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ABSTRACT

We determine the thermal radiation generated by a loss-of-equilibrium model for CMEs and eruptive solar flares.
The magnetic configuration of the model consists of an outward-moving flux rope with a vertical current sheet below
it. Reconnection at the sheet releases magnetic energy, some of which is converted into thermal energy that drives
chromospheric evaporation along the newly connected field lines exiting the current sheet. The thermal energy release
is calculated by assuming that all of the Poynting flux flowing into the reconnection region is eventually thermalized.
We find that the fraction of the released magnetic energy that goes into thermal energy depends on the inflow Alfvén
Mach number. The evolution of the temperatures and densities resulting from chromospheric evaporation is calcu-
lated using a simple evaporative cooling model. Using these temperatures and densities, we calculate simulated flare
light curves for TRACE, the SXTon Yohkoh, andGOES. We find that when the background magnetic field strength is
weak, the radiation emitted by the reconnected X-ray loops beneath a CME is faint. Additionally, it is possible to have
two CMEswith nearly the same trajectories and speeds that have a significant difference in the peak intensities of their
light curves. We also examine the relationship between the thermal energy release rate and the derivative of the soft
X-ray light curve and discuss the implications for the Neupert effect.

Subject headinggs: Sun: coronal mass ejections (CMEs) — Sun: flares

1. INTRODUCTION

In order to investigate the radiative outputs in flares and cor-
onal mass ejections (CMEs), we use a CME initiation model that
is characterized by a loss of equilibrium in a configuration con-
taining a flux rope (Forbes & Isenberg 1991; Forbes & Priest
1995). This loss of equilibrium is caused by a quasi-static evo-
lution of the surface magnetic field driven by convective motions
in the photosphere. After the eruption takes place, a current sheet
forms and fields begin to reconnect. Aswas done previously (Lin
& Forbes 2000), we assume that the reconnection rate is a pre-
scribed function; however, any given reconnection model can
easily be incorporated into this framework (Lin 2001).

There are several simplifying assumptions that are employed
so that the equations governing the loss of equilibrium of the flux
rope can be solved semianalytically. Themodel is two-dimensional,
with simply connected background fields produced by oppo-
sitely oriented line currents in the chromosphere. This boundary
condition allows for a substantial energy release (�8.6% of the
free energy stored) evenwhen reconnection is suppressed (Forbes
et al. 1994). Also, we assume that the radius of the flux rope is
small compared to the scale length of the system, and thus only
first-order terms in the radius are used (Forbes & Priest 1995).

In this study gravity is neglected for simplicity, even though it
can have a significant effect when the coronal field is weaker than
10 G or so (Reeves & Forbes 2005). The primary effects of grav-
ity are to increase the amount of energy that can be stored and to
decrease the speed of the CME (Lin 2004).

In the calculation of the dynamics of the eruption, we adhere
to the assumption of previous models that the flux rope is treated
as a projectile in order to determine its motion. Thus, the effects
of MHD waves generated by this motion are not taken into ac-
count (Lin & Forbes 2000). In contrast to previous work on this
model, we consider the effect of reconnection heating on the
eruption dynamics. We calculate this heating by assuming that
there is complete thermalization of the Poynting flux in the current

sheet; thus, the acceleration of the flux rope by outflow from the
reconnection region is ignored. The effect of outflow jets on the
flux rope motion could be treated by incorporating reverse cur-
rent sections at the tips of the current sheet (Priest & Forbes
1992), but this would significantly add to the complexity of our
calculations with only a relatively small gain in accuracy.

Using the calculated thermal energy produced by reconnec-
tion, we model the evaporation and cooling of the plasma in the
reconnected loops below the CME and ultimately obtain simu-
lated light curves. We use a model for the evaporation and cool-
ing dynamics developed byCargill et al. (1995), which is powerful
because of its simplicity, especially when calculating the cool-
ing profiles of large numbers of loops (Reeves & Warren 2002).
It is limited, however, in that the conductive and radiative cool-
ing phases are assumed to be separate, and an empirical law is
used to relate the temperature and density in the radiative cooling
phase.

Other calculations of thermal energy and chromospheric evapo-
ration in flares have been performed. Yokoyama& Shibata (2001)
used a two-dimensional MHD simulation to determine the ther-
mal energy release due to magnetic reconnection and chromo-
spheric evaporation and conclude that the thermal energy release
rate is approximately linear in time. In contrast to the models we
base our work on, their simulation starts with the magnetic field
already in an open state, and they do not include a loss of equi-
librium initiation method. Hori et al. (1997, 1998) used sev-
eral one-dimensional hydrodynamic loop simulations to create
a ‘‘pseudo–two-dimensional’’ flare arcade and found that this
multiloop approach was better than a single loop at recreating the
observed soft X-ray emission (Hori et al. 1997) and Ca xix res-
onance line emission (Hori et al. 1998). The heating rate for the
loops in this ‘‘pseudo–two-dimensional’’ calculation was arbi-
trarily assumed to be a Gaussian in space and a step function in
time.

The outline of the paper is as follows. In x 2.1 we give the
mathematical form for the magnetic field configuration. In x 2.2
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we describe the energetics of the model, and in x 2.3 we describe
the calculation of the trajectories of the flux rope and the tips of
the current sheet. The Cargill cooling model is described in x 2.4,
and calculation of the initial conditions of the plasma in the re-
connected loops is detailed in x 2.5. The results and discussion
are given in x 3, and the conclusions are presented in x 4.

2. CALCULATIONS

2.1. Magnetic Field Model

Prior to the eruption of the CME, the system consists of two
line sources embedded in the chromosphere and a flux rope con-
taining a current I located at a distance h above the chromo-
sphere. The line sources are brought together quasi-statically,
allowing the system to evolve through a series of equilibria, until
a loss of equilibrium takes place, initiating the CME. After the
eruption, the field has the form previously employed by Lin &
Forbes (2000), shown in Figure 1. The line currents remain fixed
at a distance 2k apart. This distance is the separation at which
the loss of equilibrium occurs, and it is given by k ¼ 0:9695k0,
where 2k0 is the separation of the line sources at the point of
maximum current in the flux rope, a convenient normalization
point (Forbes & Priest 1995). A vertical current sheet connects
the flare loops at the bottom of the configuration with the field
lines surrounding the flux rope at the top. The bottom tip of the
current sheet is at a height p and the upper tip is at a height q. This
magnetic field is prescribed in complex notation by

By þ iBx ¼
2iA0k h2 þ k2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2 þ p2ð Þ � 2 þ q2ð Þ

p
� � 2 � k2
� �

� 2 þ h2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ p2
� �

k2 þ q2
� �q ; ð1Þ

where � ¼ xþ iy and A0 is the source field strength. This form
of the magnetic field gives rise to an expression for the vector
potential (see Lin 2001, Appendix A):
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where F and � are incomplete elliptic integrals of the first and
third kinds, respectively, HPQ ¼ ½(h2 � p2)(h2 � q2)�1=2, PQ ¼
( pþ q)/( p� q), and fp(z) ¼ ( p� iz)/( pþ iz). This expression
for A is a more compact form of the expression given in Lin &
Forbes (2000). The current in the flux rope is (Lin & Forbes
2000)

I ¼ ckA0

2�h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � p2ð Þ h2 � q2ð Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ p2
� �

k2 þ q2
� �q : ð3Þ

The above field has the property that A(x, 0) remains invariant
as h, p, and q are varied, so that the field is line-tied at the base.

2.2. Energetics

At any given time the total energy of the system is given by

Wmag þWKE þWth ¼ W0; ð4Þ

where Wmag is the free magnetic energy, Wth is the thermal en-
ergy, WKE is the kinetic energy of the flux rope, and W0 is the
initial energy in the system. Thus,

d

dt
WB þWKE þWthð Þ ¼ 0: ð5Þ

The rate of change of the kinetic energy of the flux rope is related
to its altitude, h, by

dWKE

dt
¼ d

dt

1

2
mḣ2

� �
¼ mḧḣ ¼ Fḣ; ð6Þ

where m is the mass of the flux rope and F is given by

F ¼ I

c
Bext

¼ A2
0k

2

2h�2 k2 þ p2
� �

k2 þ q2
� �

(
h2 � p2ð Þ h2 � q2ð Þ

2h2

�
k2 þ p2
� �

h2 � q2ð Þ þ k2 þ q2
� �

h2 � p2ð Þ
� �

k2 þ h2

)
: ð7Þ

Here Bext is the external field due to the field outside the flux
rope, which includes not only the sources at �k but also a sur-
face current at y ¼ 0 (see Lin & Forbes 2000; Forbes & Isenberg

Fig. 1.—Magnetic configuration for the model, after Lin & Forbes (2000).
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1991; Isenberg et al. 1993; Lin et al. 1998). Note that the field
due to the surface current is equivalent to the field of an image
current at a depth h below the chromosphere.

To calculate the other two terms in equation (5), we use

d

dt
¼ @

@h
ḣþ @

@p
ṗ; ð8Þ

where the first term represents changes due to the motion of the
flux rope, while the second represents those due to the recon-
nection of the current sheet. For the thermal energy,

@Wth

@h
ḣ ¼ 0; ð9Þ

since if p is constant, there is no reconnection and, therefore,
no heating. Thus,

dWth

dt
¼ @Wth

@p
ṗ: ð10Þ

Now, if we rewrite equation (5) holding h constant, we get

@Wmag

@t

���
h
þ @Wth

@p
ṗ ¼ 0: ð11Þ

Using equations (10) and (11) and the fact that

@Wmag

@t

���
h
¼ �S(t); ð12Þ

where S(t) is the integral of the Poynting flux along the current
sheet, the rate of change of the thermal energy is given by

dWth

dt
¼ S(t): ð13Þ

Combining equations (5), (6), (7), and (13), we write

dWmag

dt
¼ �A2

0k
2
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�
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� �

h2 � q2ð Þ þ k2 þ q2
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� �

k2 þ h2

)
ḣ

� S tð Þ: ð14Þ

This equation is just a statement of Poynting’s theorem for this
particular system.

In order to solve the differential equations for Wmag and Wth ,
we need to know their initial values. If we take tn to be the time
when the neutral point forms, Wth(tn) ¼ 0 since there is no cur-
rent sheet at this time. The magnetic energy at time tn is given by

W hn; Jnð Þ ¼ A0

�

� �2
J 2
n ln

2hn Jn

r0

� �
þ 1

2
J 2
n þ

1

4

	 

; ð15Þ

where Jn and hn are the flux rope current and height at tn , nor-
malized to their values at the maximum current point. The pa-
rameter r0 is the radius of the flux rope at the maximum current
point. This equation is found by integrating the forces on the flux
rope and making use of the approximation that the flux rope ra-
dius is given by r0 /J (for a detailed derivation see Forbes& Priest
1995).

To calculate the power dissipated in the flare loops, we need to
calculate the Poynting flux in the current sheet, namely,

S(t) ¼ c

2�
Ez(t)

Z q(t)

p(t)
By(0; y; t) dy; ð16Þ

where the magnetic field along the sheet is given by equation (1)
with x ¼ 0. The electric field Ez (t) can be taken outside the in-
tegral because it is uniform along the sheet. From Faraday’s law
Ez(t) ¼ �(1/c)@Acs /@t, where Acs is the magnitude of the vector
potential at the sheet at any given time.

To complete the model, we need to prescribe the rate of recon-
nection at the current sheet. Here we assume that it is given by

Ez ¼ MAVA 0; y0ð ÞBy 0; y0ð Þ=c; ð17Þ

where MA, the Mach number, is assumed to be a constant, y0 ¼
( pþ q)/2 is the midpoint of the current sheet, and VA is the
Alfvén speed at the midpoint. This assumed form for the recon-
nection rate is not the only choice, however. Other assumptions
based onSweet-Parker or Petschek theory are possible (Lin 2001),
but we use the form of equation (17) here in order to facilitate
comparison with the previous published findings.

Inserting equations (1) and (17) into equation (16) and cal-
culating the integral, we obtain

S tð Þ ¼ �8iMAA
3
0k
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2�4
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h2 þ k2
� �

pþ qð Þ

�
L2PQ � �q2=k2; q=p

� �
�� q2=k2; �sin�1 p=qð Þ; q=p

� �� �
k2 h2 þ k2
� �

p

þ 2ip h2 � q2ð Þ
h h2 þ k2
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pþ qð Þ

"
�

hþ pð Þ q� pð Þ
h� pð Þ qþ pð Þ ;

p� qð Þ
pþ qð Þ

� �

��
h� pð Þ q� pð Þ
hþ pð Þ qþ pð Þ ;

p� qð Þ
pþ qð Þ

� �#)
; ð18Þ

where K and F are complete and incomplete elliptic integrals of
the first kind, respectively, � is either a complete or incomplete
elliptic integral of the third kind (depending on the number of ar-
guments), LPQ ¼ ½(k2 þ p2)(k2 þ q2) �1=2, and p, q, and h are func-
tions of time.

2.3. Trajectories

Although previous versions of this model did not consider the
thermal energy generated by reconnection and evaporation, the
equations governing the evolution of p, q, and h as functions of
time remain unchanged when heating is included because only
the work done by the magnetic force on the flux rope affects the
trajectories. However, the total magnetic energy release is now
different than before because there is an additional component,
corresponding to the Poynting flux into the current sheet, that
must now be included. This component exists even if the flux
rope does not move since it arises only from the energy released
by the diminution of the current sheet as reconnection proceeds.
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The equation for q is derived from the condition that the tips of
the current sheet are null points, while the equation for p comes
from Faraday’s law and the function that prescribes the recon-
nection rate. The conservation of flux between the bottom of the
flux rope and the surface during the evolution of the system de-
termines I (and thus q since the two are related through eq. [3]).

Faraday’s law can be written as

Ez ¼ � 1

c

@Acs

@t
¼ � 1

c

@Acs

@h
ḣ; ð19Þ

where Acs ¼ A(0; p � y � q) is the magnitude of the vector po-
tential along the current sheet and ḣ ¼ dh/dt. In terms of partial
derivatives of Acs we obtain

Ez ¼ � ḣ

c

@Acs

@p
p0 þ @Acs

@q
q0 þ @Acs

@h

� �
; ð20Þ

where p0 ¼ dp/dh and q0 ¼ dq/dh.
Conservation of flux is implemented by requiring that the flux

remain constant at the bottom of the flux rope:

AR ¼ A(0; h� r) ¼ const; ð21Þ

where r is the radius of the flux rope at all times. Taking the total
derivative with respect to time on both sides of the above equa-
tion gives

@AR

@p
p0 þ @AR

@q
q0 þ @AR

@h
¼ 0: ð22Þ

Combining equations (20) and (22), we find expressions for p0

and q0:

p0 ¼
cEz=ḣþ @Acs=@h
� �

@AR=@q� @AR=@hð Þ @Acs=@qð Þ
@AR=@pð Þ @Acs=@qð Þ� @AR=@qð Þ @Acs=@pð Þ ;

ð23Þ

q0 ¼
@AR=@hð Þ @Acs=@pð Þ� cEz=ḣþ @Acs=@h

� �
@AR=@p

@AR=@pð Þ @Acs=@qð Þ� @AR=@qð Þ @Acs=@pð Þ ;

ð24Þ

where the electric field Ez is given by equation (17).
To determine the speed of the flux rope,we useNewton’s second

law applied to the mass, m, of the flux rope:

F ¼ m
d 2h

dt 2
; ð25Þ

where F is given by equation (7). Since d 2h /dt2 can be written as
ḣḣ0, with ḣ0 ¼ dḣ/dh, we set ḣ0 ¼ F /mḣ. We combine this ex-
pression with equations (23) and (24) to get expressions that are
functions of time:

dp

dt
¼ p0ḣ;

dq

dt
¼ q0ḣ;

dḣ

dt
¼ ḣ0ḣ;

dh

dt
¼ ḣ: ð26Þ

Thus, the original set of equations governing the dynamics of
the system, consisting of equations (1), (3), (7), (19), and (21),
are reduced to a set of equations describing the motion of the flux
rope and the dynamics of the current sheet.
The set of four differential equations given by equation (26),

along with equations (13) and (14), are solved numerically (us-
ing the Mathematica routine NDsolve) to find the trajectories of
the flux rope and the two ends of the current sheet (h, p, and q),
the velocity of the flux rope (ḣ), themagnetic energy stored in the
configuration (Wmag), and the thermal energy dissipated in the
current sheet (Wth ).

2.4. Loop Cooling Model

To model the cooling of the plasma in the loops, we use a
simplemodel based on that of Cargill et al. (1995), which has been
used previously to calculate the cooling in a multiloop postflare
arcade (Reeves & Warren 2002). This model assumes that the
cooling of the plasma is separated into a conductive cooling phase
followed by a radiative cooling phase. Cooling times are calcu-
lated for each of these phases, and the process with the shortest
cooling time dominates at that point in the cooling.
The conductive cooling phase includes the effect of chromo-

spheric evaporation whereby the flare heats chromospheric ma-
terial and causes it to expand rapidly up into the corona (see, for
example, Antiochos & Sturrock 1978). The Cargill et al. (1995)
model assumes that the pressure is constant in the loops as a func-
tion of time and that the temperature is given by

T (t þ dt) ¼ T (t) 1þ dt

�c

� ��2=7

; ð27Þ

where dt is the length of the time step, � c is the conductive cool-
ing time (given by 4 ; 1010nL/T 5=2), n is the electron density in
the loop, and L is the loop half-length. Since the pressure is as-
sumed constant in the loops, the density at the end of each time
step is given by

n(t þ dt) ¼ n(t)
T (t)

T (t þ dt)

	 

: ð28Þ

During the radiative cooling phase we assume that the tem-
perature in the loop is proportional to the square of the density.
This assumption is the same as in Cargill et al. (1995) and Reeves
& Warren (2002), and it is an empirical relation derived from
hydrodynamic simulations. Thus, the density at the end of each
time step is given by

n(t þ dt) ¼ n(t)
T (t þ dt)

T (t)

	 
1=2
ð29Þ

and the corresponding temperature by

T t þ dtð Þ ¼ T tð Þ 1þ � dtð Þ2= 2 2��ð Þ�3½ �; ð30Þ

where� is a function of Tand is related to the radiative loss func-
tion by Prad ¼ �T � . [The form of � (T ) we use here is a custom
function, a full description of which can be found in Reeves &
Warren 2002.] Here � is a function of � and is inversely pro-
portional to the radiative cooling time, �r ¼ 3kBT

1�� /n�. More
information on these functions and their derivations can be found
in the Appendix of Cargill et al. (1995).
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2.5. Calculation of Initial Plasma Conditions in the Loops

As described above, the cooling model requires an initial tem-
perature and density to be specified for each loop. The initial
density in the loop depends on the form chosen for the coronal
atmosphere. The Lin& Forbes (2000)model used an atmosphere
that falls off exponentially with height, but recently Lin (2002)
modified those calculations to incorporate the more realistic at-
mosphere of Sittler & Guhathakurta (1999), which is based on
observations from Skylab and Ulysses. In this atmosphere the
density in the corona falls off exponentially near the surface of
the Sun and as 1/r2 at large distances from the Sun. This density
model provides separate descriptions for polar coronal holes and
closed field regions at the equator. Here we use the coronal hole
model as it best approximates the open field conditions (i.e., the
transient coronal holes) created at the onset of a CME. For each
loop an initial density is determined by finding the height of the
loop apex and calculating the coronal density at that height ac-
cording to the atmospheric model described above.

In order to determine the initial temperature in each loop, we
first calculate the initial loop pressure by relating the Poynting
flux into the current sheet to the thermal energy input rate:

3

2

Z
loop

P vnj j dl ¼ cE0

2�

Z q

p

By dy ¼ S(t); ð31Þ

where P is the gas pressure along the loop and vn is the normal
component of the apparent flow through the separatrix field line
(the line that maps to the Y-point at the lower tip of the current
sheet). The integral on the left-hand side is a path integral along
the length of the loop from the base to the top.

The apparent velocity of the flow normal to the reconnected
field line, vn, is the difference between the convective velocity of
the plasma, vconv, and the velocity of the separatrix, vsep, in the
rest frame of the Sun. In two dimensions the magnitudes of these
velocities can be expressed as

vconv ¼ � @A

@t

1

:Aj j

� �
A¼A0

;

vsep ¼ � @A

@t
þ cE0

� �
1

:Aj j

	 

A¼A0

: ð32Þ

The first equation comes from the fact that dA/dt ¼ @A/@t þ
vconv = :A ¼ 0 along a field line frozen to the plasma, while the
second equation comes from the fact that dA0 /dt ¼ @A0 /@t þ
vsep =:A0 ¼ cE0 at the separatrix. Thus, vn is given by

vnj j ¼ vconv � vsep
�� ��¼ c

E0j j
Bj j

; ð33Þ

since :Aj j ¼ B in two dimensions. If we assume that the pres-
sure is uniform along the loop, P can be taken out of the integral
in equation (31). Solving for P then gives

P ¼
R q

p
By dy

3�
R
loop

dl=B
: ð34Þ

The initial density determined from the coronal atmospheric
model, together with the pressure in the loop and the ideal gas
law, gives the initial temperature in the loop. Using these inputs
along with the Cargill cooling model, we calculate the evolution

of the temperatures and densities as a function of time for each
loop in the reconnected arcade.

3. RESULTS AND DISCUSSION

We choose the physical parameters of our simulations to be
commensurate with the observed properties of CMEs. For most
of the results described in this paper the following quantities
were used:

MA ¼ 0:025; k0 ¼ 2 ; 109 cm;

m ¼ 2:1 ; 1016 g; � ¼ 1:67 ; 10�16 g cm�3;

L ¼ 1010 cm;

where MA is the Alfvén Mach number at the midpoint of the
current sheet, � is the proton density at the base of the corona, k0

is the half-distance between the line sources at the maximum
current point, and m and L are the mass and length of the flux
rope. The length and mass of the flux rope are the same as in Lin
& Forbes (2000). We choose a value of � that is 100 times
smaller than that of Lin & Forbes (2000) because this value is
more consistent with the observed coronal density of the open
field structures created by the CME. Since decreasing the density
increases the ambient Alfvén speed, we have also adjusted the
value ofMA to match the values inferred from observation (e.g.,
Dere 1996; Yokoyama et al. 2001).

We use several average background magnetic field strengths
in order to investigate the effects of the background field on the
flux rope trajectories, energy release, and resulting light curves.
The background magnetic field is related to the flux in the photo-
spheric source regions and is given by B ¼ A0 /(�k0). We choose
values that range from 12 to 120 G.

The trajectories and flux rope velocities for the calculations
with background fields of 12 and 120 G are shown in Figure 2.
They are very similar in character to those found in Lin (2002),
even though we are using somewhat different physical parame-
ters. Lin (2002) and others (see, e.g., Forbes 2003) have assumed
that the inclusion of heating in this model would diminish the
flux rope kinetic energy and hence change the velocity and tra-
jectories. Although the production of thermal energy depletes the
stored magnetic energy, it does not affect the work done accel-
erating the flux rope. Thus, the trajectories of the flux rope and
the current sheet are unaffected by the inclusion of the thermal
energy term in the system of equations.

As shown in Lin (2002) and Figure 2, a decrease in the back-
ground field strength in this model causes the speed that the CME
reaches to decrease if all other parameters are kept the same. Con-
sequently, for the parameters we are using, the cases with high
background fields correspond to fast CMEs and lower fields cor-
respond to slowCMEs.We have examined several cases of vary-
ing background field strength in order to give a range of CME
speeds, including the 12 and 120 G background field cases shown
in Figure 2, which have CME speeds of 300 and 3000 km s�1,
respectively. Also considered, but not pictured in Figure 2, are
cases with 50 and 85 G background fields that have CME speeds
of about 1200 and 2100 km s�1, respectively. Thus, we can relate
our model results to observations that span the range of observed
CME speeds.

3.1. Energetics

The energy budget for this CME model is calculated and
shown in Figure 3 for the 12 and 120 G background cases. There
is more total energy in the system with the 120 G background
field, and a greater percentage of the total energy is released and
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Fig. 2.—Plots of the height of the flux rope, h, the top and bottom tips of the current sheet (q, p), and the velocity of the flux rope as a function of time. Panels (a)
and (b) show the trajectories for the strongest (120 G) and weakest (12 G) background fields, respectively. The inset in panel (b) is the height of the bottom tip of the
current sheet shown on an expanded scale. In all cases MA ¼ 0:025.



turned into kinetic and thermal energy than in the 12 G case. All
of the energy stored in the system is not released in the eruption,
however, so we must be careful to distinguish between the total
energy stored in the system and the energy that is released and
available for conversion into heat or work. In the cases where the
flux rope achieves escape velocity (as it does for the parameters
and background field strengths mentioned above), the energy
released (Wmag in Fig. 3) approaches an asymptotic value at long
times. In all four cases that were examined, the thermal energy
was 17%–20% of the released energy near this asymptotic limit.
This percentage depends on the reconnection rate, as well as the
mass of the flux rope.

The power associated with the thermal energy release is shown
in Figure 3c. The rate at which thermal energy is released is faster
for the case with the higher background field strength, and the
shape of the curve for this case is very reminiscent of stellar and
solar flare light curves. The weak background field case has a
much slower energy release rate, and the peak power is several
orders of magnitude smaller, indicating that flares associated
with CMEs fromweak magnetic field regions may be quite faint.
These results are not the same as those of Yokoyama & Shibata
(2001), who found that the energy release rate is a linear function
of time; however, they only model the reconnection process and
do not include the flux rope dynamics. Lin (2002) reached con-
clusions similar to ours regarding the power released in the flare,
but it should be noted that the power referred to in that paper was
the power associated with the work done on accelerating the flux
rope and did not include the thermal energy release.

The fraction of released energy that is converted into ther-
mal energy is affected by the value of MA used in this model, as

shown for three different cases in Figure 4. We plot the kinetic
energy and thermal energy for MA values of 0.1, 0.006, and
0.001, with a background field of 120 G and all of the other input
parameters the same as described at the beginning of x 3. AsMA

is decreased, the percentage of released energy that is converted
to thermal energy increases. In the bottom panel of Figure 4, the
reconnection rate is relatively fast (MA ¼ 0:1), and most of the
energy is converted into the motion of the flux rope, with only a
small fraction of the released energy converted into heat. In the
middle panel, whereMA ¼ 0:006, the distribution of energy into
kinetic and thermal energy is almost evenly split. When the re-
connection rate is very slow, as in the top panel of Figure 4 with
MA ¼ 0:001, the bulk of the released energy goes into heating
the flare plasma.When the reconnection rate is this slow, the flux
rope decelerates because of the magnetic tension that builds up
as the current sheet forms. This process causes the kinetic energy
to be converted back into magnetic energy that is associated with
the stretching of the sheet.

The results presented in Figure 4 are useful in illustrating the
effects of varying the parameterMA in ourmodel. In the limit that
MA ! 1, reconnection is uninhibited, allowing magnetic field
lines to reconnect at the X-point without forming a current sheet.
Therefore, in this limit, no plasma heating occurs.

The behavior of the system in the opposite limit, whenMA !
0, is harder to ascertain using this model. WhenMA becomes too
low in our calculations, the flux rope can decelerate or even oscil-
late a few times before escaping (Lin & Forbes 2000; Lin 2002).
This deceleration occurs in the case shown in the top panel of
Figure 4 and is the reason for the initial peak and decrease in the
kinetic energy. When MA ¼ 0, there is no reconnection and the

Fig. 3.—Panels (a) and (b) show the magnetic and kinetic energy of the flux rope and thermal energy as a function of time for the strongest (120 G) and weakest
(12 G) background fields studied, respectively. Panel (c) shows the power output from the thermal energy as a function of time for the 120 G case (solid line) and the
12 G case (dashed line). In all cases MA ¼ 0:025.

LIGHT CURVES FOR MODEL OF SOLAR ERUPTIONS 1139



flux rope continually oscillates (Forbes&Priest 1995; Lin&Forbes
2000). This oscillatory behavior is due to the two-dimensional
nature of the model, and it makes it difficult to evaluate the frac-
tion of the thermal energy that is released when theMach number
is low. However, we do know that no thermal energy is released
when MA ¼ 0 because the Poynting flux into the current sheet
is zero in that case. In a more realistic three-dimensional model
oscillations would not necessarily occur. The flux rope in our
two-dimensionalmodel cannot escape unless reconnection occurs,
but in three dimensions the overlying field can slip to the side
(out of the plane in our figures) so that the tension acting on the
flux rope is greatly reduced (Sturrock et al. 2001). Thus, in a
three-dimensional model there may be some value forMAwhere
the fractional thermal energy release is maximized.

The strength of the background magnetic field does not affect
the fraction of energy that is released as thermal energy. The plot
in Figure 4 shows the thermal and kinetic energies for cases with
a background field of 120 G; however, when other background
magnetic field strengths are used with the same values for MA,
very similar fractional thermal energies are obtained. Thus, the
reconnection rate is more important than the background mag-
netic field strength in determining the fraction of released energy
that is transformed into thermal energy, although of course the
magnitude of the thermal energy is determined in part by the back-
ground magnetic field strength, as is clearly shown in Figure 3.

3.2. Light Curves

The calculated thermal energy release rate is used to deter-
mine initial temperatures and densities in the lower set of loops in
Figure 1 for the four different backgroundmagnetic field strengths.

The evolution of the temperatures and densities in these loops
due to chromospheric evaporation and conductive and radiative
cooling of the plasma is then calculated using the Cargill model,
as described in the previous section. The arcade of loops is made
up of approximately 2000 loops, with a 5 s spacing in time be-
tween each loop. Some snapshots of the temperature and density
evolution are shown in Figure 5. The initial temperatures that are
obtained in some of the loops after they are heated are extremely
high (�1010 K) and are therefore unphysical. These high tem-
peratures are a result of the fact that the Cargill model does not
apply to the thin layer on the surface of the loop system where
strong evaporative flows are occurring. We plan to address the
dynamic behavior of this layer in a future study using a full hy-
drodynamic loop model. In any case, the layer of high temper-
atures is extremely thin because the conduction cooling time is
extremely rapid at such high temperatures. Thus, the bulk of the
arcade is well approximated using the Cargill model, and for
the strong (120 G) background field case most of the plasma is
around 25 MK, which is a reasonable value for a large flare.
The density is mostly concentrated in the loops at the bottom

of the arcade, where the loop temperatures are 20–30 MK, and
not in the upper, more cusp-shaped loops where the temperatures
are higher. This distribution of density in the arcade of loops is
due to the amount of time it takes to fully evaporate the chromo-
spheric plasma into each loop. In the Cargill model evaporation
takes place during the entire conductive cooling phase; there-
fore, a loop will reach its maximum density some time after it is
reconnected.
Once the temperatures and densities in each loop have

been calculated, they are used to determine the intensities in the

Fig. 4.—Kinetic energy (solid line) and thermal energy (dashed line) as a function of time for MA values of 0.001 (top), 0.006 (middle), and 0.1 (bottom). For all
cases there is a 120 G background field.
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Transition Region and Coronal Explorer (TRACE ), the Soft
X-Ray Telescope (SXT) on Yohkoh, and theGeostationary Opera-
tional Environmental Satellite (GOES ) using the standard Solar-
Soft routines trace_euv_resp, sxt_flux, and goes_fluxes.1

These routines take a plasma temperature and emission measure
and fold them through the instrument response function to obtain
the intensity that would be observed in that instrument. The SXT
andGOES routines both require a volume emissionmeasure, given
by n2 dV, where n is the electron number density. For SXT a vol-

ume, dV, consisting of the thickness of the loop multiplied by the
area of an SXT pixel, is used. Since GOES monitors the whole
Sun, a dV consisting of the thickness of the loop times the ap-
proximate area of the flare, 2k0L, is used. To get TRACE inten-
sities, a line-of-sight emissionmeasure, given by n2 dl, is required,
so the thickness of the loops is used as dl. The thickness of the
loops was determined by calculating the distance between con-
secutive reconnected field lines in the lower set of loops.

We calculate the intensity near the peak of the event using
the SXT AlMg filter for arcades with strong (120 G) and weak
(12 G) background field strengths and show the resulting images
in Figure 6. We have assumed exposure times such that the peak

1 See Freeland&Handy (1998) and http://www.lmsal.com/solarsoft formore
information on the SolarSoft software package.

Fig. 5.—Density (left panels) and temperature (right panels) evolution for the case with a background field of 120 G. The times at the top of each frame are the
time passed since the formation of the X-point.
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normalized counts are approximately the same in each image. In
the 120 G background field case the loops that contribute most
to the intensity are in the lower part of the arcade, where the bulk
of the density is found. These loops have been cooling and evap-
orating plasma for some time, and the density in these loops is
several orders of magnitude higher than the loops that have just
reconnected near the cusp region. Because of the large difference
in density between the newly reconnected loops in the cusp re-
gion and the loops lower down, SXT may not be able to image
the plasma in the cusp region without saturating the detector
in the lower part of the arcade. This example, shown in the top
panel of Figure 6, illustrates a situation in which reconnection is
occurring at the top of the arcade, but cusp-shaped loops would
not necessarily be observed.

The weak-field case shown in Figure 6, on the other hand,
does exhibit a cusplike character. In this case, because the energy
release rate is slower, the chromospheric evaporation is more
gentle, and less material is evaporated into the loops. Thus, the
peak intensity of a loop is of the same order of magnitude as the
intensity in loops that have just reconnected, and SXT is easily
able to image the plasma in both the cusp region and the lower
part of the arcade. This outcome is consistent with observations
of cusp-shaped loops in SXT, since these loops are often observed
in weak flares (e.g., Hudson et al. 1996; Forbes & Acton 1996)
and, as is shown below, this case amounts to an A flare in the
GOES flare classification scheme.

Using the intensities calculated in the arcade of loops, we
construct some sample light curves for TRACE, SXT, andGOES,
shown in Figure 7. For the TRACE light curves we use the 1958
filter, and for the SXT light curves we use the Be119 filter, both
of which are commonly used to observe flares. For the GOES
light curve we choose the 1–8 8 channel, which is the channel
used to classify flares as A, B, C, M, or X. The plasma in the
corona is optically thin, so the intensities of each part of a loop
along a given line of sight contribute to the total intensity in a
pixel for the imaging instruments. We take the line of sight for
the SXT and TRACE light curves to be directly above the apex
of the loops, as if the loops were located at disk center. GOES is
a full-Sun instrument, as mentioned before, so no line of sight
needs to be specified.

The TRACE and SXT light curves for the case with the 120 G
background magnetic field ( plotted by a solid line in the top two
panels of Fig. 7) have features similar to those of observed light
curves, including rapid rise phases and long decay-phase tails (see,
e.g., Reeves & Warren 2002; Aschwanden & Alexander 2001).

The presence of a spike in the TRACE 195 8 curve but the ab-
sence of a corresponding spike in the SXTcurve is due to the dif-
ferent instrument response functions of these two instruments.
The TRACE 195 8 filter is most sensitive to plasma at about
1.5MK. The spike in the light curve occurs because several loops
in the arcade cool through a temperature of 1.5 MK at the same
time, and the resulting strong intensities of these loops add to
create a large increase in intensity in the light curve. Several
properties of our model combine to produce this effect. First of
all, the height of the loop top, p, rises very quickly initially, lead-
ing to a subsequent drop in the initial density of the first several
loops that are formed. Thus, the initial conductive cooling time,
�c ¼ 4 ; 1010nL/T 5=2, is shorter in loops that form later, causing
newly heated loops to cool through 1.5 MK before loops formed
at earlier times. As the rise in p becomes more gradual, the initial
conductive cooling time increases. Eventually a point is reached
wheremany loops formed at different times pass through 1.5MK
nearly simultaneously, thus creating the spike in intensity. Be-
cause the existence of the spike strongly depends on the initial
heating and evaporation processes, the spike could be an artifact
of the simplifying assumptions used in the model. Particularly
suspect is the assumption that newly reconnected loops are heated
instantaneously. Future work using hydrodynamic codes could
help resolve this issue.
The light curves for the case with the 12 G background field

(plotted by a dashed line in the top two panels of Fig. 7) have a
much lower peak intensity in both TRACE and SXT. Note that
the light curves for the case with the 12 G background field have
been multiplied by large factors in Figure 7 to make them visible
on the plot. The TRACE 195 8 light curve for the 12 G back-
ground field case has a peak intensity of 20 DN s�1, which is on
the same order of magnitude as the peak intensities in active re-
gion loops (Winebarger et al. 2003; Aschwanden et al. 2000) but
fainter than typical flare intensities. The SXT Be119 filter is not
often used to observe such faint loops, but Tsuneta et al. (1991)
estimate that an active region would have an intensity of about
4 DN s�1 in this filter, so the SXT light curve for the weak back-
ground magnetic field case is also consistent with an active re-
gion loop intensity. Also, the light curves associatedwith the 12G
background magnetic field in both instruments increase in in-
tensity gradually with time; they do not exhibit the rapid increase
in intensity normally associated with flare light curves.
The bottom panel in Figure 7 shows the simulated light curves

for the 1–8 8 channel in GOES, with two different levels of
background flux added. The simulated flares are positioned so

Fig. 6.—Snapshots of the intensity of the arcade in the SXT AlMg filter for the 120 (left) and 12 G (right) background field cases. Snapshots were taken around
the time of maximum intensity in both cases. Simulated exposure times were taken to be 0.02 ms for the 120 G case and 1 s for the 12 G case so that the peak
normalized counts are similar.
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that they start every 12 hr. The light curve for the 120 G back-
ground field case is presented first, then the 85, 50, and 12G. The
light curves with the solid line have an added background flux of
1:5 ; 10�6 W m�2, and the dotted line has an added background
flux of 3 ; 10�8 Wm�2. The larger background value is themax-
imum average X-ray flux rate seen in the 1–88 channel byGOES
during solar cycle 22, and the smaller background value is the
minimum average X-ray flux rate during that same cycle (Wilson
1993). Also indicated are the levels offlux needed for a flare to be
designated an A, B, C, M, or X class flare.

In the case of the light curves with the high background X-ray
flux, the light curve from the 12G case is hardly discernible above
the background andwould probably not be considered a flare. The
12 G case is more visible in the curves with the low background
level and in that case has a peak GOES flux of 5 ; 10�8 W m�2,
making it an A5 flare in theGOES flare class designation scheme.

As shown in Figure 2, the case with the 12 G background field
strength has a speed of about 300 km s�1. Studies correlating
flare occurrence with CME speed have found that slow CMEs
are less likely to be associatedwith a flare than fastCMEs (Gosling
et al. 1976; Moon et al. 2002). When these studies use GOES
data, typically a minimum GOES class of C1 is required for an
event to be considered a flare (e.g., Sheeley et al. 1983; Moon
et al. 2002). Thus, the X-ray emission for the CME with the
background field of 12 G is more than an order of magnitude
fainter than the faintest flares used in correlation studies and for
active parts of the solar cycle would be overwhelmed by the
background flux.

The light curves presented in Figure 7 suggest that this model
does not necessarily predict a flare associated with every CME.
In particular, the 12 G background field case, corresponding to
a CME with a speed of �300 km s�1, does not release enough

Fig. 7.—Simulated light curves for the TRACE 195 8 filter (top left), Yohkoh SXT Be119 filter (top right), and GOES 1–8 8 channel (bottom). In the top panels,
the solid line is the light curve for the case with the 120 G background field, and the dashed line is the case with the 12 G background field. Note that intensity in the
12 G case has been multiplied by 50 in the TRACE light curve and 2 ; 104 in the SXT light curve. In the bottom panel, simulated light curves corresponding to
background fields of 120, 85, 50, and 12 G begin every 12 hr. Light curves including background X-ray flux levels consistent with solar maximum (solid line) and
solar minimum (dashed line) are shown.
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thermal energy to heat and evaporate sufficient plasma into the
lower set of loops to produce a substantial EUV brightening.
TRACE and SXT would see a slow brightening to a mild in-
tensity about the same as an active region loop, and inGOES the
emission would be insignificant compared to the usual X-ray back-
ground flux levels in all but the quietest parts of the solar cycle.

Since fast CMEs are not necessarily always associated with
large flares (see, e.g., Vršnak et al. 2005), we have also calculated
theGOES 1–88 light curve for a case that has a similar flux rope

velocity to the 50 G background field case but produces a much
smaller flare. The flux rope velocities and light curves are shown
in Figure 8. The solid line is the case with a 50 G background
field and the same parameters that are given at the beginning of
this section. The dotted line is a case with a 25 G background
field and a flux rope mass of 4 ; 1015 g. The other parameters are
the same. The velocity profiles of the flux ropes are very similar
in these two cases, but the GOES light curves are quite different.
The case with the lower background magnetic field strength and

Fig. 8.—(a) Velocity profile of the flux rope for a case with a 50 G background field and a flux rope mass of 2:1 ; 1016 g (solid line) and a case with a 25 G
background field and a flux rope mass of 4 ; 1015 g (dashed line). (b) Simulated GOES light curves for the same two cases.
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mass has a peakGOES flux equivalent to a C5 flare, compared to
an M2 flare for the larger background field strength and mass.

Figure 8 shows that CME speed is not indicative of the amount
of associated X-ray emission from the lower set of loops. The
amount of thermal energy released in the current sheet in thismodel

is directly related to the strength of the backgroundmagnetic field,
while the kinetic energy of the flux rope depends on the mass and
the background magnetic field strength. Therefore, a relatively low
mass CME from a weak-field region can have a similar velocity
profile to a massive CME from a stronger background magnetic

Fig. 9.—Derivative of the GOES 1–8 8 light curve (solid line) and thermal energy release rate (dashed line). (a) Case with a 120 G background field. (b) Case
with a 12 G background field.
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field region, and the difference in the physical properties of the sit-
uation will manifest in the X-ray emission observed in the post-
flare loops.

3.3. The Neupert Effect

Our model allows us to examine the relationship between the
thermal energy release rate and the soft X-ray flux, and it has im-
plications for what is often referred to as the Neupert effect. This
effect is an empirical relation that states that a flare’s micro-
wave emissions are proportional to the derivative of its soft X-ray
light curve (Neupert 1968). It has been extended to relate to hard
X-ray light curves andmicrowaves since emissions in bothwave-
length regimes are thought to be produced by the same non-
thermal population of accelerated particles. One implication of
the Neupert effect is that dWth /dt / dISXR /dt (Takasaki et al.
2004). This relation follows from the fact that in the Neupert ef-
fect the energy release rate and the time rate of change of the
soft X-ray intensity are both proportional to the hard X-ray in-
tensity. However, a recent study byWarren & Antiochos (2004)
has found that using the Cargill et al. (1995) model for the cool-
ing of a flare loop gives

ISXR /W 1:75
th =V 0:75L0:25 ð35Þ

for theGOES 1–88 instrument, where L is the length of the flare
loop and V is the volume of the flare. This result appears to con-
tradict the Neupert effect, which predicts that ISXR /Wth (Lee
et al. 1995). This contradiction can be reconciled, however, by
the fact that equation (35) only applies to a single loop, whereas
the Neupert effect applies to the entire arcade.

Figure 9 shows normalized curves for dWth /dt and the deriv-
ative of the GOES 1–8 8 light curve for the 120 G background
field case and the 12 G background field case. For the 120 G
background field case there is very good agreement between the
derivative of the light curve and dWth /dt. This result may seem
surprising at first, given that we are using the Cargill cooling,
which implicitly incorporates equation (35). Our model flare is
made up of an arcade of many different loops that have different
start times with different energy inputs. Furthermore, the volume
of the flare increases dramatically with time (see Fig. 5), which af-
fects the relationship between ISXR andWth given by equation (35).
The increase in flare volume causes the derivative of equation (35)
to peak earlier and decline faster than if the volume were consid-
ered to be a constant, which is consistent with our results. There-
fore, even though the intensity in each individual loop in our arcade
obeys the scaling law derived by Warren & Antiochos (2004),
the derivative of the light curve of the aggregate arcade gives a
result that is more consistent with the Neupert effect, at least in
this particular case.

Not all observed flares follow the behavior predicted by the
Neupert effect, however. Large flares tend to behave in a way
that agrees with the Neupert effect more often than weak flares
(Veronig et al. 2002), and high-temperature plasma (�16.5MK)
exhibits the Neupert effect better than low-temperature plasma
(McTiernan et al. 1999). The weak background field case pro-
duces a lower set of loops that are mostly filled with plasma
below 20 MK, and it produces a very weak flare, making it an
interesting case to look at in light of the above findings regarding
the Neupert effect. Examining the curves for this case, shown in
Figure 9, we note that there is a discrepancy between the tim-
ing of the peak of the energy release rate and the peak of the
derivative of the light curve. One possible explanation for the de-
viation of events from the Neupert effect is that the energies in-
volved are not accurately represented by the soft and hard X-ray

light curves (Veronig et al. 2002; Lee et al. 1995). The results for
the weak-field case in Figure 9 lend evidence to support this
explanation.

4. CONCLUSIONS

In this paper we have extended the model of Lin & Forbes
(2000) by calculating the Poynting flux into the current sheet and
assuming that the resulting energy is thermalized and heats the
plasma in the flare loops. We find that the fraction of the released
energy that is converted to thermal energy depends on the inflow
Alfvén Mach number; greater than 50% of the released energy
becomes thermal energy when MA < 0:006. In the limit that
MA ! 1, the fraction of released energy that becomes thermal
energy goes to zero. The behavior of the system in the opposite
limit, when MA ! 0, is not clear because of peculiarities of our
model related to its two-dimensional nature. A three-dimensional
model based on similar principles would not have the same prob-
lems and may be able to determine a value for MA such that the
fraction of released energy that is converted into thermal energy
is maximized.
The calculated thermal energy in the current sheet can be used

to calculate initial temperatures and densities in the flare loops,
which can then in turn be used to calculate the evolution of these
quantities using the Cargill cooling model. This method is a very
simple way to get temperatures and densities in the loops, al-
though there are some inherent problems with it. Our calculation
of the initial temperatures for the loops gives some unrealisti-
cally high temperatures, and the Cargill cooling model results
in very rapid initial evaporation of chromospheric material. An-
other drawback of this method is that is assumes that the conduc-
tive and radiative cooling can be separated, causing the cooling
to be solely conductive at first and solely radiative at later times.
We plan to address these problems in the future by using a full hy-
drodynamic code to calculate the characteristics of the flare loops.
Even with some of the limitations of the Cargill method of cal-

culating temperatures and densities in the loops, we find that the
model well accounts for the observed shape of flare light curves,
including the rapid increase in intensity at the start of the flare
and the long duration of the late phase emission. This model rep-
resents an enhancement to the previousmultiloopmodel that used
the Cargill cooling scheme to calculate light curves (Reeves &
Warren 2002) in two respects. First of all, the thermal energy in-
put for the loops in the current work is based on theoretical calcu-
lations that result in different initial temperatures and densities
in each loop. The previous model assumed that the initial tem-
peratures and densities were the same in every loop, thereby
overestimating the total energy input into the flare. Secondly,
the previous model was unable to reproduce the decay-phase tail
on the TRACE and SXT light curves, possibly because of the as-
sumptions made about the loop thicknesses.
We find that the intensity of the resulting EUVemission is de-

pendent on the strength of the background magnetic field. For
weak background field strengths, the emissions are quite faint
and in some cases would probably not be classified as flares. This
finding supports the idea that there is a continuum of eruptive
solar phenomena encompassing fast, flare-associated CMEs and
slow, non–flare-associated CMEs (e.g., Vršnak et al. 2005). On
the other hand, we find that CMEs with very similar trajectories
can have quite different flare responses depending on the back-
ground magnetic field strength, the inflowAlfvénMach number,
and the flux rope mass.
Furthermore, we find that the thermal energy release rate

agrees very well with the derivative of the soft X-ray light curve
for a case with a large backgroundmagnetic field strength, which
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is the required result if the Neupert effect is real. This result is
somewhat unexpected, however, given that Warren &Antiochos
(2004) found that loops cooled using the Cargill formalism result
in a scaling law between soft X-ray flux and thermal energy that
is inconsistent with the Neupert effect. The discrepancy is prob-
ably due to the fact that our light curves are constructed from the
intensities of hundreds of loops with different input energies, start
times, and lengths, whereasWarren&Antiochos (2004) only con-
sidered one loop. In the weak background field case the deriv-
ative of the light curve does not match the energy release rate,
which supports the idea that the Neupert effect does not hold in

some cases because the soft X-ray flux is not always proportional
to the thermal energy.
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