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ABSTRACT

Evidence suggests that gamma-ray burst (GRB) ejecta are likely magnetized, although the degree of magnetization
is unknown. When such magnetized ejecta are decelerated by the ambient medium, the characteristics of the reverse
shock emission are strongly influenced by the degree of magnetization. We derive a rigorous analytical solution for
the relativistic 90° shocks under the ideal MHD condition. The solution is reduced to the Blandford-McKee hy-
drodynamical solution when the magnetization parameter o approaches zero, and to the Kennel-Coroniti solution
(which depends on ¢ only) when the shocks upstream and downstream are ultrarelativistic with respect to each other.
Our generalized solution can be used to treat the more general cases, e.g., when the shocks upstream and downstream
are mildly relativistic with respect to each other. We find that the suppression factor of the shock in the strong
magnetic field regime is only mild as long as the shock upstream is relativistic with respect to the downstream, and it
saturates in the high-o regime. This indicates that generally strong relativistic shocks still exist in the high-o limit.
This can effectively convert kinetic energy into heat. The overall efficiency of converting ejecta energy into heat,
however, decreases with increasing o, mainly because the fraction of the kinetic energy in the total energy decreases.
We use the theory to study the reverse shock emission properties of arbitrarily magnetized ejecta in the GRB problem
assuming a constant density of the circumburst medium. We study the shell-medium interaction in detail and
categorize various critical radii for shell evolution. With typical GRB parameters, a reverse shock exists when ¢ is less
than a few tens or a few hundreds. The shell evolution can still be categorized into the thick and thin shell regimes, but
the separation between the two regimes now depends on the o-parameter and the thick shell regime greatly shrinks at
high o. The thin shell regime can also be categorized into two subregions depending on whether the shell starts to
spread during the first shock crossing. The early optical afterglow light curves are calculated for GRBs with a wide
range of o-value, with the main focus on the reverse shock component. We find that as ¢ increases from below, the
reverse shock emission level increases steadily until reaching a peak at o < 1, then it decreases steadily when o > 1.
At large o-values, the reverse shock peak is broadened in the thin shell regime because of the separation of the shock
crossing radius and the deceleration radius. This novel feature can be regarded as a signature of high o. The early
afterglow data of GRB 990123 and GRB 021211 could be understood within the theoretical framework developed in
this paper, with the inferred o-value 20.1. The case of GRB 021004 and GRB 030418 may be also interpreted with
higher o-values, although more detailed modeling is needed. Early tight optical upper limits could be interpreted as
very high o cases, in which a reverse shock does not exist or is very weak. Our model predictions could be further
tested against future abundant early afterglow data collected by the Swift UV-optical telescope, so that the magnetic
content of GRB fireballs can be diagnosed.

Subject headings: gamma rays: bursts — radiation mechanisms: nonthermal — shock waves —
stars: magnetic fields

1. INTRODUCTION see however Rutledge & Fox 2004), if true, could be readily

Extensive broadband observational campaigns and theoretical
modeling of gamma-ray burst (GRB) afterglows have greatly
advanced our understanding of these mysterious cosmic explo-
sions. Yet, the origin of the GRB prompt emission itself and the
nature of the relativistic flow (which are directly connected to the
function of the central engine) are still unknown (e.g., Mészaros
2002; Zhang & Mészaros 2004). In particular, it is unclear how
important the role of magnetic fields is in producing GRBs.
Recently, two independent pieces of evidence suggested that
the GRB central engine is likely strongly magnetized. First, the
claimed detection of a very high degree of linear polarization of
gamma-ray emission in GRB 021206 (Coburn & Boggs 2003;
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interpreted by assuming that the magnetic field involved in the
synchrotron radiation is globally ordered (e.g., Waxman 2003;
Granot 2003), although some alternative explanations remain
(e.g., Waxman 2003). Second, recently we (Zhang et al. 2003,
hereafter ZKMO03) developed a method to perform a combined
reverse and forward shock emission study for GRB early optical
afterglows and revealed that a stronger magnetic field in the re-
verse shock region than in the forward shock region is needed
to interpret the early afterglow data of GRB 990123 and GRB
021211. This claim was confirmed by independent detailed case
studies for both bursts (Fan et al. 2002; Kumar & Panaitescu
2003). These findings suggest that magnetic fields may play a
significant role in the GRB physics, as has been suggested by
various authors previously (e.g., Usov 1994; Thompson 1994;
Mészaros & Rees 1997b; Wheeler et al. 2000; Spruit et al. 2001;
Blandford 2002). Within the framework of the currently favored
collapsar progenitor model for GRBs (MacFadyen & Woosley
1999), the ejecta are found to be magnetized when MHD sim-
ulations are performed (Proga et al. 2003).
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The degree of magnetization of the ejecta, however, is un-
known. This is usually quantified by the parameter o (see eq. [7]
for a precise definition), the ratio of the electromagnetic energy
flux to the kinetic energy flux. Current GRB models are focused
on two extreme regimes. In the first regime, it is essentially as-
sumed that the GRB fireball is purely hydrodynamical. Magnetic
fields are introduced only through an equipartition parameter eg
(which is of the order of 0.001-0.1) for the purpose of calcu-
lating synchrotron radiation. This is the o — 0 regime. In this
picture, the GRB prompt emission is produced from internal
shocks (Rees & Mészaros 1994) or sometimes from external
shocks (Mészaros & Rees 1993; Dermer & Mitman 1999). This
is currently the standard scenario of GRB emission. The second is
the 0 — oo regime. This is the regime in which a Poynting flux
dominates the flow, and GRB prompt emission is envisaged to be
due to some less familiar magnetic dissipation processes (e.g.,
Usov 1994; Spruit et al. 2001; Blandford 2002; Lyutikov &
Blandford 2003). In principle, a GRB event could include both a
“hot component” as invoked in the o = 0 model (e.g., due to
neutrino annihilation) and a ““cold component” as invoked in the
o = oo model; the interplay between both components may re-
sult in a o-value that varies over a wide range (Zhang & Mészaros
2002). It is an important but difficult task to pin down the degree
of magnetization of GRB e¢jecta.

GRB carly afterglow data (especially in the optical band) po-
tentially contain essential information for diagnosing the mag-
netic content of the fireball. The reason is that an early optical
afterglow light curve is believed to include contributions from
both the forward shock (which propagates into the ambient me-
dium) and the reverse shock (which propagates into the ejecta
itself’). Since the degree of magnetization of the ejecta influences
the emission level of the reverse shock (or maybe even the level
of the forward shock), by studying the interplay between the
reverse shock and the forward shock emission components, one
could potentially infer the degree of magnetization of the ejecta.
In all the current analyses, the reverse shock emission is treated
purely hydrodynamically (e.g., Mészaros & Rees 1997a; Sari
& Piran 1999; Kobayashi 2000; Kobayashi & Zhang 2003a;
ZKMO03). When confronted with the available early afterglow
data (four cases so far: GRB 990123, Akerlof et al. 1999; GRB
021004, Fox etal. 2003a; GRB 021211, Fox etal. 2003b, Li et al.
2003a; and GRB 030418, Rykoff et al. 2004), the model works
reasonably well for two of them (GRB 990123 and GRB 021211),
although a good fit requires that the magnetic field in the reverse
shock region be much stronger than that in the forward shock
region (ZKMO3). For the other two, the light curves are not easy
to explain with the simplest reverse shock model. On the other
hand, GRB ejecta could in principle have an arbitrary o-value.
When o is large, the conventional hydrodynamical treatment is
no longer a good approximation, and a full treatment involving
MHD shock jump conditions is desirable.

It is generally believed that a GRB involves a rapidly rotating
central engine. If the magnetic dissipation processes are not sig-
nificant, field lines are essentially frozen in the expanding shells.
The radial component of the magnetic field decays with radius
as ocR~2, while the toroidal magnetic field decays as ~R~!. At
the external shock radius, magnetic field lines are essentially fro-
zen in the plane perpendicular to the moving direction. The MHD
shock Rankine-Hugoniot relations are greatly simplified in such
a 90° shock. Such relations have been studied extensively be-
fore, both analytically and numerically. Kennel & Coroniti (1984)
derived some simplified analytical expressions applicable for
strong 90° shocks whose upstream and downstream are ultra-
relativistic with respect to each other. The model was used to
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treat the pulsar wind nebula problem. In this regime, the strength
of the shock is essentially characterized by only one parameter,
i.e., the o-parameter. The conclusion was later confirmed by nu-
merical simulations (e.g., Gallant et al. 1992).

Within the context of GRBs, since a GRB invokes a transient
release of energy, the ejecta shell has a finite width (in contrast
to the long-standing pulsar wind). Under some conditions, the
reverse shocks upstream and downstream could never become
relativistic with respect to each other when the reverse shock
crosses the ejecta shell. In the o = 0 limit, whether the reverse
shock becomes relativistic depends on the comparison between
the timescale (7") of the central engine activity (essentially the
duration of the burst) and the timescale (z,) when the mass of
the ambient medium collected by the fireball reaches 1/, times
the mass of the ejecta (e.g., Sari & Piran 1995; Kobayashi et al.
1999). Both times are measured by the observer. The case of
T > t, is called the thick shell regime, and the reverse shock is
relativistic. In many cases, however, one has T < ¢, i.e., the thin
shell regime.* The reverse shock is initially nonrelativistic and
only becomes mildly relativistic as the shock crosses the shell.
For magnetized ejecta (e.g., a shell with a finite width but an ar-
bitrary o-value), the separation between the thick and thin shell
regimes becomes more complicated, but the nonrelativistic re-
verse shock case (for the thin shell regime) is even more com-
mon (see § 3.3). The Kennel-Coroniti approximation cannot be
used directly. The theory developed in this paper becomes es-
sential for discussing the reverse shock physics in this parameter
regime.

In this paper, we present a detailed treatment of reverse shock
emission for an arbitrarily magnetized ejecta under the ideal
MHD condition. The reverse shock emission in the mildly mag-
netized regime was also recently discussed by Fan et al. (2004a).
Here we develop a theoretical framework to include discussions
on the reverse shock emission in a wider o-range, as well as on
various ejecta-medium interaction parameter regimes. We first
(§ 2) present a rigorous analytical solution for the MHD 90°
shock jump conditions, which is applicable for an arbitrary o-value
and for an arbitrary Lorentz factor y,; between the upstream and
the downstream. The detailed derivation and the relevant equa-
tions are presented in Appendix A. We then (§ 3) discuss the
ejecta-medium interaction within the context of GRB fireball de-
celeration and reinvestigate the critical fireball radii and recate-
gorize the thick versus thin shell regimes. This leads to a more
complicated picture than in the pure hydrodynamical case (Sari
& Piran 1995). In § 4, we calculate the synchrotron emission
from the shocks under the conventional assumptions about the
particle acceleration in collisionless shocks, and we present the
predicted GRB early optical light curves for a wide range of
o-value. We discuss how the early afterglow data may be used to
diagnose the magnetic content of GRB ejecta. Our results are
summarized in § 5 with some discussions.

2. ANALYTICAL SOLUTION OF THE RELATIVISTIC
90° SHOCKS

We now consider a relativistic shock that propagates into a
magnetized medium. In the following analysis, the unshocked
region (upstream) is denoted as region 1, the shocked region
(downstream) is denoted as region 2, and the shock itself is

4 Ifa GRB contains several well-separated emission episodes, the whole burst
may even be separated into several discrete shells. In such cases, even a long-
duration burst may be treated as the superposition of several thin shells rather than
one single thick shell. See Zhang & Mészaros (2004) for more discussions.
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denoted as “s.”> Hereafter, Qj; denotes the value of the quantity
Q in the region “i” in the rest frame of “/,”” and Q; denotes the
value of the quantity Q in the region i in its own rest frame. For
example, 1, is the relative Lorentz factor between regions 1 and
2, G5 is the relative velocity (in units of the speed of light ¢)
between region 1 and the shock, and B, is the magnetic field
strength of region 2 in the rest frame of the shock, while B, is the
comoving magnetic field strength in region 1, etc. The relativ-
istic 90° shock Rankine-Hugoniot relations could be written as
(Kennel & Coroniti 1984)

niuyy = nalyg, (1)
&= ﬁlsBls = ﬁZsBZs; (2)

Bls gBZs

pr— 5 3
sty + Artniuq Yok + Amnyuy 3)
D1 B} P2 B3
pts + ——— B =y + ——— 2, (4)
niuyg  8mwnjug nytygs  8mnouns

where 3 denotes the dimensionless velocity, v = (1 — 52)~ /2
denotes the Lorentz factor, and u = 3y denotes the radial four-
velocity, so that ~2 =1+ u?. Hereafter, n, e, andp = (I' — e
denote the number density, internal energy, and thermal pres-
sure, respectively, and I' is the adiabatic index. The enthalpy is
nmyc? + e + p, and the specific enthalpy can be written as

2 r p (5)

where m,, is the proton mass and c is the speed of light. It is con-
venient to define a parameter
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to denote the degree of magnetization in each region. The mag-
netization parameter in the upstream region (o) is a more fun-
damental parameter, since it characterizes the magnetization of
the flow itself. We therefore define®
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In our problem, we are interested in a “cold” upstream flow,
ie.,e; =p; = 0,so that i, = m,c?. This is the only assumption
made in the derivation. After some algebra (see Appendix A), we
can finally write

_ Y21 + 1 o
2u15(721, O)uas(y21,0) |

€2
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(8)
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Here uy,(721, 0) is a function of ~,; and ¢ and can be solved
once 1 and o are known. After some analytical treatments of
the relativistic Rankine-Hugoniot relations (egs. [1]—[4]), one

3 Note that such a notation system is only valid for § 2 and Appendix A.
When discussing the GRB problem, i.e., the ejecta-medium interaction (§ 3), we
introduce different meanings for the subscript numbers.

¢ Note that the definition is slightly different from that in Kennel & Coroniti
(1984). We find that our definition allows the parameters to be coasted into an
analytical form as a function of ¢ and ;.
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can come up with an equation to solve uy,. Since it is compli-
cated, we only present it in Appendix A (eq. [A16]). Once uy is
solved, we can also solve u;, (using eq. [AS8]), i.e.,

urs(21, 0) = urs(y21, )21 + [1t,(721,0) + 1}1/2(731 -2

©)

The compressive ratio can be derived directly from equation (1),
ie.,

[t34(721,0) + 1)'?

uz5(721,0)

ny _ uis(h21,0) _
ny  ux(y21,0)

(13 — D2

(10)

The main point here is that both ez/nzmpc2 and n,/n; can be
determined by two unknown parameters, i.e., y,; and o, so that
when they are given arbitrarily, the whole problem is solved.

In the downstream region, the total pressure includes the con-
tribution from the comoving thermal pressure p, = (I' — 1)e; and
the comoving magnetic pressure pj, » = B3/87. The ratio of the
magnetic pressure to the thermal pressure is also a function of o
and y,;:
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where equations (2) and (7) have been used.
The correctness of the solution (eq. [A16]) is verified in two
asymptotic regimes.

2.1. The 0 = 0 Regime

When o = 0, the equation to solve u3 (721, 0) (eq. [A16]) is
greatly simplified (eq. [A25]). All quantities can be expressed as
a function of 7,;. The solutions are
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02— D)1 — 1) +2

Equations (14)—(16) are just equations (3)—(5) of Blandford &
McKee (1976), and they are the starting point for the hydro-
dynamical analysis of the reverse shock emission (e.g., Sari &
Piran 1995). Under the limit of 7,; > 1 and I' = 4/3 (i.e., the
downstream fluid is relativistic), equations (15) and (16) are re-
duced to the familiar forms of na/n; = 4751 + 3, Y15 =~ V271,
and 7y, >~ 3v2/4 (or uyg ~ \/5/4).
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FiG. 1.—Variations of six parameters, i.e., u25, Vi5/721, ez/nzmpcz, na/ny, pp2/pa, and F, as a function of ;. The thick solid line indicates the case for o = 0, which is
the Blandford-McKee (1976) solution. For py,»/p, (e), the o = 0 line is at negative infinity. The dashed lines, starting from the one closest to the thick line, are for
o =0.01,0.1, 1, 10, 100, and 1000, respectively. The parameter e»/n,m,c? (random Lorentz factor in the shocked, downstream region) is normalized to (y2; — 1), and
the parameter n,/n; (compressive ratio) is normalized to (47,2, + 3); both are the values expected in the o = 0 case.

2.2. The v31 > 1 Regime

In the v,; — oo limit, the equation for u%s(ﬂm ,0) (eq. [A16])
is also simplified (eq. [A26]). The solution of uy, is a function of
o only, which reads

) _ I -1/ 4+ @2 -2l +2)0 + (@ — 1> + VX
= 202 - D)o+ 1)

(17)
where

2 f‘ 24 I f‘3 2 r 3
X=12(1-7) o*+0(5 —302 470 —4)0

3. 5 31 .
+ <5F4 — 713 +7F2 — 141 +4)02
+2(0 — 122 =20 +2)0 + (0 — D*. (18)

Notice that there are two solutions with the term £+/X in the
numerator of equation (17), but the minus term leads to negative

pressure and is unphysical. For a relativistic downstream region,
i.e., I' = 4/3, the solution is reduced to

2 802 + 100 4 1 4 \/6402(c + 1)* +200(c + 1) + 1
2 16(c + 1)
852+ 100+ 1+ (20 + )V1602 + 160 + 1
B 16(c + 1) '

(19)

This is equation (4.11) of Kennel & Coroniti (1984). With u;,,
one can derive u, using equation (9), which depends on 7 as
well. The quantities ez/nzmpc2 and n,/n; can also be derived ac-
cordingly. In the o = 0 limit, equation (19) is reduced to uy; ~
/2/4, which is consistent with the asymptotic results in § 2.1.

2.3. The General Cases

For more general cases with arbitrary values of v, and o,
u3,(721, 0) has to be solved rigorously. The equation (eq. [A16])
is solved numerically, and the solutions indeed show deviations
from both asymptotic regimes for arbitrary v,; and o-values.

Figure 1 shows the variations of six parameters, i.c., uy;,
Yis/V215 ez/nzmpcz, na/ny, ppalp2, and F (see definition in eq. [33])
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FiG. 2.—Variations of six parameters, i.e., U2, Y15/721, ez/nzm,,cz, ny/ny, ppalp2, and F, as a function of o. The thick solid line is the Kennel-Coroniti (1984) solution,
denoting ay,; > 1 regime. The dashed lines, starting from the one closest to the thick line, are for v,; = 1000, 100, 10, 5, 3, and 1.5, respectively. Again the parameters

ez/nzmpc2 and ny/n; are normalized to (727 — 1) and (421 + 3), respectively.

as a function of ~,;. The thick solid line indicates the case for
o = 0, which is the strict Blandford-McKee (1976) regime. The
dashed lines, starting from the one closest to the thick line, are for
o =0.01,0.1, 1, 10, 100, and 1000, respectively. In order to find
out the correction factors to the pure hydrodynamical case, we
normalize ez/nzmpc2 and ny/n; with respect to the o = 0 case.
I' = 4/3 has been adopted. We find that all the parameters achieve
asymptotic values when ~,; >> 1 and that the asymptotic value
depends on the value of o. In Figure 2 we plot the variations
of the same six parameters as a function of ¢. The thick solid line
is the ,; > 1 Kennel-Coroniti (1984) limit, and the dashed
lines, starting from that closest to the thick line, correspond to
Y21 = 1000, 100, 10, 5, 3, and 1.5, respectively. For v,; > 100,
the Kennel-Coroniti approximation is good enough.

An obvious conclusion from Figures 1 and 2 is that all the
(normalized) parameters are insensitive to 7,; (especially when
7,1 1s greater than a few) but are sensitive to ¢. Both uy, and
1s/721 increase with o, while both eg/nzm,,c2 and n,/n; decrease
with o. For ~,/7,1, as long as 7, is mildly large (e.g., >3), the
ratio is essentially a function of o only. It starts from the conven-
tional value v/2 in the o ~ 0 regime and increases quickly as ¢
approaches unity, which means that the shock leads the fluid
substantially (in the upstream rest frame) in the high-o regime.
Both ez/nzm‘,,c2 and n,/n; are suppressed when ¢ increases, but

the suppression factor (with respect to the o = 0 limit) is not
large, especially when 7, is not too small. For example, for v, >
3, the suppression factor for e,/n; is larger than 0.6, while that for
ny/ny is larger than 0.4. Furthermore, the suppression factor reaches
an asymptotic value when o approaches several. This result is very
interesting, since conventionally it is believed that the shock is
completely suppressed when o reaches larger values. Our results
suggest that relativistic strong shocks still exist in the high-o re-
gime. The suppression factor, which essentially does not depend
on o, is only mild as long as the shock is relativistic. The overall
efficiency of converting the total energy (the kinetic energy plus
the Poynting flux energy) to heat still decreases steadily with in-
creasing o. The reason is not that the shock (which converts the
kinetic energy into heat) itself is less strong but rather that the
fraction of the kinetic energy in the total energy, i.e., (1 +0)~",
becomes smaller as o becomes larger.

3. EJECTA-MEDIUM INTERACTION

3.1. Basic Equations

Now we consider an arbitrarily magnetized flow with mag-
netization parameter o and Lorentz factor v = 4 being decel-
erated by an ambient medium with density n = n;. A pair of
shocks form when the shock-forming condition is satisfied, i.e.,
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the relative velocity between the two colliders exceeds the sound
velocity in the medium and the magnetoacoustic wave velocity
of the ejecta, and the pressure in the shocked region exceeds the
pressure in the unshocked region. In the GRB case (a relativistic
ejecta), a forward shock always forms, while a reverse shock
may not always form if o is too large. In the high-o regime, the
magnetoacoustic wave velocity is essentially the Alfvén velocity
for a 90° shock. The first condition for the reverse shock forma-
tion is 41 > ya ~ (1 + 0)1/2, where ~y, is the Alfvén Lorentz
factor in the ejecta. For GRBs we have -4, > 100 (to ensure that
the observed gamma-ray spectrum is nonthermal), so this condi-
tion is satisfied as long as o < 10*. The second condition is gen-
erally more stringent, which is expressed in equations (31) and
(43) below. In any case, with reasonable parameters a reverse shock
could be formed when o is less than hundreds or tens. When the
reverse shock forms, we can then investigate a picture where two
shocks and one contact discontinuity separate the ejecta and me-
dium into four regions. Below we take the usual convention to
define the four regions: (1) unshocked medium, (2) shocked me-
dium, (3) shocked ejecta, and (4) unshocked ejecta. Notice that
hereafter the numerical subscripts have different meanings from
the ones used in § 2 and the Appendix, where the numbers “1”
and “2” denote upstream and downstream, respectively. For the
forward shock, both sets of notations coincide, while for the re-
verse shock, the previous “1”” and “2” are replaced by “4”” and
“3,” respectively. We assume that the ambient medium is not
magnetized so that o; = 0, but we assign an arbitrary magneti-
zation parameter

2 2

_ B4 _ B4s
- 2 2~2
dmngmy,c 4mtngmy,c ;i

(20)

0 = 04

for the ejecta. Since we are discussing the problem in the rest
frame of the medium, we drop out the subscript “1”” whenever it
means “in the rest frame of region 1.”” We can then write the fol-
lowing relations based on the shock jump conditions. Through-
out the following discussions, I' = 4/3 is adopted.

€

= -1~ 21
nzmpcz (72 ) V2, ( )
na
= 4y, + 3 =4y, (22)
1
e
——— = (4 — Dfa, 23
- (134 — D/ (23)
n3
— = (4734 + 3) fp, (24)
n4
where
Y34 + 1
Ja = Ja(O,734) = 1 — o
234 + usg(d + DV2(2, — D'
(25)

and

1/2
T (08, + D2 | (13, - 1)
443 + 3

Jo = 1p(0,734) = (26)

are the correction factors for e3/n3mpc2 and n3/ny with respect to
the 0 = 0 limit, and u3; is a function of 734 and o, whose solu-
tion is found in Appendix A (eq. [A16]). The functions £, and f}
are plotted as a function of ¢ in Figures 2¢ and 24, respectively,
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which show f, — 1 and f, — 1 when ¢ — 0. Constant speed
across the contact discontinuity gives

"2 =7, (27)

and constant pressure across the contact discontinuity gives

er es B e Db3
DR T R N il 28
373 T8 3<+p3’ (28)
or
62263](;‘7 (29)
where
fc:fc(o,m):l+% (x ). (30)

The pressure ratio py 3/ps is calculated according to equation (11),
whose dependence on o is plotted in Figure 2e, which shows
a oco dependence in the o > 1 asymptotic regime. Hereafter we
indicate the asymptotic behavior in the o >> 1 limit in a pair of
parentheses immediately following an equation.

In order to have equation (29) satisfied, the condition should
be that the thermal pressure generated in the forward shock is
stronger than the magnetic pressure in region 4. This gives
B3/8m < (4/3)y3nimyc?. Noticing equation (20), the condition
for the existence of the reverse shock can be written as

o< v —. (31)

When the reverse shock exists, using equations (21)—(24) and
(29), one can finally get
My (= Dén+3)
n (334 — D(@734 +3)”

(32)

where

F = fafofe; (33)

with f,, f», and f. defined in equations (25), (26), and (30),
respectively. The parameter F has been calculated for different
input parameters, and the results are shown in Figures 1fand 2f.
We can see that F'is very insensitive to 34 and is essentially a
function of o only. The asymptotic behavior in the o >> 1 regime
is F(0) < 0. We then write

F(vy34,0)~ F(o) (xo0). (34)

Equation (32) can be used to define whether the reverse shocks
upstream and downstream are relativistic with respect to each
other. Similar to the analysis of Sari & Piran (1995), we analyze
the value of (na/n)F/~;. The relative Lorentz factor of the re-
verse shocks upstream and downstream is

1 (s 73)
~—|—=4+—). 35
T (73 (35)

Y4

For the relativistic case, i.e., 734 > 1, we have (na/n))F/y3 ~
VI343) ~ ¥3/74 < 1. On the other hand, for a nonrelativistic
case,wehaveysy ~ 1,74 ~ y3,and (y34 — )(@ya +3) = e K 1.
This gives (n4/ni)F/y3 ~ 1/e > 1. We thus conclude that the

reverse shock upstream is relativistic with respect to the
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downstream when 7 >> (na/n;)F, while it is nonrelativistic when
73 < (na/m)F.Foro = 0,we have F = 1, and the result s fully
consistent with Sari & Piran (1995).

3.2. Critical Radii

We consider an isotropic fireball with total energy £ = Ex +
Ep, where Ef is the kinetic energy and Ep is the Poynting flux
energy. The discussions are also valid for a collimated jet by re-
garding the various energy components as the “isotropic” val-
ues. With the definition of ¢ (eq. [7]), we find Ep/Ex ~ o (from
eq. [4]),” so that E = Ex(1 + o), or Ex = E/(1 4 o) (see also
Zhang & Mészaros 2002). We follow the traditional convention
of defining the Sedov length / ~ (E/nlmpcz)” 3, where the total
energy is adopted. The shell baryon number density ny4 is, how-
ever, defined by Ex. The density ratio is n4/n; ~ P/ ['VZARZ(I +
)], where A = max (Ag, R/73) is the thickness of the shell,
Ag = cT is the initial width of the shell, and R is the fireball
radius. This holds for both a nonspreading shell (where A = Aq
is a constant) and for a spreading shell (where A ~ R/?).

Below we revisit the four critical radii related to the reverse
shock deceleration (Sari & Piran 1995). In our following discus-
sion, we assume that a reverse shock exists. The asymptotic be-
haviors at o > 1 for various correction factors (presented in
parentheses) therefore are valid for the o-range in which the
reverse shock—forming condition is satisfied.

1. The fireball radius for the relative Lorentz factor between
the reverse shocks upstream and downstream (i.e., y34) to trans-
form from the Newtonian regime to the relativistic regime can be
estimated according to 3 ~ (ns/n1)F, which gives

13/2

Ry ~———Cy, (36)
AI/Z,_)/‘%

where

F(o)
l1+o

12
CN(734,0)2CN(0)=[ ] ~1 (xd”) (37)

is the correction factor of Ry with respect to the o = 0 case.
Since both F (o) and (1 + o) have the same asymptotic behavior
(xo) at high o, the final correction factor Cy is always of order
unity throughout (see Fig. 3), and we neglect it in the following
discussions.

2. The radius where the reverse shock crosses the shell
is approximately (Sari & Piran 1995) Ry = [A/(Bs — 32)][1—
(va/v3)(na/n3)]. In the o = 0 case, the factor [1 — (ya/7y3)(na/n3)),
which delineates the relative compression factor due to shock
crossing,® is a factor ranging from % to %, which was neglected for
order-of-magnitude estimates (Sari & Piran 1995). For arbitrary
o-values, this parameter is o-sensitive (through the dependence
of f,(0); see eq. [26]), i.e., becomes <« 1 when o >> 1, so we can-
not drop it out. Following a procedure similar to that of Sari

7 The full presentation of eq. [4] should be 4,115 + pi/nyus + Bﬁ,/&rn]uls +
Bﬁv[ilzs/&rnlulx = [yus + palnptng + Bgv/STrnzuzx + Bzz_vﬁzzs/Sﬂnzuzs. So strictly
speaking, Ep/Ex = o(1 + 32)/23}%. In the high-o regime, we have 3i; ~ 1 and
the factor (1 + 32)/20% =~ 1. In the low-o regime, 31, < 1, but the factor [1 +
o(1 + BL)232] is in any case ~1. We therefore neglect the (1 + 82 )/232 factor
in the following discussion.

8 If one assumes that after shock crossing a shell with width A becomes A,
this parameter is simply (A — A")/A.
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Fic. 3.—Functions Cy(0), Ca(0), and C, calculated for both 34 = 1.5 and
Y34 = 1000.

& Piran (1995) and replacing n4/n; (in the 0 = 0 case) with
(n4/n))F, one finally has

1/2
RA ~ v4A [n—“F(o)} <1 - M) ~ AVAPACN,  (38)
n

Y3n3
where
F(o) 11/ ) 172
Caly34,0) =~ Cal0) = [1 ( )} (1 . “)
+o Y373

-~ (1 . ’74’14) 1/2
Y3n3

is the correction factor of Ra with respect to the o = 0 case. This
correction factor suggests that the reverse shock crosses the shell
faster when o becomes larger.

3. The conventional “deceleration radius” (for the thin shell
case) is modified in the high-o regime. According to equation (2),
the ratio of the comoving magnetic fields in regions 4 and 3 is
B4/B3y = uss/ugs. The lab frame ratio of the Poynting flux en-
ergy in both regions can be written as

(oc 0—*1/2) (39)

Epa _ V4(B3/n4) _ U
Eps  (B3/n3)  usvs

I, (40)

[T

where “~” applies in the o > 1 limit so that wus; ~ 74, and
Uzs ~ Y35. SINCe Ya5/v3s = Ya/7y3 (both have the same relation
with 734; eq. [35]), equation (40) is naturally derived. We have
calculated this ratio numerically and found that in the high-o
limit, the difference between this ratio and unity is a small quan-
tity comparing o~'. This manifests that shocks in the high-o
limit only effectively dissipate the kinetic energy (in the baryonic
component) in the upstream, and the Poynting energy (in the lab
frame) essentially remains the same. As a result, one should de-
fine the deceleration radius (for the thin shell case) using Ex
alone, so that

I I
Wi+ AP

~

C% (41)
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where
C()=0+0)"3 (xo7'3). (42)

Notice that the radius R, is still the radius where the fireball
collects 1/~4 of the fireball rest mass.’

In the above discussion, we have already assumed that a re-
verse shock exists. In order to satisfy condition (31) at R, one
can put a more explicit constraint on o, which reads

3/2 “1/2
YN T E
100 (2 .43
7= (300) (10 s> (1052 ergs> (43)

We can see that for typical GRB parameters, a reverse shock
exists when o is smaller than several tens to several hundreds.

It is worth noting that at the deceleration radius, the Poynting
energy is not yet transferred to the ISM. At the end shock cross-
ing, the magnetic pressure behind the contact discontinuity bal-
ances the thermal pressure in the forward shock crossing. It is
not until the fireball decelerates that the bulk of the magnetic
energy in the ejecta transfers to the forward shock region. Dur-
ing the deceleration, the magnetic fields push the contact dis-
continuity from behind and transfer energy through pdV work.
Eventually, the total energy will be transferred to the ISM, so the
late-time afterglow level is still defined by the total energy of
the fireball. The detailed energy transfer process is complicated
and will be studied carefully in a future work (see Zhang &
Kobayashi 2005 for a brief discussion). This point is relevant to
the calculations of the forward shock emission level, and it is
further discussed in § 4.4.

In Figure 3 we numerically plot the functions Cy (o), Ca(0),
and C,(o) for both the mildly relativistic case (734 = 1.5) and the
extremely relativistic case (34 = 1000). We can see that Cy is
insensitive to both 34 and o, and we treat it as a constant of order
unity. The correction factor Cy is rather insensitive to 734 and is
essentially a function of ¢ only. In the 0 > 1 regime, we have
Ca o o~ 2. By definition, C, is a function of & only.

4. Finally, the radius where the shell spreads is still defined by

Ry ~ 3. (44)

Taking the convention of defining (Sari & Piran 1995)

UK,
e= . (45)
Va
one has the following equation:
R R 51/2
7

° This could be derived using an energy conservation equation in the lab
frame before and after the shock crossing(s), i.e., v4(Moc? + Up,) + Migme? =
Ya(Moc? + yaMispe? + Ug), where M is the mass in the original ejecta, Misy is
the collected ISM mass as the reverse shock crosses the shell, Up is the initial
comoving magnetic energy, and U is the comoving magnetic energy after shock
crossing. This gives (74 — 12)Moc? + (Epa — Ep3) = (73 — 1)Mismc?, where
Eps4 =14Upp and Ep3 = 7, Up. According to equation (40), the term (Ep4—
Ep3) drops out from the energy conservation equation, so the equation is effec-
tively the familiar hydrodynamical one with the total energy being Ex =
E/(1+ o).
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where

1/ A2 (12
o= ( /7433 _ (%) (47)
4

is the &-value for R < R, (i.e., no spreading occurs), where
R, /

Cyvie 7§/3c'

= (48)

Note that this notation is exactly the same as in the o = 0 case,
and the total energy E is used (in defining /). This makes ¢, a
constant not depending on o, which is convenient for the dis-
cussions of the various parameter regions in the next section.

3.3. Parameter Regions: Thick vs. Thin Shell Regimes

Equating the four critical radii defines six critical lines in the
&o-o or the T/t,—o space. This is justified by the fact that the
spreading regime [which makes { deviate from & = (¢,/T )2
always happens below the critical lines and, hence, does not
influence the location of the critical lines. The six critical lines
are

T /c\*
R,NR Z o~ - ~ 2/3 .
Y Ay t-y (CA) Q (O(U )’
T §
Ry~Rs, P~ 0 (xo?P;
Y
T
Ry~ Ry —~CP~ 0 (o),
3
Ry~ Ry, —~1 (xa");
3
R R 1 C Q—1/2 ( —1/3y.
v Y gy I,N vy Xa )9
T
Ry~ Ri, —~ CP~ o (o). (49)

v

We can see that the first three lines have the same asymptotic
behavior at high o, and calculations show that they essentially
coincide with each other. Hereafter, we define

C,

4
Q(a):[c«o)r%cg‘/%(") (xo®),  (50)
Ca

so that Cn ~ O~¥* and C,~ O, and equation (46) can be
rewritten as

QR = PRy =GR, (51
In principle, changing the order between Ry and R, and between
R, and R; does not lead to essential modifications of the shock
crossing and deceleration physics, so that the fourth and fifth
lines in equation (49) are not crucial. We therefore essentially
have two lines that separate three physical regimes in T'/t,—c
space (Fig. 4).

Region I—The thick shell regime. This is the region where
T/t, > Q is satisfied. In this region, one has Ry < Ry < Ra <
R;. The downstream becomes relativistic with respect to the
upstream before the reverse shock crosses the shell (Sari & Piran
1995). The full deceleration occurs at the end of shock crossing,
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i.e.,at R ~ Ra (Kobayashi etal. 1999). Given a certain observed
central engine activity time 7, a total energy £, and an ambient
density n, one can also define a critical Lorentz factor

1/8 3/8 1+2\"*
Ve ~ 125EL3n 137,38 0/ (2> . (52)

where some refined coefficients and the cosmological time di-
lation factor are explicitly taken into account in order to get the
numerical value (here z is the GRB redshift). For vy > 7., one is
in the thick shell regime, while for vy < 7., one is in the thin shell
regime. The function Q(o) is plotted as the top curve in Figure 4.
Inthe o < 1 regime, Q(c) ~ 1.Foro > 1, wehave Q(c) o 023,
and hence 7. o< 0'/4. We can see that given the same values for
the other parameters, the parameter space for the thick shell
regime is greatly reduced when o is high. More bursts are in the
thin shell regime.

Region II—The nonspreading thin shell regime. This region
is defined by Q' < T/t, < O, in which Ry < R, < Ry and
RA < Ry are satisfied. The common features of this regime are
that the reverse shock crosses the shell (at Ra ) before noticeable
deceleration occurs (at R.; e.g., the Lorentz factor is reduced by
roughly a factor of 2), that the relative speed between the up-
stream and the downstream never becomes relativistic, and that
the shell does not spread during the first shock crossing. The
separation between R and R, leads to some novel features for
the reverse shock emission. During the first shock crossing the
shell is heated so that electrons start to emit. However, after the
first shock crossing, the shell is not decelerated significantly. It is
difficult to delineate the detailed process at this stage, but a rough
picture is that higher order shocks may form and bounce back
and forth between the inner edge of the shell and the contact
discontinuity. This happens until the shell reaches R,,. It is likely
that the shell remains heated by the multicrossing of shocks and
electrons keep radiating at a high level for an extended period of
time. One then expects a broad reverse shock emission peak,
which is a novel phenomenon in the high-o thin shell regime.
Notice that when o is very large, a reverse shock may not form at
R at all. However, since Ra is the smallest in the problem,
whenever a reverse shock forms, it quickly crosses the shell in a
radius of Ra, and the above discussion is still valid.

Region I1II.—The spreading thin shell region. This is defined
by T'/t, < 07!, inwhich R, < Ry < R, < Ry is satisfied. Since
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RA < R,, again multicrossing of shocks is needed to slow down
the ejecta, and the downstream never becomes relativistic with
respect to the upstream. The novel feature in this region com-
pared with region II is that the shell starts to spread before shock
crossing, so the three radii have the relationship

C. 2
C2PRy =R, = (ci) Ra, (53)
or
O PRy ~ R, ~ Q'?Rx. (54)

We can see that the triple coincidence Ry = R, = R in the thin
shell regime (Sari & Piran 1995) is only valid when o is small.
According to Figure 4, this practically happens when o < 0.01.

3.4. Critical Times

We finally derive the shock crossing time ¢, and the decelera-
tion time #4. as measured by the observer. In the literature, to
study the o = 0 regime, lgee = tx ~ Ra/v3c ~ max (T, t,C,) ~
max (T, t,) has conventionally been adopted (noting that C, = 1
when o = 0). When an arbitrary o-value is adopted, there are
further complications to quantifying these critical times. First,
although in the thick shell regime (1) #gec = ¢ is still valid, in
the thin shell regimes (II and III) the deceleration radius R, is
larger than the shock crossing radius R, s0 ., < t4ec. Second,
the timescale R /v7c only describes the delay timescales for the
emission coming from the radius Ra with respect to the emis-
sion from the internal shock radius, for an infinitely thin shell. A
more precise description of the reverse shock emission peak
time should include the thickness of the radiation region. The
real shock crossing time should correspond to the epoch when
the emission from the end of the shell reaches the observer (see
Fig. 5 for illustration). This gives

Ry . A
tem = (55)
Ye ¢

Here A = max (Ag, R/7?), so our definition is valid through-
out the (7/t,)—o space. In the o0 < 1 limit, we always have
RA/ 'yzzc ~ Al/c, so that to order-of-magnitude estimate, one can
drop the latter term. In the ¢ > 1 limit, however, in certain re-
gimes one could have Rx /7fc << A/c. The correction factor in-
troduced here is therefore essential to delineate the reverse shock
behavior in the high-o regime. We note that Nakar & Piran (2004)
recently also noticed this correction within the context of the
o = 0 regime, although their equation (2) is slightly different
from our definition.

In the thick shell regime (1) the reverse shock is relativistic at
the crossing radius, and one has 7§ = v4[(ns/n) F] 12, Using the
definition of R (eq. [38]), one has Ra/vic ~ TCA ~ TQ 3.
Since A/c = Ag/c = T, with equation (38), we have #, (I) =
taec(1) ~ T(1 4+ O~*2). In region II, i.e., the nonspreading thin
shell regime, one has vy, ~ v, and A = Ay. Using equations (46)
and (48), we get £, (II) ~ T4 CA + T ~ t§/4T1/4Q*3/4 +
T. In region IIL, i.e., the spreading thin shell regime, one has
¥2 ~ 4 and A/e = Ra/yjc. With equation (53), one has #, ~
2t,(C/C,) ~ 2,07 L.

We define the deceleration time 74, as the epoch when the
fireball is significantly decelerated. For the thick shell regime (1),
this coincides with the shock crossing time. For the thin shell
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lab time

reverse shock

observer

R radius
RIS A

FiG. 5.—Space-time diagram of the GRB fireball evolution. Solid lines are
the world lines of both ends of the shell, and the dashed lines are the world lines
of light. The lowest dashed line is the first light (from the internal shock) that
reaches the observer, and the other two dashed lines indicate the light emitted
from both ends of the shell at the shock crossing radius, R . The observed shock
crossing time is the sum of the delay time Ra/(273¢) and A/c. To order-of-
magnitude estimate, the compression of the shell after shock crossing is not
taken into account.

regimes (II and III), it is defined when the fireball reaches R,.
Following the same argument as that used to derive equation (55)
(Fig. 5), one can generally define

Rn A
— =1 (D,
i e ¢
dec R’y A A
ot =60+ —
Ve ¢ c

(56)
(11, TI0),

where we have interchanged +, and 74 for the thin shell re-
gimes. For regime II, one has #gc(II) ~ tﬁ/,Q’l/2 + T, while for
regime 111, one has tge(111) ~ £,(Q~ "2 + O71).

For convenience, we collect the critical times as follows:

T(14+ 077 (D,
o~ ATVAQA LT (1D, (57)
2t,07! (110),
T(1+ 07 (D,
laee ~{ 6,072+ T (10), (58)

L@ V2407 .

As demonstrated above, in the thin shell regime, the reverse
shock emission should show a broad peak due to the separation
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between ¢, and #4... The width of the reverse shock peak is de-
fined as

0 D,
fiee — o~} G[O7V2 —(T/t)*O734 1), (59)
6,072 — 0™ (IID).

4. SYNCHROTRON EMISSION AND EARLY
AFTERGLOW LIGHT CURVE

4.1. Particle Acceleration

The hydrodynamical solution presented above is generic and
lays a solid foundation for calculating synchrotron emission in
the reverse shock and the early afterglow light curves. In this
section, we turn to the less certain aspects of the problem, i.e.,
particle acceleration and synchrotron emission from the reverse
shock. In the conventional ¢ = 0 models, particles (ions and
electrons) are assumed to be accelerated from the collisionless
relativistic shocks through the first-order and probably also
second-order stochastic Fermi acceleration mechanisms (Fermi
1949; Blandford & Eichler 1987). In the standard afterglow
models, accelerated electrons are assumed to have a power-law
distribution with dN,/d~y, o< v, ”. Numerical simulations of par-
ticle acceleration in relativistic shocks confirm this simple treat-
ment (e.g., Gallant et al. 1992; Achterberg et al. 2001) in the
o = 0 limit. For MHD shocks as discussed in this paper, more
physical processes enter the problem. For example, in the 90°
shock problem discussed in this paper, the existence of the elec-
trostatic potential in the shock front plane and the influence of
the Lorentz force exerted on the particles by the magnetic and
electric fields in the upstream tend to trap ions in the shock plane.
The influence of these effects on shock acceleration is unclear,
although some investigations in this direction have started (e.g.,
Double et al. 2004; Spitkovsky & Arons 2004). Detailed treat-
ments of particle acceleration in the high-o regime are beyond
the scope of the current paper. Lacking a detailed model, here we
simply extend the approach used in the 0 = 0 regime to arbitrary
o-values; i.e., we assume a power-law distribution of electron
energy and assign the equipartition parameters €, and e for the
electrons and magnetic fields, respectively. Such an approxi-
mation is proven valid when ¢ is small but may progressively
become not good enough as o increases, especially when o
achieves very large values. The light curves that we calculate
below nonetheless provide a first-order picture on how the re-
verse shock emission level depends on o.

4.2. Magnetic Fields

We follow our previous approach (ZKMO03) to compare the
flux level between the reverse shock peak and the forward
shock peak. This is because, when studying the ratio of the peak
flux levels, only the ratios of the microphysics parameters [e.g.,
gp)=(p—2)(p—1), e, €5, etc.] matter, and one does not
need to invoke the absolute values of those parameters, which
are rather uncertain. A crucial parameter for studying the syn-
chrotron spectrum is the comoving magnetic field strength in
both shocked regions. For the forward shock region, since the
medium is usually not magnetized, the downstream magnetic
field is usually quantified by a fudge parameter e _r, which re-
flects the strength of the magnetic field presumably generated in
situ due to a certain plasma instability (e.g., Medvedev & Loeb
1999). This magnetic field is randomly oriented, as has been
supported by the observed weak polarization level for the op-
tical afterglow emission (e.g., Covino et al. 2003 for a review).
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The strength of this magnetic field component is low, with e, ~
0.01-0.001, as inferred from broadband afterglow fits (Panaitescu
& Kumar 2002; Yost et al. 2003). For the reverse shock, in the cur-
rent model the magnetic field is predominantly due to the com-
pression of the upstream magnetic field. Its level depends on the
o-value of the upstream, and the field is globally structured, so the
optical flash due to the reverse shock emission (such as the ones
observed from GRB 990123 and GRB 021211) should have been
strongly polarized (see also Granot & Koénigl 2003; Fan et al.
2004a; Sagiv et al. 2004).

The forward shock comoving magnetic energy density is
defined by

Bz. BZ
B _B_
S5 B (60)

where g r is the conventional magnetic equipartition parameter
in the afterglow theory, which delineates the fraction of the to-
tal internal energy that is distributed to magnetic energy. In the
reverse shock region, the comoving magnetic energy density is
dominated by the shock-compressed upstream magnetic field
and can be denoted as

B2 B% e3

L =—==(f—-1)—, 61

ar 5 D3 (61)
where f. =1+ pp3/p3 (eq. [30]) has been used. For easy
comparison (with respect to the conventional definition of ez, 1),
we can write equation (61) as

B? -
; = exép (62)
where
- fo—1
, = 63
€5, 7 (63)

is an artificial parameter to simplify the discussions. With this
definition, we can write

B, 2\ 12
Rp=—= <GB’ > . (64)
€8, f

This is an important parameter that delineates the ratio of the
magnetic field strength in the reverse shock and forward shock
regions. This ratio has been found to be larger than unity in
GRB 990123 and GRB 0201211 (e.g., ZKMO03), and discus-
sion of this parameter is essential for quantifying the relative
emission properties of both shocks.

In Figure 6, we plot €z - as a function of o for both 3, = 1000
and 34 = 1.5. We can see that it increases with ¢ initially, and
saturates at a value of % as o0 > 1. The asymptotic behavior is
already obvious in equation (63). We note that the number % isa
pure artificial effect given the definition of € , (eq. [62]). The
“real” magnetic equipartition factor in region 3 approaches
unity when ¢ >> 1. In the figure we also plotted the magnetic
equipartition parameter in the forward shock region, i.e., g r ~
0.001. This level could also be regarded as the “bottom level” in
the 0 << 1 regime for the reverse shock region. The thick lines in
Figure 6 are the “total” ep in the reverse shock region (which
include both the amplified structured field component and the
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10°

Fic. 6.—Equivalent “magnetic equipartition parameter” in the reverse
shock region, €g,, as a function of o, calculated for both 34 = 1000 and
734 = 1.5. The dashed line is the assumed magnetic equipartition parameter in
the forward shock region, i.e., ey ~ 0.001, which is also the “bottom level” for
the reverse shock magnetic field in the low-o regime. The thin solid lines are
calculated completely from eq. (63), while the thick solid lines include the
contribution of the random field in the low-o regime. The fact that the parameter
€g, approaches % in the high-o regime is only an artificial effect resulting from
the definition of €z, (eq. [63]).

random field component), which saturates to € r in the low-o
regime.

An interesting conclusion drawn from Figure 6 is that no
matter what o or 734 values are taken, the ratio €g/ep, s is at most
~300 for ep s ~ 0.001. Or effectively, the reverse-to-forward
shock magnetic field ratio R  cannot be significantly larger than
15. Since this value was inferred from the case of GRB 990123
(ZKMO03), we tentatively conclude that the ejecta in GRB 990123
has o > 0.1 where €3 , reaches its peak value. The absolute val-
ues of g . and €p s are consistent with those obtained from the
detailed modeling. For example, ep 5 ~ 7.4 x 10~* was inferred
by Panaitescu & Kumar (2002), while e ,/ep s ~ 152 ~ 225
was inferred by ZKMO03, so €, ~ 0.17. This is close to the
maximum €g , that we have calculated.

4.3. Light-Curve Peak Times and Peak Fluxes

Before describing the detailed process of calculating after-
glow light curves, it is informative to define the so-called peak
times and peak fluxes. An early optical light curve usually con-
sists of two peaks (ZKMO3 and references therein), i.e., a for-
ward shock peak, which corresponds to the epoch when the
typical synchrotron frequency crosses the band (Sari et al. 1998;
Kobayashi & Zhang 2003a), and a reverse shock peak at which
the flux achieves the maximum and starts to decay thereafter.
This corresponds to the time when no more shock heating is
available and the shell starts to cool adiabatically. The condition
for a reverse shock to exist is expressed in equations (31) and
(43), and in this paper we focus on the situation when such a
condition is satisfied. We denote the reverse (forward) shock peak
times and peak fluxes as #, , (¢, y)and F,, ,,  (F,, p, r), respectively.

For the o = 0 case, the first shock crossing time and the shell
deceleration time coincide, so #, , = t, = tgec. This is still the
case when ¢ is larger, as long as the shell is in the thick shell
regime (I). For the thin shell cases (Il and I1I'), however, this is no
longer the case, and ¢,, and #4.. separate from each other (egs. [56]
and [58]). For easy discussion, hereafter we define the time ¢4 as
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the reverse shock peak time and its corresponding afterglow flux
as the reverse shock peak flux, i.e.,

tpm = Ildec,
Fy,p,r = u(tdec)- (65)

For t > t, ,, the shell cools adiabatically, and a decaying light
curve results.'’ The 7 < 1, , case is a little more complicated. For
the thick shell case (I), since ¢, coincides with ¢, ,, it is a rising
light curve due to shock crossing. For the thin shell cases (Il and
III), as demonstrated above, the shell is heated at first shock
crossing and remains heated until it is significantly decelerated.
This results in a broad reverse shock peak that starts at £, and
ends at £, .. Much more detailed studies are needed to reveal the
physics during this stage, but to a first-order estimate, in this
paper we assume that the heating level between #, and ¢, , is
roughly the same, so that the light curve shows a plateau during
this period.

To calculate the synchrotron radiation flux, one needs to
quantify the comoving random Lorentz factor of the leptons. We
still take the convention of assuming that the shock-accelerated
leptons have a single power-law distribution with the indices p,
and p, for the forward and the reverse shocks, respectively, and
that they occupy a fraction €, and ¢, ,- of the total thermal energy
in the forward shock region (which is e;) and in the reverse shock
region (which is e3), respectively. For the reverse shock region,
the lepton density may be enriched by the presence of pairs
generated in the prompt emission phase (e.g., Li et al. 2003b).
The pair multiplicity parameter

No+Ne (66)
Ny

y

may be of order unity or mildly large in the low-o regime (de-
pending on the compactness of the region when the prompt
gamma rays are emitted; e.g., Kobayashi et al. 2002; Mészaros
et al. 2002) and could be very large in the high-o regime (e.g.,
Zhang & Mészaros 2002). In this paper, we are mainly focusing
on the novel features introduced by the o-parameter, and we take
y ~ 1 in the following calculations. The y-dependences are in-
cluded in the expressions, and their implication are discussed in
§4.4.

The minimum comoving electron energy in the region “i”
(2or3)isYe m,i = (€c,i vi)le: /nimpcz)g(pi)(mp /m), where g( p) =
(p—2)/(p — 1) (assuming p > 2). Taking the values at the first
shock crossing time ¢, , one gets

Ve, m, r(tx) €er 9r\ , 734(t><) -1 Y
= =\———fa—Fv— ~Refa7y , (67
Ve, m, () <y6€-f gf) Ya(t)—1 72x ( )

where we have defined

R, = Serdr (68)
Ce./ 91
used Y34 ~ Ya/v2(x) (which is valid for both thick and thin
shells), and replaced 4 and 7,(x) by 7o (which means the initial
Lorentz factor) and ~, (the fireball Lorentz factor at the shock

1% When o is very large, additional heating for the shell may still happen if
the post—shock crossing energy transfer process timescale is short enough.
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crossing time), respectively.'! This allows the same notation
system as in our previous work (ZKMO03).

We are more interested in the behavior at the reverse shock peak
time (i.e., the deceleration time), #, . For the thick shell case, this is
simply ¢, . For the thin shell case, after the first shock crossing, the
shell is kept heated by the multicrossing of successive shocks. To
first order, we can take the approximation that the heating level in
the ejecta during the time period between ¢, and ¢, , is approxi-
mately constant; i.e., e3/n3 19, During the same period the
random Lorentz factor in the shocked ISM region also remains
constant (since v, ~ -4 before deceleration); we therefore also
have

Ye,m r(tp.r) Ye,m r(tx) Yo 4
L ~ A ~ R —_ s 69
’Ye,m,f(tp.r) VE,M,/'(tX) eﬁl ’yzx d ( )

which is valid for both the thick and thin shell cases.

Let us denote the total electron numbers in the forward and re-
verse shocked region as N, s and N, ., respectively. In the reverse
shock region, the total lepton number (now including pairs) is
N, = N, + N. = yN,, where the definition in equation (66)
is used. According to equation (40), at the deceleration radius,
the total energy in the forward shock region is defined by Ex
alone. Although the bulk of the Poynting energy is expected to be
transferred to the ISM eventually, shortly after the shock cross-
ing and near the forward shock peak, this correction may not be
significant. Below we ignore this process in our calculations of
the forward shock emission, but keeping in mind that the real
forward shock emission level would increase with time and may
be much higher than our predicted level at later times. When we
focus on early afterglow light curves, our calculations should be
close to the real emission level (see more discussions in Zhang &
Kobayashi 2005). A more careful treatment will be presented in a
future work.

In our approximated treatment, one can write Ex =
Yo cZ(me,, + Nim,) ~ 'yoN;,mpcz ~ N, fm',,cz[fy(tdec)]2 ~
N, ymyc*y2, where we have assumed y << m,/m,, so that the
total pair mass N1 m, is much smaller than the total baryon mass
Npm,. This gives

Neolor) 7

. 70
Ne,f(tp.r) 7 Yo ( )

The characteristic synchrotron emission frequency is v, x
vB~2 ., the cooling frequency is v. oc v~'B~3¢72, and the peak
specific flux is F,, ,, o< vBN,, where  is the bulk Lorentz factor.
For the thin shell case, we also make another approximation that
B3 stays constant from £, to t4e. [s0 that Rpg(t,) >~ Rp(tgec) =
Rp]. Similar to Kobayashi & Zhang (2003a) and ZKMO03, we
can finally derive the following relations at 74e:

U (. .~ _

m, (p ) ~ 7 zRgan:y 27 (71)

Vm.,f(tp.r)

Vc’,r(tp‘r) -3

T AENY el 72

Vc,f(t ,r) 5 ( )
Fyom r(tp r) A
—————= ~ 3Ry, 73
FV,m,f(tp.r) 8 ( )

' Strictly speaking, the last factor Y/y2 in equation (67) should be
(Yo — 7x )72 . The current approximation is valid as long as the reverse shock
is mildly relativistic, say, 34 > 1.5. For an even smaller ~y34 (which could be
possible when o is large enough), there should be an additional correction
factor (less than unity) in both eqgs. (67) and (69).
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where

2 2
4 D min (70,7—C> < e (74)
Yo 0]

Although there are, in principle, many cases of the reverse
shock emission light curves (Kobayashi 2000), within the rea-
sonable parameter regime the light-curve behavior only has two
variations, depending on whether R, > 1 or R, < 1 (ZKMO03),
where

VR

R, =—.
Vnz,r(tp. r)

(75)

In both cases, the ratio between the two peak-time fluxes
FI/ r
Fop.r

and the ratio between the two peak times

<

R =
Ip,r

can be expressed in terms of 4, R 3, and R, respectively, for the
o = 0 case (ZKMO03). Here the forward shock peak time ¢, ,
corresponds to the epoch when v,  crosses the band.

Below we repeat this process but focus more on corrections
introduced by the o-factor. To further simplify the problem, we
first estimate the numerical value of R,. Due to the complication
introduced by the o-parameter, one cannot coast R, into a simple
expression as in the o = 0 case (e.g., eq. [24] in ZKMO03). In any
case, using equation (71) and the standard expression for v, (f)
(e.g., eq. [1] in Kobayashi & Zhang 2003a), one can write

o Kk (AN
R~ 800Ry fu "y Re (1052 ergs) (100)
€B, f -1/2 €e, f -2 9 -2
* (0.001) (0.1 ) (1/3)
3/2 -1/2
><( ldec ) / <1+z) . (78)
100 s 2
For 4 <, ~ 125 (eq. [52]), Re ~ 1, y > 1, and f, < 1, the
above equation therefore essentially always gives R, > 1. In the
following discussions, we do not discuss the R, < 1 case any
further (which was also discussed in ZKMO03).

The reverse shock emission light curve in the R, > 1 case is
simple. The light curve initially rises and reaches the peak at ...
The flux level then stays essentially constant until ¢, (for the
thick shell case, both timescales coincide, so there is no broad-
ened peak) and starts to decay after #, .. The temporal indices of
each segment of the light curve are also well defined. In the rising
part of the light curves, since all the correction factors introduced
by the o-parameter are essentially time independent, the cor-
rections essentially do not introduce extra time dependence on
the typical frequencies and the peak flux of the synchrotron
radiation in the reverse shock. The rising light curves essentially
remain unchanged as in the o = 0 case, as has been derived by

Kobayashi (2000). This gives a N% temporal index for the thick
shell case and a ~5 temporal index for the thin shell case.'* After

12 Detailed numerical calculations result in non—power-law behavior in
the rising light curve (Fan et al. 2004a).
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the deceleration time, the shell cools. The optical band is typi-
cally in the regime of vy, (tx) < Vg < v, (tc). After the de-
celeration time, one has v,, , oc t 32, F,, ,, , oc t~! (Kobayashi
2000)."* Thus, the temporal decay index (i.e., F,, o< t%) is

3p,+1
o = ~
4

2, (79)

where p, is the electron power-law index in the reverse shock
region.

For t > ¢, ,, one has v, 5 132, Fym, r o< 10 (Mészaros &
Rees 1997a)'4 and v, , oc t 32, F,, ., oc t~' (Kobayashi 2000).
Using the definitions of R,,, Rr, and R; (eqs. [75]-[77]), as well
as equations (71) and (73), one can derive!>

Rt _ /7\/4/373/1;2/373/;2/3(7?/2—4/3)}4/3];1—4/3)7 (80)
Rr =qRsR, >V (y). (81)

These are valid for all three parameter regions in Figure 4.
Comparing with equations (12) and (13) in ZKMO03, the extra
correction factors are presented in parentheses. Note that the cor-
rection factors R, and y should also exist in the o = 0 case, but
we have previously assumed them to be unity. The extra o-
dependent correction factors are £, and R, (which is modi-
fied by the o-parameter through many factors, e.g., R3, fa, Ex,
and #4e¢; see eq. [78]).

4.4. Sample Light Curves

We now calculate the typical early optical afterglow light
curves for various parameter regimes. Equation (40) states that
the initial afterglow energy, which is essentially the kinetic part
of'the total energy, decreases with o given a constant total energy
E = Ex + Ep. At high o, not only does the reverse shock flux
level drop, but the forward shock flux level shortly after the
shock crossing also decreases steadily. At later times, the for-
ward shock level would increase due to magnetic energy in-
jection. Since we are focusing on the early afterglow emission,
this effect is neglected in the following discussions. To explore
the o-effect, we fix the total energy of the fireball so that Ex
decreases with increasing o. To simplify the calculations, we
assume R, ~ 1 and y ~ 1. The input parameters we adopt in-
clude Es; =1, 4 =150, n=1, €, =0.1, ey =0.001,
pr=2.2,and z = 1 (with the standard cosmological parame-
ters Qp ~ 0.7, Q,, ~ 0.3, and Hy ~ 70 km s~! Mpc~!). This
gives the forward shock peak time and flux (Sari et al. 1998;
Kobayashi & Zhang 2003a)

ty.; ~ 1000 s, (82)
F,;~1701+0) " mly [mg~ 156+ 2.5log(l+ o).
(83)

13" A more detailed discussion such as that presented in Kobayashi & Sari
(2000) leads to a similar conclusion.

4 Note again that here we have assumed that the energy transfer timescale
from a Poynting flux to the kinetic energy of the ISM long enough. This
forward shock emission level should be regarded as a lower limit when the
energy transfer process is taken into account.

15 In ZKMO3, we have defined Ry and R, at ¢,, but in the 0 = 0 case one
has . = t4ec. For the case of an arbitrary o, the deceleration time #4e. is more
fundamental to defining the problem.
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Fic. 7—Sample early afterglow light curves for GRBs with an arbitrary magnetization parameter o. The following parameters are adopted: Es; = 1, 7o = 150,
n=1,er=0.1,egr =0.001,py =2.2,andz = 1. We also take R, ~ 1 andy ~ 1. Both the forward shock and the reverse shock emission components are calculated,
and they are superposed to get the final light curve. For the forward shock emission component we assumed that the timescale for the energy transfer from the Poynting
energy to the afterglow energy is long enough that the forward shock level is defined by Ex only, and its level decreases with ¢. This approximation is good shortly after
the reverse shock crossing. At later times, the real level could be progressively higher than this level and the calculation should be regarded as a lower limit. Light curves
are calculated for different o-values. Thick solid line: o = 0; thin dash-dotted line: o = 0.001; thin dashed line: o = 0.01; thin dotted line: o = 0.1; thin solid line:
o = 1; thick dash-dotted line: o = 10; thick dashed line: o = 100. The value 34 = 1.5 has been assumed for thin shell regimes. For high-o cases, 34 is closer to unity,
and the reverse shock peak flux should be further suppressed. (a) T = 100 s case. According to equation (43), the reverse shock exists when o < 200. (b) T = 20 s case.

The condition for the existence of the reverse shock is o < 20.

We also have t, = [(3E/47r’ygnmpcz)l/3/2’y§c](l +z)~ 60 s.
(For this calculation, we have added in all the precise coefficients
previously neglected.) We then take two typical values of GRB
durations. For the first case, we take 7 = 100 s. When o is small
the burst is in the thick shell regime (region I). As o increases, the
burst is in the nonspreading thin shell regime (region II). For the
second case, we take 7' = 20 s. The burst is always in the thin
shell regime for any o-value, but transforms from the spreading
thin shell regime (region IIT) to the nonspreading thin shell re-
gime (region IT) when ¢ is large enough.

For each T value, we calculate both the reverse shock and the
forward shock light curve for several values of o, i.e., 0 = 0,
0.001, 0.01, 0.1, 1, 10, and 100 (Fig. 7), as long as the condition
for the existence of the reverse shock (eq. [43]) is satisfied. The
procedure of our calculation is the following. First, with ¢,, T,
and the assumed o, one can judge which parameter region the
burst is in. With this information one can then calculate t4ec = 2, ,
and R, for both the thick and thin shell regimes, as well as #,
for the thin shell case. Next, we calculate Rz with the assumed
o-value (Fig. 6). For the thick shell case, we use the €g value for
34 ~ 1000, since € is insensitive to 34 when it is large. For the
thin shell case we use the €z value for 34 ~ 1.5, 6:)(clusively.'6
One can then solve R, (eq. [80]) and then use the value of R,
to calculate Rr (eq. [81]), and hence F, , .. Since we know
the temporal indices of the reverse shock light curve during
the rising (N% for thick shell and ~5 for thin shell; Kobayashi
2000) and the decaying phases (~—1.9 for p, = 2.2), the reverse
shock light curve can be calculated once #, . = t4ec and F,, ,, , are
known. For the thin shell case, with the current approximation,
we roughly keep F, a constant between ¢, , and f4e, both of
which are known. For the forward shock emission, the temporal
index is 3(1 — ps)/4 (~0.9 for p; = 2.2) after the peak time and

' Note that in reality, when o is very large, 734 could be much closer to unity.
In such cases, the reverse shock peak flux should be further suppressed.

is %before the peak time (but after the deceleration time).'” Given

F,, r (which is dependent on o; eq. [83]), the forward shock light
curve is also calculated.

Some sample R-band early afterglow light curves are pre-
sented in Figure 7, with the contributions from both the reverse
and the forward shocks superposed. For the forward shock emis-
sion component we assume that the timescale for the energy
transfer from the Poynting energy to the afterglow energy is
long enough, so that the forward shock level is defined by Ex
only, and its level decreases with ¢. This approximation is good
shortly after the reverse shock crossing. At later times, the
real level could be progressively higher than this level and the
calculation should be regarded as a lower limit (see Zhang &
Kobayashi 2005 for more explanations). In Figure 7a, the cases
for T = 100 s are calculated. According to equation (43), a re-
verse shock exists as long as o < 200. We therefore calculate the
light curves up to ¢ = 100. We can see that for o < 1, the param-
eters are in the thick shell (relativistic reverse shock) regime.
When o increases from below, the contrast between the reverse
and forward shock peak fluxes (i.e., Rr) increases steadily.
Since the forward shock emission level does not change much
when o < 1, the reverse shock peak flux increases steadily with
o. At even higher o-values, the reverse shock peak flux drops
steadily with 0. In the meantime, the burst enters the thin shell re-
gime so that the separation between ¢, and #4.. becomes wider, and
the reverse shock emission has a broader peak. In Figure 7b, the
cases for 7' = 20 s are calculated. According to equation (43), a
reverse shock exists as long as o < 20, and we calculate the light

17 Before the deceleration time, the forward shock light curve should have
different temporal slopes. During the shock crossing, we have v, o ¢° for thin
shells and v, oc £~V for thick shells. Using the standard synchrotron radiation
analysis (e.g., Sari et al. 1998), the forward shock emission temporal slope is 3
and 4/3 for the thin and thick shell cases, respectively. Between the shock
crossing time and the deceleration time in the high-o thin shell case, the temporal
slope is flat.
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curves up to ¢ = 10. The shell is in the thin shell regime through-
out the whole o-range calculated. The transition from spreading
to nonspreading thin shell regime does not bring any noticeable
signature in the light curves. Again, the reverse shock peak flux
increases with ¢ initially (when ¢ < 0.1) and starts to decrease
when o > 0.1. The reverse shock peak is broad, but the sepa-
ration gradually shrinks due to the decrease of the (O~? — O™ 1)
parameter (eq. [59]). Throughout our calculations, R, remains
larger than 25 (up to ~1000 for o = 0 in the 7 = 100 s case), so
our treatment by neglecting the R,, < 1 regime is justified.

We notice several interesting features from our results. First, the
reverse shock component is still noticeable even with o = 1 (until
it reaches several tens or even hundreds when condition (43) is no
longer satisfied). The absolute reverse shock peak flux increases
with o initially but drops steadily when o > 1. Second, the for-
ward shock emission level right after shock crossing also drops
with o. This is because only the kinetic energy of the baryonic
component (Ex) defines the afterglow level after the shock
crossing time. The forward shock level will increase later due to
the transfer of the remaining magnetic energy into the medium.
One then expects an initially dim early afterglow for a high-o
flow, which would be brightened at later times. If GRB prompt
emission is due to magnetic dissipation (e.g., Drenkhahn & Spruit
2002) and if ¢ is still high in the afterglow phase (e.g., ~10), one
might be able to account for the very large apparent GRB effi-
ciencies inferred from some GRBs (e.g., Lloyd-Ronning & Zhang
2004). Such a picture may also be relevant to the recent December
27 giant flare afterglow from the soft gamma-ray repeater 1806-
20, for which a very high gamma-ray efficiency is inferred (Wang
et al. 2005 and references therein). Third, the broad reverse shock
peak is a novel feature identified in the high-o model; it can be
used to diagnose the existence of a Poynting flux—dominated
flow. The physical origin of the broad peak is that a high o-value
leads to the decoupling of the shock crossing radius R, and the
deceleration radius R, so that multicrossing of a series of suc-
cessive shocks leads to continuous heating of the ejecta shell
before cooling starts.

In the above calculations, y = 1 has been adopted (i.e., we
assume that the pair fraction is negligible in the ejecta). In some
cases, especially in the high-o regime, y could be much larger
than unity. It would be essential to investigate the y-dependence
of the current analysis. We solve R, from equation (80) and
submit it to Ry, and we find Ry o< Y743 which is ocy~ 13
for « = 2. We can see that a larger y will lower the reverse-to-
forward shock peak flux contrast, although the dependence is
mild. The Rr factor is more sensitive to R, (i.c., och,‘(“ —DB3y,
but assuming a similar shock acceleration mechanism, R, may
not deviate too much from unity.

Our results can be directly compared with the early afterglow
data of the four bursts for which such information is available so
far. The case of GRB 990123 (Akerlof et al. 1999) is consistent
with a flow with 0.1 < ¢ < 1 in which regime R is large and
the reverse shock peak is not broadened. The observed bright
afterglow also argues against a higher o flow. The case of GRB
021211 (Fox etal. 2003b; Li et al. 2003a) also shows a large R,
which also suggests that o > 0.1. For GRB 021004, Kobayashi
& Zhang (2003a) attempted to fit the data with the 0 =0,
Rp = 1 model. Another data point at an earlier epoch after the
burst trigger reported by Fox et al. (2003a) makes that model
more difficult to fit, and it has been attributed to a continuous en-
ergy injection (Fox et al. 2003a) or to the emission from a wind-
type medium (Li & Chevalier 2003). However, using the theory
developed in this paper, the data may be consistent with a high-o
flow (e.g., 0= 10), so the extended early afterglow emission
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could be interpreted as the combination of the broad reverse
shock peak and the gradual transfer of the Poynting energy into
the afterglow energy. In the high-o regime, the (734 — 1) is quite
small during the shock crossing, which will lower the reverse
shock peak flux and R r. Similarly, a broad early afterglow bump
was identified in GRB 030418 (Rykoff et al. 2004), which chal-
lenges the conventional reverse shock model but may be consis-
tent with a high-o flow (weak or no reverse shock component).
Although detailed modeling is needed (we plan to do it in a
future work), we tentatively conclude that all the current early
optical afterglow data may be understood within the theoretical
framework developed in this paper, if ¢ is allowed to vary for
different GRB fireballs.

5. CONCLUSIONS AND DISCUSSION

We have derived a rigorous analytical solution for the rela-
tivistic 90° shocks under the ideal MHD condition (eq. [A16]).
Generally, the solution depends both on the magnetization
o-parameter and the Lorentz factor of the shock, 7;,. The solu-
tion can be reduced to the Blandford-McKee hydrodynamical
solution when o = 0 and to the Kennel-Coroniti solution (which
depends on ¢ only) when the v,; >> 1. Our generalized solution
can be used to treat the more general cases, e.g., when the reverse
shocks upstream and downstream are mildly relativistic with
each other. Since GRBs invoke a shell with finite width, this
latter possibility is common (e.g., the parameter space for thin
shell greatly increases in the high-o regime), so our generalized
solution is essential to deal with the GRB reverse shock problem.

Several interesting conclusions emerge from our analysis.
(1) Strong shocks still exist in the high-o regime, as long as the
shock is relativistic. Figures 2¢ and 2d indicate that as ¢ increases,
both the downstream “temperature” e,/n; and the “shock com-
pression factor” n,/n; decrease with respect to the o = 0 values.
However, the suppression factors in both cases are only mild (a
factor of ~0.5), and they saturate when o >> 1. In the relativistic
shock regime, the results are actually consistent with Kennel &
Coroniti (1984). However, these authors did not calculate the
suppression factor with respect to the o = 0 case and did not
explore further into the high-o regime, so their results leave read-
ers the impression that the shock is completely suppressed when
o reaches higher values. For typical GRB parameters, we found
that a reverse shock still exists when o is as high as several tens or
even hundreds. When the reverse shock exists, its emission level
decreases when o gets higher. This is not only because the reverse
shock becomes weaker since 734 gets close to unity in the high-o
regime but also because the total kinetic energy in the flow
(which is the energy reservoir for shock dissipation) gets smaller
given the same total energy. (2) During ejecta-medium interac-
tion, somewhat surprisingly, some important parameters, such as
F and Cy, are very insensitive to the reverse shock Lorentz factor,
734, and can be regarded as a function of o only (§§ 2.3 and 3.3).
This greatly simplifies the problem and is essential for charac-
terizing the parameter regimes. (3) The triple coincidence of the
first three critical lines in equation (49) is very crucial for a self-
consistent description of the problem (§ 3.3).

Comparing with the conventional hydrodynamical treatment,
we reveal several novel features for the early light curves. First,
as o increases, the reverse shock peak flux initially increases
rapidly, reaching a peak around o ~ 0.1—1, and starts to decrease
when o > 1. Second, due to the inability to tap the Poynting flux
energy during the shock crossing process, the fireball decelera-
tion radius decreases as o increases [x(1 + o)~ '/3]. The forward
shock emission level is also lower right after shock crossing.
Third, in the high-o thin shell regime, the reverse shock peak is
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broadened due to the separation of the shock crossing radius
and the deceleration radius. This is a signature for a high-o flow,
which can be used to diagnose the magnetic content of the fire-
ball. Fourth, as o becomes large enough (larger than several tens
or several hundreds), the condition for forming a reverse shock is
no longer satisfied, and there should be no reverse shock com-
ponent in the early afterglow light curves. This could be con-
sistent with very early tight optical upper limits for some GRBs,
such as the recent Swiff dark burst GRB 050319a (P. Roming
et al. 2005, in preparation). In summary, the above new features
allow the current theory to potentially interpret known GRB
early afterglow cases collected so far, as well as the case of the
dark bursts, if one allows o to vary in a wide enough range (say,
from 0.01 to 100). The Swift GRB mission, launched on 2004
November 20, is expected to detect many early optical afterglow
light curves with the UV-optical telescope on board. We expect
to further test our theoretical predictions against the abundant
Swift data and to systematically diagnose the magnetic content of
GRB fireballs.

If the GRB ejecta is indeed magnetized, as inferred from the
early afterglow data, the internal shocks should also be corrected
by the magnetic suppression factor. This aspect has been in-
vestigated recently by Fan et al. (2004b).

Throughout the paper, we have treated the problem under the
ideal MHD limit. In the high-o case, strong magnetic dissipation
may occur. The magnetic dissipation effect has been included in
the internal shock study of Fan et al. (2004b). Our treatment in
this paper presents a first-order picture to the early afterglow
problem (see also Fan et al. 2004a, whose treatment in the mildly
magnetized regime is consistent with ours), and further consid-
erations are needed to fully delineate the physics involved. In
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addition, our whole discussion is relevant when a reverse shock
is present. It does not apply to the regime for an even higher
o-value (e.g., Lyutikov & Blandford 2003). Finally, as discussed
in § 4.1, further studies on particle acceleration in MHD shocks
are essential to give a more accurate calculation of the reverse
shock emission in the high-o regime.

We only discussed one type of the medium, i.e., one with an
assumed constant medium density, typically for the interstellar
medium. In principle, the medium density can vary with distance
from the central engine. In particular, a wind-type medium, char-
acterized by the n oc R~ profile, has been widely discussed. Our
MHD shock theory could be straightforwardly used for the wind
case to study the reverse shock emission in combination with the
previous pure hydrodynamical treatments (Chevalier & Li 2000;
Wu et al. 2003; Kobayashi & Zhang 2003b; Kobayashi et al.
2004; see Fan et al. 2004a for a preliminary treatment).
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APPENDIX A

DERIVATION OF THE SOLUTION OF THE RELATIVISTIC 90° SHOCK JUMP CONDITIONS

Al. LORENTZ TRANSFORMATIONS

Given the definitions of v;;, §;, and uy;, the following Lorentz transformations are frequently used in the derivations.

Bis — Bai
s — ) Al
P, 1 — BisPa1 (A1)
Bas + Bai
s — B A2
b 1+ Basfa1 (A2)
ﬂls - BZS
S e A3
621 1 - 51362.? ( )
Y2s = Msy21(1 = BisB21)s (A4)
s = YasV21(1 + BasBa1), (AS)
721 = YisV2s(1 = BisPas), (A6)
Uz = ’Yls’Yzl(ﬂls - 521), (A7)
uts = Y2721 (825 + B21), (A8)
uz1 = Y1sY25(B1s — Bos)s (A9)
u
Bis = Py = ——. (A10)
Y1s7V2s
A2. DERIVATION OF EQUATION (8)
Let us define (Kennel & Coroniti 1984)
By U1 3
Y = 25_723”]5_613. (All)

= - — 5
B]s VisUas ﬂ2s
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then equations (3) and (4) can be rewritten as
Vst [1+ (1 = Y)o] = yaspt5,

(1—Y2>] = iy + -2
HaUog

7
267,

Multiplying equation (A12) by ), and substituting the resultant formula into equation (A13), one can derive

Ulsphy [1 +

nom,c* + e 9 (- .
22t T2 {715‘72‘3[1 + (1 - Y)O'] — UlsUg |:1 +§ (ﬂlsz — ﬂZSZ):| }N'l

= <’721— il 0’)# :
2”15”25 !

Equation (8) in the text can be then derived straightforwardly.

ny

A3. SOLVING 2,

Combining equation (A12) and the definition of 1, (eq. [5]), one can derive

Vs r a u%l
B4 =Y)] =1+ —1)—T—2L 4
Y2s 2ulsu2s

This turns out to be a three-order equation of x = u3, i.e.,
Ax® + Bx* + Cx+ D =0,
where

A=T2-D)p - D +2,

B=—(m + D[2-T) (03 + 1) + (0 = Dya]o = (21 = D[D2 =) (33, = 2) + @y +3)],

C=(m +1)[f<1—£> (’V%l—l)—i—l]oz

+ (2 = D271 — 2 = D) (1 = Do+ (a1 + Dy — DXE = 17,
2
D=~ = D + 2@ - D2 %

For I" = 4/3, the four coefficients could be written equivalently as
A =8y + 10,
B = —(21+ D73 + 41 +6)0 — (21 — DB + 18921 + 11),
C = (y1 + DB, + Do? + (93, = D(10721 + 6)0 + (21 + D21 = 17,
D= —(y21 = Dy + 1’0,
A3.1. 0 =0 Limit
When o = 0, equation (A16) is reduced to
x[x— (3 = DHIE@ = D)2 = D +2]x = (= DE = 1} =0,
which gives equation (12) besides the other two nonphysical solutions uy; = 0 and uyg = u;.
A3.2. v51 > 1 Limit

When «,; >> 1, the x* term is a small quantity and is negligible. Equation (A16) is reduced to

I'Q -+ Hx* — [F(l—z>02+(l—‘2—2f+2)a+(l—‘—1)2 x+(2—F)2%:0.

This gives the solution (17) in the text (when the nonphysical solution is neglected).

331

(A12)

(A13)

(A14)

(A15)

(A16)

(A17)

(A18)

(A25)

(A26)



332 ZHANG & KOBAYASHI Vol. 628
APPENDIX B

NOTATION LIST
The notation we used is listed in Table 1.

TABLE 1
NoraTion List

Definition

Subscript 1
Subscript 2
Subscript 3
Subscript 4
Subscript s

Upstream (§ 2 and Appendix A), or unshocked medium (§§ 3 and 4)
Downstream (§ 2 and Appendix A), or shocked medium (§§ 3 and 4)
Shocked ejecta
Unshocked ejecta
Shock
Speed of light
Internal energy density in region i (=1, 2, 3, 4)
Correction factor of (eg/nzmpcz) normalized to the o = 0 value
Correction factor of (n,/n)) normalized to the o = 0 value
Magnetic-to-thermal pressure ratio plus 1
(pr —=2(pr — 1)
(pr =2)(py = 1)
Sedov length
Electron rest mass
Proton rest mass
Baryon number density in region i (=1, 2, 3, 4)
Thermal pressure in region i (=1, 2, 3, 4)
Magnetic pressure in region i (=1, 2, 3, 4)
Electron power-law index in the forward shock
Electron power-law index in the reverse shock
Deceleration time measured by the observer
R,/Cy3c (eq. [48)])
Emission peak time of the forward shock component
Emission peak time of the reverse shock component
Shock crossing time measured by the observer
Four speed in the region i (=1, 2, 3, 4) in the rest frame of j (=1, 2, 3, 4, 5)
Pair multiplicity parameter
Redshift
Coefficients to solve the equation for u3
Comoving magnetic field in the region i( = 1,2,3,4)
Magpnetic field in the region i( = 1,2,3,4) in the rest frame of the shock
Comoving magnetic field in the forward shocked region
Comoving magnetic field in the reverse shocked region
Correction factor to Ry with respect to the o = 0 case
Correction factor to Ra with respect to the o = 0 case
Correction factor to R, with respect to the o = 0 case
Shock frame electric field
Isotropic total energy of the fireball
Isotropic kinetic energy of the fireball
Isotropic Poynting flux energy of the fireball
The product of £, f;, and f.
Specific flux at the frequency v
Maximum synchrotron emission specific flux in the forward shock
Maximum synchrotron emission specific flux in the reverse shock
Peak flux for the forward shock emission component in certain (e.g., R) band
Peak flux for the reverse shock emission component in certain (e.g., R) band
Hubble constant
Mass in the ejecta
Mass of the interstellar medium collected by the shock
Total baryon number in the shell
Total electron-positron pair number in the shell
Lepton (electron) number in the forward shock
Lepton (electron and pairs) number in the reverse shock
A parameter introduced to categorize the parameter regimes (defined by eq. [50])
Radius from the central engine
Reverse-to-forward comoving magnetic field ratio
Reverse-to-forward ratio of the €,g parameter
Reverse-to-forward peak flux ratio
Forward-to-reverse peak time ratio
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TABLE 1—Continued

Definition

The ratio between vg and v, ,(fdec)

Radius where the reverse shock becomes relativistic

Radius where the ejecta shell starts to spread

Radius where the reverse shock crosses the ejecta shell
Radius where the fireball collects 1/ rest mass of the fireball

Central engine activity timescale
Initial comoving magnetic energy

Comoving magnetic energy after shock crossing
An intermediate parameter introduced in equation (17)

Ratio between By, and By
Adiabatic index
Shell width in the lab frame
Initial shell width in the lab frame
Cosmology mass density parameter
Cosmology A density parameter

Temporal decay index of the reverse shock emission component after peak time
Dimensionless velocity of region i (=1, 2, 3, 4) in the rest frame of j (=1, 2, 3, 4, 5)
An equivalent Lorentz factor defined in eq. (74)

Lorentz factor of region i (=1, 2, 3, 4) in the rest frame of j (=1, 2, 3, 4, s)
Lorentz factor of region i (=2, 3, 4) in the rest frame of the circumburst medium

Initial Lorentz factor of the fireball, 79 = 74

Critical initial Lorentz factor that separates thick vs. thin shell regimes (eq. [52])
Fireball Lorentz factor at the shock crossing time

Electron minimum Lorentz factor in the forward shock
Electron minimum Lorentz factor in the reverse shock

Electron energy equipartition parameter in the forward shock

Electron energy equipartition parameter in the reverse shock

Magnetic energy equipartition parameter in the forward shock

Equivalent magnetic energy equipartition parameter in the reverse shock

Specific enthalpy in region i (=1, 2, 3, 4)

Forward shock synchrotron cooling frequency

Reverse shock synchrotron cooling frequency
Forward shock synchrotron typical frequency
Reverse shock synchrotron typical frequency
R-band frequency
A parameter defined in eq. (45)
The £ value when A = A
Magnetization parameter as defined in eq. (7)
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