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ABSTRACT

We derive an analytic prediction for the star formation rate in environments ranging from normal galactic disks to
starbursts and ULIRGs in terms of the observables of those systems. Our calculation is based on three premises: (1) star
formation occurs in virialized molecular clouds that are supersonically turbulent; (2) the density distribution within
these clouds is lognormal, as expected for supersonic isothermal turbulence; and (3) stars form in any subregion of a
cloud that is so overdense that its gravitational potential energy exceeds the energy in turbulent motions.We show that
a theory based on this model is consistent with simulations and with the observed star formation rate in the Milky
Way.We use our theory to derive the Kennicutt-Schmidt law from first principles and make other predictions that can
be tested by future observations.We also provide an algorithm for estimating the star formation rate that is suitable for
inclusion in numerical simulations.

Subject headinggs: galaxies: ISM — hydrodynamics — ISM: clouds — ISM: kinematics and dynamics —
stars: formation — turbulence

1. INTRODUCTION

The disk of the Milky Way contains �109 M� of molecular
gas (Williams & McKee 1997; Bronfman et al. 2000), mostly
arranged in giant molecular clouds (GMCs) with typical masses
of�106M� and densities nH �100 cm�3 (Solomon et al. 1987).
Absent other support, this gas should collapse on its free-fall
timescale, tA � 4 Myr, producing new stars at a rate of roughly
�250M� yr�1. However, the observed star formation rate (SFR)
in theMilkyWay is only�3M� yr�1 (McKee &Williams 1997).
This surprisingly low SFR, first pointed out by Zuckerman &
Evans (1974), remains one of the major unsolved riddles for the-
ories of the interstellar medium (ISM).

In the last 30 years, observations of star formation tracers
such as H� in other galaxies have shown that the problem is not
limited to the Milky Way. Wong & Blitz (2002) inferred gas de-
pletion times, defined as the ratio of the molecular surface den-
sity to the SFR per unit area, of a few billion years in resolved
observations of seven nearby galaxies. This is 2 orders of mag-
nitude larger than the typical free-fall times of a few tens of mil-
lions of years they inferred based on the cloud densities. Rownd
& Young (1999) and Young et al. (1996) obtain similar gas de-
pletion times from unresolved observations in many other gal-
axies. Nor is the problem limited to normal disk galaxies like
theMilkyWay. In 87 starbursts Gao& Solomon (2004) find CO
gas depletion times of several hundred million to several billion
years, a factor of 10 or less smaller than that in disk galaxies,
and still much longer than typical free-fall times. Downes &
Solomon (1998) obtain relatively similar depletion times at com-
parable densities for circumnuclear starbursts in three nearby
galaxies, and this range of depletion times and characteristic
free-fall times seems typical of starbursts (Kennicutt 1998b).

An interesting addition to this problem is that the SFR fol-
lows clear correlations. Surveys of many galaxies over a range

of SFRs and surface densities show that the SFR per unit area
obeys the Kennicutt-Schmidt law, which can be stated in two
forms, both equally consistent with observations:

�̇� / �1:4
g ð1Þ

or

�̇� /
�g

�dyn
; ð2Þ

where �̇� is the SFR per unit area,�g is the surface density of gas,
and �dyn is the dynamical (i.e., orbital) timescale of the galactic
disk (Schmidt 1959, 1963; Kennicutt 1998a, 1998b; Schmidt’s
two papers proposed a relationship between gas density or surface
density and SFR, while Kennicutt’s determined the exponents
and coefficients of the correlations in eqs. [1] and [2] from a large
galaxy sample). Both forms fit the observed sample of galaxies
very well over a range of nearly 8 orders of magnitude in SFR.
Any successful theory of star formation must be able to re-

produce both the lower than expected SFR and both forms of
the Kennicutt-Schmidt law and must do so using physics that is
applicable in a range of environments fromMilkyWay–like disk
galaxies, where the ISM is entirely atomic and the SFR is low, to
ultraluminous infrared galaxies (ULIRGs), where the ISM is fully
molecular and the SFR is many orders of magnitude larger. To
date, no theory is able tomeet these requirements. Recent numer-
ical work has been able to reproduce some of the observations,
but only with considerable assumptions and limitations. Kravtsov
(2003) uses the probability distribution of densities in simula-
tions to suggest that the fraction of high-density gas varies with
the overall density to roughly the 1.4 power, explaining one form
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of the Kennicutt-Schmidt law. However, this observation does
not explain the other form of the law, and it also says nothing
about the absolute rate at which star formation occurs. It also fails
to explain the choice of density cutoff that constitutes ‘‘high den-
sity.’’ Similarly, Li et al. (2005) show that their simulations re-
produce the �1:4

g form of the Kennicutt-Schmidt law. However,
their simulations depend on both an arbitrarily chosen density
threshold for star formation and an arbitrary choice of the SFR in
gas denser than the threshold.

Tan (2000) proposes an analytic theory based on star forma-
tion induced by cloud-cloud collisions to explain the Kennicutt-
Schmidt law. In this model, the SFR is proportional to �g /�dyn
because the intercloud collision time is proportional to the dy-
namical time, and the supply of gas available is proportional to
the gas surface density. However, this theory also relies on an
unknown efficiency of (collision induced) star formation that
can be roughly calibrated from observations but is not indepen-
dently predicted. Similarly, Silk (1997) proposes a theory inwhich
the SFR is set by supernova feedback. However, the theory de-
pends critically on the porosityP of the ISM to gas heated by super-
novae, and it is unclear how P varies from the predominantly
atomic, diffuse gas disks found in normal galaxies like the Milky
Way to the dense, entirely molecular interstellar media found in
starbursts. In particular, the theory predicts that if P is roughly
constant (as is required to obtain the observed SFR and the
Kennicutt-Schmidt law), then all galaxies should have the same
ISM velocity dispersion. This prediction clearly fails in star-
bursts (Downes & Solomon 1998).

Another broad class of theories appeals to magnetic fields
and ambipolar diffusion. In these models, star-forming regions
are threaded by amagnetic field strong enough tomake themmag-
netically subcritical, so the collapse time is set by the time required
for the field to escape from the gas via ambipolar diffusion (see
reviews by Shu et al. 1987;Mouschovias 1987; for a more recent
discussion see Tassis & Mouschovias 2004). While we discuss
this theory in more detail in x 7.3, we note that observations of
magnetic field strengths in Milky Way GMCs, both directly via
Zeeman splitting (Crutcher 1999; Bourke et al. 2001) and indi-
rectly via statistical indicators (Padoan et al. 2004), suggest that
their magnetic fields are not strong enough by themselves to pre-
vent rapid collapse. Nothing is known ofmagnetic field strengths
in other galaxies, so it is unknown if this model can explain the
Kennicutt-Schmidt law.

A final class of theories, on which we focus here, relies on tur-
bulence. Observed GMCs in theMilkyWay and in nearby galax-
ies have significant nonthermal line widths (e.g., Fukui et al.
2001; Engargiola et al. 2003; Rosolowsky & Blitz 2005), and
this is generally interpreted as indicating the presence of super-
sonic turbulence. In a cloud supported against collapse by super-
sonic turbulence, at any given time most of the mass should be in
structures that are insufficiently dense to collapse (see reviews by
Mac Low &Klessen 2004; Elmegreen & Scalo 2004). This con-
clusion is bolstered by simulations (e.g., Klessen et al. 2000; Li
et al. 2004) that show that, under at least some circumstances,
supersonic turbulence can inhibit star formation.

Padoan (1995) provides an analytic theory of the SFR in a
turbulent medium that depends on the properties of GMCs and
on the distribution of masses of clumps that results from turbu-
lent fragmentation. ForMilkyWayGMCs it produces a value of
the SFR reasonably in agreement with observations, but there is
no way to extend this result to galaxies where we cannot directly
observe the GMCs. Similarly, Elmegreen (2002, 2003) uses the
probability distribution function (PDF) of densities in a turbulent
medium to estimate the mass fraction of Galactic GMCs above

a critical density of �105 cm�3 and argues that this can explain
the low SFR. However, it is not clear why the critical density is
105 cm�3 or how this value might vary from galaxy to galaxy.
Nor is it clear how this analysis leads to the Kennicutt-Schmidt
law. Elmegreen argues that the law �̇� / �1:4

g can be explained
in this picture if all galaxies have roughly the same scale height
but does not provide a physical reasonwhy the scale height should
be constant.

Our goal in this paper is to provide a theory of the SFR that
can explain both the surprisingly low SFR and two forms of the
Kennicutt-Schmidt law and that can do so over a range of con-
ditions from normal disks to ULIRGs. In other words, we seek to
explain both the exponents and the coefficients of the Kennicutt-
Schmidt laws over their entire observed range. Our theory does
not depend on an unknown efficiency or critical density for star
formation. Instead, we proceed from three premises that are well
motivated by a combination of observations, simulations, and
theoretical considerations. First, we assume that star formation
occurs primarily in molecular clouds that are virialized and super-
sonically turbulent. Second, we assume that the probability dis-
tribution of densities is lognormal, as expected for supersonic
isothermal turbulence. Third, we assume that gas collapses in re-
gions where the local gravitational potential energy exceeds the
local turbulent energy. In x 2 we develop these premises to com-
pute the SFR in a cloud in terms of its Mach number and virial
parameter. We check this theory against simulations and show
that it is able to reproduce themwell. In x 3we apply our estimate
to galaxies and derive an estimate for the SFR as a function of the
observable properties of galaxies. In x 4 we compare our theo-
retical predictions to the observed SFRs in theMilkyWay, and in
x 5 we compare to a large sample of galactic-average SFRs. We
show that our theory provides an excellent fit to the data. In x 6
we present three future observations that can be used to check
our theory. Finally, in xx 7 and 8 we discuss and summarize our
conclusions.

2. THE STAR FORMATION RATE PER FREE-FALL TIME

In this section we present our general theory of turbulent reg-
ulation of the SFR in dimensionless terms. For convenience we
define the dimensionless SFR per free-fall time, SFRff , which is
the fraction of an object’s gaseous mass that is transformed into
stars in one free-fall time at the object’s mean density.

2.1. Derivation

Both simulations and observations of turbulence in the ISM
show that the turbulent velocity dispersion �l computed over a
volume of characteristic length l increases with l as �l / l p with
p� 0:5 (Larson 1981; Solomon et al. 1987;Heyer&Brunt 2004).
This self-similar structure appears to be a universal property of
supersonic turbulence and holds over a very wide range of length
scales in molecular clouds. Ossenkopf & Mac Low (2002) sum-
marize observations of the Polaris flaremolecular cloud that show
the line width–size relation over 3 orders of magnitude in length.
Because velocity dispersions are smaller on smaller scales, even
though the velocity dispersion may be supersonic over length
scales comparable to the size of a simulation box or an entire
star-forming cloud, there will be some smaller scale over which
it is not. Vázquez-Semadeni et al. (2003, hereafter VBK03) show
that the scale at which the turbulence transitions from supersonic
to subsonic, the sonic length ks, is a key determinant of whether
SFRff will be high or low. For the purposes of this paper, we
adopt a more specific definition of the sonic length, consistent
with that of VBK03: let �l(x) be the one-dimensional velocity
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dispersion computed over a sphere of diameter l centered at po-
sition x within a turbulent medium, and let

�l ¼ �l(x)h iV ð3Þ

be the volume average of �l(x) over the entire region. We define
ks as the length l such that �l ¼ cs, where cs is the isothermal
sound speed in the region (note that our ks is the same as the tur-
bulent pressure length lP introduced byWolfire et al. 2003). The
line width–size relation then becomes

�l ¼ cs
l

ks

� �p

: ð4Þ

While VBK03 show that the sonic length correlates well with
SFRff, the SFR per free-fall time is a dimensionless number and
the sonic length is a length. On dimensional grounds, there must
therefore be another length scale that is relevant. The natural
candidate is the Jeans length,

kJ ¼

ffiffiffiffiffiffiffiffi
�c2s
G�

s
; ð5Þ

where cs is the sound speed and � is the density at a given point.
Of course, in a turbulent medium � varies from place to place,
and we account for this effect below. Consider a ‘‘core,’’ a sphere
of gas embedded in the cloud. The thermal pressure at the surface
of the sphere is roughly �c2s. The largest mass such an object can
have and remain stable against gravitational collapse is theBonnor-
Ebert mass (Ebert 1955; Bonnor 1956),

MBE ¼ 1:18
c3sffiffiffiffiffiffiffiffiffi
G3�

p ð6Þ

¼ 1:18

�3=2
�k3J : ð7Þ

The radius of such a sphere is roughly

RBE � 0:37kJ: ð8Þ

The gravitational potential energy of the sphere is

W ¼ � 3

5
a
GM 2

BE

RBE

¼ �1:06
c5s

G 3=2�1=2
: ð9Þ

Here a is a geometric factor set by the sphere’s mass distribution,
and in the numerical evaluation we have used a ¼ 1:2208, the
value for a maximum-mass stable Bonnor-Ebert sphere (McKee
& Holliman 1999). The thermal energy of the gas is

T th ¼
3

2
MBEc

2
s ¼ 1:14 Wj j: ð10Þ

Using the line width–size relation given by equation (4), the av-
erage turbulent kinetic energy in the sphere is

T turb ¼
3

2
MBE�

2 2RBEð Þ ð11Þ

¼ 1:14 0:74ð Þ2p kJ
ks

� �2p

Wj j ð12Þ

! 0:89
kJ
ks

� �
Wj j; ð13Þ

where for the numerical evaluation in the final step we have used
p ¼ 0:5. Thus, a Bonnor-Ebert mass object has approximately
equal kinetic, thermal, and potential energies if kJ � ks. If kJP
ks, gravity is approximately balanced by thermal plus turbulent
pressure, and the object is at best marginally stable against col-
lapse. If kJ 3ks, kinetic energy greatly exceeds both potential
and thermal energy, and the object is stable against collapse.
Since kJ is a function of the local density, the condition kJP

ks for collapse translates into a minimum local density required
for collapse. We can use this to compute the SFR, by first esti-
mating what fraction of the mass is at densities higher than this
minimum. Numerous numerical and theoretical studies find that
the PDF of the density in a supersonically turbulent isothermal
gas is lognormal, with a dispersion that increases with Mach
number (Vázquez-Semadeni 1994; Padoan et al. 1997; Scalo et al.
1998; Passot & Vázquez-Semadeni 1998; Nordlund & Padoan
1999; Ostriker et al. 1999; Padoan & Nordlund 2002). Padoan &
Nordlund (2002) find that the PDF is well fitted by the functional
form

dp(x) ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2��2

�

q exp �
ln x� ln x
� �2

2�2
�

" #
dx

x
; ð14Þ

where x ¼ �/�0 is the density normalized to the mean density in
the region �0. The mean of the log of density is

ln x ¼ �
�2
�

2
; ð15Þ

and the dispersion of the PDF is approximately

�� � ln 1þ 3M2

4

� �� �1=2
; ð16Þ

whereM is the one-dimensional Mach number of the turbulent
region measured on its largest scale. Let kJ0 be the Jeans length
at the mean density. The Jeans length at overdensity x is kJ(x) ¼
kJ0/

ffiffiffi
x

p
, which we wish to compare with ks. We therefore define

the critical overdensity required for collapse as

x � xcrit � �x

kJ0
ks

� �2

; ð17Þ

where�x is a numerical factor to be determined by fitting in x 2.2.
Gas at an overdensity of xcrit or higher has a local Jeans length
smaller than the sonic length and is therefore unstable to collapse.
The fraction of the mass in collapsing structures is therefore just
the fraction of mass at overdensities of xcrit or greater, which is

f ¼
Z 1

xcrit

x
dp

dx
dx: ð18Þ

To convert f to an SFR, wemust account for two factors. First,
approximately 25%–75% of the mass in star-forming cores will
be ejected by outflows (Matzner &McKee 2000).We define �core
as the fraction of the mass that reaches the collapsing core phase
that eventually winds up in a star and adopt a fiducial value of
�core ¼ 0:5. Second, we have computed the fraction of mass in
collapsing structures at any given time. To convert this to a rate,
we must divide by the characteristic timescale over which new
gas becomes unstable. When a region collapses, it detaches from
the turbulent flow and thereby removes pressure support from
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the remaining, stable gas. The remaining gas will respond to this
loss of pressure support on its gravitational collapse timescale,
the free-fall time. We therefore estimate that new gas becomes
gravitationally unstable over a free-fall timescale tff . (Alternately,
we could have used a crossing time, which is very similar in a real
GMC.) However, this is just a rough argument, so we let the true
timescale be �t t ff. We determine �t for purely hydrodynamic tur-
bulence in x 2.2. Magnetic fields can delay collapse and make �t

somewhat larger for a real cloud than our fit will find (Vázquez-
Semadeni et al. 2005).

With these two factors defined, the SFR per free-fall time is

SFRA ¼ �core
�t

Z 1

xcrit

xp(x) dx ð19Þ

¼ �core
2�t

1þ erf
�2 ln xcrit þ �2

�

23=2��

 !" #
: ð20Þ

The total SFR arising from a cloud of mass Mmol is

Ṁ� ¼ SFRA
Mmol

tA
: ð21Þ

We plot SFRff as a function of xcrit for �t ¼ 1 in Figure 1. We can
also define a ‘‘core formation rate’’ CFRff, which reflects the rate
at whichmass begins to collapse, ignoringwhat fraction of it will
be ejected by feedback. This is simply SFRff with �core ¼ 1.

Padoan (1995) and Padoan&Nordlund (2002, 2004) have pre-
viously approached the problem of estimating the SFR by con-
sidering the combination of the PDF of densities and the mass
distribution of clumps created by fragmentation in a turbulent me-
dium. Since we are interested only in the rate at which stars form,
and not their mass distribution, we may neglect the clump mass
distribution and consider only the distribution of densities. In so
doing, we implicitly assume that all or most of the mass that is at
densities rendering it capable of collapse will be in the presence

of enough other high-density gas so that it does collapse. This
assumption is bolstered by the observation that turbulence tends
to organize mass into filaments and voids on large scales, so that
high-density gas is likely to be in the presence of other high-
density gas. Moreover, as we show in x 2.2, this assumption
produces a theory that shows good agreement with simulations.

2.2. Comparison to Simulations

To test our theory, we compare to the work of VBK03, who
simulated a turbulent periodic box of gas and computed the frac-
tion of the mass that collapsed into stars. The simulation setup is
described in detail in Klessen et al. (2000), but we summarize it
here. In simulation units, the box length is L ¼ 2, the sound
speed is cs ¼ 0:1, the mean density is �0 ¼ 1

8
, the Jeans length at

that density is kJ0 ¼ 1
2
, and the free-fall time is tA ¼ 1:5. Turbu-

lence is driven at a one-dimensional Mach numberM ¼ 2, 3.2,
6, or 10 using a driving field that contains power only at wave-
numbers around k ¼ 2, 4, or 8, where k � L/kd and kd is the driv-
ing wavelength.

We read off the sonic length from Figure 3c of VBK03, noting
that VBK03 define the sonic length using the three-dimensional
velocity dispersion, while we use the one-dimensional veloc-
ity dispersion (J. Ballesteros-Paredes and E. Vázquez-Semadeni
2005, private communication). Given the scaling � / l p and as-
suming that the turbulent velocity field is roughly isotropic, the
two are related by ks � 31

=(2p)ks3. We adopt p ¼ 0:5 through the
rest of this section. To determine the SFRff, we read off data from
Figure 2 of VBK03. We measure the time t at which a fraction
f ¼ 0:1 of the mass in the run has collapsed into stars. For runs
where less than 10% of the mass has collapsed by the end, we
measure f and t at the point where the run ends. We then compute
SFRA ¼ 1:5 f /t. (Using 20% instead of 10%did not substantially
change the result.) We summarize all of this in Table 1.

We fit the VBK03 data to our theoretical estimate of CFRff

rather than SFRff because the VBK03 simulations do not in-
clude any feedback. The cases with large xcrit are closest to the
environment in real star-forming clouds, so we weight by x2crit. A
Levenberg-Marquardt fit with this weighting gives �x ¼ 1:12
and �t ¼ 1:91. We compare the simulation to CFRff evaluated

TABLE 1

Measured and Predicted Values from VBK03 Simulations

Run Name

(1)

ks3
(2)

t

(3)

SFRA;sim

(4)

SFRA;th

(5)

M2K2 .......................... 0.16 0.62 0.24 0.33

M2K4 .......................... 0.10 0.62 0.24 0.18

M2K8 .......................... 0.20 0.62 0.24 0.39

M3.2K2 ....................... 0.080 0.44 0.34 0.18

M3.2K4 ....................... 0.046 1.58 0.095 0.0641

M3.2K8 ....................... 0.031 2.48 0.060 0.023

M6K2 .......................... 0.039 0.30 0.50 0.11

M6K4 .......................... 0.023 2.27 0.066 0.045

M6K8 .......................... 0.016 6.89 0.022 0.019

M10K2 ........................ 0.018 0.87 0.17 0.060

M10K4a....................... 0.013 6.03 0.014 0.035

M10K8b....................... 0.0094 4.69 0.026 0.018

Notes.—Col. (1): Run name in VBK03. MmKk indicates that the one-
dimensional Mach number is m and the run is driven at wavenumber k.
Col. (2): Measured value of ks3. Col. (3): Time at which 10% of the mass had
collapsed, or when the run ended, in code units. Col. (4): Star formation rate in
the simulation, defined as SFRA ¼ f /(t/tA). Col. (5): Theoretically estimated
SFRff.

a Run ended with f ¼ 0:058 of mass collapsed.
b Run ended with f ¼ 0:084 of mass collapsed.

Fig. 1.—SFR per free-fall time vs. critical overdensity, for Mach numbers of
5 (solid line), 50 (dashed line), and 500 (dot-dashed line).
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with the best-fit values in Table 1 and in Figure 2. In the figure,
the simulation points have error bars corresponding to a factor
of 2 uncertainty, as recommended byVBK03. As the plot shows,
there is a large scatter, but we are able to reproduce the overall
behavior of the VBK03 simulation data quite well. Note that �t ¼
1:91 implies that, for virialized objects, the characteristic time-
scale is roughly a single crossing time (see x 7.7).

To understand how magnetic fields might change our re-
sults, we examine the work of Li et al. (2004), who measure the
amount of mass collapsed into cores as a function of time in a
magnetohydrodynamic periodic box simulation similar to those
of VBK03 (identical box length, Jeans length, sound speed, and
free-fall time). The initial box is magnetically supercritical, with
M /M� ¼ 8:3. The simulation is driven with a three-dimensional
Mach number of 10 (one-dimensional Mach numberM ¼ 5:8)
at a driving wavenumber of k ¼ 2 and is therefore very similar to
run M6K2 in VBK03. Li et al. (2004) do not measure a sonic
length, so we use the measured sonic length of ks3 ¼ 0:039 from
the corresponding VBK03 run. With these parameters and our
best-fit values of �x and �t, we find CFRA ¼ 0:11. Reading off
the time at which 10% of the mass had collapsed in the highest
resolution run from Figure 6 of Li et al. (2004) gives a measured
CFRA ¼ 0:072. The simulation result is slightly lower, but well
within the factor of 2 error recommended by VBK03. While this
is only one simulation, it provides some confidence that the in-
clusion of magnetic fields in the supercritical regime will not
change the SFR substantially.

2.3. SFRff in Virialized Objects

Using our theory, we can compute SFRff in virialized molecu-
lar clouds and clumps. Bertoldi &McKee (1992) define the virial
parameter for a spherical cloud as

�vir ¼
5�2

totR

GM
; ð22Þ

where �tot is the one-dimensional thermal plus turbulent velocity
dispersion over the entire cloud, R is the radius of the cloud, and
M is the mass. Since we are concerned with large star-forming
clouds that have �tot 3 cs, �tot is approximately equal to the tur-
bulent velocity on the largest scale, which we denote �2R. Clouds
with �vir � 1 are in self-gravitating virial equilibrium, meaning
that internal pressure (turbulent plus thermal) approximately bal-
ances gravity. Clouds with �vir 31 are non–self-gravitating and
are confined by external pressure, while �virT1 indicates either
that the cloud is supported against gravity by amagnetic pressure
larger than either the turbulent or thermal pressure, or that the
cloud is undergoing free-fall collapse. We refer to objects with
�vir � 1 as ‘‘virialized.’’
Consider now a star-forming region that follows the linewidth–

size relation

�l ¼ �2R

l

2R

� �p

: ð23Þ

The sonic scale is therefore

ks ¼ 2R
cs

�2R

� �1=p

; ð24Þ

and the Jeans length at the mean density �0 is

kJ0 ¼

ffiffiffiffiffiffiffiffiffi
�c2s
G�0

s
¼ 2�cs

ffiffiffiffiffiffiffiffiffiffiffi
R3

3GM

r
: ð25Þ

Thus, the critical overdensity required for collapse is

xcrit ¼ �x

kJ0
ks

� �2

ð26Þ

¼ �2�2
x

15
�virM2=p�2 ð27Þ

! 1:07M2; ð28Þ

where M ¼ �2R/cs is the Mach number of the region. We have
used the definition of the virial parameter given by equation (22)
in the second step, and for the numerical evaluation we have used
our best-fit value of �x and taken�vir ¼ 1:3. This choice is based
on the evaluation of Milky Way GMCs performed by McKee &
Tan (2003). We discuss it in more detail in x 7.5. From this for-
mulation, it is straightforward using equation (20) to compute
SFRff in a cloud in terms of �vir and M for the cloud. We have
therefore succeeded in computing the dimensionless star forma-
tion rate SFRff in terms of the two basic dimensionless numbers
that describe a turbulent cloud: the ratio of kinetic to potential
energy (roughly �vir) and the ratio of kinetic to thermal energy
(roughly M2). This relation has an intuitive physical interpre-
tation. At an overdensity of xcrit, the thermal pressure is

Pth ¼ �c2s � �0�
2
2R ¼ Pturb: ð29Þ

Thus, the gas capable of collapse is simply the gas that is dense
enough so that its thermal pressure is comparable to or greater
than the mean turbulent pressure in the cloud, Pturb.

Fig. 2.—SFR per free-fall time vs. kJ0 /ks, as measured from the VBK03 runs
(error bars with diamonds) and as predicted by our theoretical model (asterisks).
The lines show our theoretical predictions of SFRff vs. kJ0 /ks for Mach numbers
of 2, 3.2, 6, and 10 (bottom to top).
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In Figure 3 we plot the SFR per free-fall time as a function of
�vir andM for p ¼ 0:5. For convenience, we also fit SFRff by a
power law,

SFRA � 0:014
�vir

1:3

� ��0:68 M
100

� ��0:32

: ð30Þ

Figure 4 shows the error in our power-law fit as a function ofM
and �vir. The error is less than 5% for values of �vir from �0.5
to 3 and M from �10 to 1000. Since real star-forming clouds
generally fall within this range (see x 3), this power law is a rea-
sonably good approximation. One important thing to note about
SFRff is howweakly SFRff varieswithM. Thus, the SFR per free-
fall time in a virialized cloud depends very weakly on the Mach
number of the cloud. This is easy to understand intuitively. At
fixed �vir, increasing M increases xcrit , raising the overdensity
that the gas must reach to collapse. At the same time, however, in-
creasingM increases the width of the PDF, putting a larger frac-
tion of the gas at high overdensities. These two effects nearly
cancel out, which is why changingM at fixed �vir has little effect
on SFRff.

Before proceeding, we must point out one limit of our anal-
ysis.We have assumed that the internal structure ofGMCs follows
the linewidth–size relation.However, theOB star-forming clumps
observed in CS by Plume et al. (1997) do not. They have sub-
stantially higher velocity dispersions than is typical for an object
of their size in their parent GMCs, and their sizes and velocity
dispersions do not appear to be correlated. We interpret these
clumps as regions of a GMC larger than a single core that have
become gravitationally unstable and collapsed to higher surface
densities and pressures than the rest of the GMC (McKee & Tan
2003), increasing their velocity dispersions. The VBK03 simu-
lations that we have used to calibrate our model do not have
enough dynamic range to include the presence of such regions,
so our estimate of SFRff ignores their presence. Fortunately, clumps
of this sort constitute only a tiny fraction of the total molecular
mass of the Galaxy and are even a small fraction of the mass

of their parent GMCs. Thus, the error we have made by ignor-
ing them is negligible on the large scales with which we are
concerned.

3. STAR FORMATION IN GALAXIES

In this section we usually give surface densities in units of
M� pc�2. For convenience, we note that 1 M� pc�2 ¼ 2:1 ;
10�4 g cm�2 ¼ 8:9 ; 1019 hydrogen nuclei cm�2, and 1M� pc�2

corresponds to AV ¼ 0:045 for the local dust-to-gas ratio.

3.1. The Star Formation Law for Galactic Disks

Our formulation applies equally well to galactic disks. The
SFR per unit area of a galactic disk is simply

�̇� ¼
SFRA fGMC�g

tA
� 0:061

�0:68
vir

fGMC�g

M0:32tA

� �
; ð31Þ

where �g is the gas surface density of the disk, fGMC is the frac-
tion of it that is in molecular clouds, and tff andM are the char-
acteristic free-fall times and Mach numbers in the star-forming
regions of the disk. To estimate these quantities, we begin by con-
sidering the mean properties of galactic disks. Note that for gal-
axies like the Milky Way, essentially all the molecular gas is in
GMCs, so fGMC is just the molecular fraction. For starbursts, we
also assume that all the molecular gas is collected into bound
clouds, although this is approximate, as we discuss further in
x 7.1.

Consider star formation in a galactic disk with a total surface
density of �tot. The pressure at the disk midplane is then given
by (cf. Elmegreen 1989; Blitz & Rosolowsky 2004)

Pmp ¼ �mp

�

2
G�g�tot ¼ �mp f

�1
g

�

2
G�2

g � �P

�

2
G�2

g; ð32Þ

where �mp and �P are constants of order unity and fg ¼ �g /�tot

is the gas fraction in the galaxy. For an isothermal disk consist-
ing entirely of gas, fg ¼ �mp ¼ �P ¼ 1 exactly. For a real galac-
tic disk containing stars, �P > 1 because the gravity of the stars

Fig. 3.—Contours of SFR per free-fall time SFRff vs. �vir and M. The
contours are labeled by values of log SFRA.

Fig. 4.—Contours of the error in our power-law fit for SFRff, defined as error ¼
(Bt� SFRA)/SFRA. The labels on the contours show the value of the error.
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compresses the gas. We show in Appendix A that �P � 3. The
scale height hg of the gas in the disk is related to its midplane
density by

hg ¼
�g

2�g
¼ �gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�G�P�g
p ; ð33Þ

where �g is the gas velocity dispersion. Using these two expres-
sions to solve for the midplane density gives

�g ¼
�G�P�

2
g

2�2
g

: ð34Þ

To use this result, we must know �g, which varies from
�6 km s�1 in normal disks (Blitz & Rosolowsky 2004) to
�100 km s�1 in starbursts (e.g., Downes & Solomon 1998).
To estimate the velocity dispersion, we assume that the star-
forming part of a galaxy has a flat rotation curve with veloc-
ity vrot and is marginally Toomre stable, so that Q � 1. Both
assumptions are well satisfied in observed galaxies ranging
from normal disks to starbursts and are expected on theoretical
grounds (Quirk 1972; Kennicutt1989; Navarro et al. 1997, 2004;
Downes & Solomon 1998; Martin & Kennicutt 2001; Seljak
2002). The Toomre parameter Q is defined as (Toomre 1964)

Q � ��g

�G�g
¼

ffiffiffi
2

p
��g

�G�g
; ð35Þ

where � �
ffiffiffi
2

p
� is the epicyclic frequency, � ¼ vrot/r is the an-

gular velocity, and r is the galactocentric radius. We adopt Q ¼
1:5 as a typical value based on the surveys ofMartin &Kennicutt
(2001) and Wong & Blitz (2002). However, observed Q-values
range from�0.5 up to�6, and spiral arms generally decreaseQ.
We discuss the resulting uncertainty in the SFR in x 7.1.

Using equation (35) to eliminate �g in equation (34), we ob-
tain themean density in a galactic diskmidplane (Thompson et al.
2005),

�g ¼
�P�

2

�Q2G
ð36Þ

! 6:4 ;10�21Q�2
1:5�

2
0 g cm�3; ð37Þ

where �0 is � in units of Myr�1 and Q1:5 ¼ Q/1:5. The corre-
sponding free-fall time in the midplane gas is

tA;g ¼
3�2

32

� �1=2

�
�1=2
P

Q

�
ð38Þ

! 0:83Q1:5�
�1
0 Myr: ð39Þ

Since the filling factor of molecular clouds is less than unity
even in galaxies where the ISM iswhollymolecular (Rosolowsky
& Blitz 2005), the mean gas density in the star-forming clouds
will be higher than this and the free-fall time lower. Let �� be the
ratio of the mean molecular cloud density to the mean midplane
density,

�� �
�cl
�g

: ð40Þ

With this definition, we can write the total SFR as

�̇� ¼
32

3�2

� �1=2

�
1=2
P �1=2

� SFRAQ
�1fGMC�g� ð41Þ

� 0:073M�0:32�1=2
� Q�1

1:5 fGMC�g�; ð42Þ

where the numerical evaluation uses our fiducial values of �vir

and�P. Noting that� / ��1
dyn, we see that our formulation already

gives us something like the Kennicutt-Schmidt law, equation (2).
The Milky Way values for the remaining parameters are M �
25 (Solomon et al. 1987), �� � 20 (McKee 1999),Q1:5 � 1, and
fGMC � 0:25 (Dame et al. 1987), which gives a numerical coef-
ficient of 0.03 in equation (41), within a factor of 2 of the coef-
ficient of 0.017 determined byKennicutt (1998a) based on a large
sample of galaxies. (Note that for the observational value of ��

we are comparing the density in GMCs to the density in the spiral
arms, which is a factor of�4 higher than the mean ISM density;
see Nakanishi & Sofue 2003.) Thus, our theory seems consistent
with the observed Kennicutt-Schmidt law. However, our results
depend on two quantities, �� andM, that have been directly ob-
served only in theMilkyWay and a few nearby galaxies. To com-
pletely derive a star formation law in terms of observables, we
must compute �� andM in terms of other quantities. Fortunately,
�� andM enter our prediction to the 0.5 and 0.32 powers, so we
are relatively insensitive to errors in them.

3.2. The Properties of Molecular Clouds

Our goal in this section is to estimate �� and M in terms of
observables. Our strategy is to treat molecular clouds as gravi-
tationally bound fragments of the ISM in approximate virial
balance. The assumption of gravitational boundedness allows us
to estimate the typical mass of GMCs, and this mass plus the as-
sumption of virial balance allow us to compute the overdensity
and velocity dispersion in GMCs.
In theMilkyWay, most molecular gas is in clouds with masses

of a few times 106 M� (Solomon et al. 1987; Heyer et al. 2001),
and the LMC shows a similar characteristic mass (Fukui et al.
2001). The typical mass is somewhat lower in M33 (Engargiola
et al. 2003) and higher in M64 (Rosolowsky & Blitz 2005), in-
dicating a very rough trend of increasingGMCmasswith increas-
ing galaxy surface density. However, all of these are ordinary
disk galaxies, with surface densities P100 M� pc�2. There are
no observations that resolve individual molecular clouds in star-
bursts or ULIRGs, so we must estimate. Since GMCs appear to
be gravitationally bound, they must have formed via a gravita-
tional collapse. For this reason, their typical mass should be
roughly the Jeans mass in a galactic disk (Kim & Ostriker 2001;
Kim et al. 2002, 2003), giving

Mcl �
�4
g

G 2�g
ð43Þ

¼
�4G2�3

gQ
4

4�4
ð44Þ

! 2:5 ; 103Q4
1:5�

3
g;2�

�4
0 M�; ð45Þ

where in the second step we have used the definition of Q
(eq. [35]) to eliminate �g and �g;2 is �g in units of 10

2M� pc�2.
In theMilkyWay near the solar circle, where �g � 6 km s�1 (con-
sistent with the sound speed in the warm ISM; see Heiles &
Troland 2003) and �g � 12 M� pc�2 (Boulares & Cox 1990),
equation (43) gives MJ � 6 ;106 M�. This agrees well with
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observedmasses of giant atomic-molecular complexes, of which
GMCs are the inner parts (Elmegreen 1989, 1994). Note that the
Toomre mass and the Jeans mass are roughly equal for a disk
withQ � 1. The Toomremass isMT � k2T�g, where kT � Qhg is
the most unstable wavelength and hg is the gas scale height. The
Jeans mass is MJ � h2g�g, so MT �Q2MJ.

Now that we have estimated the typical masses of star-forming
clouds, we can compute their typical densities from knowledge
of the pressures that confine them. The pressure at the surface of
a GMC is roughly the ambient pressure in the midplane of a gal-
axy,Pmp.We define�P as the ratio of themean pressure in a cloud
Pcl to the surface pressure, so

Pcl � �P Pmp: ð46Þ

In an environment with a purely molecular ISM, this is just the
ratio of the mean pressure in a gravitationally bound object to its
edge pressure, and it is�2. In a predominantly atomic ISM, �P
is larger because molecular gas exists only when it is shielded
by an atomic layer and the weight of the bound atomic gas in-
creases its pressure. We estimate �P � 10�8fGMC, where fGMC

is the molecular gas fraction of the galaxy, in Appendix B.
We now write down the virial theorem for a GMC, using a

form of the theorem obtained by combining equation (24) of
McKee (1999) with equation (A7) of McKee & Tan (2003):

Pcl ¼
3�

20
�virG�

2
cl; ð47Þ

where�cl is the surface density of the GMC and �vir is the stan-
dard virial parameter,

�vir ¼
5�2

clRcl

GMcl

¼ 5�2
cl

G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Mcl�cl

p : ð48Þ

Equation (47) is quite intuitive, as it simply equates the GMC’s
internal pressure with its weight, scaled by the virial parameter
as an indicator of how self-gravitating the cloud is. Together
with the definition of the turbulent pressure Pcl ¼ �cl�

2
cl, equa-

tions (47) and (48) constitute three equations in the unknowns
�cl, �cl, and �cl. Solving for the molecular cloud density gives

�cl ¼
375

4�

� �1=4
P3
cl

�3
virG

3M 2
cl

� �1=4

; ð49Þ

and plugging in for Pcl and Mcl gives

�� ¼
�cl
�g

¼ 375

2�2

� �1=4 �3

P

�P�
3
vir

 !1=4

ð50Þ

! 5:0�
3=4

P;6
; ð51Þ

where �P;6 � �P/6. The GMC velocity dispersion is

�cl ¼
�ffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffi
�PQ

2

��

s
G�g

�
ð52Þ

! 1:6�
1=8

P;6
Q1:5�

�1
0 �g;2 km s�1: ð53Þ

The numerical evaluations are for �P ¼ 3 and �vir ¼ 1:3. The
range of variation of ��with fGMC is from �� ¼ 7:3 for fGMC ¼ 0
to �� ¼ 2:2 for fGMC ¼ 1. Thus, �� is 3–4 times larger in normal
galaxies than in starbursts.

To convert the velocity dispersion given by equation (52) to a
Mach number, we must know the sound speed in the star-forming
clouds. Observations of a galaxy can generally determine the tem-
perature T in the star-forming gas, fromwhich one can easily com-
pute the sound speed cs ¼ (kBT /m)

1=2, where m ¼ 3:9 ; 10�24 g
is the mean particle mass, corresponding to a fully molecular gas
with a ratio of 10 H nuclei per He nucleus. However, for the
purposes of numerical evaluation we can use an average sound
speed. In the Milky Way, the typical temperature in star-forming
clouds is �10 K (Solomon et al. 1987), giving a sound speed
of 0.19 km s�1. Observed starbursts have temperatures in the
range 29–46 K (Gao & Solomon 2004), giving sound speeds up
to 0.4 km s�1. For the numerical evaluations in this paper we
adopt an intermediate value of 0.3 km s�1, although cs is gen-
erally directly observable. Since the Mach number affects the
SFR only through SFRff , and SFRff is very insensitive to Mach
number, this produces relatively little error. We therefore estimate
the typical Mach numbers in star-forming regions to be

M ¼ �ffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffi
�PQ

2

��

s
G�g

cs�
ð54Þ

! 5:3�
1=8

P;6
Q1:5�

�1
0 �g;2: ð55Þ

Note that while �cl is actually the total thermal plus nonthermal
velocity dispersion, star-forming regions are highly supersonic,
so �cl � �nonthermal.

3.3. The Full Star Formation Rate

Using our calculated values for �� and M, the SFR per unit
area of a galactic disk is

�̇� ¼
219=853=8

33=8�5=4

�P�P

�vir

� �3=8

Q�1SFRA fGMC��g ð56Þ

! 9:5fGMC�
0:34
P;6

Q�1:32
1:5 �1:32

0 �0:68
g;2 M� yr�1 kpc�2; ð57Þ

where the numerical evaluation uses our power-law fit for SFRff

(eq. [30]) and the fiducial values of all our other parameters, as
summarized in Table 2. If one uses our approximation for �P in
terms of fGMC, this formulation of the SFR now depends solely
on observables. Note that our result is different than the standard
scalings with �g and � found by Kennicutt (1998a), and it is
therefore a new prediction that can be tested against future obser-
vations. Also note that this relation should apply not just on a
galaxy-by-galaxy basis, but within an individual galaxy as well.
This too is a new observational prediction. We discuss ways of
testing these predictions in x 6.

TABLE 2

Fiducial Parameters

Parameter Value

�vir ....................... 1.3

cs (km s�1)........... 0.3

�core ....................... 0.5

p............................ 0.5

�P ......................... 3.0

�P ......................... 10� 8fGMC

�t .......................... 1.91

�x .......................... 1.12

Q........................... 1.5
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4. COMPARISON TO THE MILKY WAY

We first test our theoretical prediction against the MilkyWay.
We do so in two ways to show that our results are consistent.
First we use the observed properties of the molecular gas in the
Milky Way plus our estimate of SFRff , and then we use the es-
timated surface densities of various Milky Way components.

4.1. Estimate from Observed GMC Properties

Bronfman et al. (2000) estimate that the total mass of GMCs
inside the solar circle is Mmol � 109 M�. The mass distribution
of the clouds is (Williams & McKee 1997)

dN
d lnMcl

�
0; Mcl > 6 ; 106 M�;

10
Mcl

106 M�

� ��0:6

; Mcl < 6 ; 106 M�;

8><
>: ð58Þ

whereMcl is the cloud mass. Solomon et al. (1987) catalog 273
Galactic GMCs observed in CO. They find that the average
column density of GMCs is NH � 1:5 ;1022 cm�2 independent
of mass, where the subscript H indicates that we are referring to
the number of hydrogen nuclei. McKee (1999) uses this result
to estimate that the free-fall time in a GMC is

tA ¼ 4:7
Mcl

106 M�

� �1=4

Myr: ð59Þ

Combining the line width–size and mass-radius relations in-
ferred by Solomon et al. (1987) andMcKee (1999) gives aMach
number–radius relation

Mcl ¼ 25
Mcl

106 M�

� �0:25

ð60Þ

for aGMC temperature of 10K. From these relations, it is straight-
forward to estimate the total SFR by integrating the SFR over the
GMC mass distribution,

Ṁ�;pred ¼
Z 6 ; 106 M�

104 M�

SFRA Mclð Þ 1

tA Mclð Þ
dN

d lnMcl

dMcl ð61Þ

� 5:3 M� yr�1: ð62Þ

We have imposed a lower cutoff of 104M� because �vir 31 for
GMCs with smaller masses (Heyer et al. 2001), which greatly
reduces their SFR. The observed SFR in theMilkyWay is Ṁ� �
3 M� yr�1 (McKee & Williams 1997), so our estimate agrees
with observations to a factor of 1.8, a reasonable fit.

An important subtlety of this analysis is that we must impose
a lower cutoff when integrating the SFR over the GMC mass
distribution because small clouds, if they are virialized, con-
tribute significantly to the SFR. The integrand in equation (61)
scales as roughlyM�0:93

cl : one gets an exponent of�0.6 from the
logarithmic mass spectrum dN /d lnMcl, �0.25 from the free-
fall time, and approximately�0.08 from the dependence of SFRff

on theMach number and hence onMcl. Thus, each decade range in
the mass of virialized clouds contributes almost equally to the
SFR. The contribution to the total SFR from small clouds is small
not because the clouds contain a small amount of mass, but be-
cause small clouds are not virialized.

4.2. Estimate from Surface Densities

We can also compute the Milky Way SFR using surface
densities, the rotation curve, and the velocity dispersion. The

vast majority of star formation in theMilkyWay occurs in a ring
from 3 to 11 kpc in Galactocentric radius (McKee & Williams
1997) within which the molecular and atomic gas surface den-
sities are roughly (Wolfire et al. 2003)

�mol �
6:3 exp

� rk � 4:85ð Þ2

2ð Þ2:252

" #
M� pc�2; 3 � rk < 6:97;

4:1 exp
� rk � 6:97ð Þ

2:89

� �
M� pc�2; rk � 6:97;

8>>>><
>>>>:

ð63Þ

and

�H i �

2:0rk � 0:8ð Þ M� pc�2; rk < 4;

7 M� pc�2; 4 � rk < 8:5;

�1:57þ 8:57
rk

8:5

� 	h i
M� pc�2; rk > 8:5;

8>><
>>:

ð64Þ

where rk is the galactocentric radius in kpc andwe havemultiplied
theWolfire et al. (2003) values for the surface density of hydrogen
by 1.4 to get the total surface density including both H and He.
From these surface densities we can directly compute �g , fGMC,
and ��. The Galactic rotation speed is vrot � 220 km s�1 and is
flat over the ring (Binney & Merrifield 1998), so

� ¼ 0:22

rk
Myr�1: ð65Þ

The temperature in the molecular gas is �10 K (Solomon et al.
1987), giving a sound speed cs � 0:2 km s�1. We estimateM as
a function of radius from �g and � using equation (54).
The final step is to estimate Q, which we do in two different

ways. First, we computeQ from�g assuming that the gas veloc-
ity dispersion is �g ¼ 6 km s�1 independent of radius. This is
consistent with observations (Kennicutt 1989; Heiles & Troland
2003), although the observations are quite uncertain because it
is difficult to determine the velocity dispersion as a function of
radius within the Galaxy. Second, we compute Q from the gas
scale height, which can be directly measured in the Milky Way.
Equation (33) allows us to compute �g from �g and hg, and
equation (36) gives Q in terms of �g and �. The scale heights of
the atomic and molecular gas within the star-forming ring are
(Wolfire et al. 2003)

hH i �
65 pc; rk < 8:5;

65 exp
rk � 8:5

6:7

� �
pc; rk � 8:5;

8<
: ð66Þ

and

hmol �
33 pc; rk < 8:5;

33 exp
rk � 8:5

6:7

� �
pc; rk � 8:5:

8<
: ð67Þ

Note that we have converted the half-density heights given by
Wolfire et al. (2003) to scale heights by assuming an isothermal
density profile � / sech2 ½z/(2hg)	.We determine aQ by comput-
ing the midplane density of atomic and molecular gas and then
solving equation (36) for Q using the surface density–weighted
average of the two midplane densities. The result agrees to
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within 20% with the value Q as a function of radius we derive
using the first method. We plot the azimuthally averaged Q ver-
sus radius for the Milky Way in Figure 5. However, most Milky
Way star formation occurs in the spiral arms. Balbus (1988) shows
that the localQ-value in a spiral arm is related to the azimuthally
averaged Q by

Qarm � Qavg

�arm

�avg

� ��1=2

: ð68Þ

The Milky Way’s spiral arms are overdense by factors of �4
(Nakanishi & Sofue 2003), so we reduce our estimated value of
Q by a factor of 2 to account for this effect. We also show the cor-
rected Q in Figure 5.

Integrating over the star-forming ring, we find a predicted SFR

Ṁ�;pred �
Z 11 kpc

3 kpc

9:5 fGMC�
0:34
P;6

Q�1:32
1:5 �1:32

0

; �0:68
g;2 2�R dR M� yr�1 kpc�2 ð69Þ

�4:5 M� yr�1: ð70Þ

This agrees with the observed SFR of 3 M� yr�1 in the Milky
Way (McKee &Williams 1997) and with our estimate based on
observed GMC properties to better than a factor of 2. If we omit
the correction for spiral arms, we get an SFR of 2.1M� yr�1, still
in good agreement, so the spiral arm correction is not critical.

Note that equation (69) gives a prediction not just for the total
SFR in the Galaxy but also for the radial distribution of star for-
mation. We show this in Figure 6. For comparison, we also show
themodel of McKee&Williams (1997) (scaled to have the same
integrated SFR as ours), which is generally consistent with ob-
servational data on the radial distribution of star formation out-
side 4 kpc. Our model is similar to theMcKee&Williams (1997)
model in this range but differs substantially inside 4 kpc because

McKee &Williams (1997) use a simple exponential distribution
with a cutoff for the radial variation of the molecular gas surface
density, while we use a more accurate distribution that better re-
flects the decline in the molecular gas surface density in the inner
Galaxy. We find that the characteristic radius of star formation in
the Milky Way, defined as the radius within which half the star
formation occurs, is Rchar � 7:1 kpc. Taking the outer radius of
the star-forming disk to be 11 kpc, this gives Rchar ¼ 1:3R1=2.
This suggests that the common observational practice of measur-
ing quantities such as angular velocities at half the outer radius of
star formation (Kennicutt 1998b) should be reasonably accurate.

5. COMPARISON TO GALACTIC-AVERAGE STAR
FORMATION RATES

5.1. Statistical Comparison

For a second test we compare our prediction against a sample
of 95 galaxies, taken from the normal galaxies and starbursts
compiled by Kennicutt (1998a) plus starbursts from Downes &
Solomon (1998). For the Kennicutt galaxies, we use the mea-
sured values of �mol, �g, and �dyn as reported in Tables 1 and
2 of Kennicutt (1998a) to compute a theoretical SFR from
equation (56). We follow Kennicutt in taking � ¼ 4�/�dyn to be
the typical value of � in the star-forming region, and we ex-
clude galaxies for which there is no measured value of �dyn. For
starbursts where there is no measured value of �g (only �mol )
we assume fGMC ¼ 1.

For the Downes & Solomon (1998) sources, we use a com-
pilation of supporting information from T. Thompson (2005, pri-
vate communication). As with the Kennicutt starbursts, we take
fGMC ¼ 1 for all these points. We derive �g and �dyn from the
gas mass, half-power radii, and rotation curves from Tables 4, 5,
and 9 of Downes & Solomon (1998), and we derive SFRs from
the far-infrared (FIR) luminosities taken from the texts of Downes
& Solomon (1998; IRAS 00057+4021, IRAS 02483+4302, VII
Zw 31), Genzel et al. (2001; IRAS 23365+3604, IRAS 17208�
0014),Heckman et al. (2000; IRAS 10565+2448), and Soifer et al.

Fig. 5.—Predicted value of Q vs. radius, estimated using azimuthal averages
and scale heights (dot-dashed line), using azimuthal averages and �g ¼ 6 km s�1

(dashed line), and corrected for spiral structure (solid line).

Fig. 6.—Predicted variation in the SFR per unit area, �̇�, with galactocentric
radius r. The solid line is our model, and the dashed line is the model of McKee
& Williams (1997), scaled to have the same integrated SFR that we predict.
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(2000;Mrk 231).We compute the SFRs from the FIR luminosities
using the conversion factor of Kennicutt (1998b). The data set
includes multiple points for Arp 193, Mrk 273, and Arp 220
because Downes & Solomon (1998) break the sources up into a
more diffuse component and one or two ‘‘extreme’’ starburst
nuclei. For these objects we include both the diffuse component
and the nucleus or nuclei. Data for the surface densities, dy-
namical times, and luminosities for the diffuse components come
from Tables 4, 5, and 9 and the text of Downes & Solomon
(1998), while data for the nuclei come from Table 12.

To compare to this sample, we compute

	2 � 1

Ndata � NBt

X
log �̇�;data
� �

� log �̇�;theory
� �
 �2 ð71Þ

for our model and, as a normalization, for the Kennicutt (1998a)
empirically determined best fit. The number of fit parameters
Nfit is unity for the Kennicutt best fit and zero for our model. We
find 	2 ¼ 0:40 for the best fit of Kennicutt (1998a), while our
theoretical model gives 	2 ¼ 0:55. Note that these are not tradi-
tional 	2 goodness-of-fit statistics, since we are using the log-
arithm of the data, we have no error bars for the measurements,
and the dominant errors (arising from extinction, an imperfectly
known IMF, and similar astrophysical uncertainties; seeKennicutt
1998b) are systematic and therefore highly non-Gaussian. Instead,
the meaning of this statistic is that 10	 is the rms factor by which
the model errs in estimating the SFR. Thus, our results corre-
spond to rms errors of a factor of 5.6 for our model and a factor of
4.3 for the Kennicutt fit. Given the factor of several systematic
uncertainties in the measured SFRs, these values are essentially
identical.

5.2. The Kennicutt-Schmidt Law

The Kennicutt-Schmidt law correlates the SFR with either
�g� or�g, while our theory makes a prediction based on�g,�,
and fGMC. From an intuitive physical standpoint, one would be
surprised if the SFR did not depend on all three of our parame-
ters to at least some degree. Thus, the two forms of the Kennicutt-
Schmidt law represent two ways of projecting a four-dimensional
space (consisting of �g, �, fGMC, and �̇�) onto two dimensions.
To compare our theory directly to these laws, as opposed to the
underlying data as we did in x 5.1, we must make some addi-
tional approximations. We stress that we make these approxi-
mations only for the purposes of the projection and that the right
way to test our theory is to use the measured values of�g,�, and
fGMC, as we did in x 5.1. We make them because they allow us to
show, in a relatively intuitive manner, why projecting the four-
dimensional data down to two dimensions still allows such a
good fit to the observations.

Since neither version of the Kennicutt-Schmidt law involves
fGMC, we must estimate it in terms of �g or �. Wong & Blitz
(2002) and E. Rosolowsky & L. Blitz (2005, in preparation)
find that the ratio of molecular to atomic gas follows the approx-
imate relation

�mol

�H i

� Pmp=kB
2:5 ; 104 cm�3 K

� �1:0

; ð72Þ

with about half a dex of scatter. SincePmp is just a function of�g

in our model, equation (72) gives

fGMC � 1þ 0:025��2
g;2

� 	�1

; ð73Þ

for our fiducial �P ¼ 3. Note that most of the dynamic range
of the Kennicutt-Schmidt law lies above�g ¼ 100M� pc�2, for
which fGMCk 0:98, where we have made the approximation
that most molecular gas is in GMCs. Thus, fGMC is almost con-
stant over most of the range of the Kennicutt-Schmidt law,
which is part of the reason that a projection of the data that ne-
glects fGMC makes little difference.
With fGMC approximated in terms of�g, the remaining step is

to project from the three-dimensional space of �̇�, �g, and �
onto a two-dimensional space of �̇� and just �g or �g�. To do
this, we make use of the fact that�g and� for galaxies appear to
be correlated, as shown in Figure 7. The correlation is fitted rea-
sonably well by the rule

�0 ¼ 0:058�0:49
g;2 ; ð74Þ

as the figure shows. We can use this rule to estimate �g and �
independently from any combination of �g and �, allowing us
to project our theory into the same lower dimensional space as
the Kennicutt-Schmidt law. This correlation is the other half of
the reason that projecting the data into two dimensions works
well: �g and � are not really independent, at least in the avail-
able data set. Because they are correlated, projecting the data onto
any appropriately chosen combination of them will work, which
is why the �1:4

g and �g� forms of the Kennicutt-Schmidt law
work equally well, as does our prediction, which is approxi-
mately �̇� / �0:68

g �1:32. Even though the parameter space is
four-dimensional, most of the data points lie near a line within
it, which makes distinguishing different models quite difficult.
We discuss how to break this degeneracy in x 6. Also note, how-
ever, that while equation (74) holds between galaxies, it is un-
known if it holds within galaxies. For this reason, the projection
we derive to compare to theKennicutt-Schmidt lawmay apply only
to averages over many galaxies, not within individual galaxies.

Fig. 7.—�g vs. � for observed galaxies. The data points represent normal
disks ( plus signs), circumnuclear starbursts (asterisks), ULIRGs (diamonds),
Arp 193 (triangles), Mrk 273 (open squares), and Arp 220 ( filled squares). For
a description of how we derived these data points, see x 5.1. The line shows a
linear fit to the data.
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Using equations (73) and (74) in equation (56), our theoret-
ical prediction for the SFR in terms of ��g is

�̇� � 3:2�0:34
P;6

Q�1:32
1:5 fGMC �0�g;2

� �0:89
M� yr�1 kpc�2; ð75Þ

where

fGMC � 1þ 5:5 ; 10�3 �0�g;2

� ��1:34
h i�1

ð76Þ

and �P � 10�8 fGMC. The observed Kennicutt-Schmidt law
with this choice of dependent variable is (Kennicutt 1998a)

�̇� ¼ 0:017��g: ð77Þ

We plot this and our theoretical prediction in Figure 8. As the
plot shows, our theoretical prediction, when we take into ac-
count the way that fGMC,�g , and� are related, essentially repro-
duces the first form of the Kennicutt-Schmidt law. If we instead
choose �g to be our independent variable, following the second
form of the Kennicutt-Schmidt law, our theoretical prediction is

�̇� ¼ 0:19�0:34
P;6

Q�1:32
1:5 fGMC�

1:33
g;2 ; ð78Þ

where fGMC is given by equation (73) and �P is approximated in
terms of fGMC as for the previous case. The observed law is
(Kennicutt 1998a)

�̇� ¼ (2:5 
 0:7) ; 10�4 �g

1 M� pc�2

� �1:4
0:15

M� yr�1 kpc�2

ð79Þ
� 0:16�1:4

g;2 M� yr�1 kpc�2: ð80Þ

We plot this and our theoretical prediction in Figure 9 and find
that, again, our fit is reasonably good. The only exception is at
values of �gP 1 M� pc�2. The error there arises from the fact
that almost all the galaxies with �g so small lie well above the
� versus �g correlation we have used to project our theory (as
shown in Fig. 7), so the values of � we are using are system-
atically smaller than those of the real galaxies in that region of
parameter space. Since our SFR depends on �1.32, this under-
estimation of � causes the theory to underpredict the SFR. If
one uses the measured values of � rather than the linear fit, the
error at small �g is no larger than it is elsewhere.

6. FUTURE OBSERVATIONAL TESTS

Our theory makes three observational predictions that should
be directly testable in the next few years. First, we can test our
theory on nearby galaxies where molecular clouds are directly
observable. In x 4.1 we compute the SFR in the Milky Way by
integrating over the observed distribution ofMilkyWay GMCs.
While we have some information about larger GMCs in nearby
galaxies, small GMCs make a nonnegligible contribution to the
SFR there just as they do in theMilkyWay. To reliably compute
the SFR in another galaxy, we must therefore identify the lower
mass cutoff below which molecular clouds become nonvirialized.
This cutoff has not yet been observed in any galaxy but theMilky
Way, but such an observation is a straightforward extension of ex-
isting data sets to higher sensitivities and angular resolutions. It
should bewithin the capabilities of the SMA,CARMA, orALMA.
Once one has determined the full cloud mass distribution for an-
other galaxy down to the nonvirial cutoff, one can compute the
SFR in another galaxy by using equation (21) to compute the
SFR in each cloud, just as we have done for theMilkyWay. Since
this type of test depends only on our calculation of SFRff and
not on any of our calculations of GMC properties in external

Fig. 8.—Predicted SFR vs. �g /�dyn (solid line). We also plot the Kennicutt
(1998b) best fit (dashed line) and observed points for normal galaxies from
Kennicutt (1998a; plus signs), circumnuclear starbursts from Kennicutt (1998a;
asterisks), ULIRGs (diamonds), Arp 193 (triangles), Mrk 273 (open squares),
and Arp 220 ( filled squares). For a description of how we derived these data
points, see x 5.1.

Fig. 9.—Predicted SFR vs. �g (solid line). We also plot the Kennicutt
(1998b) best fit (dashed line). The data points are observed galaxies: normal
disks ( plus signs), circumnuclear starbursts (asterisks), ULIRGs (diamonds),
Arp 193 (triangles), Mrk 273 (open squares), and Arp 220 ( filled squares).
For a description of how we derived these data points, see x 5.1.
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galaxies, this method allows our theory of SFRff to be tested
independently of the rest of our model.

Observations that resolve the SFR in a galaxy in annular rings
but cannot resolve individual GMCs provide a second possible
test of our theory. With sufficiently good data, one could use
equation (57) to predict the SFR versus radius within a galaxy,
just as we have done for the Milky Way in x 4.2. This could then
be compared to resolved observations of star formation versus
radius, similar to those ofWong &Blitz (2002). The primary ob-
servational challenge in this comparison is that, to compare to a
single galaxy where one cannot assume that parameters such as
Q have their average values, one must measure all the infor-
mation that we measured for the Milky Way. In particular, one
must know �g, fGMC, �, and Q as a function of radius. The first
three are relatively straightforward, but measuring Q requires
that one be able to measure either the velocity dispersion or the
gas scale height. Neither quantity is easy to determine observa-
tionally, but without it the theoretical predictions will be uncer-
tain by a factor of several.We suggest two possible ways to make
this measurement. First, one could perform resolved observa-
tions of a starburst galaxy, where �g is large enough to be com-
parable to the galactic rotation velocity and is therefore easier to
measure. Second, one could measure �g in a normal disk that is
face-on and then use the Tully & Fisher (1977) relation to obtain
a rotation velocity. Since there is some scatter in the Tully-Fisher
relation, this procedure would likely need to be performed over
several galaxies to minimize the errors arising from the uncer-
tainty in the rotation curve.

A third possible test involves using a sample of galaxies
similar to but larger than that in Kennicutt (1998a). We found in
x 5.2 that, because �g and � are themselves correlated, �̇� will
correlate equally well with an infinite number of combinations
of �g and �. Our theory predicts that the true scaling should be
�̇� / fGMC�

0:68
g �1:32, but the current data cannot distinguish

this combination of �g and � from any other. However, there is
no reason that a future, larger sample of galaxies could not. In
order to break the degeneracy between combinations of �g and
�, a future sample must contain a large number of galaxies, or
annuli within galaxies, with fixed �g and varying �, or fixed �
and varying �g. With such a sample, one could compute pre-
dicted SFRs using equation (57) and repeat our analysis in x 5.1
and determine whether �0:68

g �1:32 is a better fit. However, there
is likely to be considerable scatter arising from the stochastic
nature of the cloud and star formation process. This test will
therefore require a considerably larger sample of galaxies than
are currently available.

Finally, note that one cannot easily test our theory by look-
ing at individual GMCs. Simulations of turbulence-regulated
star formation show significant fluctuations in the SFR versus
time, and we expect that real GMCs will also have large fluc-
tuations. Thus, our theory is valid only as an average over an
ensemble of GMCs. Furthermore, observations of a single GMC
run into a problem with GMC ages. Tracers of star formation
such as FIR and radio continuum luminosities measure the mass
of stars formed over some period in the past. The amount of
time depends on the tracer, but even tracers sensitive only to the
very youngest stellar populations integrate the star formation
over several million years. We do not know the GMC lifetime
well, and even in our model of virialized GMCs we cannot rule
out the possibility that it is only �10 Myr, a few GMC cross-
ing times. Thus, one cannot be confident when observing a sin-
gle GMC that it has been forming stars for long enough to have
reached a steady state luminosity in the tracer that one is using.
This makes observations difficult to interpret because one can-

not break the degeneracy between the SFR and the age of the
cloud.

7. DISCUSSION

7.1. Estimate of Uncertainties

We begin to estimate our uncertainties by considering how
much our estimates of the SFR could be off by considering a
‘‘worst-case scenario’’ for our unknown parameters, �vir, �P,
�P, Q, and �core. Our fiducial value for �vir is 1.3, and a plau-
sible range based on the observations is 1–2. As discussed in
Appendices A and B, the plausible ranges in �P and �P are
�P ¼ 1 6 and �P ¼ 2 10. We have also used a fiducial value
of Q ¼ 1:5. Simulations of purely gaseous magnetized disks
show that collapse in a disk can set in at Q in the range 0.9–
1.6 (Kim & Ostriker 2001; Kim et al. 2002, 2003). Analytic
work shows that stars allow smaller values of Q to be stable
(Jog & Solomon 1984; Rafikov 2001). Observationally, most
galaxies fall in the range Q ¼ 0:75 3 (Martin & Kennicutt
2001; Wong & Blitz 2002), with outliers going as far as Q ¼
0:5 6. We adopt Q ¼ 0:75 3 as our plausible range of vari-
ation for most galaxies. Finally, we have taken �core ¼ 0:5, but
the plausible range for the mass fraction ejected by feedback is
�core ¼ 0:25 0:75 (Matzner & McKee 2000).
If we consider all of these parameters simultaneously as-

suming their extreme values, for a given galaxy we can reduce
our predicted SFR by as much as a factor of 10 and increase it by
as much as a factor of 6, relative to our fiducial case given by the
parameters in Table 2. A more realistic estimate of the error is
probably a factor of �3 because there is no reason our errors
should add up systematically in this fashion. Indeed, the max-
imum errors are possible only for combinations of parameters
that can be ruled out on observational grounds other than the
Kennicutt-Schmidt law. For example, a reduction of the SFR by
a factor of 10 is possible only if �P ¼ 2, �P ¼ 6, and �vir ¼ 2,
giving �� ¼ 1:3. This corresponds to a galaxy where molecular
clouds are only overdense relative to the mean in the ISM by
30%. No known galaxy, including ones where the ISM is en-
tirely molecular, has clouds with such a small overdensity
compared to the rest of the ISM. Indeed, such a galaxy would
effectively have no clouds at all, just a continuous intercloud
medium. Similarly, an increase in the SFR by a factor of 6
occurs for �P ¼ 10, �P ¼ 1, and �vir ¼ 1. Plugging in Milky
Way values of � and �g with these parameters gives M � 5,
much smaller than the observed velocity dispersion in GMCs in
the Milky Way or in any other galaxy.
We can also identify a number of uncertainties not associated

with any specific parameters, but instead with conceptual as-
sumptions that we have made. First, observations have con-
firmed that, in at least some clouds, the SFR is lower in the outer
than the inner parts (Li et al. 1997; Johnstone et al. 2004),
perhaps due to increased ionization there (McKee 1989). The
periodic box simulations we have used to calibrate SFRff do not
include any effects arising from the finite size of real GMCs,
and this may produce an error. A second effect is that we have
assumed that all the gas in starbursts is in bound structures
capable of forming stars. However, observed galactic nuclei and
starbursts that are molecular throughout consist of a collection
of clouds with a molecular intercloud medium (Solomon et al.
1997; Rosolowsky & Blitz 2005). Our assumption that all the
gas is in bound structures may therefore cause us to systemat-
ically overestimate the SFR. However, Rosolowsky & Blitz
(2005) find that in M64 the clouds account for �75% of
the mass, and simulations such as those of VBK03 show that
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k50% of the mass does collapse in unstable environments, so
the error is probably small. Third, we have neglected magnetic
fields. We argue in x 7.3 that star-forming clouds are likely mag-
netically supercritical and thus cannot be held up against col-
lapse by magnetic fields, and we present preliminary evidence in
x 2.2 that a magnetic field in a fairly supercritical cloud does not
substantially inhibit star formation. However, it is possible that
a magnetic field stronger than the one used in Li et al. (2004),
yet still not strong enough to make the cloud subcritical, could
inhibit the formation of cores by preventing gas from flowing
across field lines to accrete onto them. We find this unlikely,
however, since in a supercritical cloud the Alfvén Mach number
is likely to be unity or greater. Fourth, we have ignored the pos-
sible effects of star formation in objects like the clumps observed
by Plume et al. (1997) that do not lie on the line width–size re-
lation and that numerical simulations thus far lack the resolution
to model. Since these objects are overpressured and overdense
compared to typicalGalactic star-forming clouds, they have shorter
free-fall times and form stars faster. By neglecting them,we prob-
ably systematically underestimate the SFR. The extent of the
underestimate is somewhat uncertain, since simulations to date
have not modeled this effect, and we do not know exactly how
much mass is in these clumps in the Galaxy.

7.2. Application to Simulations

Our theory of turbulence-regulated star formation is readily
applicable to simulations on cosmological or galactic scales that
do not have enough resolution to model molecular cloud forma-
tion or star formation directly. This is particularly true because,
while we can integrate over an entire galactic disk to compute
average SFRs, we also predict the SFR in terms of local prop-
erties of the gas.

In a simulation, one usually wants to implement star forma-
tion as a subgrid model. This requires a recipe for determining
at what rate the mass in a given cell or particle is transformed
into stars. Equation (21) gives the SFR in terms of the local free-
fall time tff , molecular massMmol, and the SFR per free-fall time
SFRff, which is a function of �vir and M, the local virial pa-
rameter and Mach number. Since in a simulation the density of
every cell is generally known, it is simple to compute tff. Since
the gas mass but not the molecular mass of every cell is known,
one must determine fGMC to find Mmol. To do this, one may
either assume that sufficiently dense cells are entirely molecular
or more directly use the observed relation between pressure and
fGMC, equation (72). (One should be wary of applying this rule
to galaxies with metallicities too different from that of theMilky
Way, however, since the correlation almost certainly has some
metallicity dependence.)

Finally, to compute SFRff, one needs to know the virial pa-
rameter and Mach number within a cell. The easiest way to es-
timate M is to compute the velocity dispersion over a small
region around the cell and extrapolate down to the size of the
cell using the line width–size relation � / l 0:5. This plus the
temperature of the cell yieldsMwithin the cell. While this pro-
cedure is somewhat uncertain because it requires extrapolation
to scales below the grid size,M has only a weak effect on SFRff.
One can compute�vir by usingM to estimate the kinetic energy
in the cell and comparing to the estimated gravitational self-
energy of the cell. This process for estimating �vir is similar to
the process of estimating whether a region is bound used in the
sink particle creation procedures outlined by Bate et al. (1995)
for Lagrangian codes and Krumholz et al. (2004) for Eulerian
codes. From �vir andM, one can compute SFRff, and from that
Ṁ�.

This procedure provides a simple estimate for the rate at
which a cell turns its mass into stars that is based on a physical
model rather than an arbitrary density cutoff and efficiency for
star formation, which are commonly used in simulations now.
One caveat on our approach, however, is that it does not apply
to primordial star formation, where the primary limit on star
formation is the ability of the gas to cool, rather than turbulent
support.

7.3. Magnetic Fields

Our theory of star formation regulated by supersonic turbu-
lence is only valid if star formation occurs primarily in regions
that are magnetically supercritical. If molecular clouds are mag-
netically subcritical, then magnetic fields can prevent collapse,
and the time required for the flow to ‘‘replace’’ collapsing cores
is the ambipolar diffusion time rather than the free-fall time.
This effect could inhibit flow in unbound regions of GMCs even
if the clouds overall are supercritical. However, our comparison
with the work of Li et al. (2004) gives preliminary evidence that
this effect is small.

Both observations and general theoretical considerations
support the idea that molecular clouds are supercritical. Theo-
retically, McKee (1989) and McKee et al. (1993) point out that
GMCs cannot be bound, turbulent, and magnetically subcriti-
cal. Turbulence and magnetic fields together can support a larger
cloud mass than magnetic fields or turbulence alone. If the tur-
bulent energy is comparable to the magnetic energy, as both ob-
servations and general expectations of equipartition suggest,
then the critical mass arising from both sources must be Mcrit �
2M�. If the cloud is magnetically subcritical, then M PM�, so
M PMcrit/2. However, for a cloud to be bound it must be near its
critical mass. A cloud that is only half its critical mass must be
unbound and would certainly not be centrally concentrated. Since
observations indicate that molecular clouds are both bound and
centrally concentrated (see x 7.5), it follows that they must be
magnetically supercritical, with M � 2M�.

Zeeman splitting observations of magnetic field strengths in
Milky Way GMCs support this view. Crutcher (1999) and
Bourke et al. (2001) find thatM � 2M�. Galli et al. (1999) and
Allen & Shu (2000) point out that this conclusion depends on
the assumed cloud geometry along the line of sight and that
Crutcher’s data are consistent withM � M� if clouds are highly
flattened. However, this model is feasible only if true magnetic
field values in regions with no detectable Zeeman splitting are
near their 3 � upper limits (Bourke et al. 2001). Furthermore, if
GMCs in general are highly flattened, we ought to observe at
least some of them edge-on, allowing us to see their sheetlike
structure. No such sheetlike clouds have been observed. A final
problem with the sheetlike cloud picture is that a highly flat-
tened geometry is not consistent with the observation that clouds
have turbulent energies comparable to their gravitational poten-
tial energies. In such a cloud, the turbulence would be strong
enough to bring gas out of the cloud plane and create a more
three-dimensional geometry.

Another line of observational evidence that clouds are mag-
netically supercritical comes from statistical indicators. Padoan
et al. (2004) argue based on simulations that the magnetic fields
that are at or above equipartition with the kinetic energy yield
measurably different distributions of column density than fields
that are below equipartition. They argue that the observations are
closer to the sub-equipartition simulations. While there is some
uncertainty in interpreting simulations of periodic boxes in the
context of real, finite-sized molecular clouds, these simulations
do provide a strong argument for magnetic supercriticality.
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One final problem for magnetically mediated star formation
theories is that the time required for ambipolar diffusion to change
a subcritical region into one that is supercritical may be consid-
erably shorter in turbulent media than in static media (Heitsch
et al. 2004). Consequently, the long ambipolar diffusion time in-
voked to explain the low SFR may not apply to GMCs, which
observations indicate are strongly turbulent. Li & Nakamura
(2004) and Nakamura & Li (2005) perform simulations showing
that in a two-dimensional geometry, turbulence does not enhance
ambipolar diffusion enough to make the SFR too high, but two-
dimensional turbulence and three-dimensional turbulence are
very different, so it is unclear that their results in this regard are
applicable to real clouds. Whether magnetic regulation with
ambipolar diffusion is even capable of producing the correct star
formation timescale in a turbulent medium remains an open
question.

7.4. Why Is Q � 1?

An additional important assumption in our theory is that
Q � 1. While this is well justified observationally (Quirk 1972;
Kennicutt 1989; Martin & Kennicutt 2001), previous work has
also provided a theoretical explanation, which is part of any com-
plete theory of star formation. Theoretically one expects feed-
back effects to prevent Q from straying too far from unity. In
ordinary disk galaxies like the Milky Way, supernovae are the
likely feedback mechanism (Silk 1997). If Q is too low, then the
SFR will increase (eq. [56]) and the supernova rate will increase
as well. This will raise the temperature and the velocity disper-
sion in the ISM, increasing Q and reducing the SFR. If Q be-
comes too large compared to unity, then gravitational instability
shuts off and molecular clouds cease to form. This is observed in
the outer parts of disk galaxies (Kennicutt 1989). However, if
there is sufficient gas present, then without continual supernova
stirring the gas velocity dispersion will decrease. This will re-
duce Q, causing the SFR to rise again.

In starbursts, the feedback mechanism probably changes over
from supernovae to radiation pressure (Thompson et al. 2005),
but the effect is similar. Low Q-values raise the SFR, which
increases the luminosity of the stellar population and thereby
increases the radiation pressure. This puffs up the disk and re-
storesQ � 1. IfQ is much larger than unity, the SFRwill fall and
the disk will lose radiation pressure support and begin to col-
lapse, reducing Q. These mechanisms complete the picture of
why Q � 1.

7.5. Are Molecular Clouds Bound?

Our analysis also depends on molecular clouds being grav-
itationally bound, virialized structures. If the true virial param-
eter of GMCs is substantially different from unity, then SFRff

and the overall SFR will be much greater (for �virT1) or
smaller (for �vir 31) than we have estimated. Furthermore,
our analysis based on the density PDF assumes that molecular
clouds are gravitationally bound structures that live long enough
for their density distributions to reach statistical equilibrium. If
GMCs are largely unbound or consist of gas that has been com-
pressed by shocks and that all collapses immediately (Elmegreen
2000; Hartmann et al. 2001; Clark & Bonnell 2004; Clark et al.
2005), it is not clear that the density PDF could reach its equi-
librium form before the star formation process was complete. We
must therefore consider whether our assumption of bound, vi-
rialized clouds is a sound one.

Observations indicate that GMC virial parameters are close to
unity. McKee & Tan (2003) analyze the CO surveys of Solomon

et al. (1987) and Dame et al. (1986) and find that the mean virial
parameters for the large clouds in their samples, where most stars
form, are 1.3 and 1.4. In M33, Rosolowsky et al. (2003) obtain
velocity dispersions, masses, and radii for 36 GMCs. From their
data, we find a mass-weighted mean virial parameter of 1.6. In
the nucleus of M64, Rosolowsky &Blitz (2005) find that GMCs
are overpressured with respect to their environments by at least a
factor of 2, indicating that they too likely have �vir � 1. Thus,
our adopted value of �vir ¼ 1:3 is in good agreement with ob-
servations, both in the Milky Way and in the disks and nuclei of
galaxies similar to it.
That observed virial parameters are all close to unity in itself

strongly indicates that GMCs are gravitationally bound, not
held together temporarily by the ram pressure of turbulent flows
in the ISM. There is no reason that turbulent flows would create
clouds with �vir � 1. As an example, consider the molecular
clumps inside GMCs, most of which are created by turbulent
flows and confined by turbulent pressure rather than self-
gravity. Most clumps have virial parameters �vir 31, and they
have a power-law distribution of�vir values for �vir k 1 (Bertoldi
& McKee 1992). The same is true of molecular clouds with
masses P104 M� (Heyer & Brunt 2004). While molecules will
only form in dense regions of the ISM, and for this reason CO
surveys are biased toward dense gas with low virial parameters,
for the UV field of our Galaxy to be such that we see only clouds
that have virial parameters of 1–2 requires an unlikely coinci-
dence. Even if this coincidence could work in the Milky Way, it
would not explain the observations in M33, where the interstel-
lar UV flux could be quite different, and in M64, where the den-
sity of the gas prevents far-ultraviolet photons from propagating
through the ISM at all.
Another strong argument that suggests that GMCs are bound

is that GMCs have a characteristic mass. In the Milky Way,
there is a clear upper limit on GMC masses of approximately
6 ;106 M�. This limit is not consistent with statistically ‘‘run-
ning out’’ of clouds at high masses. It is a real break in the
power-law distribution that is observed at lower masses (McKee
& Williams 1997). The mass distributions of GMCs in M33
(Engargiola et al. 2003) and M64 (E. Rosolowsky 2005, private
communication) also exhibit characteristic scales. If GMCs are
gravitationally bound, then the Jeans mass provides a natural
scale that agrees reasonably well with the observations. If GMCs
are not bound, however, they cannot have been created by grav-
itational collapse and the Jeans mass is therefore irrelevant. Tur-
bulent flows without self-gravity are scale-free. If GMCs are
unbound, they should not exhibit any characteristic mass. This
prediction of the unbound GMC model is inconsistent with the
observations. One cannot invoke observational selection biases
to explain this inconsistency, as is done to explain the observed
values of�vir. Rendering theMilkyWayGMCmass distribution
consistent with a pure power law would require that the Milky
Way contain �100 GMCs with masses larger than 6 ;106 M�
(McKee & Williams 1997; McKee 1999). There is no plausible
way that such a large number of very massive clouds could have
been missed.

7.6. Feedback and Cloud Destruction

Thus far we have omitted any discussion of the effects of mas-
sive star formation feedback. Obviously massive star formation
gives rise to H ii regions that destroy molecular clouds by pho-
toionization and winds. Matzner (2002) estimates that this effect
limits Galactic GMCs to converting at most �5%–10% of their
mass into stars over their lifetimes. Our justification for neglect-
ing this effect hinges on the difference between the star formation
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efficiency, which measures the fraction of gas in a particular
GMC that is transformed into stars, and the star formation rate,
which measures the instantaneous rate at which gas is trans-
formed into stars. Feedback from massive stars ultimately con-
trols the star formation efficiency by disrupting a cloud before it
can turn most of its mass into stars. However, feedback does not
change the instantaneous SFR in the molecular gas except in-
directly, by driving turbulence in the molecular gas and therefore
changing the Mach number. Feedback only affects the SFR by
turning molecular gas into atomic or ionized gas, thereby re-
ducing the amount of molecular gas available to make stars. A
thorough understanding ofmechanisms like photoionization that
regulate the amount of molecular gas available to form stars
would allow us to calculate fGMC from first principles, rather than
taking it from observations, andwould be an important piece of a
complete theory of star formation. However, our results can
stand independently of this, since fGMC is directly observable,
and our theory therefore relies only on direct observables.

7.7. Turbulent Decay

The largest single omission from our theory of star formation
is that it does not address the critical question of what keeps
GMCs in virial balance. Simulations of both hydrodynamic and
magnetohydrodynamic turbulence in periodic boxes indicate
that turbulence decays on timescales of a single crossing time of
the object (Mac Low et al. 1998; Stone et al. 1998; Mac Low
1999; Padoan & Nordlund 1999). The crossing time is tcr ¼
2R /�, where R is the object’s radius and � is its velocity disper-
sion. The crossing time and the free-fall time are related to the
virial parameter by

�vir ¼
5�2R

GM
¼ 40

3�

tA

tcr

� �2

; ð81Þ

whereM is the object’s mass. In a cloud with our fiducial value
of �vir ¼ 1:3, tcr ¼ 1:8tA. If the turbulence decays substantially
in a single crossing time, this means that the object should enter
free-fall collapse within �2 free-fall times. If that happened,
then �vir would become much smaller than unity, and the ma-
jority of the gas would rapidly turn into stars. That would yield
an SFR far higher than observations allow. Thus, GMCs must
not be collapsing in this manner. Rapid decay of turbulence is
also difficult to reconcile with several other observations (see
McKee 1999 for a detailed discussion).

There are several possible explanations for the noncollapse
of GMCs. First is the possibility that turbulence may not decay
as quickly as the simulations indicate. Cho & Lazarian (2003)
argue that Alfvén waves in a turbulent magnetized medium
cascade from large to small scales and decay anisotropically,
with modes along and perpendicular to the magnetic field hav-
ing different decay rates. Only one mode decays as rapidly as
the simulations indicate. They argue that the simulations per-
formed to date lack the dynamic range to model this effect cor-
rectly. Similarly, Sugimoto et al. (2004) perform simulations
showing that, in a filamentary cloud geometry, Alfvén waves
of different polarizations decay at different rates, with some
modes decaying twice as slowly as earlier simulations indicated.
If these results from somewhat idealized cases apply to real
clouds, then GMCs could live for several free-fall times, long
enough to allow the formation of massive stars that could dis-
rupt them rather than letting them collapse entirely into stars.

A second possibility is that turbulence in GMCs is driven by
continual perturbations from outside that are strong enough to

prevent the decay of turbulence and keep GMCs virialized.
Kornreich & Scalo (2000) suggest that GMCs will be struck by
supernova shock waves that maintain cloud turbulence at in-
tervals comparable to the free-fall times of large GMCs. How-
ever, this source of driving is highly stochastic, so it is unclear
that the shocks can truly keep most clouds from collapsing.
Furthermore, F. Nakamura et al. (2005, in preparation) perform
numerical studies indicating that it may not be possible for
external shocks to drive turbulence in clouds without disrupting
them entirely. Koyama & Inutsuka (2002) suggest that turbu-
lence is driven by thermal instability at the interface between
atomic and molecular gas. However, the characteristic size scale
of the disturbances this creates is only �0.1 pc, so it is unclear
that this turbulence would be able to affect the interiors of
GMCs. Piontek & Ostriker (2004) consider thermal plus mag-
netorotational instability in the atomic phase of the ISM and find
that magnetic fields allow motions generated at the warm-cold
interface to drive turbulence far from the interface. However, it is
unknown if this mechanism would work in GMCs. Furthermore,
thermal instability offers no clear way to explain turbulence in
GMCs in galaxies like M64 where the ISM has no atomic phase
and is not known to be thermally bistable as is the atomic ISM in
the Milky Way.

A third possible solution to the problem of turbulent decay is
driving by feedback from star formation. Norman& Silk (1980)
andMcKee (1989) argue based on analytic calculations that, for
the observed SFR, the rate at which protostellar outflows inject
energy into their parent clouds is sufficient to balance the rate at
which turbulence decays. Quillen et al. (2005) observe proto-
stellar outflow cavities in NGC 1333 and estimate that the rate
of energy injection from the observed cavities is sufficient to
power the turbulence of the cloud, in agreement with this model.
Matzner (2002) argues that when massive stars are present, tur-
bulent motions driven by the overpressure in H ii regions are the
dominant source of energy injection. Matzner estimates analyt-
ically that the energy injection rate by H ii regions is sufficient to
balance the turbulent decay rate even if the decay time is only a
crossing time. However, the theory depends on an efficiency of
energy injection by H ii regions that has only been estimated
analytically and ideally should be set by simulations.

Regardless of the true mechanism, the observations show that
GMCs cannot be collapsing completely and rapidly. The exact
mechanism bywhich the turbulence is maintained does not affect
our analysis because, below the scale at which it is driven, all
turbulence is the same. That is why, for example, simulations
find a universal density PDF independent of whether the turbu-
lence is driven or undriven and regardless of the random reali-
zation of the initial velocity field or driving field. Observed
GMCs in both the Milky Way and other galaxies are virialized,
with turbulence balancing gravity, and we have shown here that
virialized, turbulent clouds produce an SFR that is consistent
with observations. The remaining significant piece of this theory,
which we leave for future work, is an explanation for how the
observed virial balance is maintained.

8. CONCLUSIONS

In this work we have attempted to fill in a significant missing
piece of the overall picture of star formation: a quantitative
theory that can map the conditions in a star-forming region into
an SFR based on simple physical principles. Our basic picture is
that stars form in gravitationally bound, virialized molecular
clouds. Only 1%–2% of a cloud is transformed into stars in a
single free-fall time because in a turbulent virialized cloud,
most of the gas is in structures that have more kinetic energy
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than gravitational potential energy. Only rare, overdense regions
are gravitationally bound, and the fraction of a cloud’s mass in
such regions is nearly a constant�1% over all virialized clouds.
We have for the first time computed the collapsing mass fraction
directly in terms of the Mach number and the virial parame-
ter, the two basic dimensionless numbers that describe a star-
forming cloud, and shown that the fraction of gas in collapsing
structures is only a very weak function of the Mach number for
virialized clouds. The SFR is simply themass in sufficiently over-
dense structures divided by the cloud free-fall time. Our model
does not rely on an unknown efficiency of star formation or an
unknown critical density. The only inputs are the physics of tur-
bulence and the virial theorem.

This prescription correctly predicts the SFRwhen we apply it
to the observed giant molecular clouds in the Milky Way. We
also estimate the properties of star-forming clouds in other

galaxies as a function of the rotation speeds and surface densities
of various components in those galaxies. We use these estimated
cloud properties combined with our prediction for the SFR in a
cloud to compute galactic-average SFRs and show that our pre-
dictions agree with the observed SFR in a sample of galaxies
ranging from normal disks like the Milky Way to starbursts and
ULIRGs. Thus, our theory provides a unified model capable of
explaining the star formation on scales from the individual clouds
within a galaxy to the entire star-forming disk of a starburst or
normal disk galaxy.

The authors thank Leo Blitz, Norm Murray, Eliot Quataert,
Eric Rosolowsky, Jonathan Tan, and Todd Thompson for help-
ful discussions. C. F. M. acknowledges the support of NSF
grant AST 00-98365.

APPENDIX A

ESTIMATING �P

We estimate �P by considering cases ranging from normal disks to starbursts. In the solar neighborhood, the total disk surface
density is �tot � 56M� pc�2 (Holmberg & Flynn 2004), and the gas surface density is �g � 12M� pc�2 (Boulares & Cox 1990), so
fg � 0:21. The total midplane pressure is P � 3:9 ; 10�12 dyn cm�2, but approximately 1:9 ; 10�12 dyn cm�2 of this comes frommag-
netic fields and cosmic rays (Boulares & Cox 1990). Since these permeate the molecular clouds and the nonmolecular gas equally,
they provide no confining pressure on molecular clouds. The effective pressure on GMCs in the Milky Way, therefore, is roughly
2 ;10�12 dyn cm�2. For the Milky Way solar neighborhood values of �tot and �g , we find �mp ¼ 0:50. Thus, �P � 2:4 in the solar
neighborhood.

At the opposite extreme consider a starburst or ULIRG. Downes & Solomon (1998) find that the gas fraction in high surface density
starbursts is fg � 1

3
. We cannot directly observe �mp in starbursts, but we can estimate it based on physical considerations. The reason

�mp < 1 in the Milky Way is that the gas scale height is small compared to the stellar scale height. This occurs because the gas com-
prises a small fraction of the total surface density of the disk and because old stars have had a long time to scatter off molecular clouds
(Rafikov 2001). In a starburst, the gas fraction is considerably higher and there is no population of old stars that have had a long time to
be dynamically heated (Downes & Solomon 1998). We therefore expect that stars and gas will have comparable scale heights, which
will produce �mp � 1. This gives �P ¼ 3 in starbursts.

Since �P seems roughly constant over a range of environments from the solar neighborhood to extreme starbursts, we adopt a con-
stant value of �P ¼ 3 throughout our work. The plausible range of variation of �P is from�1, corresponding to a purely gaseous disk,
to �6, corresponding to a starburst containing only 1

6
gas, the rough lower limit in the Downes & Solomon (1998) sample.

Note that because GMCs occupy a relatively small fraction of the ISM, one might treat them as a pressureless component like stars
rather than a pressure-contributing component like atomic gas. This would reduce �P. However, since within a GMC the molecular
gas does contribute pressure, the product �P�P must remain unchanged. Thus, if one takes a smaller value for �P, one must use a
correspondingly larger value for �P . Since our predicted SFR depends on �P�P, there would be no net change to our predictions.

APPENDIX B

ESTIMATING �P

In an environment where the ISM is predominantly atomic, such as the Milky Way, interstellar UV photons dissociate H2 and CO
that is not sufficiently shielded. Thus, molecular clouds exist only as the inner parts of atomic-molecular complexes (Elmegreen 1989,
1994). Since atomic and molecular hydrogen cannot cool effectively, star formation only occurs in the parts of the complexes where
CO is present. For Milky Way interstellar UV fluxes, a layer of gas where C is atomic must provide at least�0.7 mag of extinction to
prevent dissociation of CO (vanDishoeck&Black 1988).With such a shielding layer, themean pressure in themolecular gas is higher
than in the combined atomic and molecular complex. Holliman (1995) estimates �P � 8, which is consistent with the observed ratios
of GMC pressure to ISM pressure in the MilkyWay (Blitz 1993). However, there is considerable uncertainty in applying this estimate
to other galaxies because it depends on the metallicity of the galactic ISM and the strength of the interstellar UV field, both of which
vary considerably from galaxy to galaxy.

For galaxies where the ISM is purely molecular, clouds are not exposed to any external UV flux. In this case, we assume that clouds
can be described very roughly as polytropic spheres. For a polytropic cloud with P / r�kP ,

�P ¼ 3

3� kP
: ðB1Þ

For an isothermal sphere, kP ¼ 2 so �P ¼ 3. For a cloud with a density profile � / r�1, �P ¼ 1. We consider these extreme limits and
take �P ¼ 2 as a typical value. This is consistent with observations of GMCs in purely molecular galaxies (Rosolowsky & Blitz 2005).
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We adopt a very rough formula to interpolate between the purely atomic and purely molecular cases:

�P ¼ 10� 8fGMC; ðB2Þ

where fGMC � �mol/�g is the molecular gas fraction. One could also have chosen to use a step function approximation or simply taken
�P ¼ 6 as a universal value covering the range from starbursts to ordinary disks. We consider any value of �P from 2 to 10 reasonable,
although a value of 2 is implausible for a galaxy with a great deal of atomic gas, and a value of 10 is implausible for a galaxy that is
entirely molecular.
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