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ABSTRACT

We present numerical simulations of magnetoacoustic wave propagation from the photosphere to the low chromo-
sphere in a magnetic sunspot-like structure. A thick flux tube, with dimensions typical of a small sunspot, is perturbed
by a vertical or horizontal velocity pulse at the photospheric level. The type of mode generated by the pulse depends
on the ratio between the sound speed cS and the Alfvén speed vA, on themagnetic field inclination at the location of the
driver, and on the shape of the pulse in the horizontal direction. Mode conversion is observed to occur in the region in
which both characteristic speeds have similar values. The fast (magnetic) mode in the region cS < vA does not reach
the chromosphere and reflects back to the photosphere at a somewhat higher layer than the cS ¼ vA line. This be-
havior is due to wave refraction, caused primarily by the vertical and horizontal gradients of the Alfvén speed. The
slow (acoustic) mode continues up to the chromosphere along the magnetic field lines with increasing amplitude. We
show that this behavior is characteristic for waves in a wide range of periods generated at different distances from
the sunspot axis. Since an important part of the energy of the pulse is returned back to the photosphere by the fast
mode, the mechanism of energy transport from the photosphere to the chromosphere by waves in sunspots is rather
ineffective.
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1. INTRODUCTION

Sunspots show a variety of wave phenomena at different spa-
tial and temporal scales. These phenomena are not well under-
stood due to the complicated structure of their atmospheres.
Photospheres and chromospheres above sunspots are regions in
which the characteristic speeds of waves ( primarily the Alfvén
speed vA) change bymany orders ofmagnitude. The ratio between
the acoustic and the Alfvén speed, cS /vA, decreases from much
larger than 1 below the photosphere to almost zero in the corona.
Waves propagate through the region where cS ¼ vA, where mode
transformation and coupling of differentwave phenomena occurs.
In addition, the magnetic field and background thermodynamic
parameters have gradients in both the horizontal and vertical di-
rections. The magnetic field changes its inclination from being
mostly vertical at the sunspot center to beingmostly horizontal at
the penumbrae. All these ingredientsmake themodeling of waves
in sunspots a rather difficult task.

In previous works, two-dimensional (2D) and three-dimensional
(3D) numerical simulations of waves in the lower atmosphere in
such complicated magnetic structures were carried out mostly
with applications to solar network flux tubes. There is a widely
developed literature on this subject in which the assumption of a
‘‘thin’’ flux tube is made; that is, in which the horizontal dimen-
sions of the structure are much smaller than the characteristic
vertical scales of the atmosphere (see, e.g., the recent papers by
Hasan et al. 2003; Hasan & Ulmschneider 2004). The modes in
thin flux tubes (kink, sausage, and torsional modes; see Spruit
1981) are different from those inside a magnetized atmosphere
where the horizontal gradients are not so sharp. Waves in mag-
netic structures with larger horizontal dimensions were consid-

ered by, for example, Cargill et al. (1997), Rosenthal et al. (2002),
Bogdan et al. (2002, 2003), and Hasan et al. (2005). The 2D
studies by Rosenthal et al. (2002) and Bogdan et al. (2002, 2003)
suggested an important role of the magnetic canopy. By ‘‘can-
opy,’’ the authors indicate a region in which cS � vA and in
which different wave modes can actively interact. In particular,
new wave modes can appear directly at the canopy as a conse-
quence of mode conversion. Other important factors are the in-
cidence angle of the waves onto the canopy and the inclination of
the field there. Rosenthal et al. (2002) showed that if the inclina-
tion angle is significant, the refraction by the rapidly increasing
phase speed of the fast mode can result in a total internal reflec-
tion of the waves at the cS ¼ vA line. According to Bogdan et al.
(2003), the above effects produce the mode mixing at the cS ¼ vA
layer. Since new modes appear at the canopy and some modes
are reflected back to the lower layers and interfere with the waves
coming directly from the source, the fluctuations measured in
observations below and above this layer can be completely un-
correlated. If the transition between the magnetized and non-
magnetized atmosphere is sharp, as in the simulations of Hasan
et al. (2005), the compressible slow magnetoacoustic waves
propagate along the magnetic canopies up to the chromosphere
and steepen to shocks. The fast waves are confined to the area
inside the magnetic structure where cS < vA, and no fast-mode
reflection is observed in these simulations.

Thus, the behavior of waves observed in a magnetic structure
depends crucially on its size and magnetic field configuration. In
the case of a sunspot, the horizontal variations in the field strength
may not be so sharp. At the same time, the pressure, density, and
temperature inside a sunspot are lower than those outside, so all
the atmosphere is shifted down a fewhundredkilometers (aWilson
depression). This produces important variations of the acoustic
andAlfvén speeds in the horizontal directions and affects the phase
speed of the propagating waves. As far as we know, no multi-
dimensional simulations of the waves in such structures have
been performed yet.
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Numerical models with applications to sunspots have addressed,
mainly, the problems of sunspot seismology. The possibility of
the existence of trappedmodes of oscillations in sunspots was in-
vestigated byBogdan&Knölker (1989), Cally &Bogdan (1993),
and Cally et al. (1994). These authors considered damped oscil-
lation modes in a vertically stratified atmosphere permeated by a
constant vertical magnetic field. Horizontal gradients are ignored
in this modeling. However, including these gradients will cer-
tainly change the conditions of wave reflection responsible for
producing trapped oscillations and will enable new types of mode
conversion. The problem of interaction of the quiet-Sun p-modes
with magnetic field concentrations, i.e., scattering and absorp-
tion of the waves by sunspots, was considered in 2D simulations
by Rosenthal & Julien (2000) and Cally & Bogdan (1997). The
waves were assumed to come from the side of the nonmagnetic
atmosphere and penetrate into the slab of a vertical magnetic field,
with strength varying in the horizontal direction. The authors
concluded that p-modes are partially converted into slowmagneto-
acoustic modes. The latter travel away from the conversion layer
and thus extract energy from the quiet-Sun p-modes, which exit
the slab with reduced amplitudes.

Here we investigate a different problem. One of the purposes
of the simulations reported below is to help to identify the types
of wavemodes observed in different layers of sunspot atmospheres.
Observations in spectral lines formed in the umbral photosphere
reveal the existence of 5 minute oscillations with reduced am-
plitudes relative to the quiet Sun (see Staude 1999; Bogdan
2000; Bogdan & Judge 2006 for a review). Patches with en-
hanced oscillatory power have a complicated spatial distribu-
tion. There is evidence that velocity and intensity oscillations are
accompanied by magnetic field oscillations with amplitudes not
exceeding 10 G (e.g., Bellot Rubio et al. 2000). It is an open
question as to which type of waves produces these oscillations.
Higher up, the umbral chromosphere is dominated by the 3 min-
ute oscillations. The power spectrum of the oscillations in sun-
spots changes gradually with height in a way such that the peak
at 5 minutes disappears and a peak at 3 minutes becomes more
important (see, e.g., Bogdan & Judge 2006). Recent IR observa-
tions in the 10830 8 spectral region analyzed by Centeno et al.
(2006) reveal the photospheric counterpart of the 3 minute chro-
mospheric oscillations. It was demonstrated that the power spec-
trum in the photosphere has a secondary peak at 3 minutes.Waves
with this period propagate up to the chromosphere along the
magnetic field lines. A wave train produced by a photospheric
pulse typically reaches the chromosphere in 6–7 minutes, prop-
agating with a speed of 4–5 km s�1. The slow acoustic modes
with periods of 3 minutes, propagating along the magnetic field
lines, were also detected at higher altitudes in the transition re-
gion and corona in observations with the Transition Region and
Coronal Explorer (TRACE ) and the Coronal Diagnostic Spec-
trometer (CDS; e.g., Marsh &Walsh 2005). Thus, other questions
that can be addressed by the simulations are: Do we observe the
same waves at all heights? Can the photospheric perturbations
propagate directly to the chromosphere and corona through the
mode-mixing cS ¼ vA layer?

As a first step toward answering these questions, we report
here the results from linear simulations of wave propagation in a
magnetic sunspot-like structure. Our model sunspot is an azi-
muthally symmetric thick flux tube extending from the photo-
sphere to the lower chromosphere, in magnetohydrostatic (MHS)
equilibrium with the surroundings (Pizzo 1986). We assume the
existence of localized sources inside a sunspot and consider the
waves produced by them. On the one hand, these sources can be

due to the presence of a weak convection that can generate waves
directly inside the umbral atmosphere (see, e.g., Weiss et al.
1990; Cattaneo et al. 2003). On the other hand, waves can pene-
trate into the sunspot atmosphere from the nonmagnetic surround-
ings. As a first approach to the problem, we perform simulations
of short-period waves; that is, waves with frequencies above the
acoustic cutoff. According to investigations of mode reflection
and transformation by Cally (2001), one should expect a similar
behavior of the waves in the high-frequency part of the charac-
teristic k-! diagram. The investigation of waves with more re-
alistic periods (3 and 5minutes) require large computational boxes,
since these waves have rather large wavelengths. As a conse-
quence, the MHSmodel sunspot should extend down to the con-
vection zone and up to the high chromosphere. For the moment,
the problem of creating a realistic magnetostatic solution of the
required horizontal size in these regions is not solved. Little (if
anything) is known about the pressure and magnetic field dis-
tribution in sunspots in subphotospheric layers. This produces
limitations for our study and justifies the use of small-period
waves. Thus, the effect on the wave transformation derived from
the existence of an acoustic cutoff frequency remains as a chal-
lenging subject for future investigations.
The organization of the paper is as follows. In x 2 we describe

the details of the numerical calculations and the MHS model
atmosphere. Sections 3, 4, and 5 give a brief review of the physics
of magnetoacoustic wave propagation and transformation. Sec-
tion 6 explains the results of the simulations with a localized
driver. The discussion of these results is presented in x 7, and our
conclusions are outlined in x 8.

2. NUMERICAL MODEL

We solve the basic ideal MHD equations, written in conserva-
tional form:

@�

@t
þ:= �Vð Þ ¼ 0; ð1Þ

@ �Vð Þ
@t

þ:= �VV þ P þ B2

8�

� �
I� BB

4�

� �
¼ �ggg; ð2Þ

@E

@t
þ:= E þ P þ B2

8�

� �
V � B

B =V

4�

� �� �
¼ �V = gggþ �Q;

ð3Þ
@B

@t
¼ : < V < Bð Þ; ð4Þ

where I is the diagonal identity tensor and E is the total energy,

E ¼ 1

2
�V 2 þ P

� � 1
þ B2

8�
: ð5Þ

All other symbols have their usual meaning. The term �Q, on the
right-hand side of equation (3), contains the energy losses. The
code can take into account the energy losses due to radiative cool-
ing. However, for simplicity, here we consider adiabatic waves.
To close the system, the equation of state of the perfect gas is

used. No changes in themeanmolecular weight due to ionization
are taken into account.
As a first step in our modeling, we linearize the equations be-

fore solving them. By doing so, the solutions of the system can-
not reach a shock wave regime. Thus, our simulations are valid
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for the photosphere and the low chromosphere, where observa-
tions demonstrate that the waves are still linear (Bogdan 2000).

2.1. Magnetohydrostatic Equilibrium

To be able to linearize the system (eqs. [1]–[4]) and obtain
equations for small perturbations to the equilibrium state, one has
to evaluate the MHS solution of the system. Thus, the following
equations of the equilibrium force balance have to be solved:

�:P0 þ �0gggþ
1

4�
: < B0ð Þ < B0 ¼ 0; ð6Þ

:=B0 ¼ 0; ð7Þ

where the subscript ‘‘0’’ stands for the equilibrium value of the
atmospheric parameters.

We followed the strategy described in Pizzo (1986) and nu-
merically solved the system of MHS equations (eqs. [6]–[7]) in
cylindrical coordinates. As a first step, a potential field distribu-
tion was generated. A specific form of the vertical magnetic field
component was assumed at the lower photospheric boundary:

Bz r; z ¼ 0ð Þ ¼ B0 exp � r=reð Þ2
h i

: ð8Þ

Here the parameter re is a scaling for magnetic field variations.
For the model considered below, we took re to be equal to 3Mm.
At the left boundary (the sunspot axis) the field is vertical, and
the top and the right boundaries are sufficiently far away to en-
sure that the conditions there do not influence the interior solu-
tion. Once the potential field solution is obtained, we specify a
pressure distribution along the magnetic field lines. For this pur-
pose, two boundary conditions are used: the semiempirical model
atmosphere of Avrett (1981) at the sunspot axis, and the field-free
model atmosphere of Spruit (1974) and used in VALC (Vernazza
et al. 1981) at the boundary far from the axis. These two model
atmospheres are shifted in height z with respect to each other
according to a prescribedWilson depression. Some smooth tran-
sition between the internal and the external pressure distributions
is calculated. Given the approximations for the magnetic field
and pressure, the equations of force balance are iterated until
convergence is reached. For the details of the calculations, see
Pizzo (1986).

Figure 1 illustrates the basic properties of the MHS solution.
Some characteristic parameters of the model are also given in
Table 1. Our model sunspot is a thick flux tube. It is assumed to
be azimuthally symmetric and to have no twist. It belongs to a
category of distributed-current models; that is, the variations of
field strength and gas pressure are continuous across the spot.
The characteristic size of this flux tube is about 6 Mm. However,
there is no sharp transition between umbra and penumbra, or
between penumbra and field-free photosphere. The inclination
of the field lines changes gradually from the sunspot axis out-
ward. The magnetic field at the axis is about 2200 G at z ¼ 0 km
and decreases with height. The thermodynamic properties of the
solution are rather complex. In the case shown in Figure 1, the
log �5 ¼ 0 level is 350 km deeper at the sunspot axis than at
the outside photosphere.

Figure 2 gives the distribution of the characteristic speeds
across the model sunspot. The temperature stratification is nei-
ther isothermal nor polytropic, but is rather close to the real
stratification in the sunspot photosphere and chromosphere of
the Sun. Thus, the sound speed distribution shows both horizontal
and vertical variations. The distribution of the Alfvén speed is
influenced by the density change across the sunspot radius that
is due to the Wilson depression. The Alfvén speed changes by

Fig. 1.—Top: Contours of constant log � for the MHS solution. The density
deficit associated with the Wilson depression is evident. Bottom: Contours of
constant Bj j. The labels indicate the magnetic field strength in units of kG. The
thick line denotes the surface at which vA ¼ cS . The dotted lines indicate
magnetic field lines. The gray box corresponds to the domain taken for the
dynamical simulations and the gray arrow indicates the location of the driver.
Note that, for the sake of clarity, the vertical axis has been expanded, giving an
appearance of reduced inclination of the magnetic field lines. [See the electronic
edition of the Journal for a color version of this figure.]

TABLE 1

Characteristic Parameters of the Model Sunspot

Sunspot Axis 4000 km from Axis

Parameter z = 0 km z = 800 km z = 0 km z = 800 km

Temperature (K) ............................................ 3430 2630 7760 2600

Magnetic field (G) ......................................... 2170 1440 740 760

Inclination (deg)............................................. 0 0 48 53

Sound speed (km s�1) ................................... 8 7 12 7

Alfvén speed (km s�1) .................................. 5 300 2 18

c2S /v
2
A ............................................................... 2 0.0005 30 0.15

Pressure scale height (km) ............................ 135 105 310 105
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orders of magnitude both in the horizontal and vertical direc-
tions. The fast change of vA is the main reason for the variations
of the ratio between the acoustic and Alfvén speeds that can be
seen in Figures 1 and 2. The height of the level at which both
characteristic speeds are equal increases with increasing distance
to the sunspot axis.

The gray box in Figure 1 corresponds to the domain used in
the dynamical simulations. The gray arrow indicates the location
of the driver for the simulations described below. Note that in all
figures in this paper the z ¼ 0 level is assumed with respect to the
sunspot axis.

2.2. Details of the Calculations

TheMHS equilibriummodel was transformed from cylindrical
coordinates (r, �, z) into a 3D Cartesian cube. In a general case,
all three components of the magnetic field vector are nonzero in
Cartesian coordinates. After the transformation, we obtained the
background model atmosphere parameters P0, �0, Bx0, By0, and
Bz0 that depend on x, y, and z.

Given the MHS model atmosphere, we solved the linearized
system (eqs. [1]–[4]) in Cartesian coordinates under the follow-

ing conditions. We used a 2.5-dimensional (2.5D) approach. This
implies that all first-order quantities are taken to dependonly on the
x and z spatial coordinates, but the background zeroth-order param-
eters are allowed to have variations also in the third, y, direction.
We chose the slice of the azimuthally symmetric model sunspot in
which the By component of the field is equal to zero. Thus, the
waves launched in this plane under the 2.5D approximation will
remain inside it during the entire computational time. By adopting
this approach, we excluded Alfvén waves from consideration.
All spatial derivatives are discretized using fourth-order cen-

tered differences on a five-point stencil. The time stepping is
explicit, using a fourth-order Runge-Kutta scheme. The com-
putational box used for dynamical simulations extends 0.86Mm
in the vertical direction and 3.5 Mm in the horizontal direction.
The bottom level corresponds to z ¼ 0 at the axis of the sunspot
umbra photosphere. The numerical resolution of the simulations
is �z ¼ 5 km and �x ¼ 12:5 km in the vertical and horizontal
directions, respectively. To stabilize the code and reduce high-
frequency variations on scales unresolved by the numerical scheme,
we included artificial diffusion terms in equations (1)–(4) follow-
ing the strategy described in Vögler et al. (2005). The diffusion

Fig. 2.—Top: Contours of constant vA for theMHS solution. Bottom: Contours of constant cS. Note the strong horizontal gradients of both vA and cS due to theWilson
depression. The dotted lines indicate magnetic field lines. The size of the domain shown is the same as that of the gray box in Fig. 1.
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coefficients were kept as small as possible to ensure that the nu-
merical diffusion did not affect the solution to a large extent.

2.3. Boundary Conditions

In numerical simulations with an open domain it is crucial to
have accurate nonreflecting boundary conditions. Themostwidely
used nonreflecting boundary conditions for the Euler equations are
the characteristic-based boundary conditions (Hirsch 1990). How-
ever, in multidimensional simulations and in the presence of a
magnetic field with a complicated structure, the calculation of
the characteristic directions becomes a serious problem. In ad-
dition, the solar atmosphere is strongly stratified in the vertical
direction, which leads to an unavoidable numerical reflection of
the slow (acoustic) mode at the upper boundary of the simulation
domain.

In our numerical model we applied nonreflecting boundary
conditions based on an absorbing 2D perfectly matched layer
(PML; Berenger 1994, 1996; Hu 1996; Qi & Geers 1998; Hu
2001). Initially the PML boundary formalism was developed for
simulations of electromagnetic waves (see Berenger 1994) and
in aeroacoustics (Qi & Geers 1998). Recently PML boundary
conditions were successfully applied to simulations of acoustic
waves in a strongly stratified solar convection zone (Parchevsky
& Kosovichev 2005). The basic idea consists of splitting the
Euler equations, written in conservational form as

@U

@t
þ @F Uð Þ

@x
þ @G Uð Þ

@z
¼ H Uð Þ; ð9Þ

into a set of equations in the PML domain that contain just a
single spatial derivative. Artificial damping terms are added to
the split equations in the PML domain:

@U1

@t
þ @F Uð Þ

@x
þ �xU1 ¼ H1 Uð Þ; ð10Þ

@U2

@t
þ @G Uð Þ

@z
þ �zU2 ¼ H2 Uð Þ: ð11Þ

Here U1 and U2 sum to U, and H1(U ) and H2(U ) sum to H(U ).
The vectorU contains the conserved variables �, �V,B, and E;F
and G are the corresponding fluxes; and H represents the right-
hand side of equations (1)–(4). The absorption coefficient, �x, is
nonzero only at the x interface ( left and right boundaries), and �z
is nonzero at the z interface (top and bottom boundaries).

It has been shown that, theoretically, the PML has no reflection
for plane waves incident on a flat interface for all frequencies,
independent of the incidence angle. However, in the finite-
difference implementation of the PML equations, a certain amount
of numerical reflection may occur due to sharp variations of the
absorption coefficients at the interface (Berenger 1996). To avoid
this, a smooth variation of �x and �z, increasing from small values
at the PML interface to a large value at the outer boundary, is
implemented in the numerical solution (Hu 2001):

�x ¼
a

�x

x� xPML

xPML

� �2

;

�z ¼
b

�z

z� zPML

zPML

� �2

; ð12Þ

where �x and �z are the discretization steps, a and b are am-
plitudes, and xPML and zPML are the thickness of the PML domain
in both spatial directions. The optimum thickness of the layer is

found to be 8–10 grid points. We added a PML at the left, right,
and top boundaries of our simulation domain.

2.4. Photospheric Driver

At the bottom (photospheric) boundary, we specified either a
vertical or horizontal velocity as a function of time and horizontal
coordinate x:

V1x; z x; tð Þ ¼ V0 sin !tð Þ exp � x� x0ð Þ2=2�2
h i

: ð13Þ

The perturbation is localized in the x-axis and has a Gaussian
shape in this direction. In the simulations described here, the
pulse is located at a distance x0 ¼ 1300 km from the sunspot axis
(see Fig. 1). The MHS model sunspot does not extend enough in
the horizontal and vertical directions to make the study of waves
in the 3–5 minute regime possible. Such waves are expected to
have large spatial wavelengths and will not fit into the simulation
domain. For the moment, it is an open problem to create a stable
MHS solution of the required size. For this reason, we focus our
study on shorter period waves. According to the investigations
of wave propagation in a magnetized atmosphere (Zhugzhda &
Dzhalilov 1982; Cally 2001), one should expect a similar be-
havior of waves in the high-frequency part of the k-! diagram
above the acoustic cutoff (that is, in principle, one should not
expect qualitative differences between the waves of, say, 10 and
100 s periods). Having this in mind, we choose a period of 10 s
for the driver. This allows us to use a rather small spatial
wavelength for the oscillations and to observe clearly the wave
refraction and transformation. The results of these simulations
are discussed in x 6. For comparison, in x 7 we show briefly the
simulations with a 50 s period driver. The spatial extent of the
driver is � ¼ 62:5 km for the 10 s simulations and � ¼ 250 km
for the 50 s simulations. The initial wave amplitude, V0, at z ¼ 0
was taken to be equal to 200 m s�1.

In addition, we carried out simulations with an instantaneous
pressure pulse as an initial condition. In this case, the initial
perturbation has the form

P1 x; zð Þ � exp � x� x0ð Þ2=2� 2
x

h i
exp � z� z0ð Þ2=2�2

z

h i
ð14Þ

and is only present at the first time moment. The parameters �x
and �z are equal to 62.5 and 25 km, respectively, and the pulse is
located at x0 ¼ 1300 km and z0 ¼ 100 km. In these simulations,
a PML layer was also added at the lower photospheric boundary.
The results of these simulations are used in x 7.

3. CONCEPTS OF MODE TRANSFORMATION

As follows from Figure 1, a wave propagating from the pho-
tosphere to the chromosphere will encounter a layer in which both
characteristic speeds are equal, vA ¼ cS . At the vicinity of this layer,
the different wave modes can interact, and mode transformation
takes place (see, e.g., Zhugzhda &Dzhalilov 1982, 1984; Bogdan
et al. 2002, 2003; Rosenthal et al. 2002; Cally 2005, 2006). To bet-
ter understand the results of the numerical simulations, we briefly
review the concepts of mode transformation here.

The phase speed, Vph, of a wave is a continuous function of the
spatial coordinates and must be preserved after the mode trans-
formation. Approaching the transformation layer, vA � cS , the
phase speeds of the modes become close, and the energy can be
partially transferred between the different branches of the disper-
sion relation. The direction and the effectiveness of the transfor-
mation depend, among other parameters, on the wave frequency
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and the attack angle between the wavevector k and the magnetic
field.

In the case in which the directions of the wavevector k (de-
fined locally) and the field vector B0 are not very different in the
vA � cS region (when the angle  between both directions is
small ), the fast mode can be partially transformed into the slow
mode and vice versa. In this transformation, the wave preserves
its physical nature (magnetic or acoustic). After the transfor-
mation, the wave switches to another branch of the dispersion
curve. In the case of high-frequency (above the acoustic cutoff )
oscillations in a vertical magnetic field, the transformation co-
efficient from the fast to slow mode is given by the following
approximate formula (Cally 2006):

C ¼ exp � k� sin2 

d=dsð Þ c2S =v
2
A

� ��� ��
" #

; ð15Þ

where s is the arclength along the direction defined by the vector
k. The coefficient should be evaluated at the point where cS ¼
vA. This equation can be interpreted in the following way. The
fast-to-slow mode conversion is complete for the waves with k
directed alongB0. For 6¼ 0, the part of the energy that goes from
the fast branch into the slow branch of the dispersion relation
decreases with increasing attack angle. The value ofC depends on
the wave frequency through the wavenumber k. The higher the
frequency, the smaller is the cone of values of  for which the
fast-to-slow mode conversion is effective.

If the angle that forms the wavevector k with the magnetic
field is arbitrary but not zero, the fast solution below the vA � cS
region can continue as a fast solution above this region. The same
is true for the slow solution. Physically, it means that the fastmode
remains fast through the whole atmosphere, even if the ratio be-
tween the characteristic velocities changes. In this transformation
the nature of the fast mode switches from acoustic (vA < cS) to
magnetic (vA > cS). In the same way, a slow mode remains slow,
changing from magnetic to acoustic. According to Cally (2005),
the fast-to-fast mode conversion coefficient increaseswith increas-
ing angle of  and increasing frequency of the wave, !. For the
waves with k directed along the field ( ¼ 0), the conversion
coefficient is zero independent of the wave period, and no energy
is transferred from the acoustic to the magnetic mode and vice
versa (recall that the fast-to-slow mode conversion in this case is
complete; see eq. [15]).

In view of these concepts, Figure 3 gives an idea of the pos-
sible mode transformations that can occur for linear magneto-

acoustic waves in the particular case of our model sunspot. It
shows the phase speeds and wavelengths (k ¼ 2�/k) of the fast
and slow modes as a function of height. In the high-frequency
limit, when the effect of the acoustic cutoff is unimportant (which
is justified for the wave periods used in the simulations), we can
roughly estimate Vph from the dispersion relation for waves in a
homogeneous unstratified atmosphere (ggg ¼ 0) with a uniform
magnetic field:

V 2
ph ¼

!2

k2
¼ 1

2
c2S þ v2A
� �

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c 2S þ v 2A
� �2� 4c2S v

2
A cos2 

q
;

ð16Þ

where the plus sign indicates the fast mode, while the minus sign
indicates the slow mode. To compute the curves given in Fig-
ure 3, we have introduced in equation (16) the local values of
the atmospheric parameters from the MHS model atmosphere at
x ¼ 1300 km, with z varying from 0 to 800 km; that is, at the
location of the pulse. The vA ¼ cS layer is located at z � 230 km.
The figure shows that, in the case in which k is not parallel to
B0 (thin lines), the phase speeds of the fast and slow modes are
not the same at any height (although the difference between them
is small at the transformation layer). If k and B0 are parallel at
the vA ¼ cS line, the phase speeds of both modes are exactly the
same (see the two thick lines in Fig. 3, which cross each other at
z � 230 km). In this particular example, both vectors k and B0

are inclined by about 14� with respect to the vertical at the height
where vA ¼ cS . Since  ¼ 0 in this case, according to equation
(15) (see Cally 2006), the fast-to-slow (or slow-to-fast) mode
conversion will be complete. An estimation from equation (15)
for the values of cS and vA as in Figure 2 gives that a change of  
by 5

�
–7

�
(for the 10 s period wave) and by about 15

�
(for the 50 s

period wave) produces a drop of C from 1 to 0.5. Thus, in the
case of small deviations from the longitudinal propagation, the
fast-to-slow mode conversion is not complete. The fast-to-fast
and slow-to-slowmode conversions are possible in all other cases,
with the conversion coefficient increasing with increasing inclina-
tion of k. Such transformations are never complete, and some
energy can always escape from the fast into the slow mode and
vice versa. Its amount becomes negligible for large  .

4. DIRECTION OF WAVE PROPAGATION

Even in the absence of gradients of vA or cS and inclination of
the magnetic field lines, �, the phase speed of both the fast and
slow modes depends on their direction of propagation, locally
defined by k. In this sense, the atmosphere can be considered as
an anisotropic medium. In this type of medium, the directions of
the phase and group velocities generally do not coincide. The di-
rection of the phase velocity is defined by the vector k (the sur-
face with constant phase is perpendicular to k by definition). The
energy of the wave in an anisotropic medium propagates in the
direction of its group velocity, vg ¼ @!/@k (Landau & Lifshitz
1984). Hereafter, by the direction of the wave propagation, we
mean the direction of vg.
For simplicity, consider the case of waves in a homogeneous

unstratified medium with a uniform magnetic field. The disper-
sion relation of the fast and slow modes in this case is given by
equation (16). In the limit when one of the characteristic speeds
is much larger than the other, equation (16) can be simplified to
give

!� kcS vATcSð Þ;
!� kvA vA 3 cSð Þ ð17Þ

Fig. 3.—Wavelength/phase speed of the fast and slowmodes as a function of
height, calculated under the approximation of a locally homogeneous atmo-
sphere with a uniform magnetic field. Thin lines indicate oblique propagation (k
is directed along the vertical). Thick lines indicate longitudinal propagation
(both k and B0 are inclined by 14� with respect to the vertical at the vA ¼ cS
line). Solid lines indicate the fast mode; dashed lines indicate the slow mode.
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for the fast mode and

!� kvA cos  ¼ vA
k =B0

B0j j (vATcS);

!� kcS cos  ¼ cS
k =B0

B0j j (vA 3 cS) ð18Þ

for the slow mode. Since, in the case of the fast mode, the ex-
pression for! (eq. [17]) is independent of k, the group velocity is
equal to either cS or vA, and its direction is that of k. The direc-
tions of the phase and group velocities coincide, and the medium
can be considered isotropic for a fast wave in this regime. In the
case of the slowmode, vg is directed along the vectorB0. Thus, in
both cases (vA 3 cS or vATcS), the fast mode will propagate in
the direction of k, and the slow mode will be directed along the
magnetic field lines.

In the intermediate case, when vA � cS , the atmosphere is
anisotropic for both modes, and the direction of the group veloc-
ities is different from that of the phase velocities; that is, the vec-
tor vg is inclined by some angle with respect to the vector k. The
expression for vg can be derived analytically from the dispersion
relation, equation (16), by calculating the derivative of ! with
respect to k. The angle between the two directions, �, depends
on the local values of vA and cS and the angle,  , between the
direction of the magnetic field and k. It is given by the following
equation:

tan � ¼ c2S v
2
A sin 2 

2V 2
ph 2V 2

ph � v2A � c2S

	 
 ; ð19Þ

where Vph is defined by equation (16). The inclination angles of
vg for both modes calculated for different values of  are dis-
played in Figure 4 as a function of the ratio between vA and cS.

Figure 4 helps to summarize all the reasoning expressed above.
It shows that vg is not, in general, parallel to either k or B0. In the

limit when vA is either 3cS orTcS, the slow mode propagates
longitudinally along B0, in agreement with equation (18). The
fast mode propagates along k, in agreement with equation (17).
When approaching the vA � cS region, vg deviates, for bothmodes,
from these directions. The maximum deviation is achieved for
vA ¼ cS and  ¼ 0 and is 27� for both modes (see Osterbrock
1961). The angle that vg makes with B0, for the slow mode, has
the same sign as  , while, for the fast mode, the angle that vg
makes with k has the sign opposite to  . The angle between the
directions of propagation of the fast and slow mode increases
when the characteristic speeds are close and is at maximum at the
vA ¼ cS line.

5. WAVE REFRACTION

In a stratified inhomogeneous atmosphere, there is another
factor that can change the direction of propagation of waves. In
the limits when vA 3 cS or vATcS, both the phase and group
velocities of the fast mode are independent of the direction. In
this situation, the gradients of the characteristic speeds start play-
ing an important role and modify the direction of propagation of
the fast mode due to refraction. The fast-wave refraction can be
understood in terms of geometric optics. The direction of prop-
agation of a plane wave impinging on an interface between two
media with different indices of refraction (or phase speeds) will
change according to Snell’s law of refraction,

sin i

sin r
¼ Vph; i

Vph; r
; ð20Þ

where i and r are the incidence and refraction angles, respec-
tively. In our case, the reference interfaces are the contours of
vA ¼ constant when vA 3 cS or the contours of cS ¼ constant in
the opposite limit. The direction of the fast-mode refraction
depends on the incidence angle, i, on this interface. In the limit of
vA 3 cS , the line that separates waves refracting to the right from
those refracting to the left is the:vA line. This line is perpendic-
ular to the contours of vA ¼ constant at every height. The maxi-
mum height reached by the wave with an initial direction i0 can
be found from the condition sin i0 ¼Vph;i0 /Vph;r (Osterbrock 1961).

Consider the particular case of the atmosphere shown in
Figure 2. Suppose a plane wave starts propagating in the region
vA 3 cS . The:vA line in our model atmosphere is inclined to the
left with respect to the vertical by about 14�. Thus, we may
expect that waves with the wavevector k inclined by less than
�14� with respect to the vertical will be refracted toward the axis,
while thosewith k inclinedmore than�14� will be refracted away
from the axis. The height where complete reflection occurs de-
pends on the incidence angle i0, and, in any case, it is expected to
be located well above the height where vA ¼ cS (at 500–1000 km,
depending on the distance from the axis; see Fig. 1).

6. ANALYSIS OF THE SIMULATIONS

Figures 5, 6, 7, and 8 show the results of the numerical solu-
tion of the linearized equations (1)–(4) with a vertical (Figs. 5
and 6) and horizontal (Figs. 7 and 8) driver and a 10 s period.
There are several factors that define a set of dominant wave
modes in the simulations: the inclination of the magnetic field
lines at the location of the driver, the ratio between vA and cS, and
the horizontal shape of the pulse in the x direction.

Since the amplitude of the pulse is not constant in x (see
eq. [13]), it necessarily gives rise to a set of slow or fast magneto-
acoustic modes with different horizontal wavenumbers kx. The
amplitudes of different harmonics can be obtained after the Fourier

Fig. 4.—Angle between the directions of vg and k, calculated under the
approximation of a locally homogeneous atmosphere with a uniform magnetic
field, as a function of the ratio between the two characteristic speeds. The lines
with different thicknesses correspond to different angles  between k and B0

(marked on the figure). Solid lines indicate the fast mode; dashed lines indicate
the slow mode.
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Fig. 5.—Variations of the velocity, magnetic field, and pressure at an elapsed time t ¼ 100 s after the beginning of the simulations, for the vertical driving with a 10 s
period. In each panel, the horizontal axis represents the radial distance x from the sunspot axis. The black inclined lines indicate magnetic field lines. The two gray lines
indicate contours of constant c2S /v

2
A, with the thicker line corresponding to vA ¼ cS and the thinner line to c

2
S /v

2
A ¼ 0:1. The black thick line inclined to the left indicates

the direction of :vA, starting at the location of the pulse. Top left: Transversal variations of the magnetic field. Top right: Relative pressure variations. Bottom:
Transversal and longitudinal variations of the velocity. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 6.—Time evolution of the longitudinal and transversal velocity components for the 10 s vertical driving simulations. The black thin inclined lines are magnetic
field lines. The white solid line indicates the direction of :vA, starting at the location of the pulse. The white dashed line indicates the direction of energy propagation,
given by vg . The two black lines marked with numbers are contours of constant c2S /v

2
A, with the thicker line corresponding to vA ¼ cS and the thinner line to c

2
S /v

2
A ¼ 0:1.

The size of the domain is the same as in Fig. 2.



transformation of the Gaussian describing the pulse in the x di-
rection. They are described by the following equation (except for
a constant coefficient):

Ax � exp �k 2
x �

2
x =2

� �
: ð21Þ

Thus, the amplitude of the Fourier component decreases with
increasing absolute value of its horizontal wavenumber. Those
modes with the vector k directed along the vertical (kx ¼ 0) have

more weight. As we will see later, depending on the value of kx,
each mode follows a different path in the x-z plane and can ex-
perience a different transformation at the vA ¼ cS layer.

The slow and fast magnetoacoustic modes can be separated by
means of plotting the longitudinal and transversal components of
the velocity variations with respect to the background magnetic
field at every point. However, the distinction between the modes
can only be made clear in the vA 3 cS or vATcS regions, where
either the magnetic field or the gas pressure strongly dominates

Fig. 7.—Variations of the velocity, magnetic field and pressure at an elapsed time t ¼ 100 s after the beginning of the simulations for the horizontal driving with a 10 s
period. The format of the figure is the same as that of Fig. 5. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 8.—Time evolution of the longitudinal and transversal velocity components for the 10 s horizontal driving simulations. The format of the figure is the same as
that of Fig. 6.
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the dynamics. In the vA 3 cS limit, the slow magnetoacoustic
mode is visible in the longitudinal velocity and in the pressure
variations. The fast mode is visible in the transversal velocity,
as well as in the variations of the magnetic field vector. In the
vATcS limit, the opposite is true.

6.1. Vertical Driving

The vertical velocity pulse located at the lower boundary in
the vA < cS region generates a set of fast (acoustic) modes with
different values of kx (see Figs. 5 and 6). Since the field orienta-
tion at the location of the driver is not vertical (� � 13�), some of
the energy of the pulse also goes into the slow (magnetic) mode.
However, due to the small field inclination, its amplitude is sig-
nificantly weaker than that of the fast mode.

The fast mode propagating in a nonvertical field causes pertur-
bations in both the longitudinal and transversal components of
the velocity. The amplitude of the longitudinal velocity variations
is larger than that of the transversal ones (compare the bottom
panels in Fig. 5). Due to the presence of waves with different
values of kx, the initial perturbation expands in the horizontal
direction as it propagates upward. The perturbations in the longi-
tudinal and transversal velocity reach the vA ¼ cS level almost
simultaneously (Fig. 6, bottom). In addition, as the fast wave
propagates across the magnetic field lines, it produces variations
in the background pressure, magnetic field strength, and its incli-
nation. In order to make the magnetic field line variations visible
in Figure 5 (top left), we have amplified the B1 vector by mul-
tiplying it by an adequate factor. Input velocity variations with
amplitudes of �200 m s�1 cause magnetic field variations of
10–20 G and pressure variations of 5% from the MHS value. As
follows from Figure 3, the local wavelength of the fast mode
at z ¼ 0 km is �2 times larger than that of the slow mode and
is�100 km. This number coincides with the wavelength of the
fast mode obtained from numerical simulations. Note that the
magnetic field and pressure perturbations have the same vertical
wavelength. This proves that both are produced by the same fast
mode.

In the vA > cS region, several modes propagating in different
directions can be observed. As follows from Figure 6, after reach-
ing the vA ¼ cS line, the transversal and longitudinal velocity
variations have clearly different propagation speeds. At an
elapsed time of 50 s, the transversal velocity perturbation reaches
the top of the domain, while the longitudinal velocity only reaches
half of it. The wavelengths of the perturbations are also very
different.

Keeping in mind the results from x 3, it is easy to understand
the mode transformations that take place in this simulation. We
can observe two mode transformations at the vA � cS region.
The first transformation is the fast (acoustic) mode with kx � 0 at
z ¼ 0 km, which is transformed into the fast (magnetic) mode in
the vA > cS region. More strictly, in this case (as well as in all the
cases described below) one should speak about the set of modes
with values of kx that vary in a certain range around the given
value. The behavior of these waves (their path in the x-z plane;
conversion coefficients) differs only slightly, and the wave train
formed by them can be considered roughly as a monochromatic
wave. Thus, below we describe the wave behavior by referring
just to a single dominant value of kx.

According to the distribution of the amplitudes of the Fourier
components of the pulse (eq. [21]), most of the energy goes into
the mode with kx � 0. Thus, this mode is the one with the largest
amplitude in the snapshots of the transversal velocity perturba-
tion (Fig. 5, bottom left). The wavelength of the fast mode in-
creases with height due to the rapid increase of the Alfvén

velocity (see Figs. 2 and 3). As the wave comes to those heights
where the sound speed is much lower than the Alfvén speed,
its propagation speed becomes close to the local Alfvén speed
(eq. [17]). Since the propagation speed becomes independent of
the direction, the gradients of the Alfvén speed produce bending
of the wave front due to refraction. The left part of the wave front
of the fast mode (closer to the axis) propagates faster than its
right part (farther from the axis). Finally, the wave reaches the
height where its vertical wavenumber is equal to zero, and it
reflects back to the photosphere. Note that the complete reflec-
tion does not occur at the vA ¼ cS level, but higher up in the
atmosphere. The Wentzel-Kramers-Brillouin (WKB) solution
considered below in x 6.3 confirms that this effect is due to the
gradients of the Alfvén speed and not an artifact coming from the
upper boundary conditions. The velocity variations of the fast
mode are accompanied by magnetic field variations (Fig. 5, top
left). After the reflection takes place, some variations of pressure
also occur in the reflected wave (visible in Fig. 5, top right). The
latter are due to its oblique propagation with respect to the mag-
netic field lines.
The same transformation is experienced by another fast mode,

propagating to the left with respect to the vertical in the vA < cS
region. It is transformed into the fast mode in the vA > cS region.
This mode is visible as a weak perturbation in the transversal
velocity snapshot at the left-hand side of the simulation domain.
It is produced by the Fourier components of the pulse with
negative kx. It also propagates with the fast-mode speed and is
accompanied by magnetic field variations. The pressure varia-
tions are absent in this mode. Since kx is negative in this mode,
its wave front is inclined to the left. The vertical gradients of the
Alfvén speed make the right part of the wave front propagate
faster than its left part, and thus it refracts toward the sunspot
axis.
The second transformation observed at the vA ¼ cS line is a fast

mode transformed into a slow (acoustic) mode in the vA > cS
region. According to x 3, the resulting slow-mode wave train is
produced by the Fourier harmonics of the fast mode, whose
directions of propagation stay within 5

�
–7

�
with respect to the

longitudinal. The slow mode is visible in the longitudinal veloc-
ity snapshots. It propagates with a lower speed, close to the local
speed of sound, and has a wavelength that is almost constant
with height and is smaller than that of the fast mode. While the
fast mode propagates across the magnetic field lines, the slow
mode is channeled along themhigher up to the chromosphere. The
slow mode is generated with a rather low amplitude at the vA ¼
cS line, but its amplitude increases with height almost 3 times
between z ¼ 350 and 700 km, in accordance with the density
falloff (the density scale height is Hp � 130 km at z ¼ 350 km).
The amplitude of the slow mode remains lower than that of the
fast one everywhere in the vA > cS region. Note that there are no
variations in the magnetic field associated with the slow mode.
Instead, it produces pressure variations with amplitude increas-
ing with height, as expected for an acoustic wave.
The directions of the mode propagation can be explained by

means of the arguments given in xx 4 and 5. The slow mode is
only present in the vA > cS region. According to Figure 4, its
direction of propagation (i.e., direction of energy propagation,
given by vg) in this region should be close to the direction of the
magnetic field lines, as is actually observed in the simulations.
Consider now the fast mode with kx � 0. The wavevector k is
vertical for this mode. In the vA � cS region, the group velocity
vector of this mode deviates from the direction of k according
to Figure 4. The angle that makes vgwith k has the opposite sign
to the angle between B0 and k. This means that vg , for this fast
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mode, is inclined to the left with respect to the vertical direction
everywhere in our simulation domain. We calculated the direc-
tion of vg from equation (19) for the local parameters of the
atmosphere along the wave path and kx ¼ 0. This direction is
plotted as a dashed line over the transversal velocity snapshots in
Figure 6. It is clear that the fast mode in the numerical simu-
lations follows this direction. In the particular case of the model
atmosphere considered here, the direction of vg almost coincides
with the direction of :vA. The latter is marked by a solid line,
slightly inclined to the left, in Figures 5 and 6. It can be seen that,
indeed, the :vA line separates the fast modes refracting to the
right from those refracting to the left.

The good correspondence between the numerical simulations
and the expectations from simple arguments given in xx 4 and 5
leads to important conclusions. If we know the parameters of the
magnetic structure (for example, if vA, cS, and � can be derived
from observations), the direction of propagation of the fast and
slow magnetoacoustic modes can be easily estimated from
equations (16) and (19). The height where the reflection of the
fast mode is produced is expected to lie somewhere in the region
where vA starts to be much larger than cS. The direction of the
refraction of the fast wave is defined by the :vA line.

6.2. Horizontal Driving

Figures 7 and 8 give the snapshots and temporal evolution for
the simulation with a 10 s period and horizontal driving. In this
simulation, most of the energy of the driver goes into the slow
(magnetic) modes in the vA < cS region. The vertical wavelength
of the perturbation is lower than in the previous case and is about
50 km, in agreement with Figure 3. Note that there is also a fast
mode produced directly by the driver in the vA < cS region. This
mode can be seen as a weak disturbance, with a larger wavelength
propagating to the left with respect to the main wave train.

The transversal velocity in the vA < cS region is almost twice
as large as the longitudinal velocity. The pressure perturbations
are associated mainly with the longitudinal velocity perturba-
tions. Since the latter have a rather small amplitude below the
vA ¼ cS level, the pressure perturbations are negligible there
(Fig. 7, top right). Instead, the variations of the magnetic field
(Fig. 7, top left) associated with the slow mode are relatively
large, as expected for the magnetic mode propagating along the
magnetic field lines. The transversal magnetic field variations
caused by this mode are up to 30 G. The longitudinal magnetic
field oscillations (not shown in the figure) are everywhere small
in the domain and do not exceed 7 G.

After the mode transformation at the vA � cS region, three
waves with different propagation directions can be distinguished
in the vA > cS region. Most of the energy of the slow (magnetic)
mode in the vA < cS region goes into the slow (acoustic) mode in
the vA > cS region. The transformed slow wave again prop-
agates along the magnetic field lines with increasing amplitude
and is accompanied by pressure variations.

The second transformation is when the slow (magnetic) mode
is transformed into the fast (magnetic) mode above the vA ¼ cS
line. This mode is evident in the transversal velocity variations
(Fig. 7, bottom left). This conversion is possible in the linear case
if the attack angle of k with respect to the magnetic field is small
in the transformation region. Thus, the vector k of the fast mode
after the transformation is inclined in the direction ofB0, within a
few degrees. This situation should be contrasted to the case of the
vertical driving simulations, where the most energetic fast mode
in the vA > cS region was produced by the fast mode with k
directed along the vertical below. So, since the vertical gradients
of theAlfvén speed aremuch stronger than its horizontal gradients,

the fact that the wave train is initially inclined makes the re-
fraction in the vA 3 cS region faster, and the wave is reflected at
a lower height. The WKB solution, considered below in x 6.3,
proves this idea. Since the amplitude of this fast mode is rather
low, both longitudinal and transversal magnetic field variations
almost disappear in the vA > cS region.

The third transformation observed in the simulations with the
horizontal driver is when the fast (acoustic) mode coming from
below is transformed into the fast (magnetic) mode. This mode
produces a weak disturbance refracting to the left with respect to
the :vA line, visible in the transversal velocity and magnetic
field snapshots in Figure 7. This mode behavior is completely
analogous to the one in the simulations with a vertical driver and
was considered in the previous subsection.

The direction of propagation of the slow mode is that of the
magnetic field lines everywhere in the simulation domain. It de-
viates slightly from this direction only when crossing the vA ¼ cS
line, since the inclination angle of vg in this case is the largest (see
Fig. 4). The direction of propagation of the fast modes, given by
the value of vg (Fig. 8,dashed line), and the reference line defining
the direction of the wave refraction, :vA, again describe rather
well the behavior of the numerical solution.

An important conclusion is that, independent of a vertical or
horizontal driving, we always generate a fast magnetic mode that
refracts back to the photosphere and a slow acoustic mode that
continues up to the chromosphere along the magnetic field lines.
Despite the mode transformation, in both simulations, the lon-
gitudinal velocity variations preserve their phase below, at, and
above the mixing vA ¼ cS layer. Taking into account the small
field inclination at the location of the driver (about 10�) in real
observations of sunspots close to disk center, one would mea-
sure mainly the longitudinal component of the velocity varia-
tions. Thus, the velocity signals measured simultaneously at two
heights, photospheric and chromospheric, should show a good
correlation.

6.3. WKB

It is clear from the previous sections that the picture of mode
transformation is rather complicated. We can use a WKB solu-
tion of the equations to gain extra understanding of the simu-
lations. The WKB approach assumes that the wavelength of the
perturbation is much smaller than the characteristic scale of the
variations of the background atmospheric parameters. In the zeroth-
order WKB approximation, we neglect the variation of the wave
amplitude and consider only the variation of its phase; that is, we
assume that all the variables in equations (1)–(4) depend on x, z,
and time asU ¼ aei� x; zð Þe�i!t (where a is constant). To make the
analytical solution easier, we neglect the force of gravity in equa-
tions (1)–(4) and assume that pressure, density, and temperature
are constant. These simplifications are justified in the spirit of the
WKB approximation, in which the inhomogeneity of the me-
dium varies gradually relative to the wavelength of the perturba-
tion. However, the magnetic field is allowed to vary in both the
x and z directions. These assumptions imply the constancy of the
sound speed, but the Alfvén speed can change. In the calcula-
tions described below, we have taken the variations of vA to be as
they are in the MHS model sunspot, irrespective of the reason
that produces such variations.

After these simplifications, the following equation for the wave
propagation can be obtained:

@2V

@t2
¼ �P0

�0
: :=Vð Þ þ : < : < V < B0ð Þ½ �f g <

B0

4��0
: ð22Þ
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Substituting the WKB solution into this equation and neglecting
all the second derivatives of �(x,z), one gets a first-order non-
linear partial differential equation of the form

F x; z; �; p; qð Þ ¼ !4 � !2 c2S þ v2A
� �

p2 þ q2
� �

þ c2S p2 þ q2
� �

vAx pþ vA zqð Þ2¼ 0; ð23Þ

where p ¼ @�/@x, q ¼ @�/@z, and F is a nonlinear PDE. The
parameters p and q are equivalent to the horizontal and vertical
wavenumbers, respectively. Equation (23) contains information
about two magnetoacoustic modes, one fast and one slow. Ap-
plying a method of characteristics, one can transform this PDE
into the following set of ordinary differential equations:

d�

ds
¼ 2!2;

dp

ds
¼� 1

2
p2 þ q2

� � @v2A
@ x

�
"
0:5 p2 þ q2

� �2
c2S þ v2A
� � @ v 2A

@x

� 2c2S p2 þ q2
� �

vAx pþ vAzqð Þ @ vAx

@ x
p� @ vAz

@ x
q

� �#

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2ð Þ2 c2S þ v2A

� �2� 4 p2 þ q2ð Þ vAx pþ vAzqð Þ2c2S
q� ��1

;

dq

ds
¼� 1

2
p2 þ q2

� � @ v2A
@ z

�
"
0:5 p2 þ q2

� �2
c2S þ v2A
� � @ v2A

@ z

� 2c2S p2 þ q2
� �

vAx pþ vA zqð Þ @ vAx

@ z
p� @ vA z

@ z
q

� �#

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2ð Þ2 c2S þ v2A

� �2� 4 p2 þ q2ð Þ vAx pþ vA zqð Þ2c2S
q� ��1

;

dx

ds
¼ p c2S þ v2A

� �
�
"

p2 þ q2
� �

c2S þ v2A
� �2

p� 2pc2S vAx pþ vA zqð Þ2

� 2c2S vAx p2 þ q2
� �

vAx pþ vAzqð Þ
#

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2ð Þ2 c2S þ v2A

� �2� 4 p2 þ q2ð Þ vAx pþ vA zqð Þ2c2S
q� ��1

;

dz

ds
¼ q c2S þ v2A

� �
�
"

p2 þ q2
� �

c2S þ v2A
� �2

q� 2qc2S vAxpþ vA zqð Þ2

� 2c2S vA z p2 þ q2
� �

vAx pþ vA z qð Þ
#

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2ð Þ2 c2S þ v2A

� �2� 4 p2 þ q2ð Þ vAx pþ vA z qð Þ2c2S
q� ��1

:

ð24Þ

Here the variable s is the distance along the characteristic wave
propagation path. The upper sign corresponds to the slow-mode
solution, and the lower sign corresponds to the fast-mode solu-
tion (hereafter referred to as the ‘‘minus’’ and ‘‘plus’’ solutions,
respectively). These five ODEs were solved numerically using a
fourth-order Runge-Kutta method. As initial conditions, we took
p equal to some value and calculated q from the dispersion re-
lation, assuming constant vA and cS (solution of eq. [16]). The
value of q is different for the plus and minus solutions, corre-
sponding to the fast and slow waves. The sign of the WKB
solution is maintained below and above the vA ¼ cS level; that is,
a wave starting as a fast one continues to be fast, even after the
ratio between the characteristic velocities changes. In the cal-
culations described below, the values of cS and vA are taken from
the MHS model atmosphere. The value of cS is allowed to vary
from point to point, despite the gradients of cS being neglected in
deriving equations (24). This influences the final solution very
little, however. By varying x along the z ¼ 0 axis, we can con-
struct the particle paths with origins at different distances from
the sunspot axis. The lines z(x) give the directions of the group
velocity of the solution. Similarly, � gives us the phase of the

Fig. 9.—WKB solution for the simulations with a vertical driver. Top:
Contours of constant phase of the WKB fast-mode solution, with p ¼ 0, plotted
over the transversal velocity from the numerical solution. Middle: Same as
above, but using p ¼ �0:02. Bottom: WKB slow-mode solution, with p ¼ 0,
plotted over the longitudinal velocity from the numerical solution. [See the
electronic edition of the Journal for a color version of this figure.]
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waves at different time moments (or, equivalently, different
values of the parameter s). The contours of constant � indicate
the positions of the wave front. Note that theWKB solution takes
into account the changes of the direction of the wave propagation
due to both effects: wave refraction and inclination of vg due to
the anisotropy of the medium.

Figures 9 and 10 show the results of the WKB solution. The
dark gray lines plotted over the simulated velocity fields are the
contours of constant � at a given time moment. In order to make
the figures clear, only solutions with origins within the driver are
taken. The phase difference between the adjacent wave fronts is
kept constant within each snapshot and is 1.6 times larger for the
transversal velocity snapshots than for the longitudinal ones. The
constancy of the phase difference implies that the time difference
between the wave fronts is constant as well.

Let us consider first the simulations with a vertical driver. The
top panel of Figure 9 displays the WKB fast-wave solution with
p ¼ 0 (infinite horizontal wavelength). It confirms that the fast
wave generated by the driver below the vA ¼ cS line continues as
a fast wave above this line. The phase speed of the fast wave
increases with height. The right part of the wave front moves
faster than its left part below the vA ¼ cS level, and the opposite
is observed above. At the top of the simulation domain, the ver-
tical wavevector becomes equal to zero, and the wave refracts
back to the photosphere. Note that the WKB solution describes
rather well the inclination of the wave front and the propagation
speed at every moment. The WKB approximation should break
downwhen the wavelength of perturbation becomes comparable
with the scale height of the atmosphere (see Table 1). This is the
case even for the 10 s period simulations in which both H and k
are on the order of 100 km. If we take into account the simpli-
fications of the ‘‘analytical’’ WKB solutions, the agreement be-
tween the simulations and this solution is surprising. As the only
parameter allowed to vary is the Alfvén speed (the acoustic speed

is assumed to be constant in the derivation of eq. [24]), we con-
clude that the main reason for the refraction of the fast mode is the
gradient of vA (Fig. 2).

The middle panel of Figure 9 gives another fast-wave WKB
solution. In this case, the initial condition is p ¼ �0:02 at the
z ¼ 0 level. The horizontal wavelength of such a wave is about
300 km, and the wave front is inclined initially to the left. As a
result, this fast wave refracts toward the sunspot axis, and
complete reflection occurs somewhat lower than in the case of
the wave with p ¼ 0. Note that the fast wave with nonzero kx (or
p) is already present in the vA < cS region and is generated by the
driver due to its Gaussian shape in the x direction. Again, the
numerical and the WKB solutions give very similar results.

The bottom panel of Figure 9 shows the slow-wave WKB so-
lution with p ¼ 0. In this case, the WKB can describe the longi-
tudinal velocity only in the vA > cS region. Thus, it confirms that
the slow wave is not present below the vA ¼ cS level, but is gen-
erated after the mode transformation. The WKB solution de-
scribes correctly the path of this mode along the magnetic field
lines. The propagation speed of the slowmode is almost constant
with height.

The case of the simulations with a horizontal driver is pre-
sented in Figure 10. The bottom panel of this figure shows a slow
WKB solution with p ¼ �0:01 (kx � 630 km). The slow mode
is generated at the photospheric level directly by the driver. The
wave front of this mode is initially inclined, and the wave ex-
periences a refraction, so it comes to the vA ¼ cS line with a
horizontal wavenumber different from the one at the lower
boundary.

Finally, the top panel of Figure 10 gives the fast WKB solution
with p ¼ 0:01 (kx � 630 km). The fast-wave solution cannot
describe the transversal velocity variations below the vA ¼ cS
line, so it confirms that this fast mode is generated after the mode
transformation. As was pointed out in the previous section, this
mode appears at the vA ¼ cS line with a wave front that is in-
clined to the right (positive p). This makes the refraction easier,
and the wave is reflected at a lower height than one with p ¼ 0.
Since the Alfvén speed is smaller at this height, it explains the
lower wavelength of this fast mode.

From all these calculations, we conclude that the incidence
angle of the fast mode on the vA ¼ cS interface is unimportant for
the reflection. The reference surfaces for the wave reflection are
contours of constant vA in the vA 3 cS region. However, since
the gradients of cS are often smaller than those of vA, the contours
of constant vA/cS and constant vA can be quite similar.

7. DISCUSSION

The simulations considered in this paper provide a nice
demonstration of the complex behavior of the magnetoacoustic
waves in a magnetic atmosphere with a realistic sunspot-like
field geometry. They reveal that a periodic pulse located at the
lower photosphere generates a set of fast and slow modes, each
following a different path in the x-z plane and experiencing a
different transformation at the vA ¼ cS interface, depending on
the initial inclination of the wave front. In all cases, the slow
mode is guided along the magnetic field lines up to the chro-
mosphere. In contrast, the fast mode suffers from refraction and
complete reflection at heights where vA is much larger than cS. In
the MHSmodel sunspot considered here, this height is located at
the lower chromosphere. This behavior of the fast mode is in-
dependent of whether it is generated directly by the driver or if it
appears after the mode transformation at the vA ¼ cS line. It
means that only some part of the energy of the driver is trans-
ported to the upper atmosphere. An important part of the energy

Fig. 10.—Same as Fig. 9, but for simulations with a horizontal driver. Top:
WKB fast-mode solution, with p ¼ 0:01. Bottom: WKB slow-mode solution,
with p ¼ �0:01. [See the electronic edition of the Journal for a color version
of this figure.]
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is returned back to the photosphere by the fast mode. This makes
the mechanism of energy transport by waves ineffective. It re-
mains to be determined to what extent the amount of energy
propagated upward may contribute to the heating of the high
chromospheric layers.

The above conclusions are obtained on the basis of particular
simulations of oscillations excited by a periodic driver localized
in space at a certain distance from the sunspot axis. The period of
the driver (10 s) was chosen in order to have a small wavelength
of the waves, which allows us to see a clear picture of the wave
transformations and refraction. Waves with frequencies above
the acoustic cutoff should show a similar behavior, since the
buoyant force does not play an important role. The difference
between them should be quantitative, not qualitative, in nature.
The conversion coefficients of modes at the vA � cS region show
a frequency dependence (Cally 2005, 2006; see x 3). The fast-to-
slow mode transformation coefficient increases with decreasing
frequency, and this transformation becomes possible even for
waves propagating at large angles with respect to the magnetic
field. At the same time, the fast-to-fast (and slow-to-slow) mode
transformation coefficient decreases with decreasing frequency.
If we apply these reasonings to our simulations, this would lead
to a redistribution of the energy that goes into a fast or slowmode
at the vA > cS region after the transformation, depending on the
type of excitation (horizontal or vertical ). Namely, the large-
period waves excited by a vertical pulse would show a tendency
to remain acoustic through the whole atmosphere (fast waves
below vA ¼ cS and slow waves above) and would transport the
energy of the pulse to the upper layers. In the case of a horizontal
excitation, most of the energy after the transformation would go
into the magnetic mode and thus would return to the photo-
sphere. This is different from the 10 s period simulations, where
the energy that goes into the fast or slow modes after the trans-
formations is of the same order of magnitude, independent of the
excitation. It means that the part of the energy that is transported
to the upper layers depends closely on the excitation mechanism
that produces oscillations in sunspots.

The relatively small size of our MHS model sunspot does not
allow us to study waves with more realistic periods numerically.
Due to their large spatial wavelengths, waves with 3–5 minute
periods do not fit into the simulation domain. However, in order
to extend our results to the case of waves with more realistic
periods, we present in Figure 11 an example of a simulation with
a horizontal driver of 50 s periodicity. The figure gives snapshots
of the transversal and longitudinal velocity components, to-
gether with the corresponding WKB solution (see x 2.4 for de-
tails). The snapshots are taken at the moment when the reflected
fast wave has returned to the bottom border of the simulation
domain. It follows from Figure 11 that the qualitative picture of
this simulation is similar to that with the 10 s period (compare to
Fig. 10). The slow mode is excited by the driver and propagates
as a slowmode through the transformation region. The fast mode
is produced after the transformation by a Fourier component of
the pulse with a nonzero horizontal wavelength. Due to the larger
spatial period of 50 s oscillations, it is more difficult to get a clear
picture of the mode transformations, but the comparison with the
10 s case is very helpful. Both the fast and slow WKB solutions
plotted over the simulations are completely analogous to those in
the 10 s case (see Fig. 10) with the parameter p (horizontal wave-
length) that is 5 times smaller, indicating a 5 times larger wave-
length of oscillations, as expected for a temporal period that is
5 times larger. However, the fit of the WKB solution to the nu-
merical solution is not as good as in the 10 s case. The fast-mode
refraction is somewhat slower in the numerical solution. This is

not surprising, since the wavelength in the 50 s case is larger than
the characteristic scale of the density falloff, and the approxima-
tions leading to the WKB solution are not valid.
Figure 12 presents another simulation that helps to generalize

our conclusions. In this simulation, the initial condition consists
of an instantaneous pressure pulse located at the lower boundary
(see eq. [14]). The pulse has a Gaussian shape in the x and z
directions and thus gives rise to a set of fast and slowmodes with
different values of kx and kz. The latter implies different temporal
periods of such waves on a rather wide range. The temporal
evolution of this pulse, composed of waves with different peri-
ods, is shown in Figure 12. Similar to the case of the periodic
driver, longitudinal and transversal velocity components are
plotted to make the fast and slow magnetoacoustic modes dis-
tinct. The inspection of this figure leads to the following con-
clusions. The slow modes generated by the pulse are directed
along the magnetic field lines, and their propagation speed is
that of a local speed of sound (Fig. 12, right). They move up-
ward from the photosphere to the chromosphere through the
transformation region with very little dispersion. This means
that all slow waves, with different periods, follow closely the
same behavior. The temporal evolution of the fast-wave part of
the pulse is given in the left panels of Figure 12. The propaga-
tion speed in this case ismuch larger. The fast-wave pulse shows a
symmetry with respect to the :vA line. At a certain height in the
vA 3 cS region, the pulse splits into two components, one re-
fracting to the left with respect to the :vA line and another one
refracting to the right. A complete reflection of the fast waves is
produced higher in the atmosphere. Again, very little dispersion is
observed. It suggests that all fast waves with different periods
follow a similar behavior. Thus, this simulation strengthens the
conclusion that waves in sunspots cannot be considered as an
efficient mechanism for energy transport to the upper atmo-
sphere. Since waves in a rather wide range of periods behave

Fig. 11.—Snapshots of transversal (top) and longitudinal (bottom) velocity
at the elapsed time 150 s after the start of the simulations, with a horizontal
driver of 50 s period, together with the WKB solution. Top: WKB fast-mode
solution, with p ¼ 0:002. Bottom: WKB slow-mode solution, with p ¼ �0:002.
[See the electronic edition of the Journal for a color version of this figure.]
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similarly, it suggests that only a part of the energy of the driver
is transported to the chromosphere by the slow mode, while the
energy contained in the magnetic fast mode is returned back to
the photosphere.

These conclusions can be generalized further. Figure 13 gives
wave paths, obtained from the WKB solution, for the fast and
slow modes generated at different distances from the sunspot
axis in ourmodel atmosphere ( p is assumed to be equal to 0 in all
cases, and the period of the waves is 10 s). It shows that the
waves behave similarly to the case of the numerical solution

considered in the paper. In particular, the direction of propaga-
tion of the slow mode is that of magnetic field lines in the
vA > cS region. Below, in the vA < cS region, it deviates slightly
from this direction, mainly because the gradients of vA modify
the wave propagation path. The fast mode vg has a direction close
to the:vA line, unless vA is significantly larger than cS. Once the
fast mode reaches the heights where vA 3 cS , the refraction and
complete reflection is produced in all the cases. The reflection
height of the fast mode changes with distance from the sunspot
axis. In our rather realistic model sunspot, this height increases

Fig. 12.—Time evolution of the longitudinal and transversal velocity components in simulations with an instantaneous pressure pulse as the initial condition. Note
that the snapshots are not equidistant in time.
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from 600 to 1000 km as r changes from 0 to 4000 km. Above this
height only the slow mode exists. Thus, the energy contained in
the fast mode reaches at most the base of the chromosphere, and
most of it is reflected in the temperature minimum region. Since
oscillations of the magnetic field are associated primarily with
the fast mode, it is expected that no significant oscillations can be
observed above the temperature minimum height in the sunspot
umbra. The fraction of the energy of the driver that goes into the
fast or slow mode depends on its distance to the axis (i.e., incli-
nation of the magnetic field lines), its height in the atmosphere,
and the spectrum of k that it produces. It is of interest to perform
simulations to determine this fraction as a function of the size of
the magnetic structure and its field configuration.

8. CONCLUSIONS

In this paper we have considered linear oscillations in a rather
realistic sunspot-like magnetic field structure. The oscillations
are excited by a periodic driver localized in space with a period
of 10 s. In addition, the temporal evolution of an instantaneous
pressure pulse has been inspected. Different processes that affect
the direction of wave propagation and mode transformation are
discussed separately, based on a simplemodel ofmagnetoacoustic
modes in a homogeneous atmosphere. We find that simple quali-

tative arguments concerning the direction of the mode propaga-
tion in an anisotropic medium and wave refraction agree rather
well with results from numerical simulations. This gives addi-
tional proofs of the results of the numerical solution.
Getting all these ingredients together allows us to make some

important conclusions:

1. Since in an anisotropic medium the directions of the phase
and group velocities do not generally coincide, the fast and slow
modes generated by the same driver always propagate in dif-
ferent directions in the x-z plane, understanding as the direction
of propagation that of vg.
2. Given a magnetic structure, the directions of vg for the fast

and slowmodes can be estimated if we know the values of cS, vA,
and  . The slowmode is always guided along the magnetic field
lines, except at the region in which vA � cS , where it deviates in
a direction that depends on the value of the angle betweenB0 and
k. The fast-mode direction of propagation is that of k, inde-
pendent of the magnetic field inclination. The exception is in the
region in which vA � cS , where it makes an angle with k, de-
pending on the inclination of B0 with respect to k (eq. [19]).
3. The fast mode experiences refraction due to the gradients

of vA. The height for complete reflection is expected to lie high in
the atmosphere in a region where vA starts to be much larger than
cS. In the model sunspot considered in this paper, this height is
located at about 600–1000 km; that is, at the base of the chro-
mosphere. If horizontal gradients of vA are present, waves refract-
ing to the left are separated from waves refracting to the right by
the :vA line. The height for complete reflection depends on the
angle between :vA and k.
4. A periodic driver located in the region in which vA < cS

gives rise to fast and slow magnetoacoustic modes. The partic-
ular set of modes that are generated depends on the horizontal
shape of the driver (taken to be a Gaussian profile in the simu-
lations considered here). Each Fourier component of the pulse
experiences a different transformation at the vA ¼ cS line, ac-
cording to its particular value of kx.
5. After the mode conversion at the vA ¼ cS layer, the fast

mode is reflected back to the photosphere, while the slow mode
is guided along the magnetic field lines up to the chromosphere.
This behavior is similar for waves with different periods gen-
erated at different distances from the sunspot axis. Thus, only
some part of the energy of the pulse is transported to the upper
atmosphere. An important part of the energy is returned back to
the photosphere by the fast mode. This makes the mechanism of
energy transport by waves ineffective.
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and to the Solar and Magnetospheric MHD Theory Group at the
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tially supported by the Spanish Ministerio de Educación y
Ciencia through project AYA2004-05792.
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