This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy. Close this notification
The American Astronomical Society, find out more

Click here to close this overlay, or press the "Escape" key on your keyboard.

The American Astronomical Society (AAS), established in 1899 and based in Washington, DC, is the major organization of professional astronomers in North America. Its membership of about 7,000 individuals also includes physicists, mathematicians, geologists, engineers, and others whose research and educational interests lie within the broad spectrum of subjects comprising contemporary astronomy. The mission of the AAS is to enhance and share humanity's scientific understanding of the universe.

https://aas.org/

The Institute of Physics, find out more

Click here to close this overlay, or press the "Escape" key on your keyboard.

The Institute of Physics (IOP) is a leading scientific society promoting physics and bringing physicists together for the benefit of all. It has a worldwide membership of around 50 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policy makers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications.

https://www.iop.org

Resolving the Effects of Rotation in Altair with Long-Baseline Interferometry

, , , , , , , , , , and

© 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A.
, , Citation D. M. Peterson et al 2006 ApJ 636 1087

0004-637X/636/2/1087

Abstract

We report the successful fitting of a Roche model, with a surface temperature gradient following the von Zeipel gravity darkening law, to observations of Altair made with the Navy Prototype Optical Interferometer. We confirm the claim by Ohishi et al. that Altair displays an asymmetric intensity distribution due to rotation, the first such detection in an isolated star. Instrumental effects due to the high visible flux of this first magnitude star appear to be the limiting factor in the accuracy of this fit, which nevertheless indicates that Altair is rotating at 0.90 ± 0.02 of its breakup (angular) velocity. Our results are consistent with the apparent oblateness found by van Belle et al. and show that the true oblateness is significantly larger owing to an inclination of the rotational axis of ~64° to the line of sight. Of particular interest, we conclude that instead of being substantially evolved as indicated by its classification, A7 IV-V, Altair is only barely off the zero-age main sequence and represents a good example of the difficulties rotation can introduce in the interpretation of this part of the HR diagram.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1086/497981