensors were Type E style 2 thermocouples made by the
Omega Company (model CO2-E). These provided data at fluc-
tuation frequencies up to about 25 Hz. Five hundred seconds of
a typical time series from one of these sensors is reproduced in
Figure 1.
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Such records provided power spectra of the temperature fluc-
tuations, using the data processing approach described in the next
section. The response time of the thermocouples is an important
consideration in this process and was measured in our laboratory.
The thermocouples were found to have response times ranging
from 65 to 150 ms, depending primarily on the wind speed. The
measured spectrum of temperature fluctuationsWT (!) was there-
fore expressed in terms of the true spectrum and the response time
rt of the detector by the following relationship:

WT (!) ¼ WT (!)
1

1þ !rtð Þ2
: ð1Þ

3. DATA PROCESSING

The measurements taken at 24 and 70 feet above ground level
were organized into 180 segments for each sensor. Each segment
was about 22 minutes long and contained 215 individual temper-
ature readings. The individual segments were tagged with the
average wind speed measured during the data intervals. Fourier
transforms of these time series were then calculated that provided
180 individual power spectra for each sensor. These spectra were
binned into seven wind speed ranges, as summarized in Table 1.

Some portions of each spectrum were eliminated. Noise and
equipment tests with our system suggested that we ignore fre-
quency components below 0.008 Hz since they probably did not
represent atmospheric density fluctuations (see also Appendix B2).
Spectral components above 10 Hz were also dropped because they
represented unwanted signals or the inherent noise floor of our
equipment. In addition, a small number of points in each spectrum
were eliminated by visual inspection. These points appeared as
peaks in the frequency range � < 10 Hz and were identified with
unwanted electrical signals.

All of the edited spectra in a given wind speed bin were then
averaged together. This averaging was done so that the resulting
points would appear equally spaced on a logarithmic frequency
scale. The process generated 145 spectrum values in the range
0:008 Hz < � < 10 Hz. The end result was a composite spec-
trum for each sensor and each wind-speed bin. These spectra pro-
vided the basis against which the theoretical models subsequently
described were compared.

4. THEORETICAL FRAMEWORK

The temperature fluctuations measured were primarily gener-
ated by turbulence in the atmospheric boundary layer. Theoretical

and experimental studies of these randommovements (Batchelor
1953) provide the framework for analyzing our measurements.
Turbulent velocities induced in the atmosphere are stochastic
functions of time and position. This means that one must focus
on their moments and correlations, which are represented by
ensemble averages taken over all possible configurations of the
atmosphere.

Similar ensemble averages describe passive scalar quantities
that are created and transported by turbulent velocity components.
Water vapor and temperature fluctuations are such scalars. Since
the mean value of temperature fluctuations �T is chosen to be
zero, the most important moment for our purposes is the temporal
covariance,

h�T (r; t)�T (r; t þ �)i: ð2Þ

We must approach this average by first considering the spatial
covariance of temperature fluctuations measured simultaneously
at separated points,

h�T (r; t)�T (rþ r; t)i; ð3Þ

where r is the vector separation between two sensors. Experience
has shown that it is best to work with the three-dimensional wave-
number Fourier transform of the spatial covariance,

�T (r; t)�T (rþ r; t)h i ¼
Z

�T (k)eik = r d 3�: ð4Þ

Temperature fluctuations are completely characterized by the
wavenumber spectrum �T (k) in this formulation.1 It describes
the hierarchy of eddies with decreasing size or increasing k as
illustrated in Figure 2. The scalar wavenumber � ¼ 2�/‘ is the
inverse scale size of the eddies at each stage in the decay pro-
cess, where ‘ represents the length of a full sine-wave variation.

The basic concept of turbulence is that the ambient wind field
contributes a small fraction of its kinetic energy to establish large
random eddies of size L0. The actual way in which this happens
is not understood and remains a major challenge for hydro-
dynamicists. What we do know is that the large eddies rapidly
break up into smaller and smaller eddies. This progressive sub-
division proceeds until the original energy input is dissipated
by atmospheric viscosity. That happens primarily at a small scale
size ‘0 � 5 mm.

Fig. 1.—Atmospheric temperature fluctuations measured by a thermocouple
over 500 s.

TABLE 1

Number of Spectra in Each Wind Speed Range

Wind Speed

(m s�1) No. of Spectra

0.0Y1.0.................................... 27

1.0Y2.0.................................... 47

2.0Y3.0.................................... 33

3.0Y4.0 ................................... 20

4.0Y5.0.................................... 26

5.0Y6.0 ................................... 17

6.0Y7.0.................................... 10

Note.—All individual spectra within each wind
speed bin were averaged together to produce seven
composite spectra for each sensor.

1 However, this description does not include the influence of intermittent struc-
tures in the atmosphere such as thermal plumes, an aspect of turbulent behavior that
is still very poorly understood.
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The eddies are very nearly isotropic in the energy redistribu-
tion or inertial region. The spectrum depends only on the mag-
nitude of the wavenumber vector � ¼ j k j in this region. Using
dimensional arguments, Kolmogorov showed that the spectrum
in this subdivision cascade process is described by a simple power
law (Kolmogorov 1941; Corrsin 1951; Obukhov 1949):

�T (�) ¼
0:033C 2

T

�11=3
for

2�

L0
< � <

2�

‘0
: ð5Þ

Here L0 is the outer scale length that describes large eddies at
the input stage. The inner scale length, l0, identifies the eddy size
at which energy is dissipated by viscosity. This expression is con-
firmed by awide range of experiments. The inertial region exerts a
strong influence on our measurements. However, the energy input
range � < 2�/L0 also influences our data.We hope to use its effect
to establish some features of the energy input region about which
very little is now known.

The basic expression in equation (4) refers to simultaneous
measurements made by separated sensors. The situation is differ-
ent for most of our measurements. We have taken successive tem-

perature readings with a single sensor and then converted them to
power spectra. One can equate the two descriptions by assuming
that the Taylor hypothesis is valid in our experiments. This ap-
proximation makes two important assumptions. It postulates that
the relevant portion of the turbulent medium remains frozen dur-
ing the measurement interval. It also assumes that one can ignore
the turbulent component of wind velocity �v(r; t) so that the wind
velocity is constant and equal to v0 near the sensor. In combina-
tion, these assumptions imply that the entire air mass is trans-
ported horizontally past the sensor without being deformed.
Applied to our situation, it means that the temporal variance for
times t and t þ � should be identical to the spatial covariance
for sensors separated by a vector

r ¼ �v0 ð6Þ

One can describe the temporal covariance by combining this
equivalence with equation (4) to yield

�T (r; t)�T (r; t þ �)h i ¼
Z

�T (k)ei�k�v0 d 3�: ð7Þ

Fig. 2.—Conceptual description of the turbulent decay as it proceeds through an energy cascade process. The eddies divide into progressively smaller eddies until they
finally disappear because of atmospheric viscosity.
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Transmission experiments made with laser beams show that
turbulent irregularities are approximately isotropic and homo-
genous in the atmospheric boundary layer (Wheelon 2001, p. 78).
This was confirmed in our temperature measurements that were
reported earlier (Short et al. 2003). Using spherical wavenumber
coordinates centered on the horizontal wind velocity, equation (7)
can be simplified to

h�T (r; t)�T (r; t þ �)i ¼ 4�

Z 1

0

�2�T (�)
sin ��v0ð Þ
��v0

� �
d�:

ð8Þ

The power spectrum and temporal covariance provide equiv-
alent descriptions of the time series. They are connected to one
another by a Fourier transform:

WT (!) ¼
Z 1

�1
h�T (r; t)�T (r; t þ �)iei!� d�: ð9Þ

When we combine the last two equations and reverse the
order of integration,

WT (!)¼
8�

v0

Z 1

0

��T (�)

Z 1

0

d�

�
cos (!�) sin �v0�ð Þ d�: ð10Þ

The integration over � is discontinuous and given by

Z 1

0

cos (!� ) sin (�v0�)
d�

�
¼

�

2
0 < ! < �v0;

0 ! > �v0;

(
ð11Þ

so that

WT (!) ¼
4�2

v0

Z 1

!=v0

��T (�) d�: ð12Þ

This result will be used to make power spectrum predictions
for two models of �T (�). These models have been proposed
to describe the small wavenumber range 0 < � < �0, as equa-
tion (5) cannot. By comparing model predictions with our mea-
surements, we hope to learn something about characteristics of
the energy input region. In doing so, it is important to remember
that the vital connection represented by equation (12) depends
on the applicability of the Taylor hypothesis. That problem is
examined carefully in Appendix B.

5. COMPARISON WITH THE VON KARMAN MODEL

The earliest attempts to describe the energy input region
(Wheelon 2001, p. 38) simply ignored eddies with � below the
outer-scale wavenumber �0. The first attempt to characterize this
region analytically was made by von Karman (von Karman 1948;
Hinze 1975, p. 244). He proposed the following interpolation for-
mula to describe fluid flow for � < �s ¼ 2�/l0 using the structure
constant CT :

�T (�) ¼
0:033C 2

T

�2 þ �2
0

� �11=6 for 0 < � < �s ð13Þ

and found fair agreement with wind tunnel measurements. Note
that this model reduces to the well-verified Kolmogorov form
when �3�0. The same expression has been widely used to
describe atmospheric irregularities, even though the boundary
conditions for the flow field are entirely different than those ap-

propriate for a pipe or channel. This model is used primarily be-
cause it provided closed-form solutions for interesting problems.

One readily calculates the power spectrum using the expres-
sion by merging the model in equation (13) with equation (12):

WT (!) ¼ 0:7817C 2
T

v
2=3
0

!2 þ �2
0 v

2
0

� �5=6 : ð14Þ

The combination �0v0 is called the ‘‘threshold frequency.’’
Substantially beyond this frequency the predicted spectrum falls
off as

WT (!) ¼ 0:7817C 2
T

v
2=3
0

!5=3
for ! 3 k0v0; ð15Þ

and this behavior is consistently verified by temperature mea-
surements. On the other hand, the power spectrum should ap-
proach a constant value for small frequencies if the von Karman
model is correct:

WT (!) ¼ 0:7817C 2
T

1

v0�
5=3
0

for !T�0v0: ð16Þ

These predictions need to be tested by examination of the en-
tire range of frequencies to see if equation (14) matches the data.
The measured power spectra were fitted to the following gen-
eral form after the scintillation frequency was converted from
rad s�1 to Hz using ! ¼ 2��:

P(a; b; q; rt; �) ¼ aþ b

q2 þ (2��)2
� �5=6 1

1þ (2��rt)
2

� � :
ð17Þ

The exponent 5/6 is in agreement with the high-frequency
portion of the spectrum that is verified by other experiments. We
need to determine the parameters a, b, q, and rt that best match the
measured spectra for each wind speed. The parameter rt repre-
sents the response time of the thermocouples and was also fitted
because it can vary with wind speed.

The numerical technique for determining the parameters was
straightforward. The difference between the averaged spectrum
for each wind speed and the postulated form (eq. [17]) was cal-
culated from the data for all 145 frequencies used. With this dif-
ference we computed the variance and summed over all points:

�2 ¼
Xn¼145

n¼1

WT (�n)� P(a; b; q; � ; �n)½ � 2

�2
i

: ð18Þ

Here �i represents the standard deviation associated with each
of the 145 points in the measured spectrum. The parameters a, b,
q, and rt were then allowed to vary randomly until a minimum
value of �2 emerged. The parameter a was tightly constrained,
since it represents the noise floor and could be estimated quite
accurately from the high-frequency portion of the measured
spectra.2 The best values for the parameters fitted to the data taken
at 70 feet are given in Table 2 for each speed bin. The minimum
value of �2 is also included to indicate how good the fit was in
each case. Comparable parameters for the sensor at 24 feet are
given in Table 3.

2 The interpretation of a as the constant noise floor was addressed in Short et al.
(2003), in which confirming measurements were performed.

LOW-FREQUENCY TURBULENCE AT MOUNT WILSON 723No. 2, 2007



In using the values obtained for various parameters several con-
siderations are important. Because the wind speed was measured
at the top of the mast, the indicated wind speeds represent condi-
tions at the 70 foot sensor better than those at the 24 foot sensor.
The fitting errors measured by �2 for the lower wind speeds are
relatively large. That is expected because the Taylor hypothesis is
not valid in those situations, as discussed in Appendix B. Values
of �2 for the high speeds are also large, perhaps because the num-
ber of spectra available was relatively small. Accordingly, we do
not use the first and last speed bins in further analysis.

The next step was to construct a best-fit theoretical curve for
each wind speed. We did this by introducing our parameter solu-
tions into the postulated form of equation (17). The theoretical
curves had the general von Karman form but were specific to the
conditions being measured on Mount Wilson. To see how well
they tracked the measured data points, the resulting curves were
overplotted on the corresponding averaged spectra. The com-
parisons for the sensor at 70 feet are reproduced in Figures 3 and 4
for both high and low wind speed conditions. These figures show
that the vonKarmanmodel is quite accurate for frequencies above
� ¼ 0:1 Hz. That was to be expected since this range is controlled
primarily by the Kolmogorov inertial range description.

The region below � ¼ 0:1 Hz is the primary interest for our
exploration. There the scatter of data points around the theoret-
ical curves increases gradually as the frequency drops to the lower
limit � ¼ 0:008 Hz. The same behavior is apparent in the data
taken at 24 feet that is presented in Figures 5 and 6. In both cases, it
appears that the data points are bending over and they may be
approaching a constant value, as predicted by equation (16). From
these comparisons alone, however, we cannot be sure that this is
the best description of the energy input region.

The von Karman model can be further tested using the pre-
sumed relationships between its physical parameters and the fitted

constants presented in Tables 2 and 3. In doing so we establish a
more stringent test for the model. The most telling examination
results by comparing the denominator terms in equations (14) and
(17),

q ¼ �0v0; ð19Þ

where both quantities are measured in rad s�1. In the von Karman
model the parameter �0 is usually associated with the outer scale
wavenumber and is inversely proportional to the outer scale
length:

L0 ¼
2�

�0

: ð20Þ

This means that we should be able to estimate L0 from the
fitted values for q using

L0 ¼
2�v0
q

: ð21Þ

From Tables 2 and 3 we notice that the values of q are rela-
tively constant over the range of speeds that we encountered.
This suggests that the horizontal outer-scale length is roughly

TABLE 2

Von Karman Model Parameters

Wind Speed

(m s�1)

a

(deg2 Hz�1)

b

(deg2 Hz�1 rad5/3 s�5/3)

q

(rad s�1)

rt
(ms) �2

0.0Y1.0 ......... 0.0033 1.86 0.11 65 2.48

1.0Y2.0 ......... 0.0027 2.73 0.15 65 0.93

2.0Y3.0 ......... 0.0029 3.66 0.18 65 1.26

3.0Y4.0 ........ 0.0034 6.35 0.25 65 1.20

4.0Y5.0 ......... 0.0037 9.33 0.24 65 1.37

5.0.Y6.0 ........ 0.0035 8.81 0.27 65 1.59

6.0Y7.0 ......... 0.0033 7.99 0.17 50 3.43

Note.—Parameters for the von Karman model derived from temperature
taken at 70 feet or 21.3 m.

TABLE 3

Von Karman Model Parameters

Wind Speed

(m s�1)

a

(deg2 Hz�1)

b

(deg2 Hz�1 rad 5/3 s�5/3)

q

(rad s�1)

rt
(ms) �2

0.0Y1.0 ........ 0.0029 361.1 0.13 75 2.24

1.0Y2.0 ........ 0.0028 529.3 0.13 75 1.36

2.0Y3.0 ........ 0.0021 892.4 0.18 75 0.68

3.0Y4.0 ........ 0.0037 715.8 0.16 75 1.05

4.0Y5.0 ........ 0.0036 959.6 0.18 75 0.74

5.0Y6.0 ........ 0.0024 1619.3 0.28 75 1.10

6.0Y7.0 ........ 0.0023 705.9 0.29 75 3.31

Note.—Parameters for the von Karman model derived from temperature
taken at 24 feet or 7.3 m.

Fig. 3.—Power spectrum measured by the sensor at 70 feet. The horizontal
axis represents frequency in Hz, while the vertical axis is in deg2 Hz�1. These data
reflect an average of 47 power spectrawithwind speeds between 1 and 2m s�1. The
best fit to the von Karman model is shown as the solid line.

Fig. 4.—Power spectrum measured by the sensor at 70 feet. The horizontal
axis represents frequency in Hz, while the vertical axis is in deg2 Hz�1. These data
reflect an average of 17 power spectrawithwind speeds between 5 and 6m s�1. The
best fit to the von Karman model is shown as the solid line.
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proportional to wind speed. That relationship was discovered
empirically in our earlier paper (Short et al. 2003).

We can take the relationship in equation (21) one step further.
By using the fitted values for q we can estimate the outer-scale
length as it is represented in the von Karman model for �T (�).
Using the midpoint value in each wind-speed bin, one derives the
values for L0 shown in Table 4. In constructing this table we have
omitted the lowest wind-speed bin because it probably does not
satisfy the Taylor hypothesis. We have also omitted the highest
wind-speed bin because it contains too few points and the esti-
mated error is much larger than the other cases.

The values shown in Table 4 seem surprisingly large for two
reasons. First, the outer scale length is usually assumed to be a
fraction of the height (Tatarskii 1971, p. 77), and these values are
much greater than either sensor height. Second, comparison of
temperature fluctuations measured by sensors dislpaced horizon-
tally suggested that the average horizontal eddy size was about
15 m (Short et al. 2003). Both estimates are much smaller than
the derived values given above. There is a clear contradiction
here, and it points to a fundamental problemwith the von Karman

model. The small wavenumber portion of the spectrum defined by
equation (15) is apparently flawed, at least when it is applied to the
atmospheric boundary layer.

We can explore this issue in more detail by using the space-
correlation measurements that were reported in our earlier paper
(Short et al. 2003). The spatial correlation function that corre-
sponds to the von Karman model is expressed in terms of a
MacDonald function (Wheelon 2001, p. 42):

C(�) ¼ 0:593(�0�)
1=3K1=3(�0�): ð22Þ

This expression is plotted in Figure 11 below as a function of
the dimensionless product of �0�. From that plot and the asymp-
totic version of this expression:

lim
�j1

½C(�)� 0:743

�0�ð Þ1=6
exp (��0�); ð23Þ

we see that the predicted correlation falls off slightly faster than
an exponential for large values of the argument.

Wemeasured the spatial correlation of temperature fluctuations
on Mount Wilson, and the results were published in our earlier
paper (Short et al. 2003). The horizontal correlationwasmeasured
between sensors at the same height on separated masts, but the
data set provided in Figure 10 below was quite limited. On the
other hand, simultaneousmeasurements between sensors deployed
vertically on the same mast were plentiful and quite informative.
The results for vertical separation between 5 and 18 m were pro-
vided in Figure 7 of our first paper and correspond to four different

Fig. 5.—Power spectrum measured by the sensor at 24 feet. The horizontal
axis represents frequency in Hz, while the vertical axis is in deg2 Hz�1. These data
reflect an average of 47 power spectrawithwind speeds between 1 and 2m s�1. The
best fit to the von Karman model is shown as the solid line.

Fig. 6.—Power spectrum measured by the sensor at 24 feet. The horizontal
axis represents frequency in Hz, while the vertical axis is in deg2 Hz�1. These data
reflect an average of 17 power spectrawithwind speeds between 5 and 6m s�1. The
best fit to the von Karman model is shown as the solid line.

TABLE 4

Outer Scale Length Values for von Karman Model

Wind Speed

(m s�1)

L0 at 24 feet

(m)

L0 at 70 feet

(m)

1.0Y2.0.............................. 72 63

2.0Y3.0.............................. 88 87

3.0Y4.0 ............................. 138 88

4.0Y5.0.............................. 157 118

5.0Y6.0 ............................. 124 128

Note.—Values derived using eq. (21).

Fig. 7.—Power spectrum measured by the sensor at 70 feet. The horizontal
axis represents frequency in Hz, while the vertical axis is in deg2 Hz�1. These
data reflect an average of 47 power spectrawithwind speeds between1 and 2m s�1.
The best fit to the Greenwood-Tarazano model is shown as the solid line.
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wind speed ranges. The measured vertical correlations fall gradu-
ally with separation distance and definitely do not agree with the
exponential behavior predicted by equation (23).

It is interesting that progressively larger values of L0 are required
even to approximate our data. Those large values are roughly the
same as those given in Table 4, which are based on power spectrum
measurements. That makes sense because large separations corre-
spond to large time delays according to the Taylor hypothesis. But
large time delays give rise to low frequencies in the power spec-
trum, so both types of measurements are telling us the same thing.
Our conclusion is that the von Karman model does not provide a
decent description of the small wavenumber region for the turbu-
lent spectrum �T (�) in the atmospheric boundary layer. That is a
shame because it often leads to closed-form solutions for physical
problems.

6. COMPARISON WITH THE
GREENWOOD-TARAZANO MODEL

That brings us to the second model, with a good deal of hope.
The Greenwood-Tarazano (GT) model of turbulence was estab-
lished empirically (Greenwood & Tarazano 1974) using simul-
taneous temperature measurements made with nine identical
temperature sensors. These sensors were deployed on a horizontal
beam about one meter above the surface. Their locations were
carefully chosen to provide 32 different spacings in the range of
4 cm to 6 m. The temperature fluctuations were 20 dB above the
sensor noise level so the measurements were quite accurate. The
results of many trials were compared with the spatial covariance
expression

h�T (r; t)�T (rþ r; t)i ¼ 4�

Z 1

0

d�� 2 sin (��)

��

� �
	T (�); ð24Þ

which is valid for the isotropic irregularities usually encountered
near the surface. It was possible to identify a unique form that best
summarized their measurements.

	T (�) ¼
0:033C 2

T

�2 þ �
0ð Þ11=6
for 0 < � < �s: ð25Þ

This expression transitions to the Kolmogorov model for large
wavenumbers. However, it is quite different than the von Karman
model for small wavenumbers, because it continues to rise as the
eddies become larger and larger.

It is tempting to identify the parameter 
0 introduced here with
�0 in the von Karmanmodel since they both announce the begin-
ning of the outer scale region at low wavenumbers. However, it
is wrong to do so. The functional dependence on � is quite dif-

ferent for the twomodels. The vonKarmanmodel goes flat as the
wavenumber goes to zero, while the GT model continues to rise.
This makes a significant difference for our experiments. Their
respective parameters are likely to have quite different values.
We therefore define a new outer scale length by the relation

D0 ¼
2�


0
: ð26Þ

We want first to compare the predictions of the GT model
with our power spectrum measurements. The predicted power
spectrum is calculated by combining equations (12) and (25):

WT (!) ¼ 1:303
CT

v0
(
0)

�5=3�
!


0v0

� �
; ð27Þ

where a new function is defined by

�(x) ¼
Z 1

x

du

u5=6(1þ u)11=6
: ð28Þ

This function can be expressed analytically (see Appendix C),
but it is simpler to compute it numerically. Like the von Karman
result, it approaches a constant value for small frequencies:

WT (!) ¼
6:959C 2

T

v0(
0)
5=3

for !T
0v0: ð29Þ

Note that the numerical constant here is 9 times larger than
the corresponding coefficient in equation (16) for comparable
values of the parameters. The high-frequency behavior is iden-
tical to equation (15) since it is driven almost entirely by the
Kolmogorov portion of the turbulence spectrum.
We used our numerical values for �(x) to create the following

trial function for the power spectrum:

Q( p; d; e; rt; �) ¼ eþ �(�p)
d

1þ (2��rt)
2
: ð30Þ

We have substituted ! ¼ 2�� so that � is measured in Hz. As
before, we computed the difference between this function and
the averaged spectra for each of the 145 points. Those results
were used to evaluate the following variance taken over all the
frequency values in each sample:

�2 ¼
Xn¼145

n¼1

WT (�)� Q( p; d; e; rt; �)½ �2

�2
i

: ð31Þ

TABLE 5

Greenwood-Tarazano Model Parameters

Wind Speed

(m s�1)

p

(Hz�1)

d

(deg2 Hz�1)

rt
(ms)

e

(deg2 Hz�1) �2

0.0Y1.0 ....................... 38.4 87.3 75 0.0033 3.90

1.0Y2.0 ....................... 40.9 119.9 74 0.0027 1.38

2.0Y3.0 ....................... 30.7 102.2 75 0.0029 0.83

3.0Y4.0 ...................... 19.0 83.6 79 0.0034 1.17

4.0Y5.0 ....................... 20.3 133.5 71 0.0037 0.78

5.0Y6.0 ...................... 16.8 95.1 74 0.0035 0.86

6.0Y7.0 ....................... 31.6 230.9 53 0.0033 2.18

Note.—Parameters in the Greenwood-Tarazano model derived from tem-
perature data taken at 70 feet.

TABLE 6

Greenwood-Tarazano Model Parameters

Wind Speed

(m s�1)

p

(Hz�1)

d

(deg2 Hz�1)

rt
(ms)

e

(deg2 Hz�1) �2

0.0Y1.0 ....................... 64.1 306.81 75 0.0030 2.20

1.0Y2.0 ....................... 58.2 390.18 75 0.0029 1.16

2.0Y3.0 ....................... 35.5 291.83 75 0.0024 0.74

3.0Y4.0 ...................... 43.0 323.80 75 0.0038 0.81

4.0Y5.0 ....................... 34.9 309.65 75 0.0038 0.56

5.0Y6.0 ...................... 18.3 185.09 75 0.0027 0.79

6.0Y7.0 ....................... 16.5 69.80 75 0.0023 1.75

Note.—Parameters in the Greenwood-Tarazanomodel derived from tempera-
ture data taken at 24 feet.
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The variance �i was defined following equation (18). For
each wind speed and location, the parameters p, d, e, and rt were
then varied until a minimum value of �2 was found. The best-
fitting parameter values are presented in Tables 5 and 6. In using
these results, we have tended to ignore the largest and smallest
wind-speed bins for the reasons given above.

The actual data points measured at 70 feet on the mast are re-
produced in Figures 7 and 8 for two wind-speed ranges. The av-
eraged spectra for the same wind speed bins measured at 24 feet
are presented in Figures 9 and 10. The corresponding fitted curves
based on equation (30) that use the parameters fromTables 5 and 6
for each case are overplotted on the experimental data. The com-
parison of these fitted curveswith the data points tells us howgood
the underlying turbulence spectrummodel is. The spectrum curves
based on the GT model fit the data remarkably well, even in the
low-frequency region near � ¼ 0:01 Hz. It is significant that
the agreement here is considerably better than that obtained with
the von Karman model.

We can further examine the validity of the trial expression in
equation (30) by relating the fitted constants to the physical pa-

rameters in the derived power spectrum expression. We focus
primarily on the combination 
0v0 that is related to the fitted con-
stant p. Since p is measured in Hz�1 the outer-scale parameter
becomes

D0 ¼
pv0
2�

: ð32Þ

From this relationship we can estimate the outer scale length
for both sensor heights and the various wind-speed ranges. The
results are presented in Table 7. These results are consistent
with the estimates of eddy size given in our first paper. To the
extent that the fitted values of p are constant, this means that the
outer scale length should be proportional to the wind speed, as
we found empirically.

We can perform a quantitative test using the spatial correlation
measurements presented in Figure 7 of our earlier paper (Short
et al. 2003). Those data points should be compared with the ex-
pression found by combining equations (24) and (25):

C(�) ¼ 0:749

�
0

Z 1

0

sin x�
0ð Þ
1þ xð Þ11=6x5=6

dx: ð33Þ

This integration can be expressed in terms of a Kummer func-
tion of the second kind (F ):

C(�) ¼ 4:168

�
0
= U

1

6
; � 2

3
; �i�
0

� �� �
: ð34Þ

Fig. 8.—Power spectrum measured by the sensor at 70 feet. The horizontal
axis represents frequency in Hz, while the vertical axis is in deg2 Hz�1. These data
reflect an average of 17 power spectrawithwind speeds between 5 and 6m s�1. The
best fit to the Greenwood-Tarazano model is shown as the solid line.

Fig. 9.—Power spectrum measured by the sensor at 24 feet. The horizontal
axis represents frequency in Hz, while the vertical axis is in deg2 Hz�1. These data
reflect an average of 47 power spectrawithwind speeds between 1 and 2m s�1. The
best fit to the Greenwood-Tarazano model is shown as the solid line.

Fig. 10.—Power spectrum measured by the sensor at 24 feet. The horizontal
axis represents frequency in Hz, while the vertical axis is in deg2 Hz�1. These data
reflect an average of 17 power spectrawithwind speeds between 5 and 6m s�1. The
best fit to the Greenwood-Tarazano model is shown as the solid line.

TABLE 7

Outer Scale Length Values for Greenwood-Tarazano Model

Wind Speed

(m s�1)

D0 at 24 feet

(m)

D0 at 70 feet

(m)

1.0Y2.0 ................................ 10 14

2.0Y3.0 ................................ 12 14

3.0Y4.0 ................................ 10 24

4.0Y5.0 ................................ 15 25

5.0Y6.0 ................................ 15 16

Note.—Values derived using eq. (32).
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This expression is also plotted in Figure 11 as a function of
the dimensionless combination �
0. From that figure and the
asymptotic form of this expression:

lim
�j1½C(�)�¼ 1:079

(�
0)
7=6

; ð35Þ

we see that the predicted spatial correlation should vary approx-
imately as the inverse distance for large separations. That is quite
different than the behavior of the vonKarmanmodel, but it is close to
a reciprocal separation relationship suggested by our measurements.

To explore this matter more carefully, we exploited the tables
that were used to plot C(�) in Figure 11. Those numerical values
were compared with the measured correlations at the four vertical
spacings in the speed ranges 3Y4 and 5Y6 m s�1. We find that a
single value for 
0 matches thesemeasured values quite nicely and
leads to the following estimate via equation (26):

D0 ’ 28 m: ð36Þ

This is not far from the value D0 ¼ 25 m that was derived in
Table 7 for the same height and wind speed. The GT model
therefore passes both the qualitative and the quantitative test.

7. GENERAL CONCLUSIONS

Our analysis has concentrated on exploring the outer scale re-
gion of turbulent irregularities in the atmospheric boundary layer.
To do so, we relied on precision measurements of temperature
fluctuations taken onMountWilson. These data streamswere then
used to establish their power spectra from 0.008 to 8.0 Hz for a
variety of sensor heights and wind conditions. The low-frequency
portion of these power spectra are strongly influenced by the large
eddies that characterize the initiation of atmospheric turbulence.

We have compared our data with the predictions that are gen-
erated by the two leading models of turbulence that include the
outer scale region: (1) the von Karman model (vK) and (2) the
Greenwood-Tarazano (GT) model. We find that the vK prediction
fits our low-frequency power spectrum data reasonablywell. How-
ever, an even better fit is provided by the GT prediction. This pref-
erence is apparent in the data curves. It is evenmore evident in the
smaller GT values of �2 in Tables 5 and 6, as compared to the vK
values of �2 in Tables 2 and 3.
This preference becomes even stronger when one remembers

that our estimate of �2 was based on all the points in the power
spectrum. Since the twomodels are virtually identical for frequen-
cies above 0.1 Hz, the substantial difference between their low-
frequency agreements is masked by averaging over the entire
frequency range. The GTmodel would therefore have been even
more compelling than the vK model had we used only the low-
frequency region in calculating �2.
In addition, we have found that the outer scale length values

L0 required by this fitting process are unreasonably large for the
vK model. By contrast, the implied values for the outer scale pa-
rameter in the GTmodel given byD0 are comparable to other es-
timates of the large eddy size. We recommend the GT model
defined by equation (27) on the basis of these comparisons.
We have challenged the two models further. We compared the

predictions for the spatial correlation with our data taken with
vertically-displaced temperature sensors. The vK prediction falls
exponentially with separation distance, whereas our data scales
roughly as the inverse spacing. By contrast, the GT model accu-
rately predicts an inverse scaling with separation. In this regard
the GT is vastly superior to the vK model.
It is significant that the GT model was originally established

empirically for temperature sensor spacings less than six meters.
Our measurements now confirm its validity for separations as
large as 18 m, and our power spectrum measurements confirm
that conclusion. This extended verification may be helpful in the
design and operation of optical and infrared interferometers.
Our conclusion is that the following turbulence model best

describes temperature fluctuations in the atmospheric boundary
layer, at least for the sensor heights and wind speed conditions
we encountered:

	T (�) ¼
0:033C 2

T

�2 þ 2��=D0ð Þ½ �11=6
for 0T�T�s: ð37Þ

We believe that the values for D0 given in Table 7 describe
the conditions on Mount Wilson. This conclusion is supported
by our earlier observations that the turbulence there is approx-
imately isotropic below 70 feet and that the Taylor hypothesis is
valid for delay times less than 15 s.
The approximate values for the outer-scale of turbulence given

by Table 7 indicate that the relative path length fluctuations for stel-
lar light into two telescopes should not increase substantially for tele-
scope separations larger than these values. This assumes that there
are not localized temperature changes, vibrations, or motions that
differ between the two telescopes as they are increasingly separated.

APPENDIX A

ANGULAR RESOLUTION FOR INTERFEROMETERS

The angular resolution �� of an interferometer is limited by phase fluctuations and is approximately

(��)2
	 


� k
2��

� �2

	(r þ �)� 	(r)j j2
D E

; ðA1Þ

Fig. 11.—Plots of predicted spatial correlations between horizontally sepa-
rated temperature sensors. The curve labeled V corresponds to the von Karman
model and is a function of�0�. The curve labeledG is for theGreenwood-Tarazano
model and is a function of 
0�. Note that �0 and 
0 have a different meaning and
different values for the two models.
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where � is the receiver separation, k is the radiation wavelength, and 	(r) is the phase of radiation at an arbitrary position r. Phase
fluctuations of the arriving signal are related to the refractive index variations �n integrated along the propagation paths through the
atmosphere by

�	 ¼ �

k

I
ds �n(s): ðA2Þ

Fluctuations in index of refraction depend on temperature variations according to

�n ¼ �T �77:6
P

T 2
1þ 5:23 ; 10�11

k2

� �
10�3

� �
; ðA3Þ

where P is the pressure in bars, T the Kelvin temperature, and k the wavelength in centimeters.

APPENDIX B

APPLICABILITY OF THE TAYLOR HYPOTHESIS

Our procedure for interpreting the power spectrum of temperature irregularities is only valid if the Taylor hypothesis is applicable to
our experimental situation. We now examine that question. Specifically, the goal is to estimate the minimum frequency in the tem-
perature spectrum that can be successfully measured by using this approximation. Two different phenomena can clearly undercut the
Taylor hypothesis.

B1. WIND SPEED VARIATION

It is assumed that a constant wind bears the irregularities past the sensor, yet we know that wind speed and direction are not steady.
Indeed, velocity fluctuations are the signature of turbulent behavior:

v ¼ v0 þ �v(r; t): ðB1Þ

This means that we must modify the relationship in equation (6) between time delay and equivalent spacing.When the time delay �
is relatively short the displacement caused by the velocity fluctuations can be approximated by

� ¼ �v0 þ ��v(r; t); ðB2Þ

so long as the irregularities remain frozen in the neighborhood of the sensor. This reformulation of the Taylor hypothesis was in-
troduced by Tatarskii, who called it the ‘‘locally frozen randommedium approximation’’ (Tatarskii 1971, p. 127; Wheelon 2001, p. 246).
In combination with the spatial covariance expression in equation (4), this means that

h�T (r; t)�T (r; t þ �)i ¼
Z

�T (k) exp i�k = ½v0 þ �v(r; t)�f g d 3�: ðB3Þ

This expression must be averaged over the ensemble of random velocity fluctuation components, which are stochastic functions of
position and time. One can show that the fluctuations of temperature and velocity are uncorrelated if the fluid is incompressible
(Wheelon 2001, p. 247), so that

h�T (r; t)�T (r; t þ �)i ¼
Z

�T (�) exp (i�k = v0)h exp ½i�k = �v(r; t)�i�vd 3�: ðB4Þ

The average over �v is recognized as the ‘‘characteristic function’’ of the velocity fluctuations. Turbulence theory shows one how
to evaluate this special average, and one finds that

h�T (r; t)�T (r; t þ �)i ¼
Z

�T (�) exp (i�k = v0) exp � 1

2
�2� 2�2

v

� �
d 3�; ðB5Þ

where �v is proportional to the rms velocity fluctuation:

�2
v ¼ 2

3
�vj j2

D E
�v
: ðB6Þ

If the irregularities are isotropic, the temporal covariance becomes

h�T (r; t)�T (r; t þ �)i ¼ 4�

Z
�2�T (�)

sin ��v0ð Þ
��v0

� �
exp � 1

2
�2� 2�2

v

� �
d�: ðB7Þ
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We can now establish an expression for the power spectrum of temperature variations that is valid for small random displacements.
Using equation (B7) for the temporal covariance and combining it with the power spectrum in equation (10) we have

WT (!) ¼
8�

v0

Z 1

0

cos (!� ) d�

Z 1

0

��T (�)
sin ��v0ð Þ

�
exp � 1

2
� 2� 2�2

v

� �
d�: ðB8Þ

It is useful to consider the steady wind case first. When there are no speed variations the power spectrum is described in terms of
�T (�) by equation (12). One can differentiate that result with respect to! to establish a direct connection between the measured power
spectrum and the wavenumber spectrum of irregularities:

�T (�) ¼
v30
4�2

� 1

!

dWT (!)

d!

� �
!¼�v0

: ðB9Þ

We can calculate the quantity on the right-hand side of equation (B9) by introducing the explicit expression for the power spectrum
provided by equation (B8). Significantly, that expression includes the influence of wind-speed variations. It also depends on the power
spectrum of temperature fluctuations. We introduce a new wavenumber symbol p in equation (B8) so as to avoid confusion with the
argument � of the spectrum on the left-hand side of equation (B9):

�T (�) ¼
2v20
�

� 1

!

d

d!

Z 1

0

cos (�!) d�

Z 1

0

p�T ( p)
sin �pv0ð Þ

�
exp � 1

2
� 2p2�2

v

� �
dp

� �
!¼�v0

: ðB10Þ

The plan is to complete both integrations and then see how closely the result matches �T (�) for various values of v0 and �v. The
frequency derivative and special value ! ¼ �v0 are easily taken. Reversing the order of integrations, we have

�T (�) ¼
2v0
��

Z 1

0

p�T ( p) dp

Z 1

0

sin (��v0) sin �pv0ð Þ exp � 1

2
� 2p2�2

v

� �
d�: ðB11Þ

The integration over � can be done analytically:

Z 1

0

sin (��v0) sin (�pv0) exp � 1

2
� 2p2�2

v

� �
d� ¼ �

2

1

p�2
v

ffiffiffiffiffiffi
2�

p exp � 1

2

v0
�2
v

� �2
p� k

p

� �2
" #

� exp � 1

2

v0
�2
v

� �2
pþ k

p

� �2
" #( )

:

ðB12Þ

The second term does not contribute because neither p nor � is ever negative:

�T (�) ¼
1

�

Z 1

0

�T ( p)dp
v0

�2
v

ffiffiffiffiffiffi
2�

p exp � 1

2

v0
�2
v

� �2
p� k

p

� �2
" #( )

: ðB13Þ

Meteorological measurements show that the variable component �2
v is only about 10% of the mean wind speed v0, unless the am-

bient wind speed is itself very small. In the common case the square brackets is therefore well represented by the Dirac delta function
(Wheelon 2001, p.420):

lim
� 2
v =v0!0

v0

�2
v

ffiffiffiffiffiffi
2�

p exp � 1

2

v0
�2
v

� �2
p� k

p

� �2
" #( )

¼ �
p� k

p

� �
¼ p�( p� k):

ðB14Þ

The general expression of equation (B9) therefore becomes

�T (�) ¼
1

�

Z 1

0

p�T ( p)�( p� k) dp: ðB15Þ

This relationship is satisfied identically provided only that the velocity fluctuations are small compared with the ambient wind. One
can therefore use the Taylor hypothesis in almost all cases if the irregularities remain frozen.

One can generalize this conclusion to the case in which the displacements caused by the random velocity components are not small.
In that case the equivalent spacing becomes

r ¼ �v0 þ
Z �

0

�v(r; t): ðB16Þ

In this extension of the locally frozen random-medium approximation, one can show that the relationship in equation (B13) is still
valid provided only that the wind speed fluctuations are modest compared to the ambient wind speed. We omit the details of this
demonstration for lack of space.
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B2. EVOLUTION OF THE TURBULENT EDDIES

The second part of the Taylor hypothesis assumes irregularities remain frozen during the measurement—at least in the neigh-
borhood of the sensor. We have found only a few studies that address eddy evolution. The lifetimes of temperature irregularities in the
inertial range was considered by Tatarskii (1971, p. 88). Using dimensional arguments, he showed that

T ¼ ‘

v(‘ )
¼ ‘2=3

"1=3
; ðB17Þ

where " is the dissipation rate for the cascade process illustrated in Figure 2. This suggests that the Taylor hypothesis should be valid
for single-point measurements if the influential eddies lie in the inertial region (Wheelon 2001, p. 242). On the other hand, this does
not address the behavior of large eddies.

The situation is apparently quite different for large eddies that precede the inertial range. Detailed calculations based on the Navier-
Stokes equations (Münch & Wheelon 1958) suggest that in the energy input region,

T ¼ ‘

2�v0
: ðB18Þ

Moreover, these calculations indicate that the lifetimes for all eddies are influenced by the energy input region.
We judge that theoretical treatments of this question are too uncertain to provide reliable conclusions. Hence, we rely on ex-

perimental results (Short et al. 2003). Simultaneous measurements taken with sensors on adjacent masts suggested that passing eddies
change their properties in about 15 s. It is partly for that reason we have ignored spectral data below �min ¼ 0:008 Hz.

APPENDIX C

SMALL ARGUMENT EXPANSION FOR �(
)

The new function

�(
) ¼
Z 1




du

u5=6(uþ 1)11=6
ðC1Þ

can be expressed in terms of the Gauss hypergeometric function by

�(
) ¼ 5:342� 6
1=6 2F1

11

6
;
1

6
;
5

6
; �


� �
: ðC2Þ

The Gauss function can be replaced by unity for small values of the argument, yielding

lim

!0½�(
)� ¼ 5:342� 6
1=6: ðC3Þ
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