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ABSTRACT

Twenty-one centimeter tomography is emerging as a powerful tool to explore the reionization epoch and cosmo-
logical parameters, but it will only be as good as our ability to accurately model and remove astrophysical foreground
contamination. Previous treatments of this problem have focused on the angular structure of the signal and foregrounds
and what can be achieved with limited spectral resolution (channel widths in the 1 MHz range). In this paper we
introduce and evaluate a ‘‘blind’’ method to extract the multifrequency 21 cm signal by taking advantage of the smooth
frequency structure of the Galactic and extragalactic foregrounds. We find that 21 cm tomography is typically limited
by foregrounds on scales of kT1 h Mpc�1 and is limited by noise on scales of k 31 h Mpc�1, provided that the
experimental channel width can be made substantially smaller than 0.1 MHz. Our results show that this approach is
quite promising even for scenarios with rather extreme contamination from point sources and diffuse Galactic emis-
sion, which bodes well for upcoming experiments such as LOFAR, MWA, PAST, and SKA.

Subject headinggs: cosmology: theory — diffuse radiation — ISM: atoms — methods: analytical —
methods: data analysis — radio lines: general

Online material: color figures

1. INTRODUCTION

Twenty-one centimeter tomography is one of the most prom-
ising cosmological probes, with the potential to complement and
perhaps ultimately eclipse the cosmological parameter constraints
from the cosmic microwave background (CMB; Bowman et al.
2006; McQuinn et al. 2006). It is also a unique probe of the epoch
of reionization, which is now one of the least understood aspects
of modern cosmology. There are various techniques to explore
the epoch of reionization at 5 < z < 20. Apart from the CMB
(Holder et al. 2003; Knox 2003; Kogut et al. 2003; Santos et al.
2003), radio astronomical measurement of 21 cm radiation from
neutral hydrogen has been shown theoretically to be a powerful
tool to study this period (Madau et al. 1997; Tozzi et al. 2000).
Lots of work has been done in recent years on various theoreti-
cal and experimental aspects of 21 cm radiation (e.g., Barkana
& Loeb 2005b; Carilli et al. 2002, 2004; Ciardi &Madau 2003;
Di Matteo et al. 2002, 2004; Furlanetto et al. 2004a, 2004b;
Gnedin & Shaver 2004; Iliev et al. 2002, 2003; Loeb &
Zaldarriaga 2004; McQuinn et al. 2006; Morales 2005; Oh &
Mack 2003; Pen et al. 2004; Santos et al. 2005; Shaver et al.
1999; Wyithe & Loeb 2004a, 2004b; Zaldarriaga et al. 2004).

However, this 21 cm tomography technique will only be as
good as our ability to accurately model and remove astrophysical
foreground contamination, since the high-redshift signal one is
looking for is quite small and can be easily swamped by fore-

ground emission from our galaxy or others. With much effort
going into upcoming experiments such as theMileuraWide-Field
Array (MWA),1 the Low Frequency Array (LOFAR; Röttgering
et al. 2003),2 the Primeval Structure Telescope (PAST),3 and
the Square Kilometer Array (SKA),4 which are aimed at gathering
redshifted 21 cm signal from the sky and probing the epoch of
reionization, it is therefore timely to study the foreground problem
in detail.

Although 21 cm foregrounds have been discussed in some pre-
vious papers (e.g., DiMatteo et al. 2002, 2004; Morales & Hewitt
2004; Oh & Mack 2003; Santos et al. 2005; Zaldarriaga et al.
2004), the questions on how to remove foregrounds and noise
from observations of the 21 cm signal, how well it can be done,
and how reliable it is are still wide open. Previous papers have
focused on the angular power spectrum of the signal, usually as-
suming a rather limited spectral resolution (Di Matteo et al. 2002,
2004; Oh & Mack 2003; Santos et al. 2005; Zaldarriaga et al.
2004). In this paper, we develop a method to remove the fore-
grounds along the line of sight, taking advantage of the fact that
most astrophysical contaminants have much smoother frequency

A

1 See http://web.haystack.mit.edu/MWA/MWA.html.
2 See http://www.lofar.org.
3 See http://astrophysics.phys.cmu.edu/~past.
4 See http://www.skatelescope.org.
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spectra than the cosmological signal one is looking for. The two
approaches are complementary, and we argue that they are best
used in combination: our technique can be used both to identify
point sources and other highly contaminated angular regions to
be discarded and to clean out residual contamination from those
angular regions that are not discarded. This multifrequency ap-
proach is more powerful here than for typical CMB applications
(Bennett et al. 2003; Tegmark 1998; Tegmark et al. 2003) be-
cause of the potentially much better spectral resolution and the
dramatically oscillating 21 cm signal compared with smooth fore-
grounds along the frequency direction.

In this paper, we describe themethod for removing foregrounds
in frequency space, show examples of using this method in dif-
ferent scenarios, and discuss its promising applications for future
experiments. In x 2, we introduce the reionizationmodel that we
use throughout the text, then give a brief overview of the 21 cm
emission/absorption and computational formalism on how we
calculate the 21 cm angular power spectrum in l-space, projected
one-dimensional (1D) and two-dimensional (2D) power spectra
in k-space, and the simulated 1D frequency spectrum in real space.
In x 3, we describe our foreground-removing strategy, and we also
show the foregroundmodel we use in our calculations. In x 4 we
give several applications of our method under different assump-
tions about foregrounds and noise. We summarize our results in
x 5.

2. REIONIZATION MODEL AND FORMALISM

The reionization model we use throughout this paper is from
Haiman & Holder (2003) and Santos et al. (2003), shown as the
solid curve in Figure 3 in Santos et al. (2003). Although the most
recent results from theWilkinson Microwave Anisotropy Probe
(WMAP ; Spergel et al. 2006) favor a lower optical depth, the
results of this paper are rather insensitive to the detailed choice
of the reionization model and associated assumptions, since we
are focused on foregrounds rather than on the cosmological
21 cm signal. For more information about various reionization
models, see, for example, Haiman & Holder (2003), Holder et al.
(2003), and Santos et al. (2003).

Below we give a brief overview of the 21 cm emission power
spectrum and our calculational method. The detailed information
on 21 cm radiation (emission/absorption) phenomena can be
found in the literature (e.g., Madau et al. 1997; Santos et al. 2005;
Shaver et al. 1999; Tozzi et al. 2000; Zaldarriaga et al. 2004).

2.1. Three-dimensional Power Spectrum

The differential antenna temperature observed at Earth between
the neutral hydrogen patch and the CMB can be approximated
as (Shaver et al. 1999; Tozzi et al. 2000)

�Tb � 0:016 Kð Þ 1
h
(1þ � )(1� x)

�bh
2

0:02

1þ z

10

0:3

�m

� �1=2
; ð1Þ

where � ¼ �/�̄� 1 is the fluctuation of the density field. We
write the ionization fraction x as a sum of two terms (Santos et al.
2003),

x ¼ xe(1þ �xe ); ð2Þ

where xe is the average ionization fraction and �xe is the fluctua-
tion of the ionization fraction across the sky. Thus, the ionization
fraction x is not only a function of redshift, but also dependent on
its position in the sky.

Assuming �T1 and �xeT1 and neglecting all second- and
higher order terms, we obtain the three-dimensional (3D) power
spectrum for 21 cm emission,

P3D(k; z) ¼ (0:016 K)2
1

h2
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10

0:3
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; (1� 2xe þ x2e þ b2e�k 2R2

x2e )Pmatter(k); ð3Þ

where Pmatter (k) is the matter power spectrum. The power spec-
trum for the ionized fraction P�xe (k) is defined as in Santos et al.
(2003),

P�xe (k) ¼ b2Pmatter(k)e
�k 2R2

; ð4Þ

where b is the mean bias weighted by the different halo prop-
erties. Themean radiusR of the ionized patches in H ii regions is
modeled as

R ¼ 1

1� xe

� �1=3
Rp; ð5Þ

where Rp is the comoving size of the fundamental patch, with
Rp � 100 kpc (Santos et al. 2003).
We assume a cosmological concordance model (Seljak et al.

2005; Spergel et al. 2003; Tegmark et al. 2004; �k ¼ 0, �� ¼
0:71, �b ¼ 0:047, h ¼ 0:72, ns ¼ 0:99, �8 ¼ 0:9) throughout
our calculations.

2.2. Projected 1D Power Spectra

The 21 cm signal changes with redshift for two separate rea-
sons, one slow and one fast:

1. The average properties of the universe (x, Tk , Ts , etc.)
evolve on a timescale of �z � 1.
2. The local properties of the universe change on much

smaller scales of�z, corresponding to the sizes and separations
between ionized regions.

Across a very small redshift range z0 ��z< z< z0 þ�z, where
�z< 1, we make the approximation of ignoring the former and
including only the latter, approximating parameters like x, Tk , and
Ts by their values at z0. This enables us to linearize the relations
between frequency �, redshift z, and comoving radial distance D.
If we make the above-mentioned approximation and ignoring

redshift space distortions, the 21 cm signal near a given z0 has an
isotropic 3D power spectrum P3D that we can project into 1D
(radial) power spectra P1D(k,z0) (Hui et al. 1999; Peacock 1999):

P1D(k; z � z0) ¼
1

2�

Z 1

k

P3D(k
0; z � z0)k

0 dk 0: ð6Þ

Figure 1 shows the line-of-sight 1D 21 cm emission power
spectra for the fiducial reionization model at different reioniza-
tion epochs. For comparison, we also plot the power spectrum
for the neutral medium at x ¼ 8:09 (thick solid line).

2.3. Simulated Signal in Real Space from 1D Power Spectrum

We generate and analyze our simulations with fast Fourier
transforms (FFTs). The simulated signal in real space in the region
0 < x < L is

f (x) ¼ 1ffiffiffiffi
N

p
XN�1

q¼0

Aq cos
2�x

L
q

� �
þ Bq sin

2�x

L
q

� �� �
; ð7Þ
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where Aq and Bq are Gaussian random variables with zero
mean and standard deviations�Aq ¼ �Bq ¼ P1D(k; z0)/2½ �1=2 ¼
P1D(2�q/L; z0)/2½ �1=2, and N is chosen to be a large enough in-
teger that all information from P1D(k) is included in the sum-
mation (kmax ¼ 2�N/L). The box size L should be small enough
that the range of L satisfies �zT1.

Figure 2 shows our simulated 21 cm signal versus frequency
around 155 MHz, corresponding to an epoch around redshift
z � 8:09. If we plotted the observed signal in the relevant fre-
quency range, the expected contribution from foregrounds
would lie far above the cosmological signal shown in Figure 2.
The key to doing 21 cm cosmology is, therefore, removing fore-
grounds using multifrequency information, as emphasized by,
for example, Zaldarriaga et al. (2004), and we now turn to this
subject.

3. METHOD FOR FOREGROUND REMOVAL
IN FREQUENCY SPACE

Because of its small frequency cross-correlations, the 21 cm
signal oscillates dramatically along the frequency direction. The
foregrounds, on the other hand, are generally quite smooth over
the short frequency range we consider. This slowly varying nature
of the foregrounds compared to the signal is a great advantage
when removing them (Gnedin & Shaver 2004; McQuinn et al.
2006; Morales et al. 2006), and it is the main reason that our
foreground-removalmethodworks sowell. Ourmethod described
here is insensitive to the reionization model and the redshift range
we choose, since we are focused on the foregrounds rather than the
cosmological 21 cm signal.

3.1. Foreground Removal Method

Our basic approach is to subtract foregrounds separately in
each angular direction in the sky by fitting their total intensity
dependence on frequency by a log-log polynomial. Note that since
we are fitting the total foreground spectrum separately pixel by
pixel (fitting not only for the amplitude, but also for the spectral
index and the running of the spectral index), we are unaffected
by the possible complication of huge variations of the foreground

spectral index across the sky. (If the foregrounds lacked both fre-
quency coherence and spatial coherence, i.e., fluctuated randomly
with both frequency and position, then we would be unable to
identify and remove them and could merely average them down,
as we do with detector noise.)

There are two separate steps in our analysis: (1) simulation
and (2) cleaning. We treat them as completely independent. In
other words, our cleaning algorithm is ‘‘blind,’’ containing no
information about the foreground and noise model used in the
simulation step. It is entirely specified by the single integer m,
which gives the order of the log-log fitting polynomial.

In the simulation step, we simulate for each pixel the total
observed frequency spectrum yi at n different log-frequencies
xi ¼ log (�i), i ¼ 1; : : : ; n. This simulated total signal yi ¼
log (I i21 cm þ I isyn þ I iA þ I ips þ I idet) includes 21 cm signal I i21 cm,
synchrotron emission foreground I isyn, free-free emission fore-
ground I iA, point-source foreground I ips, and detector noise I idet.
We test a variety of different assumptions for foregrounds and
noise in this step.

Then we group the yi into an n-dimensional vector y and
group the xi and their powers into an n ; m matrix X so that the
data can be modeled as

y ¼ Xaþ n; ð8Þ

where the m-dimensional parameter vector a parameterizes the
foreground contributions. It is what we need to find out in the
cleaning step. In equation (8), n is the part left in the total signal
that cannot be fitted by the parameters in a, including the con-
tributions from signal, detector noise, and residual foregrounds.

In all our calculations throughout this paper, we take this fitting
polynomial to be quadratic; that is, we fit the total foregrounds
as a single running power law. Equivalently, we fit the log in-
tensity of the foreground as log I ¼ a3 þ a2 log � þ a1( log �)

2.
That is to say, the number of the fitting parameter in our compu-
tation is always m ¼ 3. We found that this improved noticeably
over m ¼ 2, whereas increasing to m ¼ 4 gave essentially no
further improvement.

Fig. 2.—Simulated 21 cm signal in frequency space corresponding to z � 8:09
and xe � 0:83.

Fig. 1.—Line-of-sight 1D 21 cm power spectra at different redshifts and
ionization fractions. The thick solid line indicates the power spectrum for the
neutral intergalactic medium (IGM) at redshift 8.09.
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In the cleaning step, we find our best-fit parameter vector a by
minimizing �2 ¼ ( y� Xa)tN�1( y� Xa), obtaining (Tegmark
1997)

a ¼ X tN�1X
� ��1

X tN�1y; ð9Þ

whereN is the covariance matrix of the contributions from the de-
tector noise and the 21 cm signal. We then subtract the total fitted
foreground contribution Xa from the simulated measurement
vector, thus obtaining what we will refer to as the cleaned signal y.

Although this cleaning technique is only optimal if N is known
and the contributions from noise and 21 cm signals are Gaussian
(Tegmark 1997), we use equation (9) anyway and quantify the
residual noise using our simulations. Since equation (9) mini-
mizes the rms residual even in the presence of non-Gaussianity
(Tegmark 1997), it is a robust general-purpose fit that does not
require detailed foreground or signal modeling. We simply set
N ¼ I, the identity matrix, which will be essentially optimal if
white detector noise dominates. If desired, this can be further
improved bymodeling the foreground power spectrum found in
real data and iterating.

Since the cleaning step uses a single polynomial in log-log
space, it cannot fit exactly a simulation including detector noise
or more than one foreground component (since adding the ex-
ponential of two polynomials does not give the exponential of a
polynomial). We will see that this simple cleaning algorithm is
nonetheless very successful, able to fit any of our foreground
models well over the limited frequency range that is relevant.

3.2. Foreground and Detector Noise Models

The foregrounds we consider in this paper include Galactic
synchrotron emission, Galactic free-free (thermal) emission, and
extragalactic point sources. For more information on models of
foregrounds in the 100 MHz range, please see, for example,
Di Matteo et al. (2002, 2004), Haslam et al. (1982), Haverkorn
et al. (2003), Morales & Hewitt (2004), Oh & Mack (2003),
Platania et al. (2003), Santos et al. (2005), and Shaver et al. (1999).
As emphasized above, the foreground models we describe here
are used only in our simulation step, not for the cleaning process.

3.2.1. Galactic Synchrotron Radiation

For Galactic synchrotron emission, which probably causes
most contamination of all foregrounds (perhaps of order 70% at
150 MHz; Platania et al. 2003; Shaver et al. 1999), we assume
its intensity to be a running power law in frequency,

Isyn ¼ Asyn

�

��

� ���syn���syn log �=��ð Þ
; ð10Þ

with a spectral index �syn ¼ 2:8 (Tegmark et al. 2000) and a
spectral ‘‘running’’ index��syn ¼ 0:1 (Haverkorn et al. 2003;
Platania et al. 2003; Shaver et al. 1999; Tegmark et al. 2000).
Here �� � 150MHz.We assume the amplitude of the synchrotron
foreground to beAsyn ¼ 335:4 K, an extrapolation fromHaverkorn
et al. (2003) and Tegmark et al. (2000). We also explore other
normalizations that are Asyn orders of magnitude higher than the
value we define here in our calculations. Similarly, we try other
values of the spectral index and spectral running index in the
calculation to test the robustness of our method. We discuss the
details in x 4.

3.2.2. Galactic Free-Free Emission

We model the Galactic free-free emission (which might con-
tribute a contamination of order 1% at 150 MHz; Shaver et al.

1999) as a running power law as well (Haverkorn et al. 2003;
Platania et al. 2003; Tegmark et al. 2000):

IA ¼ AA
�

��

� ���A���A log �=��ð Þ
; ð11Þ

where�A ¼ 2:15,��A ¼ 0:01, and AA ¼ 33:5K, extrapolated
from Haverkorn et al. (2003) and Tegmark et al. (2000).

3.2.3. Extragalactic Point Sources

Point sources have been estimated to cause about 30% of the
contamination at 150MHz (Shaver et al. 1999) and are typically
less smooth in frequency than the Galactic foregrounds. When
looking in a given direction, we are observing the same point
sources as we change frequency, so there are not small-scale
fluctuations in the same sense as when we change observing
directions.5 A serious complication compared to the Galactic
synchrotron and free-free cases is that when we observe many
point sources in a pixel, they can each have quite different spectral
indices, possibly making their combined intensity a quite com-
plicated function of frequency.
One approach would be to model this complicated function

as a running power law over the narrow frequency range involved,
just as we did for the synchrotron and free-free foregrounds:

Ips ¼ Aps

Scut

mJy

� �� �

��

� ���ps���ps log �=��ð Þ
; ð12Þ

where�ps ¼ 2:81,��ps ¼ 0:25, and � ¼ 0:125 (Tegmark et al.
2000).
However, we wish to be as conservative as possible in this

paper, and we therefore adopt a more complicated point source
model in our simulations. We therefore simulate a large number
of random point sources i ¼ 1; : : : in the pixel that we are con-
sidering and sum their intensity contributions in units of kelvins:

Ips ¼
dB

dT

� ��1

��1
sky

X
i

S �
i

150 MHz

�

� �� i

� hIpsi; ð13Þ

where

hIpsi ¼
dB

dT

� ��1Z Scut

0

S
dN

dS
dS

Z
150

�

� ��
f (�) d� ð14Þ

is the average value of the point-source foreground intensity.
The conversion factor dB/dT ¼ 6:9 ; 105 mJy K�1. The as-
sumed sky area per pixel is approximately �sky ¼ 12 arcmin2.
In equation (13), S�

i is the flux of the ith point source at 150MHz.
It is generated randomly from the source count distribution
dN/dS ¼ 4(S /1 Jy)�1:75 (Di Matteo et al. 2004), which is trun-
cated at a maximum flux Smax ¼ Scut ¼ 0:1 mJy, above which
we assume that point sources can be detected and their pixels

5 There is, however, the subtle effect of off-beam point sources dimming
toward higher frequencies because the beam gets narrower (Oh & Mack 2003;
Zaldarriaga et al. 2004). For the narrow frequency intervals �ln � that we are
considering, this effect will be around the percent level for individual sources, in
the same ballpark as the intensity change due to the frequency dependence of the
emission mechanism. This means that it will not imprint sharp spectral features
in the total foreground emission and should be well fitted by our blind cleaning
algorithm. We have not included this complication in the present analysis; it
would be worth incorporating it in a more detailed foreground analysis, par-
ticularly in one including explicit modeling of the sky pixelization.
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discarded. In other words, when we talk about the contamina-
tion from point sources below, we refer only to the contribution
from unresolved point sources. To avoid having to generate in-
finitely many point sources, we also truncated the distribution
at a minimum flux Smin ¼ 10�3 mJy, since we find that the total
flux contribution has converged by then.We generate�i, the spec-
tral index of the ith point source, randomly from the Gaussian
distribution

f (�) ¼ 1ffiffiffiffiffiffiffiffiffi
(2�)

p
��

exp � (� � �0)
2

2�2
�

� �
; ð15Þ

with the spectral index � in the range of ½�0 ���; �0 þ���,
where �� ¼ 5�� . To be conservative, we allow the spectral
index to vary in a fairly large region, �� ¼ 10, through our
calculations.

3.2.4. Detector Noise

We treat detector noise as white noise. In the Rayleigh-Jeans
limit, the rms detector noise in a pixel can be approximated as

�T ¼ k2

2kB
B ¼ k2

2kB

S

A
; ð16Þ

where kB is the Boltzmann constant and k is the redshifted
wavelength of 21 cm emission. The specific brightness B is
related to the point-source sensitivity S by dividing it with the
pixel area A.

At redshift 8.47, � ¼ 150 MHz, k ¼ 2m, with the LOFAR
virtual core configuration,6 for a 5A2 pixel with 4MHz bandpass
and 1 hr integration, the sensitivity S is approximately 0.17mJy,
and from equation (16) we get

�LOFAR
T ¼ 108 mKð Þ 4 MHz

��

� �0:5
1 hr

t

� �0:5
; ð17Þ

where�� is the channel width and t is the total integration time.
Similarly, for the MWA experiment,7 a 4A6 pixel with 32 MHz
bandpass and 1 hr integration has a point-source sensitivity of
S ¼ 0:27 mJy, so we get the MWA detector noise of

�MWA
T ¼ 218 mKð Þ 32 MHz

��

� �0:5
1 hr

t

� �0:5
: ð18Þ

We should mention that although at 4 MHz bandwidth, the
sensitivity for MWA is worse than that for LOFAR, MWA has a
larger bandpass and field of view. This larger field of view leads
to vastly more pixels, which is an advantage for foreground re-
moval, as we will see in later sections. The detector thermal noise
is only one of the many concerns in the experiment, such as
calibration, systematics, etc. Thus, it should not be considered
as the only criterion to judge an experiment.

The 1D power spectrum of the detector noise can then be
written as

Pdet ¼ 2��2
T : ð19Þ

In our simulation, we consider two scenarios. One scenario as-
sumes a fiducial future experimentwithGaussian randomdetector
noise down to the �T ¼ 1mK level. The other scenario assumes
a currently achievable detector noise level of�200 mK. This is

based on equations (17) and (18) for the LOFAR and MWA
experiments, assuming 1000 hr of integration time and 4Y8 kHz
frequency resolutions, respectively.

4. RESULTS

As we showed previously in Figure 2, the signal wiggles
rapidly with frequency. This is the key advantage of removing
foregrounds in frequency space, since foregrounds are typically
relatively smooth functions of frequency.

We simulate the 21 cm signal as a Gaussian random field,
although in reality, the signal is of course highly non-Gaussian.
We make this Gaussianity approximation for simplicity, since
the key quantity that we are interested in (the power spectra of
the residual noise and foregrounds) depends mainly on the power
spectra of the signal, foregrounds, and noise, not on whether the
statistics are Gaussian or not.

4.1. Baseline Example 1: Long-Term Potential
(NoiseT Signal )

The results for the baseline example with noise much smaller
than the signal are shown in Figure 3. The top panel shows the
total contaminant in a pixel, including Galactic synchrotron ra-
diation, Galactic free-free emission, extragalactic point sources,
and detector noise with � ¼ 1 mK, which is the fiducial value
for a future-generation experiment. The foregrounds are modeled
as in the previous section, with parameters (given in the figure
caption) corresponding to a rather pessimistic assumption about
the foreground properties.

6 See http://www.lofar.org.
7 See http://web.haystack.mit.edu/MWA/MWA.html.

Fig. 3.—Spectrum in a single pixel before and after foreground cleaning. The
top panel shows the total contaminant signal, consisting of synchrotron radia-
tion (Asyn ¼ 335:4 K, �syn ¼ 2:8,��syn ¼ 0:1), free-free emission foreground
(AA ¼ 33:5 K, �A ¼ 2:15,��A ¼ 0:01), extragalactic point sources (�� ¼ 10),
and detector noise (� ¼ 1 mK). The middle panel has the cosmological 21 cm
signal added. The bottom panel shows the recovered 21 cm signal (dashed curve)
compared with the true simulated signal (solid curve) and the residual (recovered
minus simulated 21 cm signal; gray curve). The three horizontal black dashed lines
correspond to �0.004, 0, and 0.004 K, respectively. (Note the different vertical
axis limits.) The small-scale wiggles in the residual represent detector noise,
whereas the smoothed parabola-shaped component of the residual indicates the
error in the foreground fitting. [See the electronic edition of the Journal for a
color version of this figure.]
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The total foreground is so huge that the top panel looks quite
similar to the middle panel (which includes the 21 cm signal).
From the middle panel, we cannot really tell if there is any sig-
nature of 21 cm emission. However, the bottom panel shows that
the foregrounds can be effectively removed, with the residual (the
recovered 21 cm signal minus the input ‘‘true’’ signal) being more
than 5 orders of magnitude below the foregrounds in amplitude.

By transforming the detector noise and the residual from the
bottom panel of Figure 3 back to k-space, we are able to com-
pare themwith the 21 cm 1D power spectrum, shown in Figure 4.
Before foreground cleaning, the total contaminant (upper dot-
ted curve) is seen to dominate over the 21 cm power spectrum
(solid curve). The foreground power spectrum is seen to rise
toward the left, reflecting its rather smooth frequency dependence.
After foreground cleaning, the residual contaminant (gray dashed
curve) is significantly below the original contaminant, except on
scales of kT0:1 hMpc�1. The flat section of the residual power
spectrum for k k 1 h Mpc�1 is seen to correspond to detector
noise.

The three vertical lines in Figure 4 correspond to different min-
imum channel widths for different upcoming experiments. From
left to right, they are 0.1 MHz (fiducial), 8 kHz (for MWA8),
and 4 kHz (for LOFAR9). Information to the right of this min-
imum channel width line is lost, roughly corresponding to an ex-
ponential blow-up of the effective detector noise. In other words,
the effective detector noise goes much higher above the signal
to the right of those lines, so little information can be extracted
there. So in order to take advantage of our method of foreground
removal, the channel width needs to be small enough to reach
the noise-dominated region.

In other words, 21 cm tomography is limited mainly by fore-
grounds for kT1 h Mpc�1 and limited mainly by noise for
k 31 h Mpc�1. To take full advantage of their sensitivity by
pushing residual foregrounds down to the detector noise levels,
experiments should therefore be designed to have a channel width
substantially smaller than 0.1 MHz. Such small channel widths
are realistic and achievable for upcoming experiments, since the
analysis can now practically be done by dedicated high-speed
electronics, even if the software solution was not fast enough.
To test the robustness of our foreground cleaning technique,

we repeated the above analysis for a wide range of foreground
models with the same noise level. First we tested a suite of models
with only detector noise and synchrotron radiation, changing
the values of the parameters defined in equation (10). Most of the
results were similar to those shown in Figure 3. Increasing the
synchrotron amplitude parameter Asyn all the way up to a com-
pletely unrealistic value of 107 K had essentially no effect, be-
cause in this case the simulated spectrumhad the exact same shape
as the model for which we fitted in the cleaning step. Likewise,
changing the spectral index �syn over the extreme range�80 <
�syn < 20 had little effect. Complicating the synchrotron spec-
trum with a running of the running term ��rr

syn log
2 � /��ð Þ, so

that the intensity of the synchrotron foreground can be written as

Isyn ¼ Asyn

�

��

� ���syn���syn log �=��ð Þ��� rr
syn log2 �=��ð Þ

; ð20Þ

still caused a negligible increase of the residual as long as
j��rr

synj � 50. This is a reflection of the fact that over a fairly
narrow frequency range, even a more complicated function can
be accurately approximated by a parabola in log-log space; that
is, by the first three terms of its Taylor expansion.
Making variations around the baseline case of multiple fore-

grounds, we also tried numerous examples with either higher
foreground amplitudes, different spectral indices, or larger run-
ning spectral indices, again obtaining results similar to the ones
shown in Figure 3. For example, for the point-source foreground,
we tried different values for the parameter �� in equation (13),
from�� ¼ 0:2 up to�� ¼ 100.We found that as long as�� � 60
(a conservative cut), the residuals are rather insensitive to the
distribution of point-source spectral indices.
All our tests show that, as with astrophysically plausible

foreground amplitudes, the effectiveness of our simple ‘‘blind’’
cleaning method is almost independent of the number, shape,
and amplitude of relatively smooth foregrounds. The basic reason
for this robustness is easy to understand. As long as the total
foreground signal can be well approximated by our fitting func-
tion (a log-log parabola) over the small frequency interval in
question, then the main contribution to the residual will not be
the foregrounds, but the amplitude of this log-log parabola con-
tributed by random detector noise. Our numerical examples show
that the residual indeed does have roughly the shape of our fitting
function, not the shape of the main leading-order contribution
from residual foregrounds (the next term in their Taylor expan-
sion; i.e., a cubic term).

4.2. Baseline Example 2: Near Term Situation
(Noise 3 Signal )

The detector white noise we assumed in the previous example
is small in comparison to the signal, in which case we can sub-
tract the foreground easily for each pixel. Nevertheless, that level
of noise might not be achieved until future next-generation

Fig. 4.—One-dimensional power spectra of the 21 cm signal (solid curve),
the total contaminant from Fig. 3 (upper dotted curve), the residual contaminant
after foreground cleaning (dashed gray curve), and the detector noise alone
(lower dotted curve). The horizontal solid line shows the white noise power spec-
trum used for the detector noise simulation. The three vertical lines correspond to
the different channel widths for different experiments. From left to right, they are
0.1 MHz (fiducial; short-dashYlong-dashed line), 8 kHz (for MWA; dotYlong-
dashed line), and 4 kHz (for LOFAR; dotYshort-dashed gray line). [See the elec-
tronic edition of the Journal for a color version of this figure.]

8 See http://web.haystack.mit.edu /MWA/MWA.html.
9 See http://www.lofar.org.
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experiments. For upcoming experiments, as we showed in equa-
tions (17) and (18), the detector noise is far above the 21 cm
signal. In this section, we study the close-term case by assuming
a detector noise of � ¼ 200 mK, which is 200 times larger than
in the previous example, using the same baseline foregroundmodel
as in x 4.1.

One would expect that for each individual pixel, the huge
level of white noise would destroy much of the information
about the 21 cm signal and also obscure the frequency dependence
of the foregrounds,making themharder to fit and remove, and that
the residual would be noise-dominated. In this scenario, single-
pixel cleaning is not enough for our cleaning purposes, and
multiple pixels are needed to average down the noise and fit the
foregrounds. However, complications arise when processingmul-
tiple pixels. Different pixels come from different lines of sight,
so their 21 cm signals are either slightly different realizations or
completely independent realizations of equation (7), depending
on how far apart the pixels are from one another. Furthermore,
for pixels that are close to one another, they have slightly different
signals in general, but on large scales, the signals within these
pixels are more or less identical, while on small scales, the signals
are almost independent of signals in other pixels. The details of
this complication would probably best be treated via a detailed
3D numerical simulation, where thousands of pixels can be sim-
ulated and the signals from them can be tested. Since this is be-
yond the scope of this paper, we will simply illustrate the basic
effects by two extreme situations, which can also be applied to
numerically generated signals. We will see from the following
examples that our method for foreground cleaning still works
reasonably well.

4.2.1. Coherent Signal Approximation

For closely separated pixels, we make the crude assumption
that the line-of-sight 21 cm signals in these pixels are identical

(same phase and amplitude as in eq. [7]). This approximation
will simplify our calculation, yet the procedure of doing fore-
ground removal is similar to generally incoherent signals, as we
discuss in x 4.2.2.

Since the signals are coherent, the total signal for different
pixels is the summation of the same signal and different fore-
grounds and noise. We use the same method as described in x 4.1
to remove the foreground from the total signal along the line of
sight for each individual pixel. We then average all of them in
real space and obtain the averaged cleaned signal.

Figure 5 shows the results before and after cleaning. The top
and middle panels are plotted for a single pixel with 200 mK
noise. The noise wiggles fast on top of the foreground and domi-
nates the signal. It is impossible to tell the difference between
situations with and without 21 cm signal (top and middle panels).
The bottom panel shows the cleaned signal and residual by ap-
plying our method and combining 4000 such pixels. Although
both foregrounds and noise are at a level that is orders of mag-
nitude higher than the signal, the resulting cleaned signal still
captures the main features of the ‘‘true’’ signal and the residual
is well controlled.

This confirms that the foregrounds can still be removed ef-
fectively when the noise is orders of magnitude higher than the
signal. Our fitting method does not introduce additional contami-
nation to the signal, even when foregrounds with many different
spectral shapes are averaged together.

Figure 6 shows the k-space signal power spectrum compared
with foregrounds and noise power spectra for single-pixel and
residual power spectra from averaging 4000 pixels. Before clean-
ing, for each individual pixel, the signal is completely buried
under huge noise and foregrounds. After cleaning, the residual
(gray dot-dashed curve) is orders of magnitude below both the
signal and the original contaminants, except on very large scales.
Similarly to Figure 4, the plot suggests that we need a frequency

Fig. 5.—Same asFig. 3, butwith 200 times larger detector noise (� ¼ 200mK).
In the bottom panel, the recovered 21 cm signal (dashed curve) and the residual
(gray curve) are the results of averaging 4000 pixels. All other curves in the plot are
from a single pixel. [See the electronic edition of the Journal for a color version
of this figure.]

Fig. 6.—Same asFig. 4, butwith 200 times larger detector noise (� ¼ 200mK).
The coherent case residual contaminants (dot-dashed gray curve) are fast Fourier
transformed from the coherently averaged residual shown in Fig. 5 (gray curve).
The incoherent case residual contaminant (gray solid, dashed, and dotted curves)
are computed from incoherently averaging 40,000 pixels. The gray solid, dashed,
and dotted curves assume 1.7, 8.6, and 17.2 MHz bandwidths, respectively. [See
the electronic edition of the Journal for a color version of this figure.]
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resolution of substantially smaller than 0.1 MHz to take ad-
vantage of foreground removal sensitivity.

The number of pixels needed to average down the noise varies
sharply with the actual noise level. To achieve a similar level of
accuracy shown in Figure 5, for a noise level of �500 mK, we
would need approximately 20,000Y30,000 pixels. For a noise
level of �100 mK, we would need around 1000 pixels. If the
noise is about the same level as the signal, � ¼ 20 mK, we only
need 50Y100 pixels to adequately lower the noise.

When larger numbers of pixels get combined, several side
effects appear, such as the variation of spectral indices among
different pixels, signal and foreground angular correlation, over-
estimation of the sensitivity at small scales, etc. We will discuss
some of these issues a bit more in x 4.2.2. The best approach,
however, is to combine this method with angular approach and
remove the contaminants in three dimensions (McQuinn et al.
2006; Morales et al. 2006). Although this is beyond the scope of
the present paper, we hope to address this further in future work.

4.2.2. Incoherent Signals

For pixels that are far apart, the line-of-sight 21 cm signals in
these pixels are no longer the same. They have different phases
and amplitudes and therefore are more or less independent of
one another. Here we study the case in which all signals are com-
pletely independent. Compared to the case studied in x 4.2.1,
this case is the opposite extreme. Signals obtained from real ob-
servations will probably have a behavior intermediate between
these two extremes. By simulating such signals numerically, our
cleaning technique is likely to give residual contaminant levels
that are intermediate between those we find here for these two
extreme cases.

When the signals are incoherent, we still use the same method
to remove foregrounds from the total signal for each individual
pixel. However, instead of averaging them in real space, we FFT
the signal in each pixel to Fourier space to obtain the cleaned
power spectrum for each pixel. Then we average all individual
power from different pixels and get the final average cleaned power
spectrum.

Compared with averaging coherent signals in real space, av-
eraging incoherent signals in Fourier space requires a larger num-
ber of pixels to remove the foregrounds effectively. Figure 6
shows the true 21 cm power spectrum compared with residual
foregrounds and noise power spectra (gray solid, dashed, and
dotted curves), defined as the difference between the average
cleaned power spectrum and the true 21 cm power spectrum, from
incoherently averaging 40,000 pixels. The noise and foreground
levels are kept the same as in the previous coherent example.
Although we average 10 times more pixels here than for the co-
herent case, the residual contaminant is at a level higher than in
the previous case. However, the residual is still reasonable. On
most of the scales, the residual contaminant is less than 10% of
the signal. Also note in this case that the 21 cm power spectrum
is best measured for scales around k ¼ 0:1 h Mpc�1, another
consequence from incoherence averaging. In the previous two
examples, namely, low-noise and high-noise coherence signal
examples, we recovered the signal instead of the power spectrum.

The three different residual curves in the plot are computed
assuming 1.7 MHz (gray solid curve), 8.6 MHz (gray dashed
curve), and 17.2 MHz (gray dotted curve) bandwidths, respec-
tively. (We used the 1.7 MHz bandwidth for all previous cal-
culations and figures.) As the bandwidth increases, the residual
power decreased, especially for smaller values of k. That is to
say, a larger bandwidth will help with foreground removal at
large scales.

So the bottom line is that, for incoherent signals, our method
for foreground cleaning still works, yet its efficiency is reduced
due to the fact that the signals are independent. In this case, we
could consider increasing bandwidth, combining with angular
direction measurements, etc., to improve efficiency and remove
foregrounds effectively.

5. DISCUSSION

We have explored howwell foreground contamination can be
removed from a 21 cm tomography data cube by using frequency
dependence alone. We found that with realistic experimental
sensitivities, 21 cm tomography is limited mainly by foregrounds
for scales of kT1 h Mpc�1 and limited mainly by noise for
k 31 h Mpc�1, a result that is rather robust to changing the
foreground assumptions. In optimizing the design of upcoming
experiments, a useful rule of thumb is therefore to make the chan-
nel width substantially smaller than 0.1MHz, allowing one to take
full advantage of the detector sensitivity by pushing residual
foregrounds down to the noise level. Fortunately, attaining such
a narrow channel width is realistic for upcoming experiments,
where the analysis is all done by dedicated high-speed electronics.
We used a simple ‘‘blind’’ removal technique using no prior

information about the nature of the foregrounds, merely fitting
out a quadratic polynomial in log-log space for the frequency
dependence separately for each pixel in the sky. The basic reason
that thisworks sowell is that the foregrounds havemuch smoother
frequency spectra than the 21 cm signal.
Although highly effective, this frequency-based cleaning

should be viewed as merely one of three complementary fore-
ground countermeasures. First, bright point sources can be iden-
tified as strong positive outliers, and the corresponding sky pixels
can be discarded, since they constitute only a small fraction of
the total survey area. Second, after the frequency-based cleaning
step, noise and signal can be further distinguished by their dif-
ferent angular correlations, as described in Santos et al. (2005).
This angular approach will be particularly helpful for early 21 cm
experiments in which the signal-to-noise ratio is limited. The an-
gular and frequency-based approaches are therefore complemen-
tary, and the combination of the two will give the best cleaned
21 cm signal with which to study the ‘‘dark’’ epoch of reionization.
Although our results are quite encouraging for the prospects

of doing cosmology with 21 cm tomography, much work remains
to be done on the foreground problem, and we conclude by men-
tioning a few examples.
A key assumption of this paper is that the foregrounds are

dominated by emission mechanisms producing fairly smooth
spectra. The basis for this assumption is that typical atomic and
molecular transitions that can produce spectral lines correspond
to much higher frequencies than those relevant to 21 cm tomog-
raphy. One loophole that needs to be checked quantitatively is
the possible contribution of recombination lines from hydrogen
cascading down through very large energy quantum numbers
n � 107, although early estimates suggest that this is not a signifi-
cant contaminant (e.g., Oh & Mack 2003).
We performed our analysis on simulated data over a small

redshift range, limited by our linearization approximation. It is
clearly worthwhile to repeat our analysis with a proper hydro-
dynamic simulation of the 21 cm signal over the full relevant
redshift range. In this case, our three-parameter foreground fit
should be generalized to one that assumes that the foregrounds
are simple only locally in log-frequency space. An obvious gen-
eralization of our method would be to increase the order of the
log-log polynomial beyond 2. However, we effectively want
to high-pass filter the observed frequency spectrum to clean out
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foregrounds, and high-order polynomials can in principle spoil
this by having sharp localized features. A better generalization
of our method to long frequency baselines may therefore be either
a cubic spline in log-log space or a Fourier series expansion. Such
end-to-end simulations will also be a valuable tool for quantifying
how redshift space distortions (whereby the peculiar velocity of
the gas breaks the one-to-one correspondence between redshift
and frequency) can be exploited to separate the effects of the
matter power spectrum from the ‘‘gastrophysics’’ (Barkana &
Loeb 2005a). This becomes important especially for channel
widths of P0.1 MHz (Desjacques & Nusser 2004; Iliev et al.
2003).

In summary, the potential scientific return from 21 cm tomog-
raphy is enormous, both for understanding the reionization epoch
and for probing inflation and dark matter with precision mea-
surements of the small-scale power spectrum. Our calculations
strengthen the conclusion that foreground contamination will
not be a showstopper. The current situation is similar to the quest
for the cosmic microwave background in the 1980s in that the
cosmological signal has not yet been detected, but is better in
the sense that the amplitude of both signals and foregrounds are

approximately known, guaranteeing success if the engineering
challenges can be overcome.
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