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ABSTRACT

The radiation by relativistic plasma particles is beamed in the direction of field-line tangents in the corotating frame,
but in an inertial frame it is aberrated toward the direction of rotation. We have revised the relation of aberration phase
shift by taking into account themagnetic colatitude and azimuth of the emission spot and the plasma rotation velocity. In
the limit of the small-angle approximation, the aberration phase shift becomes independent of the inclination angle �
and the sight line impact angle�. However, at larger altitudes or larger rotation phases, the shift does depend on� and �.
We have given an expression for the phase shift in the intensity profile by taking into account aberration, retardation, and
polar cap currents.

Subject headinggs: pulsars: general — radiation mechanisms: nonthermal — stars: magnetic fields —
stars: neutron

1. INTRODUCTION

The profile morphology and polarization of pulsars have
been widely attempted to be interpreted in terms of emission
in dipolar magnetic field lines (e.g., Radhakrishnan & Cooke
1969; Sturrock 1971; Ruderman & Sutherland 1975; Lyne &
Manchester 1988; Blaskiewicz et al. 1991; Rankin 1983a,
1983b, 1990, 1993; Hibschman & Arons 2001). Most of the ra-
dio emission models assume that (1) radiation is emitted by the
relativistic secondary pair plasma, (2) beamed radio waves are
emitted in the direction of field-line tangents, and (3) emitted
radiation is polarized in the plane of dipolar field lines or in the
perpendicular directions.

From the theoretical point of view, it is highly preferable to
know the precise altitude of the radio emission region in the pul-
sar magnetosphere. By knowing the emission altitude, one can
infer the probable plasma density, rotation velocity, magnetic
field strength, field-line curvature radii, etc., that prevail in the
radio emission region. For estimating the radio emission alti-
tudes, two kinds of methods have been proposed: (1) the purely
geometric method, which assumes that the pulse edge is emitted
from the last open field lines (e.g., Cordes 1978; Gil & Kijak
1993; Kijak & Gil 2003), and (2) the relativistic phase shift
method, which assumes that the asymmetry in the conal compo-
nents phase location, relative to the core, is due to the aberration-
retardation phase shift (e.g., Gangadhara & Gupta 2001, hereafter
GG01). By estimating the phase lag of the polarization angle in-
flection point with respect to the centroid of the intensity pulse,
Blaskiewicz et al. (1991) have estimated the emission heights. The
results of the purely geometric method are found to be in rough
agreement with those of Blaskiewicz et al. (1991).However, com-
pared to the geometric method, the emission heights estimated
from relativistic phase shift are found to be notably larger, partic-
ularly in the case of nearly aligned rotators (Gupta & Gangadhara
2003, hereafter GG03). Dyks et al. (2004, hereafter DRH04), by
revising the relation for aberration phase shift given by GG01,
have reestimated the emission heights. In the small-angle approx-
imation, they have found that the revision furnishes a method for
estimating radio emission altitudes that is free of polarization
measurements and does not depend on�, themagnetic axis incli-
nation angle, and �, the sight line impact angle. By assuming that
the beamed radio waves are emitted in the direction of field-line

tangents, Gangadhara (2004, hereafter G04) has solved the view-
ing geometry in an inclined and rotating dipole magnetic field.

In x 2 we derive the angle between the corotation velocity of
particles/plasma bunches and the dipolar magnetic field. Using the
magnetic colatitude and azimuth of the emission spot in an inclined
and rotating dipole, we have derived the phase shift due to aberra-
tion, retardation, and polar cap current in x 3 and the emission ra-
dius in x 4. In x 5 we compare the shifts due to different processes.

2. ANGLE BETWEEN PLASMA ROTATION VELOCITY
AND DIPOLAR MAGNETIC FIELD

Consider an inclined and rotating magnetic dipole m̂t with
rotation axis 6̂, as shown in Figure 1. The angles � and �0 are the
magnetic axis inclination angle and the rotation phase, respec-
tively. Assume that the relativistic secondary plasma flows along
the dipolar field lines and emits the beamed radiation in the di-
rection of field-line tangents (b̂0t). In a nonrotating case, to receive
such an emission the sight line n̂ must line up with b̂0t . Let Q be
the emission point on a field line at which n̂ ¼ (sin �; 0; cos �)
is parallel to b̂0t, where � ¼ �þ � and � is the sight line im-
pact angle relative to m̂t. The anglesBQOR ¼ � andBQRT ¼ �
are the magnetic colatitude and azimuth of Q relative to m̂t, re-
spectively, whileBQOZ ¼ �0 andBXOS ¼ �0 are the colatitude
and azimuth of Q relative to the rotation axis, respectively.

If r is the position vector of Q, then the angle between r and
6̂ is given by

cos �0 ¼ 6̂ = r̂ ¼ cos � cos �� sin � sin � cos �; ð1Þ

where the unit vector r̂ ¼ r /jrj and the expressions for � and �
as functions of �0, �, and � are given in G04.

For the field line that lies in the meridional plane, defined by 6̂
and m̂t, we have �

0
min ¼ �þ �min. The magnetic colatitude �min

of Q can be obtained by setting �0 ¼ 0 in equation (9) of G04:

�min ¼
1

2
arccos

cos 2�ð Þ þ
ffiffiffi
2

p
cos �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17þ cos 2�ð Þ

p
� 1

6

" #

� 2

3
� þ O(�)3 for �T1: ð2Þ

This is the minimum value that � takes at �0 ¼ 0.

923

The Astrophysical Journal, 628:923–930, 2005 August 1

# 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A.



The rotation velocity of the plasma particle (bunch) at Q is
given by

vrot ¼ 6< r ¼ �r sin �0ê; ð3Þ

where 6 is the pulsar angular velocity and the unit vector ê
represents the direction of rotation. Consider a Cartesian co-
ordinate system XYZ, with the Z-axis parallel to the rotation
axis and the X-axis lying in the fiducial plane defined by n̂ and
6̂. Let � be the angle between the field-line tangent b̂0t and ê,
then we have

ê ¼ cos�êk þ sin�ê?; ð4Þ

where the unit vectors êk and ê? are parallel and perpendicular
to b̂0t, respectively. Therefore, the angle � is given by

cos� ¼ ê = b̂0t ¼
a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4a22
� �

a3

q ; ð5Þ

where

a1 ¼ sin � sin �; a2 ¼ cot �;

a3 ¼
cos2� cos2�þ a22 sin

2�þ a2 cos � sin 2�ð Þþ sin2�

1þ a22
:

We have plotted � as a function of rotation phase �0 for dif-
ferent � in Figure 2. It shows � ¼ 90

�
for the field lines that

lie in the meridional plane (�0 ¼ 0), but for other field lines
it is <90� on the leading side and >90� on the trailing side.

But for an aligned rotator (� ¼ 0�), it is 90� for all the field
lines.

3. PHASE SHIFT OF RADIATION EMITTED
BY A PARTICLE (BUNCH)

Since the pulsar spin rate is quite high, the rotation effects
such as aberration and retardation play an important role in the
morphology of pulse profiles. For an observer in an inertial
frame, the radiation beam gets phase shifted due to the coro-
tation of plasma particles and the difference in emission radii.
Since the radiation by a relativistic particle is beamed in the

direction of the velocity, to receive it the sight line must align
with the particle velocity within the angle 1/�, where � is the
Lorentz factor. The particle velocity is given by

v ¼ �c b̂0t þ vrot; ð6Þ

where c is the speed of light. By substituting for vrot from
equation (3) into equation (6), we obtain

v ¼ �cþ �r sin �0 cos�ð Þb̂0t þ �r sin �0 sin�ê?: ð7Þ

By assuming jvj � c, from equation (7)we obtain the parameter

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r

c

� �2

sin2�0 sin2�

s
� �r

c
sin �0 cos�: ð8Þ

In Figure 3, we have plotted � as a function of r for different
�. It shows � � 1 for r/rLCT1, but at large r it decreases

Fig. 1.—Viewing geometry of emission beam. The heavy ellipse represents
the cone of emission centered on the magnetic axis m̂t . The arcs ZQX, ZRS, ZY,
and XSY represent the great circles centered at O (star center). The magnetic
colatitude � and the phase angle �0 of the emission spot are measured from the
meridional (6̂; m̂t)-plane. They have signs such that �0 is positive while � is
negative on the trailing side, and vice versa on the leading side.

Fig. 2.—Angle� vs. rotation phase �0 for different values of � and a fixed � ¼ 2�.

Fig. 3.—Parameter � vs. r/rLC for different � at �0 ¼ 0
�
and � ¼ 2

�
.
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from unity due to increase in rotation velocity, where rLC is the
light cylinder radius. Machabeli & Rogava (1994), by consider-
ing the motion of a bead inside a rotating linear tube, have de-
duced a similar behavior in the velocity components of the bead.

Using equation (3), we can solve equation (4) for ê? and obtain

ê? ¼ 6̂< r̂

sin �0 sin�
� cot�b̂0t: ð9Þ

Let  be the angle between the rotation axis and v, then we have

cos  ¼ 6̂ = v̂

¼ cos �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r

c

� �2

sin2�0 sin2�

s
� �r

c
sin �0 cos�

2
4

3
5

¼ � cos �; ð10Þ

where v̂ ¼ v/jvj. For r/rLCT1, this reduces to  � �.

3.1. Aberration Angle

If � is the aberration angle, then we have

cos � ¼ b̂0t = v̂ ¼
�cþ �r sin �0 cos�

vj j ; ð11Þ

sin � ¼ ê? = v̂ ¼ �r

vj j sin �
0 sin�: ð12Þ

Therefore, from equations (11) and (12), we obtain

tan � ¼ �r

c

sin �0 sin�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �r=cð Þ2 sin2�0 sin2�

q : ð13Þ

Hence, the radiation beam, which is centered on the direction
of v, gets tilted (aberrated) with respect to b̂0t due to rotation.

For �r /cT1, this can be approximated as

tan � � �r

c
sin �0 sin�: ð14Þ

3.2. Aberration Phase Shift

Consider Figure 4 in which ZAD, ZBX, ZCY, and DXY are
the great circles centered on the neutron star. The small circle
ABC is parallel to the equatorial great circle DXY. The unit
vector b̂0t represents a field-line tangent, which makes the angle
� with respect to the rotation axis ZO. The velocity unit vector v̂
is inclined by the angles � and  with respect to b̂0t and ZO,
respectively. We resolve the vectors b̂0t and v̂ into the compo-
nents parallel and perpendicular to the rotation axis:

b̂0t ¼ sin � b̂0t? þ cos � 6̂; ð15Þ

v̂ ¼ sin  v̂? þ cos  6̂; ð16Þ

where the unit vectors b̂0t? and v̂? lie in the plane of the small
circle ABC. Next, by solving for b̂0t? and v̂?, we obtain

b̂0t? ¼ 1

sin �
b̂0t � cos �6̂
� �

; ð17Þ

v̂? ¼ 1

sin  
v̂� cos  6̂
� �

: ð18Þ

By taking the scalar product with b̂0t? on both sides of equa-
tion (18), we obtain

cos 	�0
abe

� �
¼ v̂? = b̂0t? ¼ 1

sin  
v̂ = b̂0t?� cos  6̂ = b̂0t?
� �

:

ð19Þ

Since 6̂ and b̂0t? are orthogonal, we have

cos 	�0
abe

� �
¼ 1

sin  
v̂ = b̂0t?
� �

: ð20Þ

Using b̂0t? from equation (17), we obtain

cos 	�0
abe

� �
¼ 1

sin  

v̂ = b̂0t � cos �v̂ = 6̂
� �

sin �
: ð21Þ

By substituting for v̂ = b̂0t and v̂ = 6̂ from equations (11) and
(10), we obtain

cos 	�0
abe

� �
¼ 1

sin  

cos � � cos � cos  ð Þ
sin �

: ð22Þ

Substituting for � again from equation (11), we obtain

cos 	�0
abe

� �
¼ 1

sin � sin  
�þ �r

c
sin �0 cos�� cos � cos  

� �
:

ð23Þ

By substituting for � from equation (10), we obtain

cos 	�0
abe

� �
¼ 1

sin� sin 

cos  

cos �
þ �r

c
sin �0 cos�� cos � cos  

� �
:

ð24Þ

This can be further reduced to

cos 	�0
abe

� �
¼ tan � cot  þ �r

c

sin �0 cos�

sin � sin  
: ð25Þ

The aberration phase shift 	�0
abe is plotted as a function of �

in Figure 5 for different � in the two cases: (1) �0 ¼ 0� and

Fig. 4.—Celestial sphere describing the aberration phase shift of pulsar radio
emission, where � is the aberration angle and 	�0

abe is the corresponding phase shift.
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r/rLC ¼ 0:1 and (2) �0 ¼ 60
�
and r/rLC ¼ 0:1. Figure 5a shows

for � � 90�, 	�0
abe � r/rLC, which is nearly independent of �.

But for other values of �, it does depend on �: larger for � < 0
and smaller for � > 0. Since �0 decreases with j�0j and� < 90

�

on the leading side and >90
�
on the trailing side, 	�0

abe is smaller
in Figure 5b compared to its corresponding values in Figure 5a.
Furthermore, we note that 	�0

abe has a negative gradient with
respect to j�0j for both the signs of �. In Figure 6, 	�0

abe is plot-
ted as a function of �0 for different � and fixed � ¼ 4�. It is
highest at large � and small j�0j.

For r/rLCT1, we can series expand 	�0
abe and obtain

	�0
abe ¼ b1rn þ b2r

2
n þ O rnð Þ3; ð26Þ

where rn ¼ r/rLC,

b1 ¼ csc2� sin �0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�cos �� �ð Þ cos �þ �ð Þ

p
;

b2 ¼ �cot2� cos� sin �0b1:

3.3. Retardation Phase Shift

Let �e , �e , and r̂e be the magnetic colatitude, azimuth, and
position vector of the emission spot at the emission time, re-
spectively. In the expressions for � and � (see eqs. [9] and [11]
in G04) we replace �0 by �0 þ 	�0

abe to obtain �e and �e . In
Figure 7, using rn ¼ 0:1, � ¼ 30�, and � ¼ 4�, we have plotted
�e and �e as functions of �

0. It shows that both the minimum of

�e and zero-crossing point of �e are at the phase �0 ¼ �5:5�.
Using the values of �e and �e we find the unit vector r̂e (see
eq. [2] in G04). For brevity, we drop the suffix on r̂. Note that
�0 > 0 on the trailing side (Fig. 1). Consider the emission radii
r1 and r2 such that r1< r2. The time taken by the signal emitted
at the radius r1 is given by

t1 ¼
1

c
d � r1 = n̂ð Þ; ð27Þ

where d is the distance to the pulsar, and n̂ ¼ (sin �; 0; cos � )
is the unit vector pointing toward the observer. For another
radius r2 , the propagation time is given by

t2 ¼
1

c
d � r2 = n̂ð Þ: ð28Þ

The radiation emitted at the lower radius r1 takes more time to
reach the observer than that emitted at r2. The time delay be-
tween the two signals is given by

	t ¼ t1� t2 ¼
1

c
r2 = n̂� r1 = n̂ð Þ: ð29Þ

By considering the neutron star center r1 ¼ 0 as the reference
and r2 ¼ r, we obtain

	t ¼ r

c
r̂ = n̂ð Þ: ð30Þ

Let 
 be the angle between r̂ and n̂, then we have

cos 
 ¼ r̂ = n̂¼ cos � cos � cos �e � cos �e sin � sin �eð Þ
� sin �

�
sin �0 sin �e sin �e

� cos �0 cos �e sin �þ cos � cos �e sin �eð Þ
�
:

ð31Þ

The time delay 	t of components emitted at lower heights
shifts them to later phases of the profile by (e.g., Phillips 1992)

	�0
ret ¼ � 	t ¼ �r

c
cos 
: ð32Þ

In Figure 8, 	�0
ret is plotted as a function of �0 for different �

and fixed � ¼ 4
�
. At small �, it is nearly constant and larger.

But at larger �, it falls with respect to j�0j, as r̂ inclines farther
from n̂.

Fig. 5.—Aberration phase shift 	�0
abe vs. sight line impact angle � for different �: (a) for rn ¼ 0:1 and �0 ¼ 0�; (b) for rn ¼ 0:1 and �0 ¼ 60�.

Fig. 6.—Aberration phase shift vs. phase �0. Here rn ¼ 0:1, � ¼ 4�, and
different � are as marked on the figure.
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For rnT1, we can find the series expansion

	�0
ret ¼ c1rn þ c2r

2
n þ O rnð Þ3; ð33Þ

where

c1 ¼ cos �� �ð Þ;

c2 ¼
sin � sin � sin �0 sin �� �ð Þ 4 cot � þ tan �ð Þ

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ cos2�

p b1;

and � is the half-opening angle of the emission beam (see
eq. [7] in G04).

3.4. Relativistic Phase Shift

Since the retardation and aberration phase shifts are additive,
they can collectively introduce an asymmetry into the pulse profile
(e.g., GG01). Therefore, the relativistic phase shift is given by

	�0
rps ¼ 	�0

ret þ 	�0
abe

¼ rn cos 
þ arccos tan � cot  þ rn
sin �0 cos�

sin � sin  

� �
:

ð34Þ

In Figure 9, we have plotted 	� 0
rps as a function of �

0 for differ-
ent � in the two cases of � ¼ �4

�
. It shows that 	�0

rps reaches
its maximum at �0 � 0 and falls at large j�0j.

In the limit of rnT1, we can series expand 	�0
rps and obtain

	�0
rps ¼ �1rn þ �2r

2
n þ O rnð Þ3; ð35Þ

where �1 ¼ b1 þ c1 and �2 ¼ b2 þ c2.

3.5. Phase Shift Due to Polar Cap Current

According to Goldreich & Julian (1969), the charged par-
ticles relativistically stream out along the magnetic field lines of
a neutron star with aligned magnetic moment and rotation axis.
Hibschman & Arons (2001) have shown that the field-aligned
currents can produce a perturbation magnetic field B1 over the
unperturbed dipole field B0 and can cause a shift in the polar-
ization angle sweep. Here we intend to estimate the phase shift
in the intensity profile due to the perturbation field B1. We as-
sume that the observed radiation is emitted in the direction tan-
gent to the field B ¼ B0 þ B1. Using equations (D5) and (D6)
given by Hibschman & Arons (2001), we find the Cartesian
components of the perturbation field,

B1 ¼ 2
�

rLC

cos � sin � sin �

r2
; �2

�

rLC

cos � sin � cos �

r2
; 0

� �
;

ð36Þ

where � is the magnetic moment. The Cartesian components
of the unperturbed dipole are given by

B0 ¼
3

2

�

r3
sin 2�ð Þcos �; 3

2

�

r3
sin 2�ð Þsin �; �

r3
3 cos2��1
� �� 	

:

ð37Þ

The magnetic field, which is tilted and rotated, is given by

Bt ¼ �B; ð38Þ

where � is the transformation matrix given in G04.
The component of Bt perpendicular to the rotation axis is

given by

Bt? ¼ Bt � Bt = 6̂
� �

6̂: ð39Þ

Similarly, we find the perpendicular components ofB0t ¼ �B0,

B0t? ¼ B0t � B0t = 6̂
� �

6̂: ð40Þ

Fig. 7.—Magnetic colatitude �e and azimuth �e of emission spot vs. phase �0. Here rn ¼ 0:1, � ¼ 30�, and � ¼ 4� for both panels.

Fig. 8.—Retardation phase shift vs. phase �0. Here rn ¼ 0:1, � ¼ 4�, and
different � are as marked on the figure.
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If 	�0
pc is the phase shift in Bt due to the polar cap current, then

we have

cos 	�0
pc


 �
¼ b̂t? = b̂0t? ¼ Bt?; x

Bt?j j ; ð41Þ

where b̂t? ¼ Bt?/jBt?j, the unit vector b̂0t? ¼ B0t?/jB0t?j is
parallel to the unit vector x̂ along the X-axis, and Bt?, x is the
X-component ofBt?. If ŷ is the unit vector along the Y-axis, then
we have

sin 	�0
pc


 �
¼ b̂t? = ŷ ¼ Bt?; y

Bt?j j : ð42Þ

Therefore, we have

tan 	�0
pc


 �
¼ Bt?; y

Bt?; x
¼ d1rn

d2 þ d3rn
; ð43Þ

where

d1 ¼ cos �0 sin 2�ð Þ � 2 cos2� tan �;

d2 ¼ 3 cos � tan �;

d3 ¼ �sin 2�ð Þ sin �0:

Wehave plotted 	�
0
pc as a function of�0 in Figure 10 by choosing

� ¼ 10� and rn ¼ 0:01 and 0.1. It decreases with increasing j�0j

and is mostly negative, except in the case of � < 0, where it
is positive over a small range of �0 near the (6̂; m̂t)-plane. So,
	�0

pc tries to reduce the relativistic phase shift 	�
0
rps , except over

a small range of �0 where it enhances the shift in the case of
� < 0.
In the limit of rnT1, we can series expand equation (43) and

obtain

	�0
pc ¼

d1

d2
rn �

d1d3

d 2
2

r2n þ O rnð Þ3: ð44Þ

4. EMISSION RADIUS FROM PHASE SHIFT

We can find the net phase shift due to aberration, retardation,
and polar cap current by adding equations (34) and (43):

	�0 ¼ 	�0
rps þ 	�0

pc

¼ rn cos 
þ arccos tan � cot  þ rn
sin �0 cos�

sin � sin  

� �

þ arctan
d1rn

d2 þ d3rn

� �
: ð45Þ

In Figure 11 we have plotted 	�0 as a function of �0 in the four
cases of rn (0.01, 0.1, 0.2, and 0.3). It shows that 	�0 reaches
maximum near the (6̂; m̂t)-plane and falls with respect to j�0j.
Note that the magnitude of the gradient of 	�0 with respect to
j�0j is higher than that of 	�0

rps. In the case of � < 0, we find that

Fig. 9.—Relativistic phase shift vs. phase �0 for different � at rn ¼ 0:1: (a) � ¼ 4� and (b) � ¼ �4�.

Fig. 10.—Phase shift 	� 0
pc due to polar cap current vs. phase �0 for � ¼ 10

�
at (a) rn ¼ 0:01 and (b) rn ¼ 0:1.
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	�0 becomes negative at large j�0j as the magnitude of 	� 0
pc

exceeds the magnitude of 	�0
rps. At higher rn , we note that 	�

0 is
slightly asymmetric about �0 ¼ 0.

For rnT1, we obtain

	�0 ¼ �1rn þ �2r
2
n þ O rnð Þ3; ð46Þ

where �1 ¼ �1 þ (d1/d2) and �2 ¼ �2 � (d1d3/d
2
2).

For 	�0T1, we can solve equation (46) for the emission
radius and obtain

r ¼ rLC

�1
	�0 � �2rLC

�31
	�02 þ O 	�0ð Þ3: ð47Þ

5. DISCUSSION

There are many processes, such as aberration, retardation, and
polar cap currents, that can collectively introduce a phase shift in
the pulse components. The magnitudes of shifts due to each one
of these processes can be estimated as on the order of rn (see
Gangadhara 2005, hereafter G05). In the radio emission regions,
the relativistic phase shift 	�0

rps, on the order of rn , is found to be
less than unity. The polar cap current phase shift is found to be on
the order of 3/2 near �0 � 0 and less than 3/2 at large j�0j. The
net phase shift 	�0 due to aberration, retardation, and polar cap
currents is on the order of unity in the regions close to �0 � 0 and
lies in the range 1–2 at large j�0j.

In the limit of the small-angle approximation (�0 � � ), i.e., in
the emission region close to the magnetic axis m̂t and for rnT1,
it can be shown that our expression for the relativistic phase shift
(eq. [34]) reduces to r � (rLC/2)	�

0
DRH (eq. [7] inDRH04), where

	�0
DRH is the relativistic phase shift. We can estimate 	�0

diA ¼

	�0
rps � 	�0

DRH , i.e., the difference in the phase shifts predicted by
the two formulae. If 	�0

diA ¼ r 
diAn , then we have


diA ¼
ln 	�0

diA

�� ��� �
ln rnð Þ : ð48Þ

In Figure 12 we have plotted 
diff as a function of �0. It shows
that 
diff is�3/2 near �0 � 0 and�1 at large j�0j, except in spiky
regions.

Due to the rotational distortions such as the magnetic field
sweepback of the vacuum dipole magnetic field lines, the rel-
ativistic phase shift is likely to be reduced. The magnetic field
sweepback was first considered in detail by Shitov (1983). Re-
cently, Dyks &Harding (2004) investigated the rotational distor-
tions of a pulsar magnetic field by assuming the approximation
of a vacuummagnetosphere.We used their expressions (eqs. [12]
and [13] in Dyks & Harding 2004) to estimate the magnetic field
sweepback:

	� 0
mfsb ¼

��l�t

2

� 2

3
sin � 3

xz

r2
cos �þ 3

x2

r2
� 1

� �
sin �

� 	�1

r3n : ð49Þ

Using x ¼ r sin �0cos �0 and z ¼ r cos �0, we computed 	�0
mfsb

for �0 ¼ 50�, � ¼ 0�, and � ¼ 10� and 90�. It is found to be
smaller than the aberration, retardation, and polar cap current
phase shifts for rn < 0:2 (G05). On the order of rn , it is >3 in
the case of � ¼ 10�, while in the case of � ¼ 90� it lies in the
range 2–3.

Fig. 11.—Net phase shift due to aberration, retardation, and polar cap current 	�0 vs. phase �0. Here � ¼ 10� and rn ¼ 0:01, 0.1, 0.2, and 0.3 for (a), (b), (c), and
(d), respectively.
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In addition to the various processes that we have considered,
the corotation of Goldreich-Julian charge density (�GJ) can also
produce the phase shift. The corotating charges induce the
magnetic field Brot given by

:< Brot ¼
4�

c
�GJ6 < r ¼ 4�

c
�GJ�r sin �0ê: ð50Þ

Since both �r/c and r�GJ /B0 are first order in rn , Brot /B0 be-
comes second order in rn ; therefore, we neglect the phase shift
due to Brot .

We may summarize that among the various phase shifts con-
sidered, the relativistic phase shift due to aberration-retardation
is the dominant one. In the limit of the small-angle (� � 0) and
low-altitude (rnT1) approximation, our expression for rela-
tivistic phase shift (eq. [34]) reduces to equation (7) given in
DRH04. So, in the case of pulsars with small � and narrow pro-
files, one can use the expression (eq. [7]) given in DRH04 to
estimate the emission heights, while for the pulsars with wide
profiles or large � one has to use the revised phase shift given by
our equation (45). The neglected effects such as the magnetic
field lines’ sweepback due to the reaction force exerted by the
magnetic dipole radiation and the toroidal current due to the
corotation of magnetosphere are of higher order than the pro-
posed refinement.

For classical (normal) pulsars considered in GG01 and GG03,
the revised emission heights are given in G05. The refinement
(�) increases from the inner cone to outer cones for any given
pulsar considered in Table 1 of G05. It is least (<1%) in the case
of PSR 1237+25, but greater than 2% for all other pulsars, and
maximum (13%) in PSR B2111+46. In some millisecond pul-
sars, the refinement can be quite significant. For example, in
PSR J0437�4715 it is about 20%–60% (see Table 2 in G05).

6. CONCLUSION

We have derived a relation for the aberration phase shift that is
valid for the full range of pulse phases. Although in the small-
angle approximation we can show that the aberration phase shift
becomes independent of parameters � and �, it does depend on �
and � in the case of emissions from large rotation phases or
altitudes. We have given a revised relation for the phase shift by
taking into account aberration, retardation, and polar cap current.
We find among the various phase shifts considered that the rela-
tivistic phase shift due to aberration-retardation is dominant.

I thank R. M. C. Thomas and Y. Gupta for discussions,
J. Murthy for comments, and the anonymous referee for useful
comments.
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