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ABSTRACT

We present a comprehensive model of the global properties of Alfvén waves in the solar atmosphere and the fast
solar wind. Linear non-WKB wave transport equations are solved from the photosphere to a distance past the orbit
of the Earth, and for wave periods ranging from 3 s to 3 days. We derive a radially varying power spectrum of ki-
netic and magnetic energy fluctuations for waves propagating in both directions along a superradially expanding
magnetic flux tube. This work differs from previous models in three major ways. (1) In the chromosphere and low
corona, the successive merging of flux tubes on granular and supergranular scales is described using a two-
dimensional magnetostatic model of a network element. Below a critical flux-tube merging height the waves are
modeled as thin-tube kinkmodes, andwe assume that all of the kink-mode wave energy is transformed into volume-
filling Alfvén waves above the merging height. (2) The frequency power spectrum of horizontal motions is spec-
ified only at the photosphere, based on prior analyses of G-band bright point kinematics. Everywhere else in the
model the amplitudes of outward and inward propagating waves are computed with no free parameters. We find that
the wave amplitudes in the corona agree well with off-limb nonthermal line-width constraints. (3) Nonlinear tur-
bulent damping is applied to the results of the linear model using a phenomenological energy loss term. A single
choice for the normalization of the turbulent outer-scale length produces both the right amount of damping at large
distances (to agree with in situ measurements) and the right amount of heating in the extended corona (to agree with
empirically constrained solar wind acceleration models). In the corona, the modeled heating rate differs by more
than an order of magnitude from a rate based on isotropic Kolmogorov turbulence.

Subject headinggs: MHD — solar wind — Sun: atmospheric motions — Sun: corona — turbulence — waves

1. INTRODUCTION

Magnetic fields are known to play a significant role in deter-
mining the equilibrium state of the plasma in the solar atmosphere
and solar wind (e.g., Parker 1975, 1991; Narain & Ulmschneider
1990, 1996; Priest 1999). Much of the magnetic flux in the
‘‘quiet’’ photosphere seems to be concentrated into small (100–
200 km) intergranular flux tubes. The physical processes that heat
the chromosphere and corona have not yet been identified defin-
itively, but there is little doubt thatmagnetohydrodynamic (MHD)
effects are prevalent. Even many proposed nonmagnetic mecha-
nisms depend on the underlying properties of the magnetically
structured atmosphere. The outflowing solar wind is fed by open
magnetic flux tubes, and many MHD processes have been pro-
posed to deposit heat and momentum at locations ranging from
the extended corona to interplanetary space.

The continually evolving convection below the photosphere
gives rise to a wide spectrum of MHD fluctuations in the mag-
netic atmosphere and wind. The propagation of waves through
the solar atmosphere has been studied for more than a half
century (Alfvén 1947; Schwarzschild 1948; Biermann 1948).
Although compressible (e.g., acoustic and magnetoacoustic)
MHD waves are likely to be dynamically and energetically im-
portant in some regions of the atmosphere, it is the mainly
incompressible Alfvén mode that has been believed for many
years to be dominant in regions that are open to the heliosphere
(e.g., Osterbrock 1961; Kuperus et al. 1981). Indeed, the MHD
fluctuations measured by spacecraft in the solar wind have a
strongly Alfvénic character (Belcher & Davis 1971; Hollweg
1975; Tu & Marsch 1995; Goldstein et al. 1995).

Even though much has been learned about the generation,
propagation, reflection, and damping of Alfvén waves in the

solar atmosphere, most earlier studies have focused on only a
finite range of heights and treated the interactions with regions
above or below as boundary conditions. This necessarily in-
volved the approximation that the relevant phenomena are
mainly local, i.e., that they do not depend on the conditions very
far away from the region being modeled. There are circum-
stances, however, for which this approximation breaks down.
For example, the properties of reflecting Alfvén waves with
long periods (i.e., of order 1 day) in the solar wind depend
formally on the conditions ‘‘at infinity,’’ since they behave as-
ymptotically as standing waves (e.g., Heinemann & Olbert
1980).

In this paper we construct a comprehensive model of the
radially evolving properties of Alfvénic fluctuations in a repre-
sentative open magnetic region of the solar atmosphere and fast
solar wind. The model takes account of nonlocal interactions by
tracing the waves from their origin as transverse flux-tube os-
cillations in the photosphere all the way out to the interplanetary
medium (truncated for convenience at 4 AU). This is done with
the smallest possible number of free parameters. There are two
overall aims of this paper:

1. We wish to understand better the global ‘‘energy budget’’
of Alfvén waves, including relative amplitudes of inward and
outward propagating waves, along the open flux tubes that feed
the solar wind.

2. In order to determine how MHD turbulence contributes to
the heating of the extended solar corona, we need to pin down
precisely how Alfvén waves provide the natural preconditions
for a turbulent cascade.

The second aim above was motivated by a recent study of the
small-scale dissipation of MHD turbulence in the extended
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corona (Cranmer & van Ballegooijen 2003). This kinetic dis-
sipation depends strongly on how the turbulence is excited at
its largest scales, and in this paper we attempt to put the ‘‘outer
scale’’ wave dynamics on firmer footing so that the resulting
‘‘inner scale’’ can be better understood. The work described by
this paper builds on prior studies by Hollweg (1973, 1978a,
1981, 1990), Heinemann & Olbert (1980), Spruit (1981, 1984),
An et al. (1990), Barkhudarov (1991), Velli (1993), Lou (1993,
1994), Lou & Rosner (1994), MacGregor & Charbonneau
(1994), Kudoh & Shibata (1999), Matthaeus et al. (1999),
Hasan et al. (2003), and many others.

One unique aspect of this paper is that the photospheric spec-
trum of transverse fluctuations—which constrains the Alfvén
wave amplitudes at all larger radii—is specified directly from
detailed observations of magnetic bright point (MBP) motions
and is not (as in many other models) given as an arbitrary
boundary amplitude. However, a complete physical description
of the fluctuations in the photosphere (e.g., the relative inward/
outward amplitudes and the kinetic/magnetic energy partition)
is obtained only after the fully nonlocal wave reflection has
been computed for all radii. Another way this work differs from
many previous models is that the expansion and successive
merging of flux tubes on granular and supergranular scales is
described using a two-dimensional model of a magnetic net-
work element in the inhomogeneous solar atmosphere.

Despite the attempted comprehensiveness of this model, we
needed to make three specific approximations in order to render
the calculations tractable. These approximations are summa-
rized here, but they are also discussed further below and jus-
tified for certain regimes of applicability. First, we ignore all
effects of compressible fluctuations (e.g., acoustic waves; fast
and slow magnetosonic waves) despite their importance in un-
derstanding observed intensity oscillations and chromospheric
heating. This is done in order to fairly assess the relative im-
portance of the incompressible Alfvén mode before resorting
to more involved models. Second, the Alfvén wave model is
mainly linear, which limits its applicability in regions where the
wave amplitudes become large in comparison to background
field strengths and characteristic speeds. (Some effects of non-
linearity are examined, though, in x 6.) Third, we do not model
explicitly the back-reaction of the waves on the mean proper-
ties of the solar atmosphere and solar wind. We do, however,

compute quantities such as the wave pressure acceleration
and turbulent heating rate for use in future models of this
back-reaction.
The remainder of this paper is organized as follows. In x 2 we

give an overview of the physical processes to be incorporated
in the wave models together with a ‘‘cartoon’’ description of
the steady-state magnetic field topology. In x 3 we describe the
adopted steady-state (i.e., zeroth-order) plasma conditions in
detail. The specification of the photospheric frequency spectrum
of transverse fluctuations is given in x 4, and the wave equations
to be solved are given in x 5. Solutions of these equations, in-
cluding some with various prescriptions for damping, are pre-
sented in x 6. We conclude with a summary of major results
(x 7) and a discussion of remaining issues (x 8). Appendix A
contains supplementary equations describing analytic solutions
of the kink-mode wave equations for isolated flux tubes in an
isothermal atmosphere. Appendix B compares various published
formalisms for the non-WKB transport equations for Alfvén
waves in an accelerating wind. Appendix C summarizes the
properties of the fully developed anisotropic MHD turbulence
spectrum discussed by, e.g., Cranmer & van Ballegooijen
(2003).

2. OVERALL PICTURE OF OPEN FIELD REGIONS

Figure 1 illustrates the basic magnetic field geometry that we
believe is representative of flux tubes that feed the high-speed
solar wind. A key feature of the adopted configuration is the
successive merging of strong-field magnetic flux tubes between
granules (Fig. 1a) and supergranules (Fig. 1b). On the largest
scales, Figure 1c shows the more or less axisymmetric magnetic
field that is characteristic of solar minimum (using the field
model of Banaszkiewicz et al. 1998), but nearly all of the work
presented in this paper can also be applied straightforwardly to
open-field regions at other phases of the solar cycle.
We assert that most of the plasma that eventually becomes

the time-steady solar wind originates in intergranular magnetic
flux tubes known observationally as G-band bright points, net-
work bright points, or in groups as ‘‘solar filigree.’’ This as-
sertion is seemingly uncontroversial (knowing what we do
about solar magnetic fields), though it is seldom stated. Adopt-
ing a ripening convention in nomenclature, we refer to these
100–200 km size photospheric features as magnetic bright

Fig. 1.—Summary sketch of the magnetic field structure discussed in this paper, with the fields of view successively widening from (a) to (b) to (c).
(a) Intergranular lanes host G-band bright points that are shaken transversely to generate kink-mode waves. (b) Above the height where individual flux tubes merge,
the coronal-hole network field is mainly open (with a funnel /canopy structure), and kink-mode waves are transformed into Alfvén waves. (c) Non-WKB waves
in the solar wind propagate and reflect depending on their frequencies, and MHD turbulent cascade can occur where outward and inward waves interact nonlinearly.
The inverted solar image was obtained by EIT (Extreme-ultraviolet Imaging Telescope) on SOHO (e.g., Moses et al. 1997). Field lines in (c) are plotted at 2.1

�

intervals at the solar surface, and thus each pair of lines encompasses �1–2 network funnels.
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points (MBPs).1 High-resolution observations reveal the pres-
ence of MBPs in the dark lanes between granules, and these
features are associated with regions of strong (1–2 kG) mag-
netic field believed to be contained within nearly vertical flux
tubes (e.g., Sheeley 1967; Dunn & Zirker 1973; Muller 1983,
1985; Piddington 1978; Rabin 1992; Solanki 1993; Berger &
Title 2001). There is increasing evidence for magnetic struc-
tures on even smaller scales than 100–200 km, but we leave
the study of these structures to future work (see, e.g., Stein &
Nordlund 2002; Sánchez Almeida et al. 2003; Trujillo Bueno
et al. 2004).

Asmagnetic flux rises stochastically from the convection zone
to the photosphere (e.g., Priest et al. 2002), field lines are si-
multaneously jostled horizontally by fluid motions on granular
(1–2 Mm) scales. Magnetic flux is concentrated into thin tubes
by some combination of ‘‘flux expulsion’’ from the upflow-
ing granule centers to the downflowing lanes (Parker 1963), the
rapid evacuation of these downflowing superadiabatic regions
(i.e., convective collapse; Parker 1978; Spruit 1979), and en-
hanced radiative cooling leading to thermal relaxation (Sánchez
Almeida 2001). MBPs are observed frequently to merge with
neighboring flux elements and to spontaneously fragment into
several pieces (e.g., Berger et al. 1998). Once formed, MBPs
continue to be shaken back and forth by the underlying convec-
tive motions (Kulsrud 1955; Osterbrock 1961; van Ballegooijen
1986; Huang et al. 1995), which results in various kinds of
wavelike fluctuations describable in the ‘‘thin-tube’’ MHD limit
(Spruit 1981, 1982, 1984; see further references in x 5.1 below).
Oscillatory motions can also be induced by impulsive recon-
nection events (e.g., Moore et al. 1991) or, conversely, the ran-
dom wave trains may display observational time signatures that
could be misinterpreted as small-scale flaring (Moriyasu et al.
2004).

There is a great variety of MHD wave activity expected and
observed in the inhomogeneous solar atmosphere. In addition
to isolated MBP fluctuations, there is ambient acoustic wave
energy excited by convection, shock steepening in the chro-
mosphere and transition region, and both driven and free os-
cillations in sunspots and coronal loops (see recent reviews by
Axford et al. 1999; Roberts 2000; Bogdan 2000; Hirzberger
2003). A significant fraction of the Sun’s magnetic flux may
also be distributed outside the MBPs, network, and active re-
gions (e.g., Schrijver & Title 2003), and acoustic waves in
‘‘field-free’’ regions may in fact be magnetoacoustic. Damping
of MHD waves and turbulence has been a key ingredient in
many proposed models of chromospheric and coronal heating.
Our main focus, though, is on the incompressible waves that
eventually escape from the atmosphere into the solar wind.

Magnetic flux tubes rooted in MBPs undergo both transverse
(kink-mode) and longitudinal (sausage-mode) oscillations that
can propagate upward from the photosphere. Because the strong-
field flux tubes are in horizontal pressure equilibrium with the
surrounding weak-field material, they have a lower density and
thus are susceptible to buoyancy effects and evanescence for
long enough periods. Like acoustic waves, the compressible lon-
gitudinal modes steepen into shocks and damp over a few scale
heights, while the incompressible kink modes can propagate into
the corona relatively undamped. Nonlinear effects can lead to
mode conversion between kink and longitudinal modes (e.g.,
Ulmschneider et al. 1991).

Somewhere in the low chromosphere, the thin flux tubes
are believed to expand laterally to the point where they merge
with one another into a homogeneous network field distribu-
tion (Spruit 1984; Pneuman et al. 1986; Gu et al. 1997). At this
point, the thin-tube description breaks down and standardMHD
wave theory becomesmore applicable (i.e., kinkmodes become
transverse Alfvén waves). The merged network flux bundles
have horizontal scale lengths of 2 to 6 Mm and are probably
maintained by large-scale convective flows that push the field
to the edges of supergranular cells. At a larger height—still below
the chromosphere-corona transition region—the network mag-
netic field expands laterally to 10–30Mm scales and is thought to
merge again into a large-scale ‘‘canopy’’ (e.g., Kopp & Kuperus
1968; Gabriel 1976; Giovanelli 1980; Anzer & Galloway 1983;
Dowdy et al. 1986). The spatial scale of the canopy is set by the
typical distance between network flux bundles (i.e., the size of
supergranulation cells) in the chromosphere. Observational ev-
idence for preferential wind acceleration in the rapidly expand-
ing network ‘‘funnels’’ is growing (Rottman et al. 1982; Hassler
et al. 1999; Peter & Judge 1999; Aiouaz et al. 2004; see also
Martı́nez-Galarce et al. 2003) but is still not definitive (e.g.,
Dupree et al. 1996).

As waves propagate upward into the corona, the radially vary-
ing Alfvén speed allows for gradual linear reflection (Ferraro &
Plumpton 1958). The transition region can also act a sharp ‘‘re-
flection barrier’’ to Alfvén waves with wavelengths exceeding the
local scale length of the Alfvén speed in that thin zone (see
x 6). It is thus possible for a time-steady superposition of upward
and downward propagating Alfvén waves to be maintained (e.g.,
Hollweg 1981, 1984). Strong reflection is not necessarily an im-
pediment to there being a substantial upward wave flux; one
merely needs more power in the upward modes than in the
downward modes. Somewhere in the solar atmosphere the MHD
fluctuations become turbulent, but it is unclear whether the tur-
bulent cascade becomes energetically important in the photo-
sphere (Petrovay 2001), in the chromosphere and transition region
(Chae et al. 1998), or in the corona (e.g., Dmitruk & Matthaeus
2003).

In the extended corona, the high-speed solar wind begins to
accelerate supersonically above a heliocentric distance of 2 to 3
solar radii (R�). In the radially inhomogeneous wind, the dis-
sipationless propagation ofMHDwaves does work on the mean
fluid and provides an added wave-pressure acceleration (e.g.,
Belcher 1971; Jacques 1977; Leer et al. 1982). The presence of
the wind also modifies how waves propagate, and above the
Alfvén critical point—where the wind speed equals the local
Alfvén speed at about 10 R�—both the inward and outward
modes are advected outward with the wind. Large coronal holes
are the most probable source regions for the fast solar wind (for
a review of observations and theoretical models, see Cranmer
2002). Some flux tubes in coronal holes have a higher density
than the surrounding open-field plasma; these ‘‘polar plumes’’
seem to trace out the superradial expansion of the merged-
canopy magnetic field in the corona (e.g., DeForest et al. 2001).

In addition to Alfvén waves, there is some evidence for both
fast-mode and slow-mode magnetosonic waves in the corona
(Ofman et al. 1999; Nakariakov et al. 2004), but they have been
observed only in relatively confined regions such as loops and
plumes. Fast and slowmodes are believed to be more attenuated
by collisional damping processes than Alfvén waves before
they reach the corona. However, once some fraction of the en-
ergy flux of Alfvén (and possibly fast-mode) waves escapes
into the solar wind, the classical transport theory of collisional
damping begins to break down and collisionless wave-particle

1 We also note that MBPs are not the same phenomena as the larger K2V

bright points in the chromosphere (Rutten & Uitenbroek 1991) or the still larger
X-ray bright points in the low corona (e.g., Golub et al. 1977; Parnell 2002).
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interactions should dominate the damping (e.g., Hollweg &
Isenberg 2002; Marsch et al. 2003; Cranmer 2000, 2001, 2002,
2004; and many references therein). Studies of wave-particle
resonance damping have seen a recent resurgence of interest be-
cause of their potential importance in producing the preferential
ion heating and acceleration seen both in the extended corona
(Kohl et al. 1997, 1998, 1999) and in situ (Marsch 1999).

As Alfvén waves propagate into interplanetary space, their
velocity and magnetic-field amplitudes grow to nonlinear mag-
nitudes (i.e., �B=B0 becomes of order unity). Higher order pon-
deromotive effects begin to dominate the wave propagation
equations (Lau & Siregar 1996) and collisionless wave-wave
resonances can create additional mode coupling and damping
(Lee & Völk 1973; Lacombe &Mangeney 1980; Lou 1993). At
some point it may even be inappropriate to use a ‘‘wavelike’’
paradigm to discuss the increasingly turbulent fluctuations (e.g.,
Goldstein et al. 1995). In the outer heliosphere, the description
of magnetic flux tubes as relatively closed systems—implicit in
the above discussion—breaks down as well, since processes
such as stream-stream interactions, interstellar pickup ion in-
jection, and cosmic-ray transport increasingly dominate the
physics.

In this paper we purposefully examine only a subset of the
many processes listed above. This is done mainly to keep the
modeling tractable, but it also helps clarify the extent to which
the specific wave modes that we study can account for various
observations.

3. STEADY-STATE PLASMA CONDITIONS

Models of linear waves depend sensitively on the assumed
background zeroth-order plasma properties (e.g., density, flow
speed, magnetic field strength, flux tube geometry). In this sec-
tion we describe the empirically constrained time-steady plasma
along the central axis of a radially pointed (but superradially
expanding) magnetic flux tube, from the photosphere to a dis-
tance of 4 AU. The empirical description consists of two parts: a
two-dimensional magnetostatic model of thin MBP flux tubes
that expand into the supergranular network canopy (x 3.1) and a
one-dimensional analytic continuation of the plasma parameters
in the extended corona, assumed here to be along the axis of
symmetry of a polar coronal hole at solar minimum (x 3.2).

3.1. Network Maggnetic Structure

We first develop a two-dimensional numerical model of a
supergranular network element as a collection of thin flux tubes.
The gas pressure in the atmosphere decreases with increasing
height, causing a lateral expansion of the flux tubes. Neighbor-
ing MBP flux tubes within the network element merge into a
monolithic structure at some height zm. (Heights z are measured
from the optical-depth-unity photosphere; radii r are measured
from Sun center.) For a thin, isothermal flux tube in pressure
equilibrium with its surroundings, the interior magnetic field
strength varies with height as e�z=2H , where H is the pressure
scale height (e.g., Spruit 1981, 1984). Thus, we determine the
so-called merging height by solving for

zm � 2H ln (B�=B̄); ð1Þ

where B� is the field strength inside the flux tube at the base
of the photosphere (z ¼ 0) and B̄ is the average flux density in
the network patch. Observations of the MBP flux-tube field
strength range between 1000 and 2000 G, and the network-
averaged field strength varies between about 20 and 300 G (e.g.,

Gabriel 1976; Giovanelli 1980). In order to determine a repre-
sentative value for the merging height we use H ¼ 120 km,
B� ¼ 1500G, and B̄ ¼ 100G to obtain zm � 600 km, a height in
the low chromosphere (see also Pneuman et al. 1986). Above the
merging height the network element consists of a single thick
flux tube that further expands with height. The outer edge of this
tube forms a magnetic canopy that overlies the neighboring su-
pergranular cells. A second merging occurs when neighboring
network elements come together at a ‘‘canopy height’’ zc above
the supergranular cell centers; we set zc ¼ 1Mm (see also Hasan
et al. 2003). Figure 2 shows the three-part structure of the net-
work element:

1. The region below the merging height (0 < z < 0:6Mm) is
described as a collection of thin flux tubes embedded in a field-
free medium. The field strength B(z) is assumed to be the same
for all flux tubes, and their cross sections and other plasma prop-
erties are consistent with the thin-tube approximation.
2. Between heights of 0.6 and 1 Mm, the merged network

flux element expands laterally to the edges of the supergranular
cell, which overlies a field-free cell-center chromosphere.
3. Between 1 and 12 Mm, the ‘‘fully merged’’ magnetic field

fills the supergranular cell volume and expands primarily in the
vertical direction.

In the remainder of this paper, the term ‘‘merging height’’
refers specifically to the merging of the thin flux tubes at
zm ¼ 0:6 Mm.
The total magnetic flux � of the network element is con-

strained empirically to be 3:7 ; 1019 Mx. TheMBP field strengths

Fig. 2.—Magnetic field lines in a cross section of the magnetostatic model
of a network element. Dotted lines at z ¼ 0:6 and 1 Mm denote the merging
height zm and the canopy height zc. Above zm the model has cylindrical sym-
metry about the left axis of the plot; below zm we model the flux tubes as
evenly distributed throughout the circular network patch of radius �3 Mm,
and the plotted cross sections are shown only for illustrative purposes.
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at the photosphere and at the merging height are 1430 and
120.4 G, respectively.2 The upper, monolithic part of the mag-
netic structure (z > zm) is assumed to be cylindrically symmetric
and is described by a modified version of the magnetostatic flux
tube model of Hasan et al. (2003). In the present case, the flux
tube is contained within a cylinder of transverse radius s0 ¼
10 Mm, which simulates the effect of neighboring network ele-
ments. The internal and external gas pressures are taken from
semiempirical VAL/FAL models by Vernazza et al. (1981) and
Fontenla et al. (1990, 1991, 1993, 2002). The magnetic field
components Bs(s; z) and Bz(s; z) in cylindrical geometry (using
s as the perpendicular distance from the central flux tube axis)
are computed by varying the shapes of the field lines until a
minimum-energy state is obtained (for details see Hasan et al.
2003). The horizontal distribution of Bz(s; zm) at the merging
height is adjusted iteratively such that the magnitude of the field
B(s; zm) is independent of s. This is needed for consistency with
the constant field strength of the thin flux tubes just below the
merging height.

Figure 2 shows the final iterated magnetic structure. The
cross sections of the flux tubes below the merging height (z <
0:6 Mm) were computed by matching Bs and Bz at the merging
height and assuming that Bs is independent of height within
each flux tube (different tubes have different Bs). The transverse
radius of the ‘‘network patch’’ in the photosphere is about
3 Mm. We can estimate the number N of MBPs inside the ap-
proximately circular patch, but we note that the wave analysis
below does not depend on the value ofN. From the conservation
of magnetic flux, we know that the filling factor of MBP flux
tubes at the photosphere is given by B(zm)=B� � 0:08. Obser-
vationally, the transverse radii of MBPs at the photosphere are
50 to 100 km. The number of flux tubes required to fill an area
that is 8% of the total patch area (A ¼ �s2�, with s� ¼ 3 Mm)
ranges betweenN � 75 (for the upper limit onMBP radius) and
N � 300 (for the lower limit). We can also define a mean dis-
tance between nearest neighbors dnn by dividing up the net-
work patch into N equal-area circles and defining dnn as twice
their radii. Thus, dnn ¼ 2s�N

�1=2, which gives values of 350
and 700 km for the above limiting cases.

Before continuing, it is worthwhile to ask the question:
‘‘Why is it not possible to extend the ‘monolithic’ flux-tube
model all the way down to the photosphere?’’ Observationally,
the photosphere is far from monolithic in its distribution of
magnetic fields. Granulation causes both the formation of thin
MBP flux tubes and their spreading out (via random walk). The
larger scale supergranulation pushes the magnetic elements
back together into network lanes and vertices. This competition
between MBP spreading and convergence leads to a dynamical
equilibrium described by the different assumptions applied
above and below the merging height. A more complete model
must contain physics that naturally captures this equilibrium
state, but hopefully without the abrupt transition assumed here
at zm.

3.2. Superradial Expansion in the Solar Wind

Here we describe the plasma parameters along the cen-
tral axis of the modeled network element at heights ranging
from 12 Mm (the top of the magnetostatic model) to inter-
planetary space. We adopt a slightly modified version of the

polar magnetic field configuration of Banaszkiewicz et al.
(1998):

B0

1:789 G
¼ 2

x3
þ 4:281

x5
þ 1

ac(xþ ac)
2
þ 0:67

exp ½384(x� x0)�
;

ð2Þ

where B0 is now defined as the radial component of the field
along the axis of symmetry, x ¼ r=R�, and the above description
applies only for x � x0, with x0 � 1:0172 (i.e., the top height
(12 Mm) of the magnetostatic grid]. The model above uses the
same current-sheet constant (ac ¼ 1:538) used by Banaszkiewicz
et al. (1998), but with a 5% modification to their preferred quad-
rupole constant. We also add an exponential correction term
(which drops rapidly to nearly zero for xk1:03) to ensure that
the value and slope of B0 match those of the magnetostatic
model at x0. Figure 3a plots the product x

2B0 versus height both
below and above x0. This quantity is proportional to the inverse
of the traditional superradial divergence factor f, and it shows
the outer monopolar expansion region (B0 / r�2) as a constant.
For comparison we also plot the analytic functions used in the
funnel models of Hackenberg et al. (2000) and Li (2003).

For the radial dependence of the electron density, we use a
function motivated by fits to white-light polarization brightness
measurements in the extended corona:

ne

1:3 ; 105 cm�3
¼ 1

x2
þ 25

x4
þ 300

x8
þ 1500

x16
þ 5796

x33:9
; ð3Þ

which applies only for x � x0. The overall scale set by the in-
verse square term was adjusted to match in situ density mea-
surements at 1 AU (i.e., x ¼ 215). Themiddle three terms above
were adjusted to produce agreement with measurements by,
e.g., Guhathakurta & Holzer (1994), Fisher & Guhathakurta
(1995), Doyle et al. (1999), Esser & Sasselov (1999), and
Figure 10 of Lie-Svendsen et al. (2003). The last term was set
to match the value and slope of the magnetostatic model density
at x0. Figure 3b plots the hydrogen number density nH, com-
puted assuming a helium-to-hydrogen number density ratio of
0.05 (i.e., ne ¼ 1:1nH, with the total mass density � given by
1:2nHmH).

Figure 3c shows several velocity quantities along the central
axis of the flux tube. The hydrogen outflow speed u was com-
puted by mass flux conservation (i.e., �u=B0 ¼ constant), with
themass loss rate set byUlyssesmeasurements in interplanetary
space (Goldstein et al. 1996). At 1 AU, the product unH ¼
2 ; 108 cm�2 s�1, and thus we compute u ¼ 781:2 km s�1 at
1 AU. At an infinite distance, u approaches a constant value of
781.9 km s�1. The Alfvén speed, defined as

VA � B0=
ffiffiffiffiffiffiffiffi
4��

p
; ð4Þ

is nearly constant below the merging height (and would be pre-
cisely constant for an isothermal atmosphere) and rises to two
successive maxima: 2530 km s�1 at r ¼ 1:004 R�, and 2890 km
s�1 at r ¼ 1:53 R�. The Alfvén speed drops to 31.3 km s�1 at
1 AU and decreases nearly exactly as 1=r after that. The Alfvén
critical point, where u ¼ VA, is at rA ¼ 9:70 R�.

4. PHOTOSPHERIC FLUCTUATION SPECTRUM

The lower boundary condition for our model of Alfvénic
fluctuations is the power spectrum of transverse MBP mo-
tions in the photosphere. The dynamical behavior of G-band

2 Themagnetic field is assumed to point outward—i.e., it is assumed to be of
northern polarity—but the physics is the same for an inward pointing field.
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bright points has been studied observationally by a number of
groups (see, e.g., Muller et al. 1994; Berger & Title 1996; van
Ballegooijen et al. 1998; Berger et al. 1998; Krishnakumar &
Venkatakrishnan 1999; Nisenson et al. 2003). In this section we
present an empirical description of MBP dynamics as a linear
superposition of two types of motion: (1) the ‘‘random walk’’
undertaken by isolated flux tubes, and (2) a series of rapid
‘‘jumps’’ that occur when individual flux tubes merge, fragment,
or reconnect with surrounding magnetic field.

The general procedure for specifying the power spectrum of
horizontal MBP kinetic energy (as a function of frequency) is
illustrated in Figure 4. The primary measured quantity is a time
series of discrete position measurements for the MBPs that can
be differentiated to obtain horizontal velocity components vx(t)
and vy(t), with the z direction being normal to the solar surface.
(Observations support the rational assumption that there is no
preferred global direction on granular scales, so below we dis-
cuss just the vx component and assume that vy is statistically
equivalent.) The timescale dependence of MBP fluctuations is
encapsulated in the velocity autocorrelation function, which we
define for a time sequence of N measured velocities vx;n as

Cxx;m ¼ 1

N � m

XN�m

n¼1
vx;nvx;nþm ð5Þ

for the time index n between 1 and N and an arbitrary delay
time represented by index m. This expression is the discrete
version of the more general definition

Cxx(�) ¼ lim
�t!1

1

�t

Z þ�t=2

��t=2

dtvx(t)vx(t þ �) ð6Þ

for delay time � . The unidirectional power spectrum Px (i.e.,
jvxj2 per unit interval of frequency !) is the Fourier transform
of the autocorrelation function, with

Px(!) �
1

2�

Z þ1

�1
d�Cxx(�)e

i!� ð7Þ

(e.g., the Wiener-Khinchin theorem; see also van Ballegooijen
et al. 1998). Note that Px is defined for both positive and neg-
ative !. For the present applications, all functions are sym-
metric about zero frequency, and we will thus consider only
positive frequencies (simultaneously doubling the normaliza-
tion of Px to conserve total energy). In general, we specify the
kinetic energy power spectrum PK , which is defined in such a
way as to integrate to the total kinetic energy density UK in
transverse motions:

UK � �h�V i2

2
¼
Z 1

0

d!PK (!); ð8Þ

with

PK (!) �
�

2
2Px(!)þ 2Py(!)
� �

¼ 2�Px(!): ð9Þ

The factors of 2 inside the square brackets take account of
the negative frequencies, and the last expression assumes
Px ¼ Py.
In the analysis below we derive power spectrum components

for the two assumed phases of the MBP motion: the random
walk (subscript w) of isolated flux tubes, and the occasional
discrete jumps (subscript j ) caused by merging, fragmenting, or
reconnecting. Specifying the power separately for these two
phases is not the ideal solution, but it is all that can be done at
present. Ideally, the proper observational procedure would be to
determine the complete time series vx(t) for the walk and jump
phases taken together, then compute the autocorrelation func-
tion and total power spectrum consistently. Unfortunately, be-
cause MBPs fragment or merge during the jump phases, it is
extremely difficult to ‘‘follow’’ a single feature during these
times to determine the complete time series.

Fig. 3.—Steady-state plasma conditions along the central axis of the net-
work flux tube. (a) Magnetic field strength, multiplied by x2, for the adopted
model (solid line), the model of Hackenberg et al. (2000) (dotted line), and the
model of Li (2003) (dashed line). (b) Adopted model of the hydrogen number
density (solid line), empirical limits taken from the minima and maxima of
observations by Guhathakurta & Holzer (1994), Fisher & Guhathakurta (1995),
and Doyle et al. (1999) (dotted lines), and the quantity � tot=1:2=mH (dashed
line). (c) Alfvén speed VA (solid line), outflow speed u (dotted line), and flux
tube phase speed Vph (dashed line).
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The random-walk component ofMBPs, during the times they
exist as separate entities, was studied by van Ballegooijen et al.
(1998) and Nisenson et al. (2003). These observations yielded
the result that the discretely derived autocorrelation functions
can be fitted well by Lorentzian functions (see Fig. 4e), with

Cxx;w(�) ¼
�2
w

1þ (�=�w)
2
; ð10Þ

and the more precise observations of Nisenson et al. (2003)
gave values of �2

w � 0:8 km2 s�2 and �w � 60 s. We adopt these
values in the models below. Thus, the walk-component of the
kinetic energy spectrum is given by

PK;w(!) ¼ ��2
w�we

��w!: ð11Þ

This is plotted in Figure 4g, but note that all power spectra are
plotted as the product !P(!) because this denotes the power
per decade of frequency (i.e., the energy density per unit log !).

Maxima in this quantity highlight the frequencies that contrib-
ute most to the total wave energy.

The impulsive ‘‘jump’’ phase of MBP motions is described
by Choudhuri et al. (1993), Berger et al. (1998), Hasan et al.
(2000), and others. The potential for rapid transitions in the
locations of thin flux tubes is also indicated in empirical models
of the quasi-equilibrium evolution of granular magnetic fields
(van Ballegooijen & Hasan 2003), in which slow motions of
separatrix surfaces in the photosphere are amplified at larger
heights because of flux-tube expansion. We model an impul-
sive MBP event as narrow Gaussian enhancement in vx(t) cen-
tered on an arbitrary t ¼ 0. A series of these events is assumed
to occur with a mean time interval �t between events.3 The

Fig. 4.—Outline of the empirical procedure used to derive the photospheric power spectrum of MBP kink-mode wave energy. Horizontal MBP positions (a) are
differentiated to obtain velocities (b), which are separated into ‘‘walk’’ and ‘‘jump’’ phases (c, d ). The autocorrelation functions (e, f ) of these velocity time series
are computed and Fourier transformed to obtain power spectra (g, h) as a function of frequency !, here plotted vs. period (2�=!) in minutes. The kinetic energy
power spectra from the statistically independent walk (dashed lines) and jump (dotted lines) phases are summed (i) and used to compute the total energy spectrum
(solid line).

3 Although we believe a constant interval�t captures the essential nature of
these jumps and their contribution to the energy spectrum, a more accurate way
of modeling them would be to sample from an empirically derived ‘‘waiting-
time’’ probability distribution.
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Gaussian jump, with velocity amplitude �j and 1=e half-life �j,
is described by

vx(t) ¼ �je
�(t=�j)2 ð12Þ

between times ��t=2 and þ�t=2, and the limit �t ! 1 in
equation (6) is not taken. The autocorrelation function is thus

Cxx; j(�) ¼
ffiffiffiffi
�

2

r
�2
j �j

�t
exp � � 2

2� 2
j

 !
ð13Þ

(see Fig. 4f ), and the resulting kinetic energy spectrum is given
by

PK; j(!) ¼
��2

j �
2
j

�t
exp �

!2� 2
j

2

 !
ð14Þ

(see Fig. 4h). In the models below we adopt �t ¼ 360 s and
�j ¼ 20 s, which are consistent with the observations of Berger
et al. (1998). The velocity amplitude of the jump �j is known
with much less certainty because it represents the ‘‘tail’’ of the
observed distribution of speeds. Berger & Title (1996) found
speeds up to 5 km s�1, so this seems to be a rough upper limit
to �j. This is our only true free parameter.

Because the walk and jump phases of MBP motion seem to
be statistically uncorrelated, we compute the full kinetic energy
spectrum PK as the simple sum of PK;w and PK; j (see Fig. 4i). It
is then possible to integrate this spectrum over frequency (see
eq. [8]) to obtain the transverse velocity variance of MBP mo-
tions in the photosphere:

h�V i2� ¼ 2�2
w þ

ffiffiffiffiffiffi
2�

p
�2
j �j=�t ð15Þ

¼ 1:6þ 0:139

�
�j

1 km s�1

�2
" #

km2 s�2; ð16Þ

where the latter expression uses the values adopted above for
�w, �j, and �t. Note that even for a large impulsive velocity of
�j � 6 km s�1, the root mean squared velocity is significantly
smaller than this value (h�V i� � 2:5 km s�1) because the
jumps occur infrequently.

Finally, we also compute the total energy spectrum Ptot (i.e.,
including contributions from both kinetic and magnetic energy)
at the photosphere using the analytic relations for isother-
mal thin flux tubes given in Appendix A (specifically, eq. [A8]).
For very high frequencies the kinetic and magnetic energy
components are in equipartition, and Ptot is just twice PK . For
very low frequencies the kink-mode waves are evanescent
and the physically realistic solution contains much more
kinetic energy than magnetic energy (thus, Ptot � PK ). The
resulting total energy spectrum, plotted as a solid line in
Figure 4i, is essentially our lower boundary condition on the
amplitudes of Alfvén waves of various frequencies. We de-
scribe how this information is folded into the global solutions
in x 5.3.

5. NON-WKB WAVE ANALYSIS

We model the transverse wave properties in the open mag-
netic regions described in x 3 as purely linear perturbations to
the assumed zeroth-order background plasma state. The basic

MHD equations that need to be solved are the mass and mo-
mentum conservation equations and the magnetic induction
equation, given by

@�

@t
þ: = (�v) ¼ 0; ð17Þ

@v

@t
þ (v = : )v ¼ � 1

�
:pþ ggg þ 1

4��
(: < B) < B½ �; ð18Þ

@B

@t
¼ : < v < Bð Þ; ð19Þ

where the velocity v and magnetic field B are not yet separated
into zeroth-order and first-order parts, p is the gas pressure,
and ggg is the gravitational acceleration.
We apply these equations in two regions with very different

physics:

1. Below the merging height (x 5.1) we model the waves as
incompressible Lagrangian perturbations of the central axis of
a thin, strong-field flux tube that expands superradially and is
surrounded by a field-free region. In this region we assume the
outflow speed of the solar wind is negligibly small. In addition to
the properties within the thin tube, we also specify the density
external to the tube �e in the field-free region.
2. Above the merging height (x 5.2) we model the waves as

incompressible Eulerian perturbations filling the volume of the
expanding flux tube, which is assumed to be surrounded by
similar tubes. All background properties, including a nonzero
solar wind speed, vary only in the radial direction.

For both regions we transform the MHD equations above into
wave equations with an assumed e i!t time dependence. The
equations are then solved ‘‘monochromatically’’ for a grid of
frequencies, also assuming that in each solution the frequency
remains constant as a function of height. We do not make the
WKB (i.e., eikonal) approximation4 that wavelengths are small
compared to background scale lengths; indeed, we do not even
need to define the concept of wavelength because the complete
spatial oscillation pattern is computed numerically as a function
of height. The solutions for individual frequencies are subse-
quently assembled into a full radially varying power spectrum,
normalized by the empirically derived power spectrum at the
photosphere (x 4).
The following subsections present the specific equations that

we solve in the two regions outlined above.

5.1. Thin Flux Tubes

Below the merging height, the MBP flux tubes are shaken
transversely, and kink-mode waves are excited (see also
Wilson 1979; Spruit 1981; Ulmschneider et al. 1991). For in-
compressible perturbations about the equilibrium state, the
density � is a zeroth-order quantity, the velocity v is horizontal
and a first-order quantity, and the magnetic field B has a zeroth-
order vertical component and a first-order horizontal compo-
nent. Following the motion of the thin tubes, we write the

4 By ‘‘WKB’’ we refer broadly to the use of an asymptotic expansion
that facilitates the solution of the linear differential equations. Specifically,
for the wave equations presented in this paper, the ‘‘WKB limit’’ is that of
pure outward propagation with no reflection. The use of this acronym that
cites the contributions of Wentzel, Kramers, and Brillouin does not imply
neglect of the earlier work of Liouville, Green, Carlini, Rayleigh, Jeffries,
and others.
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Lagrangian forms of the momentum and induction equations as
follows:

�
dv

dt
¼ �ggggg�: pþ B2

8�

� �
þ (B = : )B

4�
; ð20Þ

dB

dt
¼ B = :ð Þv; ð21Þ

where the advective derivative

d

dt
¼ @

@t
þ v = : ð22Þ

follows the motion of the tube’s central axis. Above we have
assumed that : = v ¼ 0 as a statement of mass conservation for
incompressible flows.

We write the scalar horizontal perturbations in velocity and
magnetic field as v? and B?, and we implicitly assume linear
polarization of the waves in a single transverse dimension. In
many ways, though, the equations to be derived are degenerate
with toroidal Alfvén waves at larger heights (e.g., Heinemann &
Olbert 1980), and our assumption should not appreciably limit
the generality of the results. (Other polarizationmodes have been
studied by, e.g., Spruit 1982, 1984; Lou 1993; Roberts 2000;
Noble et al. 2003; Ruderman 2003.)

In order to derive the wave equations we note three aspects of
thin tubes in the solar atmosphere:

1. For an oscillating flux tube, the direction perpendicular to
its instantaneous axis will, generally, be inclined with respect to
the radial direction away from the Sun. The components of the
above equations parallel to the flux tube axis are uninteresting
and will be considered to be ‘‘solved’’ by the zeroth-order back-
ground state described in x 3.

2. We assume transverse total pressure balance between the
flux tube and the surrounding field-free region, and that the field-
free region is in simple hydrostatic equilibrium. Thus,

9 pþ B2

8�

� �
¼ 9pe ¼ �eggggg: ð23Þ

3. The motion of the tube induces motions in the surrounding
field-free region, which in turn must have a back-reaction on the
tube’s original motion. Spruit (1981) took this into account by
increasing the apparent inertia of the tube. Thus, for the perpen-
dicular component of equation (20), the factor of � in the ad-
vection term on the left-hand side must be replaced by (�þ �e).
This is equivalent to the assumption that the tube ‘‘carries along’’ a
parcel of the surrounding fluidwith equal kinetic energy density to
that of the tube itself. Osin et al. (1999) reviewed different ap-
proaches to the inclusion of this back-reaction effect and found
that Spruit’s (1981) approach adequately describes the physics for
transverse oscillations of a nearly vertical flux tube.

With the above considerations, Spruit (1981) showed that the
perpendicular component of equation (20) can be expressed as a
linearized wave equation

@ 2v?
@t2

¼ g��

� tot

@v?
@r

þ V 2
ph

@ 2v?
@r 2

; ð24Þ

where the magnitude of the gravitational acceleration g ¼
GM�=r

2 is nearly constant over the heights we consider. In
Spruit’s (1981) ideal limit that the flux tubes are completely

isolated from one another, the density quantities introduced
above are defined as

� tot ¼ �þ �e; ð25Þ

�� ¼ �� �e; ð26Þ

and Vph � B0(4�� tot)
�1=2 is a modified kink-mode phase speed

that takes the surrounding inertia into account. Note that in the
Lagrangian picture, v? is the time derivative of the horizontal
displacement �. The first term on the right-hand-side of equa-
tion (24) is due to the buoyancy of the low-density flux tube.
The second term on the right-hand side is the magnetic ten-
sion restoring force due to the curvature of the flux tube. The
Lagrangian induction equation is given simply by

@B?

@t
¼ B0

@v?
@r

: ð27Þ

Analytic solutions to the above equations are possible when
the radial derivative terms have constant coefficients; this oc-
curs in an exponential isothermal atmosphere (see Appendix A
for details). Traditionally, the solutions to these equations dis-
play evanescence for frequencies below a critical cutoff value
!c. For the adopted background state at the photosphere (z ¼
0), �e=� ¼ 2:35, and Vph ¼ 6:672 km s�1, and Appendix A
gives an analytic estimate for the corresponding critical period
(2�=!c) of about 12.5 minutes. This period is significantly
longer than the acoustic cutoff frequency of 3–6 minutes in the
photosphere and chromosphere. Thus, the kink mode has been
suspected for several decades as being able to transport more
convective wave energy up to the corona than acoustic waves.

Before discussing our numerical solutions to equations (24)–
(27) between z ¼ 0 and zm, one simplification assumed above
must be reexamined. Just below the merging height, the flux
tubes cannot be considered truly isolated from one another. The
enhanced inertia assumed by Spruit (1981) assumed that the
surrounding fluid carried along by a given tube is all field-free,
but near the merging height this is not the case. Spruit (1982)
gave the equations for selected kink-mode wave properties
for the general case where the surrounding medium has a non-
zero field strength, but here we deal with the encroachment of
neighboring flux tubes in a simpler manner. In the above equa-
tions we express � tot and �� by

� tot ¼ �þ (1� �)�e; ð28Þ

�� ¼ (�� �e)(1� �); ð29Þ

where � is essentially a statistical filling factor of neighbor
tubes within the near-tube region that gets carried along with a
tube’s oscillatory motion. The isolated tube limit is � ¼ 0, but at
the merging height (and above), � ¼ 1. The specific form of
the modifications above were constrained by the need for both
Vph ¼ VA and for the buoyancy term in equation (24) to vanish
in the ‘‘merged’’ limit of � ¼ 1. The reduction of �� also re-
duces the critical frequency for evanescence (see eq. [A2]), and
at the merging height !c ! 0.We derive�(z) by usingmagnetic
flux conservation together with the assumption that the overall
area subtended by the full network patch is constant between
the photosphere and the merging height. Thus,

�(z) ¼
B0(zm)=B0(z); z < zm;

1; z � zm;

�
ð30Þ
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where B0(zm) ¼ 120:4 G. Because B0 increases rapidly with
decreasing height below zm, � rapidly drops from 1 (at zm ¼
600 km) to 0.5 at z ¼ 450 km, then more slowly down to 0.08 at
z ¼ 0. In Figure 3 we plot the resulting values of � tot (as a
hydrogen number density) and Vph below the merging height.

The wave equation (eq. [24]) is simplified by assuming an
e i!t time dependence with a real frequency !. We solve nu-
merically for the radial dependence of v? by expressing the
second-order wave equation as two coupled first-order ordinary
differential equations in v? and @v?=@r (with both quantities as-
sumed to be complex), and using fourth-order Runge-Kutta
integration (e.g., Press et al. 1992). The upper boundary condi-
tions at zm are specified by the solutions of the wave equa-
tions above zm (see next section), and the numerical integration
proceeds from zm down to the photosphere. The coupling of
solutions below and above the merging height is discussed in
x 5.3.

5.2. Wavve Reflection in the Solar Wind

Above the merging height, the transverse incompressible fluc-
tuations act as MHD Alfvén waves, and our solution proce-
dure largely follows that of Heinemann & Olbert (1980) and
Barkhudarov (1991). Formally, the mechanisms of WKB theory
can be extended to describe linear wave reflection (e.g., Hollweg
1990), but we follow the usual non-WKB formalism in order to
solve for the radial dependence of the transmitted and reflected
wave properties from themerging height all the way to a distance
of 4 AU.

The monochromatic non-WKB wave transport equations are
derived from the mass, momentum, and induction equations
listed above (eqs. [17]–[19]) in the limits that all background
quantities vary only in radius and that the velocity and magnetic
field perturbations are perpendicular to the zeroth-order field
direction. Khabibrakhmanov & Summers (1997) showed how
to treat general vector operations in a superradially expanding
flux tube. We express the wave properties in terms of Elsasser
(1950) variables, defined here as

z	 � v? 	 B?ffiffiffiffiffiffiffiffi
4��

p ð31Þ

(see also Tu &Marsch 1995), with z� representing outward prop-
agating waves and zþ representing inward propagating waves.
In terms of these variables, the incompressible first-order equa-
tions are expressed as two coupled transport equations:

@z	
@t

þ (u
 VA)
@z	
@r

¼ (u 	 VA)
z	

4HD

þ z


2HA

� �
; ð32Þ

where the (signed) scale heights areHD � �=(@�=@r) andHA �
VA=(@VA=@r). These equations are valid for superradial diver-
gence and for all values of the zeroth-order outflow speed u.
Note that linear reflection arises because of the z
 term on the
right-hand side.

In Appendix B we discuss additional details about these equa-
tions and how they are equivalent to other versions given in
earlier work. To our knowledge, the ‘‘compact’’ form of equa-
tion (32) has not been recognized fully, although the expres-
sions of Heinemann & Olbert (1980) and Khabibrakhmanov &
Summers (1997) were closely related. The above form of equa-
tion (32) is particularly useful in showing the large-scale density
dependence of the wave amplitude in two limiting cases when
the outward propagating waves are dominant (i.e., jz�j3 jzþj).

Near the Sun, where uTVA, we can approximate the lower-
sign version of the above equation as

@z�
@r

� � z�

4�

@�

@r
; ð33Þ

and thus z� is proportional to ��1=4 as predicted byWKB theory
(see also Moran 2001). Similarly, far from the Sun, where u3
VA, z� is seen to be proportional to �þ1=4. More general prop-
erties of the non-WKB solutions of equation (32) are discussed
in x 6, and also by MacGregor & Charbonneau (1994) and
Krogulec et al. (1994).
As with the solutions below the merging height, we assume

an oscillatory time dependence of the Elsasser variables (i.e.,
e i!t with a real, constant frequency), and we solve for their ra-
dial dependence numerically. We restrict our solutions to pos-
itive frequencies and note that taking the negative of a given
frequency produces solutions to equation (32) that are the com-
plex conjugates of the analogous solutions obtained with ! > 0.
Thus, the radial evolution of physical quantities (i.e., real wave
amplitudes) is unaffected by the sign of !. The existence of
the Alfvén critical point complicates the numerical solution of
equation (32), but we follow the general solution procedure out-
lined by Barkhudarov (1991). Once the oscillatory time de-
pendence has been assumed, the complex amplitudes zþ and z�
are expressed as the products of real amplitudes and phase
factors of unit magnitude. There are then four ordinary differ-
ential equations for these quantities that are solved first at the
Alfvén critical point rA (analytically, using certain physicality
constraints such as the requirement that the outward wave en-
ergy always exceed the inward wave energy), then we integrate
numerically using the fourth-order Runge-Kutta method both
upward and downward from rA. Some of Barkhudarov’s (1991)
expressions had to be modified to take account of the super-
radial divergence of the magnetic field. The linear amplitudes
jz	j are specified only to within an arbitrary normalization fac-
tor, although both the phase factors and all relative quantities
(such as ratios of Elsasser amplitudes at different radii) do not
depend on this normalization.

5.3. Solution of the Coupled Wavve Equations

Our baseline model consists of a grid of 300 frequencies,
evenly spaced in log ! over 5 orders of magnitude with periods
ranging from 3 to 300,000 s. The discrete radial grid extends
from just above the photosphere (z ¼ 10 km) to 4 AU (z ¼
859 R�) and contains 11809 grid points distributed mainly
logarithmically, but with some regions (like the transition re-
gion) sampled more finely. In the photosphere, chromosphere,
and low corona (below x0), the relative grid separation�z=z is
0.00064. Within the most rapidly changing 20 km of the tran-
sition region, �z=z is decreased to 0.0001. In the extended
corona and solar wind, �z=z is made to gradually increase to
0.016 at the outer boundary. The Runge-Kutta algorithm also
has an adaptive step size that subdivides the above grid zones
until a relative accuracy of 10�9 is achieved in the integration
variables. This degree of accuracy is needed to follow the os-
cillatory behavior of the waves.
The non-WKB wave equations are solved first for each fre-

quency in the upper corona/wind region as described in x 5.2,
and the resulting Elsasser variables at the lower boundary (i.e.,
the merging height) are used to compute the complex values
of v? and B? at that height. These quantities, still with an arbi-
trary degree of normalization, are used as the upper boundary
conditions for the numerical solution of the flux-tube wave
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equations given in x 5.1. The induction equation (eq. [27]) is used
only to convert the boundary condition forB? into a condition for
@v?=@r. We make the assumption that all of the Alfvénic wave
energy in the upper region is converted smoothly into kink-mode
wave energy in the lower region. After the transport equations are
solved in both regions, the photospheric MBP power spectrum
(derived in x 4) is used to renormalize the wave power quantities
at all heights. To show how this is done we must first define the
kinetic and magnetic energy densities for each monochromatic
model:

EK � � v�?v?
2

; EB � B�
?B?
8�

; ð34Þ

and also the supplementary quantities

E	 � � z�	z	

4
; E ; � �Re(v�?B?)ffiffiffiffiffiffiffiffi

4��
p ¼ Eþ� E�; ð35Þ

where below the merging height we use � tot for the above
densities. The energy densities defined above do not depend on
time t since they contain products of ei!t and its complex con-
jugate. These definitions also ensure that the total fluctuation
energy for each frequency satisfies Etot ¼ EK þ EB ¼ Eþ þ E�.
In the simple WKB theory (i.e., all outward propagating waves),
Eþ ¼ 0,EK ¼ EB, andEtot ¼ E� ¼ �E;, and the departure from
WKB theory can be assessed roughly by departures from these
ideal energy identities.

In x 4 we derived the total power Ptot(!; R�) at the photo-
sphere. The numerical integrations described above gave us the
various E quantities on a two-dimensional grid in ! and radius
(with the energies for each frequency known up to an arbitrary
multiplicative constant).We thus compute ‘‘renormalized’’ power
spectra on the discrete grid as

PK (!; r)

PB(!; r)

P	 (!; r)

Ptot(!; r)

8>>><
>>>:

9>>>=
>>>;

¼ Ptot(!; R�)

Etot(!; R�)

EK(!; r)

EB(!; r)

E	 (!; r)

Etot(!; r)

8>>><
>>>:

9>>>=
>>>;
: ð36Þ

Once the power spectra have been defined we can then specify
various frequency-averaged energy densities. In general, we
define

Utot �
Z 1

0

d!Ptot(!); ð37Þ

with analogous definitions for UK, UB, and U	 (see also eq. [8]).
For ease of interpretation we also define the frequency-averaged
velocity, magnetic, and Elsasser amplitudes as the quantities in
angle brackets below:

UK ¼ �h�V i2

2
; UB ¼ h�Bi2

8�
; ð38Þ

U	 ¼ �hZ	i2

4
: ð39Þ

6. RESULTS AND OBSERVATIONAL IMPLICATIONS

6.1. Linear Wavve Properties

The procedures outlined above resulted in a large amount of
numerical data (�350 megabytes) describing the behavior of

non-WKB kink-mode and Alfvén waves as a function of fre-
quency and radius. In this section we attempt to distill and pre-
sent the salient results in three gradual steps: (1) in Figures 5–7
we present frequency-dependent wave properties that have not
yet been renormalized to the photospheric power spectrum (and
thus are plotted as dimensionless ratios), (2) in Figure 8 we show
the total power spectrum as a function of frequency for selected
radii, and (3) in Figures 9–18 we present various frequency-
integrated quantities that depend on the photospheric power
normalization.

In order to determine to what degree the waves in various re-
gions depart from idealWKB theory, we show in Figure 5 the out-
ward propagating wave action flux f 2 (defined in Appendix B)
for a selection of periods, each normalized to the value of f 2

in the photosphere. For fluctuations having wavelengths so
small that the local plasma parameters are approximately con-
stant over several wavelengths, wave action is conserved and
the quantity f is constant. Note from Figure 5 that in the extended
corona and solar wind (e.g., zk1 R�) Alfvén waves with peri-
ods shorter than a few hours obey wave action conservation,
but for periods exceeding�10 hours this breaks down. Note that
for all computed periods the wave action is not conserved be-
low the transition region (z � 0:003 R�); this region acts as a
sufficiently sharp ‘‘barrier’’ to induce significant reflection in the
chromosphere (see also Wentzel 1978; Hollweg 1981; Campos
& Gil 1999).

In much of the previous work on non-WKB Alfvén wave
reflection, the departures from WKB theory have been char-
acterized as a function of frequency. For frequencies exceeding
a critical value !A, the resulting wavelengths are so short that
the wave propagates as if it were in a homogeneous medium
and there is negligible reflection. For frequencies lower than !A

there is significant reflection, and as !! 0 the oscillation ap-
proaches the properties of a standing wave with equal inward

Fig. 5.—Height dependence of the outward propagating wave action flux
for a selection of periods, each normalized to its value in the photosphere. (See
labels for values of the wave period.) The merging height zm and the transition
region (T.R.) are labeled with arrows.
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and outward power. In a magnetized hydrostatic atmosphere,
the critical frequency is given by the local value of j@VA=@rj,
or more precisely for arbitrary expansion factors, j:=VAj (e.g.,
Ferraro & Plumpton 1958; An et al. 1990). In a supersonic
wind, though, the radial dependence of the Alfvén speed is no
longer the dominant factor in determining how much reflection
takes place. At large distances from the Sun, Heinemann &
Olbert (1980) and Barkhudarov (1991) showed that !A is given
approximately by u1=2rA, where u1 is the asymptotic outflow
speed and rA is the Alfvén radius. (We use this expression as a
fiducial definition of !A, but we also note that it neglects sev-
eral order-unity correction factors that depend on the flow tube
geometry.) For the zeroth-order solar wind model defined in
x 3.2 we find an associated critical period 2�=!A of about
30 hours, or 1.25 days.

Figure 6 shows contours of the Alfvén ratio—i.e., the ratio
of kinetic to magnetic energy density EK=EB as a function of
period and height. For ideal MHD Alfvén waves in a homo-
geneous medium this ratio is 1 and the waves are in energy
equipartition (Walén 1944). Figure 6 can be broken up into four
‘‘quadrants’’ that have the following limiting properties:

1. Upper left.—For long periods below the transition region,
most of the wave energy is kinetic with only a negligible mag-
netic energy density. This is consistent with the predictions of
kink-mode wave theory for the so-called ‘‘shallow’’ evanescent
solution. In Appendix Awe discuss several reasons why the so-
lar atmosphere is suspected to naturally prefer this solution.

2. Lower left.—For short periods below the transition region,
the Alfvén ratio rapidly fluctuates above and below 1. This oc-
curs because the wavelengths are small compared to the pho-
tospheric and chromospheric scale heights, but they are large
compared to the scale heights in the transition region. Thus,
significant reflection occurred and there is a superposition of
upward and downward waves. The fluctuations are well de-
scribed by standing waves having fixed nodes in v? and B?
(Hollweg 1981, 1984). If one could separate the solutions into
the component upward and downward waves, their individual
Alfvén ratios would be�1 as predicted by the kink-mode theory
in Appendix A. (This can also be seen roughly by averaging over
several nodes.)

3. Upper right.—For long periods above the transition re-
gion, most of the wave energy is magnetic as was found by other
non-WKB solar wind models (e.g., Heinemann & Olbert 1980).

These long periods correspond to ‘‘quasi-static’’ motions of
the field lines and have a similarity to the motions invoked in
DC theories of coronal heating (e.g., Kuperus et al. 1981;
van Ballegooijen 1986; Milano et al. 1997).
4. Lower right.—For short periods above the transition re-

gion, the plasma appears homogeneous to the relatively small-
wavelength fluctuations and the ideal MHD equipartition holds.

Figure 7 shows contours of the ratio Eþ=E�, which can be
thought of as an effective local reflection coefficient. The ideal
WKB theory corresponds to a ratio of zero (i.e., all outward
propagation). There is significant reflection below the transition
region, with a maximum value of this ratio of 0.99825 at the
photosphere for a period of�40 minutes. As discussed in x 5.2,
we chose regularity conditions at the Alfvén critical point that
ensured more outward than inward power at all heights, and
thus Eþ=E� must always be less than 1. Below the transition
region, the behavior of Eþ=E� versus frequency resembles an-
alytic solutions that take account of the chromospheric strati-
fication and the strong reflection at the transition region (e.g.,
Hollweg 1978a; Schwartz et al. 1984). Because of the finite size
of the atmosphere below the transition region, a mild resonance
structure is seen in the amount of reflected wave flux (not ap-
parent in Fig. 7). The resonances are not as sharp as in the iso-
thermal models of Schwartz et al. (1984), though, because the
nonzero temperature gradient results in a ‘‘smearing’’ of the
preferred resonance frequencies.
Above the transition region, the solutions plotted in Figure 7

are very similar to those of Heinemann & Olbert (1980) and
Barkhudarov (1991); there is significant reflection when !P!A

and much less reflection for higher frequencies (lower periods).
For frequencies above !A—which we see below encompasses
most of the dominant part of the power spectrum—we can use the
analytic regularity conditions presented in x 4 of Barkhudarov
(1991) to estimate the ratio Eþ=E� at the Alfvén critical point:

Eþ(!; rA)

E�(!; rA)
� 1

!2

@VA

@r

����
����
2

r¼ rA

for !3!A: ð40Þ

By comparing to the numerical results in Figure 7 we verify that
this relation is accurate for periods less than �200 minutes. It
may be possible to also estimate the radial dependence of this
ratio using similar analytic formulae. We defer this to future

Fig. 6.—Contour/gray-scale plot of the ratio EK=EB as a function of height and wave period. The MHD-like regime of energy equipartition (i.e., a ratio of nearly
1) is shown in light gray, bounded by solid contours at values of 0.8 and 1.2. The kinetic-dominated regime is in white with dotted contours at values of 102 and 104.
The magnetic-dominated regime is in dark gray with dashed contours at a value of 0.1.

CRANMER & VAN BALLEGOOIJEN276 Vol. 156



work, but note that this would be useful to models of coronal
heating via turbulent cascade (see x 6.2.2).

Figure 8 shows the result of convolving the above results
with the photospheric power spectrum derived in x 4. In this
figure we plot the total power Ptot(!) for selected heights, and
with a specific choice for the parameter �j of 3 km s�1 (see
below). The amount of power loss between the photosphere and
the merging height is consistent with the analytic predictions of
isothermal kink-mode theory. For high frequencies (i.e., peri-
ods less than 3–5 minutes), Ptot decreases from z ¼ 0 to zm by
a factor of 15–20; this is approximately the level of the de-
crease of the background magnetic field between those heights,
implying that the propagating kink-mode relation �v2? / B0

applies. For low frequencies (presumably evanescent), Ptot

decreases by a factor of 190, which is very nearly equal to the

drop in density from z ¼ 0 to zm. This is consistent with the
prediction of nearly constant v? for the shallow evanescent so-
lution discussed in Appendix A (and thus �v2? / �). The some-
what irregular structure that develops in the spectrum between
the photosphere and the merging height (and is passively ad-
vected outward above zm) is not numerical noise. Because of the
nonisothermal temperature structure of the low chromosphere
and the use of a radially varying filling factor �, the properties
of the waves below the merging height depend on frequency
in a more complicated way than in the ideal case described in
Appendix A. If the upward and downward propagating waves
had identical strengths and dispersive properties, the standing-
wave nodes in EK and EB would cancel out exactly in Etot.
However, Etot exhibits a weak nodal structure because of in-
complete cancellation and thus contributes to the irregularity in
the power spectrum (see also Schwartz et al. 1984).

As in Figure 4, we plot in Figure 8 the product !Ptot ver-
sus wave period to more clearly show the periods that make
the greatest contribution to the overall wave energy. We quan-
tify this concept by defining the averaged, or first-moment fre-
quency as

h!i � 1

Utot

Z 1

0

d!!Ptot(!): ð41Þ

We plot this quantity versus height in Figure 14 below, but here
we just note that the effective period 2�=h!i is about 3.5 min-
utes in the photosphere, then it decreases to about 1.8 minutes
above the merging height. Periods of a few minutes are natural
to expect in the photosphere and chromosphere, and possibly
in the corona as well (e.g., Chashei et al. 1999). However, it is
reasonable to ask if these periods are expected to dominate in
interplanetary space. In situ spacecraft generally measure fluc-
tuations in velocity, density, and the magnetic field with the
most power at periods of a few hours (e.g., Goldstein et al.
1995). However, a spacecraft sitting still in the ecliptic plane
at 1 AU would see our model network flux tube rotate past in
about 4 to 5 hours, with its component flux tubes (each origi-
nating in a different MBP) rotating by in substantially less than
1 hour. Thus, it is possible that if the in situ power spectra
actually do sample a ‘‘fossil’’ spectrum from the Sun, the domi-
nant periods of order 1 hour could be due to the passage of many
uncorrelated flux bundles past the spacecraft, and not the waves
within any one flux bundle. (The ideal test would be to see if a

Fig. 7.—Contour/gray-scale plot of the ratio Eþ=E� as a function of height and wave period. The region of ‘‘strong’’ reflection is in gray, bounded by solid
contours at values of 0.5 and 0.75. The location of the maximum value (0.99825) is denoted by a star. Other contours range between values of 10�8 and 10�1 and are
labeled by their values. The transition region is clearly seen at z � 0:003 R�.

Fig. 8.—Period and height dependence of the scaled total power spectrum
!Ptot(!; r) for six heights (top to bottom): z ¼ 0, 0.6 Mm (merging height),
2.15 Mm (transition region), 1, 9, and 214 R�. The latter three heights are
labeled with their heliocentric radii. The MBP jump amplitude was assumed to
be �j ¼ 3 km s�1.
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spacecraft corotating with the solar rotation period measures
a significantly different fluctuation spectrum than has already
been observed.)

Figure 9, a key condensation of results for this paper, plots
the frequency-integrated velocity amplitude h�V i as a function
of height for a selection of �j parameters and compares it to
several different measurements of wave amplitudes. We discuss
each set of measurements briefly, by number, below:

1. The dotted line shows a best-fit height dependence for
the microturbulence needed to match photospheric and chro-
mospheric line widths in the semiempirical VAL/FAL models
(E. Avrett 2003, private communication; see also Fontenla et al.
1993, 2002).

2. The filled circles show similar ‘‘nonthermal’’ line-
broadening velocities measured (on the solar disk) in the tran-
sition region and low corona by the SUMER (Solar Ultraviolet
Measurements of Emitted Radiation; Wilhelm et al. 1995) in-
strument on SOHO (the Solar and Heliospheric Observatory).
The height of each point has been estimated by matching the
height-dependence of temperature in the VAL/FAL model with
the assumed formation temperatures of the ions that correspond
to each point (Chae et al. 1998).

3. The crosses show nonthermal velocities inferred by
SUMER measurements made above the solar limb (Banerjee
et al. 1998). Off-limb Doppler broadening observations are bet-
ter suited for measuring the properties of transverse Alfvén
waves than observations on the solar disk.

4. The gray region shows lower and upper limits on the non-
thermal velocity (Esser et al. 1999) as computed from off-limb
measurements made by the UVCS (Ultraviolet Coronagraph
Spectrometer) instrument on SOHO (Kohl et al. 1995, 1997).

5. The stars show early measurements (Armstrong & Woo
1981) of the random wavelike component of the solar wind
velocity from interplanetary scintillation observations of radio
signals passing through the corona, with the advecting diffrac-
tion pattern being measured by more than one receiver.

6. The error bars show amore recent determination of velocity
fluctuations—specifically transverse to the radial direction—from
radio scintillations (Canals et al. 2002) in the fast solar wind.

7. The Helios and Ulysses probes measured time-averaged
Elsasser amplitudes that we converted to a representative
velocity amplitude using equations (38)–(39) and assuming

UK ¼ UB in the heliosphere. The data from both spacecraft were
summarized by Bavassano et al. (2000).

Measured line-of-sight (one-dimensional) velocities have been
multiplied by

ffiffiffi
2

p
to take account of equivalent fluctuations in

both transverse dimensions (e.g., eq. [9]).
Because measurements (1) and (2) above refer to motions

mainly in the radial direction, we do not expect them to cor-
respond to transverse kink-mode or Alfvén waves; they are
plotted mainly for heuristic comparison. Note, though, that in
Figure 9 we also plot (for the �j ¼ 3 km s�1 case) a dashed
curve that shows the frequency-averaged amplitude of the mag-
netic fluctuations in velocity units:

h�V iB � h�Biffiffiffiffiffiffiffiffi
4��

p ; ð42Þ

which for ideal MHD equipartition would be exactly equal to
h�V i. It is possibly a coincidence that this quantity so closely
matches the Chae et al. (1998) observations, but this agree-
ment may contain information about the mode coupling be-
tween transverse and longitudinal waves in the transition region.
The three choices for the MBP-jump velocity amplitude �j

used in Figure 9 are 0, 3, and 6 km s�1. The middle value seems
to best match the off-limb nonthermal line broadening mea-
surements, and we will use this as a baseline value in most
subsequent calculations and plots. Note that the in situ mea-
surements fall well below all of the reasonable choices for �j
(even the lower limit assuming no jumps whatsoever) and they
exhibit a steeper gradient than the undamped models. The he-
liospheric ‘‘deficit’’ of wave power, compared to most prior
assumptions about the wave power in the solar atmosphere, is
well known (see, e.g., Roberts 1989; Lou 1993; Mancuso &
Spangler 1999). In x 6.2.2 we propose a potential solution of
these discrepancies based on a particular theory of turbulent
wave damping in the solar wind.
Figure 10 shows additional details about the height depen-

dence of the frequency-integrated wave properties. The ratio
UK=UB shows the region of strong departure from energy
equipartition around the transition region, and that kinetic energy
exceeds magnetic energy by a slight amount even down to the
photosphere. The dimensionless magnetic amplitude h�Bi=B0 is
less then 1 over most of the computed range of heights (thus

Fig. 9.—Height dependence of the frequency-integrated velocity amplitude. Solid lines give the undamped value of h�V i for three choices of �j: 0, 3, and 6 km s�1

( from bottom to top). The dashed line is h�V iB for the �j ¼ 3 km s�1 case. Other lines and symbols correspond to observations discussed in detail in x 6.1.
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justifying the linear approximation) but exceeds 1 above r �
19 R�. Nonlinear calculations (e.g., Lau & Siregar 1996) find
that h�Bi=B0 does not grow so high in the heliosphere and may
saturate at values close to 1.

Figure 11 shows the height dependence of the two Elsasser
amplitudes. Above the transition region, the frequency-integrated

outward propagating amplitude hZ�i is much larger than the in-
ward amplitude hZþi. Below the transition region, the ampli-
tudes approach a constant ratio hZ�i=hZþi � 1:027. We also
plot the height dependence of Z� that would be expected for
ideal WKB wave action conservation (i.e., f ¼ constant), and
we scale it to the computed value of hZ�i at 4 AU. The WKB
value departs slightly from the non-WKB value between the
transition region and a height of �0.01 R� and is substantially
smaller below the transition region where there is strong inward
wave power. The undamped linear curves all disagree markedly
with the in situ measurements of the Elsasser amplitudes (see,
however, x 6.2.2).

Finally, in Figure 12 we plot the frequency-integrated energy
flux density F for the baseline �j ¼ 3 km s�1 case. Below the
merging height this quantity applies to the energy flux carried
upward by the MBP kink modes, and above the merging height
it applies to the volume-filling Alfvén waves. The wave flux is
defined generally as

F � u(UK þ 2UB)þ VA(U� � Uþ); ð43Þ

which is based on the monochromatic definition given by
Heinemann&Olbert (1980). For outward propagatingwaves obey-
ing wave action conservation, one can write F ¼ Utot(1:5uþ VA).
In the lowest layers of the atmosphere one can also ignore the
factors above that depend on u, and thus the net flux depends
mainly on the difference between U� and Uþ. Because of the
strong reflection below the transition region there is strong can-
cellation; i.e., the magnitude of the purely outward wave flux
VAU� exceeds the net flux by a factor of about 20. This means
that �95% of the kink-mode wave energy below the transition
region is ‘‘trapped,’’ with only 5% escaping.

Analysis of a series of models having a range of �j-values
yields a potentially useful explicit expression for the photo-
spheric wave flux in the MBPs. Recalling that the random-walk

Fig. 11.—Height dependence of the frequency-integrated Elsasser variables
for the �j ¼ 3 km s�1 model: linear undamped hZ�i (solid line), nonlinearly
damped hZ�i (dashed line), WKB height dependence of Z� (dot-dashed line),
and the linear value of hZþi (dotted line). In situ measurements from Helios
and Ulysses are shown as solid bars (Bavassano et al. 2000), with the upper set
corresponding to Z� and the lower set to Zþ.

Fig. 12.—Energy flux density of frequency-integrated waves for the �j ¼
3 km s�1 model: flux within the MBP tubes (solid line), averaged over granular
spatial scales (dashed line), and averaged over the supergranule funnel /canopy
structure (dotted line). The slope discontinuities at zm (i.e., r=R� � 1 ¼ 8:6 ;
10�4) are due to the discontinuity in dB0=dr at the merging height.

Fig. 10.—Frequency-integrated ratios for the baseline �j ¼ 3 km s�1 model:
kinetic-to-magnetic energy density ratio (dotted line), dimensionless magnetic
amplitude for the undamped linear model (solid line) and for the nonlinearly
damped � ¼ 0:35 model (dashed line). The merging height, transition region,
and 1 AU are labeled with thin vertical lines.

ALFVÉN WAVES: PHOTOSPHERE TO HELIOSPHERE 279No. 2, 2005



and impulsive parts of the power spectrum are assumed to be
linearly independent (e.g., eq. [16]), we have fitted the numeri-
cally computed photospheric fluxes with the following function:

F�
107 ergs cm�2 s�1

� 9:75þ 2:48
�j

1 km s�1

� �2

; ð44Þ

with less than 0.1% uncertainty in the fit (mainly due to round-
off error in the above expression having only three significant
figures). Thus, for the reasonable range of �j between 0 and
6 km s�1, F� ranges between about 108 and 109 ergs cm�2 s�1

(see also Musielak & Ulmschneider 2001). Note that for any
given value of �j the jump-term in the above expression has
a greater relative contribution to the total flux than the corre-
sponding jump-term in equation (16) has to the photospheric
velocity variance. This occurs because the bulk of the power
in the jump motions is at higher frequencies than the walk
motions and is less susceptible to evanescent decay. The flux
is a frequency-integrated quantity that incorporates this aspect
of the solutions, whereas the velocity variance does not.

We also plot in Figure 12 several other flux quantities. The
‘‘granule-averaged’’ wave flux is given by the quantity �F (for
the flux tube filling factor �, see eq. [30]), and it differs from F
itself only below the merging height. The quantity �F spreads
the wave energy out evenly within the modeled network patch,
and thus is a more relevant quantity to compare with obser-
vations and predictions of wave fluxes that arise in the network
from the convection. Note that the photospheric value of �F ¼
2:7 ; 107 ergs cm�2 s�1 is of similar magnitude as the acoustic
wave flux of 5 ; 107 ergs cm�2 s�1 predicted by Musielak et al.
(1994). We also plot a ‘‘supergranule-averaged’’ flux �cF,
where �c is a filling factor for the large-scale funnel/canopy
magnetic structure shown in Figure 2. (We define �c only below
the top height [12 Mm] of the magnetostatic grid, as the ratio of
the field strength at that top height [11.8 G] to the field strength
along the central axis of the flux tube at lower heights.) The
quantity �c F is what one would use in order to compute the total
wave power (in ergs s�1) integrated over the entire coronal hole.

6.2. Wavve Dissipation

In this section we discuss two separate mechanisms that have
been proposed to damp Alfvén waves in the solar atmosphere
and solar wind: viscosity (x 6.2.1) and MHD turbulent cascade
(x 6.2.2). For clarity we do not treat these mechanisms together,
though in a completely self-consistent model all damping mech-
anisms should be included and allowed to interact with one
another.

6.2.1. Linear Viscous Dissipation

The first damping mechanisms proposed for MHD waves
in the solar corona were collisional in nature (Alfvén 1947;
Osterbrock 1961). In the high-density plasma near the Sun,
MHD waves can be damped by viscosity, thermal conductivity,
electrical resistivity (i.e., Joule/Ohmic heating), and ion-neutral
friction. For Alfvén and fast-mode waves propagating parallel
to the magnetic field, though, the dominant collisional dissipa-
tion channel in the corona is believed to be proton viscosity.
Here we estimate the viscous damping expected for the back-
ground plasma conditions described above and find it to be
negligible.

We compute a collisional damping length Lc as a function of
height z, and there should be appreciable damping only where

LcP z. Generally, the product of the damping length and a linear
damping rate � (i.e., the imaginary part of the frequency) is the
wave group velocity Vgr in the inertial frame, given here for
dispersionless Alfvén waves as uþ VA. For viscous damping,
� ¼ 	pk

2, where 	p is the proton kinematic viscosity and k is the
radial wavenumber (van de Hulst 1951; Osterbrock 1961). Thus,
for Alfvén waves propagating upward and parallel to the back-
ground magnetic field, this leads to the general expression

Lc �
(uþ VA)

3

	p!2
ð45Þ

(Tu 1984; Whang 1980, 1997). In a strongly collisional plasma
the kinematic viscosity is given by the classical Braginskii (1965)
formalism (see also Hollweg 1986a). In the collisionless solar
wind, though, there is no clear prescription for the effective vis-
cosity. We thus define the proton kinematic viscosity phenome-
nologically as

	p ¼ w2
p�eA ¼ kBTp�eA

mp

; ð46Þ

where wp is the proton most-probable speed, kB is Boltzmann’s
constant, Tp is the proton temperature, mp is the proton mass,
and �eA is an effective viscous timescale. We adopt a fiducial
proton temperature law for this analysis that comes from the
semiempirical VAL/FAL model (used for the magnetostatic
flux tube model) below x ¼ 1:0172, and we use

Tp ¼
5 ; 105 K

0:2þ 0:02x0:8 þ 0:21x�33
ð47Þ

above 1.0172 R�. This expression reasonably reproduces the
proton temperatures measured by Helios and Ulysses in the
highest-speed solar wind (Tu et al. 1989; Goldstein et al. 1996),
and it has a peak in the extended corona of�2.2 MK in general
agreement with UVCS/SOHO H i Ly
 measurements (e.g.,
Kohl et al. 1998; Esser et al. 1999).
For strong collisional coupling, the effective viscous timescale

�eA is given by the mean time between collisions (Braginskii
1965),

�coll ¼
3

4

ffiffiffiffiffiffi
mp

�

r
(kBTp)

3=2

nHe4 ln�c

; ð48Þ

where e is the proton/electron charge and ln�c is the Coulomb
logarithm, taken here to be 21. The above timescale applies to
the viscous damping of motions along the magnetic field. For
shear motions transverse to the field, though, the appropriate
viscous time (even in the limit of strong collisions) is reduced.
The off-diagonal Braginskii coefficients in the stress tensor are
obtained approximately by dividing �coll by dimensionless fac-
tors that take account of the magnetic field. Thus,

�eA � �coll
(�p�coll)

m ; ð49Þ

where m is either 1 or 2, and �p is the proton Larmor frequency
eB0=mpc. The m ¼ 0; 1; 2 terms are roughly analogous to the
direct, Hall, and Pedersen components of the MHD conduc-
tivity in an ionized plasma.
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In the low-density collisionless limit, the classical m ¼ 0
case cannot apply because it would imply the viscosity becomes
infinitely large as the mean time between collisions becomes
infinite (the ‘‘molasses’’ limit). Williams (1995) argued essen-
tially that the general viscosity in a collisional or collisionless
plasma is found by taking the shorter of either the m ¼ 0 or the
m ¼ 1 timescales. We assert, though, that them ¼ 2 case seems
to be the most appropriate for the viscous damping of transverse
Alfvén waves in the collisionless solar wind. Consider the
viscosity as an effective diffusion coefficient (‘2=t) describing
scattering events with mean-free-path length and timescales of
‘ and t, respectively. The actual energy losses arise from the
interparticle collisions with timescale t � �coll, but spatially the
transverse structure would be dominated by features with sizes
of order the proton thermal Larmor radius, and thus ‘ � wp=�p.
For these values the viscosity reproduces the m ¼ 2 case.

Figure 13 shows the radial dependence of the linear damping
length Lc for the three cases, m ¼ 0, 1, and 2, computed for a
wave period of 1 minute. For heights below about 0.3 R� above
the photosphere, it is unlikely that any damping would take
place because all three cases have damping lengths much longer
than the local height. This mid-corona distance (r � 1:3 to 2 R�)
is approximately where collisions start to become unimportant
in coupling together electron, proton, and heavy ion plasma
properties (e.g., Cranmer et al. 1999). Above this height, then,
the appropriate damping length should transition to either the
m ¼ 1 or the m ¼ 2 case, both of which are substantially longer
than the local height in the corona. In the far solar wind, we
believe the m ¼ 2 case is the most realistic, and it always re-
mains several orders of magnitude larger than the local height.
Thus, our preliminary conclusion is that for both waves near the
peak of the power spectrum (periods of a one to a few minutes),
and for longer periods, linear viscous damping is unimportant
as a significant attenuation mechanism for Alfvén waves in
the corona and fast solar wind. For periods much shorter than
1 minute, though, this kind of damping could be important—

and may have already been responsible for the sharp drop in
power inferred from photospheric MBP motions between 0.1
and 1 minute.

6.2.2. Nonlinear Turbulent Dissipation

The second type of wave damping we consider is turbulent
dissipation; i.e., a nonlinear cascade of energy from large to
small scales that terminates in an irreversible conversion of
wave energy into heat. The need to include some kind of non-
linear damping or saturation can be seen in Figure 10, where
above a distance of�20 R� the magnetic fluctuation amplitude
begins to exceed the background field strength (in opposition to
in situ observations) and the linear assumption breaks down.
Addressing the full problem of anisotropic MHD turbulence
in the solar corona and solar wind, though, is well beyond the
scope of this paper (see, though, Cranmer & van Ballegooijen
2003 for a summary of many related issues). Here we include
only one specific aspect of this theory: a phenomenological
damping rate that depends on the properties of the largest scales
in the turbulence and not on the details of the cascade.

The presence of both outward and inward propagating Alfvén
waves is a necessary prerequisite for the nonlinear coupling to
higher wavenumber that drives the cascade (see, e.g., Matthaeus
et al. 1999; Dmitruk et al. 2001). Any expression for the tur-
bulent energy decay must then depend on both the z� and zþ
Elsasser amplitudes, and thus the inclusion of turbulence intro-
duces further coupling between these two modes. A straight-
forward phenomenological form for the nonlinear transport has
been suggested by Zhou & Matthaeus (1990) from the stand-
point of ‘‘reduced MHD’’ (RMHD; see also Strauss 1976;
Montgomery 1982). Effectively, the transport equation is the
same as equation (32), but with the following term added to the
right-hand side:

� z	jz
j
2L?

; ð50Þ

where L? is a transverse length scale representing an effective
correlation length of the turbulence—i.e., a similarity length
scale associated with the energy transport from large to small
eddies. (It may be imprecise to refer to this length scale as an
‘‘outer scale,’’ but for simplicity we treat this as a synonym.)We
assume that L? scales with the transverse width of the open flux
tube; i.e., that it remains proportional to B

�1=2
0 . Specifically, we

normalize L? by specifying its value at the merging height zm.
We also define the constant � as the ratio of L? at the merging
height to the transverse radius of the network flux bundle at that
height: 3 Mm (see Fig. 2). Equivalently, we can express

L?(r) �
33�ffiffiffiffiffiffiffiffiffiffi
B0(r)

p Mm ð51Þ

if B0 is measured in G (see also Hollweg 1986b).
In order to know how best to implement the nonlinear term

given above, we need to understand over what range of heights
this term acts to appreciably damp the waves. We do not expect
a strong RMHD cascade to develop in the region below the
merging height because—despite the stochastic nature of the
fluctuation spectrum—the flux tubes do not strongly interact
with one another. For heights above zm we can compare the
effective damping length L? to the local height z above the
photosphere. For � ¼ 1, we find that L? < z only above a
height of z � 0:01 R�. It makes sense that the chromosphere

Fig. 13.—Viscous damping length scales plotted vs. height for three assump-
tions about the effective viscous timescale: classicalm ¼ 0 viscosity (dot-dashed
line), Williams’s (1995) m ¼ 1 viscosity (dashed line), and our transverse dif-
fusionm ¼ 2 viscosity (solid line). Also plotted is the local height z (dotted line).
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and transition region are not expected to undergo much damp-
ing from this RMHD mechanism; there seems to be insufficient
time for the turbulent cascade to develop in such small volumes.
Dmitruk & Matthaeus (2003) discussed a hierarchy of time-
scales that should be satisfied in order for this turbulent damp-
ing process to be strong. A simplified version of this hierarchy
is as follows:

t0 < tR < tf ; ð52Þ

where t0 is a nonlinear outer-scale eddy cascade time, tR is a
timescale for Alfvén wave reflection, and tf is representative of
the main driving period of the waves. In Figure 14 we compare
several of these quantities to see where these conditions are met.

In Figure 14 we plot a representative reflection time tR, which
we define as 1=j: = VAj. This is probably of the same order of
magnitude as the Dmitruk & Matthaeus (2003) ‘‘Alfvén wave
crossing time’’ tA, since the latter can be defined as HA=VA, or
the wave travel time over a representative Alfvén-speed scale
height HA. Thus, tR � tA. For reference we also show the total
wave travel time from the photosphere to a given height, de-
fined as

ttrav(r) �
Z r

R�

dr 0

u(r 0)þ Vph(r 0)
: ð53Þ

We equate the driving period tf to the spectrum-integrated first-
moment period 2�=h!i (see eq. [41]) and we plot its value for
the baseline �j ¼ 3 km s�1 model. Interestingly, tf > tR only
below z � 0:5 R� , and the hierarchy is not satisfied at large
distances where the damping length is relatively small. Note,
though, that the demand in the above hierarchy for tf to be the
largest of the three timescales comes only from the well-known
non-WKB result that long periods are the easiest to reflect, and

thus they provide the most turbulent mixing between inward
and outward modes. However, the amount of reflection in our
model is a known quantity (see, e.g., Figs. 7 and 11), and it is
irrelevant whether it could have been maximized with longer
period waves. Therefore, we do not need to consider the last in-
equality in equation (52) as a precondition for turbulent damping.
The key piece of the Dmitruk & Matthaeus (2003) timescale

hierarchy is that the nonlinear driving time t0 must be short
compared to the reflection time tR. Only when this condition is
satisfied can the turbulent cascade develop to the point where
the wave damping can occur efficiently. In Appendix C we de-
scribe one way of using a model for the anisotropic turbulent
power spectrum to derive t0 (see also Oughton et al. 2004). This
timescale depends inversely on the outer-scale length L?, and in
Figure 14 we plot the radial dependence of t0 for two extreme
values of the normalizing constant �. An upper limit to the
outer-scale length is given by � ¼ 1 (i.e., that the ‘‘stirring’’
takes place on the spatial scale of the entire network element). A
reasonable lower limit for L? at the merging height is the radius
of the smallest expected MBP flux tube. At the merging height,
the flux tubes have expanded to fill the volume of the network
patch, and thus the MBP radius is given by half the nearest-
neighbor distance dnn. For the lower-limit value of dnn � 350 km
(see x 3.1) we obtain a lower limit of � ¼ 0:06.
We find in Figure 14 that tR begins to exceed t0 somewhere

above a height of 0.1 to 1 R�. We thus solve the nonlinearly
modified wave transport equation only above 0.1 R�. This re-
striction allows us to make a useful simplifying assumption. As
seen in Figure 11, above this height there is only relatively weak
inward wave power; i.e., hZ�i3 hZþi. We solve a modified
time-steady wave action conservation equation in the limit of
pure outward propagation. Note also that turbulence does not act
in a straightforward ‘‘monochromatic’’ way, as was assumed in
the constant-frequency linear solutions to equation (32). We thus
ignore any frequency (and wavenumber) transport and compute
the overall effects of the turbulent damping on the frequency-
integrated wave energy (see, however, Verdini & Velli 2003).
Thus, we solve the following modified spectrum-averaged wave
action conservation equation in the limits of no time dependence
and dominant outward propagation:

uVA

uþ VA

@

@r

(uþ VA)
2hZ�i2

uVA

" #
¼ � hZ�i2hZþi

L?
ð54Þ

(see Appendix B). We use the linear solution for hZþi obtained
above in order to solve for the nonlinearly damped value of
hZ�i:

hZ�i2

hZ�i20
¼ (u0 þ VA;0)

2uVA

(uþ VA)
2u0VA;0

exp �
Z r

r0

dr 0 hZþ(r 0)i
½u(r 0)þ VA(r 0)�L?(r 0)

� �
;

ð55Þ

where all quantities with subscript ‘‘0’’ are given at the effective
lower boundary z ¼ 0:1 R�. This is not a completely self-
consistent method of obtaining the damped wave power, since
no back-reaction on hZþi is computed, but it gives an adequate
order-of-magnitude result for the total power in the regions
dominated by outward propagating waves.
Figure 15 shows the result of integrating equation (55) for

three choices of � (0.1, 0.35, and 1), as well as the solution for
no damping (� ! 1). We plot these solutions as velocity am-
plitudes in order to facilitate comparison with the observational
data, which are also plotted as in Figure 9. For each value of

Fig. 14.—Comparison of approximate timescales important for nonlinear
damping: tR is the wave reflection time (thick solid line), tf is the spectrum-
weighted wave period (thin solid line), t trav is the total wave travel time from
the photosphere (dashed line), and t0 (gray region) is a nonlinear turbulent
driving time computed for � ¼ 0:06 (bottom dotted line) and � ¼ 1 (top dotted
line).
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�, the resulting damped U� energy density was added to Uþ
(which remains undamped) to obtain Utot , and this total energy
density was split into kinetic and magnetic parts assuming that
the linear undamped ratio UK=UB remains the same for the
damped models. The resulting UK was then used to compute
h�V i as in equation (38).

The value of � that produces the best agreement with
the in situ measurements is approximately 0.35, implying a
transverse outer scale at the merging height of about 1100 km.
This value seems appropriate and consistent for motions ex-
cited between granules of the same spatial scale. If�were much
smaller than this value, it would imply that the turbulence was
dominated by internal motions in theMBP flux tubes, which we
essentially ignore in the thin-tube models. Furthermore, note
from Figure 15 that for � � 0:1 there is so much damping that
the approximation hZ�i3 hZþi breaks down above �100 R�
and we would have needed to solve a more complicated set
of damping equations. The observational constraints that imply
� ¼ 0:35 allow us to avoid both of the above consistency prob-
lems that arise for smaller values.

Properties of the � ¼ 0:35 solutions were also plotted in
several other figures in order to compare with the linear results.
Figure 10 shows that the damped magnetic amplitude ratio
h�Bi=B0 is smaller in interplanetary space than the undamped
ratio. For the damped model, h�Bi=B0 exceeds 1 only above
135 R� and does not exceed a value of 1.7 within the computed
range of distances (see also Lau & Siregar 1996). Figure 11
shows the better agreement between the damped Elsasser am-
plitude hZ�i and the measured outward Elsasser energy. The
inward amplitude hZþi still does not agree with the measured
inward Elsasser energy (see also Hollweg 1990), but note that
the linear value was not modified in the damping calculations
done here. Full simulations of the turbulence would proba-
bly see an enhancement of hZþi and possibly even an ap-
proach to inward/outward energy equipartition (e.g., Oughton
& Matthaeus 1995).

6.3. Impact on the Steady-State Plasma

A self-consistent treatment of waves in the solar atmosphere
and solar wind would consider the impact of fluctuations on the

mean, time-steady plasma properties. Incorporating this back-
reaction into the model steady state is beyond the scope of this
paper, but below we compute a subset of the necessary source
terms (e.g., the heating rate and the wave pressure acceleration)
for use in future models.

6.3.1. Heatinggdue to Turbulent Dissipation

The nonlinear wave damping discussed in x 6.2.2 produces
gradual heat deposition along an open magnetic flux tube. The
rate of energy conversion is derivable essentially from equa-
tion (54), and here we give a slightly more general version of the
energy conversion rate based on a comparison between phe-
nomenological turbulence models and numerical simulations.
The time rate of change in the general Elsasser variance hZ	i2 is
given by

dhZ	i2

dt
¼ �
	

hZ	i2hZ
i
L?

ð56Þ

(e.g., Hossain et al. 1995; Matthaeus et al. 1999; Dmitruk et al.
2001, 2002). Comparison with numerical simulations found that
the dimensionless parameter 
	 is of order unity. We thus as-
sume 
	 ¼ 1 and define the total heating rate Q as

Q � � dUtot

dt
¼ �

hZ�i2hZþi þ hZþi2hZ�i
4L?

: ð57Þ

In our models this quantity is defined consistently only above
z ¼ 0:1 R�, where the damping is applied, but below we cal-
culate Q for all heights along the flux tube. We caution that the
heating rates below 0.1 R� are only estimates based on the
undamped Elsasser amplitudes at those heights.

Figure 16 plots the heating rate per unit mass (Q=�) for the
range of �-values shown in Figure 15 in addition to an even
weaker damping case of � ¼ 3. For the regions where the
nonlinear damping does not change the radial profiles of hZ	i
from their undamped values, Q scales with ��1 as expected.
However, for heights where damping occurs the heating rate is
lowered because of the cumulative loss of wave power up to

Fig. 15.—Height dependence of the frequency-integrated velocity amplitude for �j ¼ 3 km s�1 and a range of values of the dimensionless outer-scale length-scale
normalization constant �: 0.1 (dashed line), 0.35 (dash-dotted line), 1 (dash–triple-dotted line), and no damping (solid line). Other lines and symbols correspond to
observations discussed in detail in x 6.1.
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that height. Thus, for each height, there is a maximum heating
rate that defines a critical value �crit. For � > �crit the cumu-
lative damping grows weaker, and the decrease in Q comes
from the increase in the denominator of equation (57). For
� < �crit, there is more cumulative damping and the decrease
in Q comes from the loss of local wave power in the numerator
of equation (57). For a distance of r ¼ 2 R� in the extended
corona, �crit is about 0.07, and the maximum heating rate per
unit mass at that value is �3:9 ;1011 ergs s�1 g�1.

We also plot in Figure 16 an empirical heating rate (summed
from proton and electron contributions) that was derived in
order to reproduce a large number of remote-sensing and in situ
measurements of fast solar wind conditions. We use the heating
rates from the SW2 model of Allen et al. (1998). For compar-
ison with the above numbers, the empirically constrained heat-
ing rate at r ¼ 2 R� is about 1:2 ; 1011 ergs s�1 g�1 (see also
Dmitruk et al. 2002; Cranmer 2002). In the extended corona
(r � 2 3 R�), Figure 16 shows that the empirical heating rate
agrees best with the � ¼ 0:35 case that also produces the right
amount of in situ damping (Fig. 15). This rough agreement
provides additional support for the outer-scale normalization
specified by this value.

It is worthwhile also to compare the heating rates computed
above with those computed using a damping rate appropriate
for isotropic Kolmogorov (1941) turbulence (see, e.g., Hollweg
1986b; Chae et al. 1998; Li et al. 1999; Chen & Hu 2001).
In order to derive a Kolmogorov heating rate appropriate for
quantitative comparisonwith the above results, wemake both the
quasi-isotropic approximation U� ¼ Uþ and we assume MHD
energy equipartition UK ¼ UB. Thus, equation (57) becomes

Qkol ¼
�h�V i3

ffiffiffi
2

p

L?
; ð58Þ

where we use the damped velocity amplitude h�V i as plotted in
Figure 15. The above expression differs by a factor of

ffiffiffi
2

p
from

the simpler formulae given in many other papers; this factor is
required in order to remain consistent with the isotropic/equi-
partition limit of equation (57). Removing this factor would be
equivalent to specifying 
	 ¼ 1=

ffiffiffi
2

p
in equation (56), but we

note that the relative comparison between equations (57) and
(58) does not depend on the value of 
	 .
In Figure 17 we plot the comparison between the complete

heating rate Q and the Kolmogorov approximation Qkol. For
simplicity we show only the case having the preferred� ¼ 0:35
outer-scale normalization. The curves are substantially different
from one another nearly everywhere, which indicates that the
inward/outward imbalance generated by non-WKB reflection
is probably a very important ingredient in Alfvén wave heating
models of the solar wind. The differences are small in the pho-
tosphere and low chromosphere, where strong reflection leads
to nearly equal inward and outward wave power. In the ex-
tended corona, though, the Kolmogorov heating rate begins to
exceed the anisotropic turbulent heating rate by as much as a
factor of 30. The isotropic Kolmogorov assumption assumes
the maximal amount of possible mixing between inward and
outward modes, which is inconsistent with the relatively weak
reflection computed for the corona in our models.
Figure 17 also shows the radial dependence of an analytic

scaling relation for the turbulent heating rate given by Dmitruk
et al. (2002) for the region above the coronal maximum in VA.
This scaling relation givesQ / B0j@VA=@rj, and we show it for
an arbitrary normalization. The analytic heating rate per unit
mass has a radial gradient less steep than the other curves in
Figure 17, but it has a general shape that is similar.

6.3.2. Wavve Pressure Acceleration

Waves that propagate radially through an inhomogeneousme-
dium exert a nondissipative net force on the gas. This net mo-
mentum deposition has been studied for several decades for both
acoustic and MHD waves and is generally called either ‘‘wave
pressure’’ or the ponderomotive force (e.g., Bretherton&Garrett
1968; Dewar 1970; Belcher 1971; Alazraki & Couturier 1971;

Fig. 17.—Turbulent heating rate per unit mass for the � ¼ 0:35 model
(solid line) and for the analogous isotropic Kolmogorov heating rate (dashed
line). The radial dependence of the Dmitruk et al. (2002) analytic formula is
also shown with an arbitrary normalization (dotted line).

Fig. 16.—Turbulent heating rate per unit mass for the models shown in
Fig. 15. The same line styles are used for� ¼ 0:1, 0.35, and 1, and we also show
the weaker damping case � ¼ 3 (solid line). The diamonds illustrate the em-
pirically constrained heating rate used by Allen et al. (1998).
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Jacques 1977). Initial computations of the net work done on the
bulk fluid have been augmented by calculations of the acceler-
ation imparted to individual ion species (e.g., Isenberg &Hollweg
1982; McKenzie 1994; Li et al. 1999), estimates of the departures
from Maxwellian velocity distributions induced by the waves
(Goodrich 1978; Hollweg 1978b), and extensions to nonlinearly
steepened wave trains (Gail et al. 1990; Pijpers 1995).

For non-WKBAlfvén waves propagating in a radial flux tube,
Heinemann & Olbert (1980) gave the general second-order ex-
pression for the wave pressure acceleration:

awp ¼ �(v? = : )v? þ 1

4��
(:<B?)<B?½ �; ð59Þ

which has the radial component

awp ¼ � 1

8��

@jB?j2

@r
þ jB?j2

8��
� jv?j2

2

 !
@

@r
( ln B0): ð60Þ

In the limit of equipartition between the kinetic and magnetic
wave energy densities, the term in parentheses is zero. For a
spherical geometry (e.g., MacGregor & Charbonneau 1994),
we note that the quantity @( ln B0)=@r can be written simply as
�2/r.

In our non-WKB model we have computed the frequency-
integrated kinetic and magnetic energy densities UK and UB.
We find that the spectrum-weighted wave pressure acceleration
can be expressed in terms of these variables as

�hawpi ¼ � @UB

@r
þ UB � UKð Þ @

@r
( ln B0): ð61Þ

Figure 18 compares the computed values of hawpi for the un-
damped (�j ¼ 3 km s�1) and damped (� ¼ 0:35) cases, as well
as an effectiveWKBwave pressure computed using just the first
term on the right-hand side of equation (61). There is some
numerical noise in the plots that comes from the necessity to
take numerical derivatives. Departures from the idealizedWKB
form arise only below z � 0:03 R� and thus may not be impor-
tant for the acceleration of the solar wind. In the photosphere,
though, the non-WKB wave pressure acceleration exceeds the
approximate WKB acceleration by a factor of 100. The WKB
approximation also gives an unrealistically large spike in hawpi
at the transition region that does not appear in the exact non-
WKB solution. It remains to be seen if these differences would
significantly affect various observational constraints placed on
the properties of the transition region (e.g., Woods et al. 1990a,
1990b).

Figure 18 also shows the magnitude of the Sun’s gravita-
tional acceleration g as a function of height. Presumably, the
wave pressure acceleration has little net effect on the corona and
solar wind in regions where jhawpijTg. For closed coronal
loops, though, Laming (2004) computed a similar non-WKB
wave pressure acceleration and found that its strength can rival
that of gravity even in the chromosphere. The Alfvén wave
reflection in these models is strong enough to produce ion abun-
dance variations that may explain the observed dependence on
first ionization potential (FIP).

7. SUMMARY OF MAJOR RESULTS

The goal of this work was to produce a detailed and self-
consistent description of the global energy budget of transverse
incompressible waves in open magnetic regions of the solar

atmosphere. Here we list the unique features of the model, key
results, and some of the insights gained about the overall wave-
plasma system.

1. Measurements of G-band bright points in the photosphere
were used to set the power spectrum of transverse waves as the
lower boundary condition of our model. The observationally in-
ferred power spectrum was summed from two phases of MBP
motion assumed to be statistically independent: isolated random
walks and occasional rapid jumps due to MBP merging, frag-
menting, or magnetic reconnection.

2. The steady-state plasma density, magnetic field, and flow
velocity were constrained empirically from the photosphere to a
distance of 4 AU. The successive merging of flux tubes on gran-
ular and supergranular scales in the atmosphere was described
using a two-dimensional magnetostatic model of the magnetic
network element.

3. Non-WKB wave transport equations, incorporating linear
reflection terms, were solved for a grid of wave periods between
3 and 3 ;105 s over the range of heights given above. Below a
mid-chromospheric merging height the waves were modeled as
modified kink-mode flux tube waves, and above this height they
were modeled as Alfvén waves propagating parallel to the back-
ground magnetic field.

4. The waves are reflected strongly at the transition region,
with only about 5% of the wave energy transmitted and 95%
reflected. Above the transition region, most periods are reflected
onlyweakly by the large-scale radial gradient of the Alfvén speed,
but periods exceeding 1 day are reflected strongly in interplan-
etary space. The period-averaged reflection coefficient from the
extended corona (r ¼ 2 R�) to 1 AU ranges between 10�4 and
10�3.

5. At the photosphere, the wave periods containing the most
power are between 1 and 30 minutes, but the kink-mode waves
with periods greater than about 12 minutes are evanescent below
the merging height. Only the shorter periods propagate to larger

Fig. 18.—Wave pressure acceleration vs. height for the undamped �j ¼ 3 km
s�1 model (solid line), for the� ¼ 0:35 dampedmodel (dashed line), and for the
undamped model computed using the WKB approximation for the acceleration
(dot-dashed line). The magnitude of the Sun’s gravitational acceleration is also
plotted (dotted line).
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distances, and above the merging height the power spectrum is
dominated bywave periods between about 1 and 6minutes. In situ
observations of power spectra that are strongest at periods of sev-
eral hours may be explained by many uncorrelated flux tubes ro-
tating past spacecraft in the solar wind on these longer timescales.

6. The period-averaged transverse velocity amplitude of the
waves agrees with observed off-limb nonthermal line widths
from SUMER and UVCS when the MBP jump amplitude �j is
taken to be �3 km s�1. For all reasonable values of �j between
0 and 6 km s�1 the modeled wave amplitudes at heights greater
than 0.3 AU are significantly larger than the in situ measure-
ments, implying that large-scale damping is needed.

7. We investigated the potential impact of the linear viscous
damping of Alfvén waves. If the effective viscous stress time-
scale undergoes a transition from its collisionally dominated
form to either of the possible collisionless forms (given by the
m ¼ 1 or 2 cases of x 6.2.1), the resulting damping lengths are
always much longer than the local height from the photosphere,
and viscosity thus cannot damp the waves.

8. We also considered nonlinear turbulent damping using a
phenomenological model of the energy loss terms in the wave
transport equations. The one free parameter is the normalization
of the outer-scale correlation length L? of the turbulence, which
scales with height as B�1=2

0 . Interestingly, a single choice for the
constant� ¼ 0:35,which specifies the value ofL? at themerging
height to be about 1100 km, produces both the right amount of
damping above 0.3 AU to agree with the in situ measurements
and the right amount of heating in the extended corona to agree
with empirically constrained solar wind acceleration models.

9. Because of the relatively weak degree of reflection in the
corona, non-WKB effects are probably not important for com-
puting the wave pressure acceleration in regions that contribute
to the overall solar wind acceleration. However, non-WKB ef-
fects produce order-of-magnitude differences (from the WKB
approximation) in the wave pressure acceleration at and below
the transition region. The inclusion of damping also affects the
total amount of wave pressure acceleration imparted to the solar
wind.

8. DISCUSSION

The model presented in this paper contains a great deal of the
relevant physics of Alfvén waves in the solar atmosphere and
solar wind, but it is incomplete in several ways. In this section
we discuss various ways to extend the model to improve its
physical realism.

Our cylindrically symmetric magnetostatic model of the net-
work flux tube is highly idealized. A fully three-dimensional
model of a network ‘‘patch,’’ possibly using a high-resolution
magnetogram image as the lower boundary condition, would
have a more realistic geometry (see, e.g., van Ballegooijen &
Hasan 2003). Such a model would contain a distribution of
flux tube strengths, merging heights, and canopy heights. The
resonant node structure seen in the power spectra (e.g., Fig. 8)
would likely disappear in such a heterogeneous model.

Our adopted photospheric boundary condition for transverse
flux-tube motions is also an idealized approximation. First, the
observations used to derive the velocity autocorrelation func-
tions are limited in time resolution. Extremely high-frequency
acoustic modes—e.g., with periods below 1minute—have been
seen in the photosphere and chromosphere (Deubner 1976;
Wunnenberg et al. 2002; DeForest et al. 2003), and the kink-
mode spectrum may extend to these frequencies as well. Sec-
ond, much more needs to be learned about the statistics of
the ‘‘jumps’’ that we modeled as identical Gaussians. A well-

defined algorithm for measuring the combined power spectrum
of both isolatedMBPmotions and their mergings and fragment-
ings should be developed. It is possible that the transient nature
of the motions may be better represented by waves having both
complex frequency and complex wavenumber (e.g., Wang et al.
1995), or perhaps by suitably defined wavelet functions. Also,
new diagnostics such as polarization variability within line pro-
files may add better constraints to our understanding of flux-
tube motions (Ploner & Solanki 1997).
Compressible MHD waves and shocks must also be con-

sidered alongside the incompressible waves modeled in this
paper (for recent work, see Rosenthal et al. 2002; Bogdan et al.
2002, 2003; Hasan et al. 2003; Hasan & Ulmschneider 2004;
Wedemeyer et al. 2004; Bloomfield et al. 2004; Suzuki 2004).
Longitudinal flux-tube waves are likely to be excited at or be-
low the photosphere, and these motions can provide additional
heating (via collisional damping) and, in some regions, they can
transfer some of their energy into newAlfvénic fluctuations that
were not taken into account in our models. In the solar wind,
additional linear and nonlinear couplings need to be included to
understand better the relatively large measured values of hZþi
(see Fig. 11).
The energy andmomentumdeposition terms computed in x 6.3

need to be included in self-consistent solar wind models. Ex-
tensive modeling has been done using isotropic Kolmogorov
turbulent heating terms (effectively, eq. [58]) and the impact of a
more realistic treatment of wave reflection is likely to be signif-
icant. Models including these effects can also be extended to the
slow solar wind associated with streamers, to coronal holes at
other phases of the solar cycle (e.g.,Miralles et al. 2002), and pos-
sibly to quasi-steady structures like spicules and prominences.
A substantial unresolved issue is how the wave-related heat-

ing and acceleration is apportioned to electrons, protons, and
heavy ions in regions where these species become decoupled.
Our original motivation for this work was the determination of
‘‘outer-scale’’ (i.e., low-frequency) Alfvén wave properties in
the corona and solar wind, for use as initial conditions in models
of MHD turbulent cascade. The kinetic consequences of this
turbulence have been studied recently by, e.g., Leamon et al.
(1999, 2000), Cranmer & van Ballegooijen (2003), Voitenko &
Goossens (2003, 2004), Gary & Nishimura (2004), and Gary &
Borovsky (2004). The ultimate goal of this work is to model
the spatial evolution of a reflecting, cascading, and dissipating
power spectrum of fluctuations as a function of kk and k?. Ob-
servations of preferential ion heating and acceleration, as well
as departures from isotropic Maxwellian distributions, are key
discriminators between competing models.
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APPENDIX A

ISOTHERMAL KINK-MODE WAVE PROPERTIES

In this Appendix we discuss a class of analytic solutions to the incompressible thin-tube wave equations given in x 5.1. For constant
coefficients in equation (24), we assume that v? depends on time and height as ei!t�ikz. For nonzero velocity amplitudes, this wave
equation becomes a simple quadratic equation in k that is equivalent in many ways to the acoustic-gravity wave equation for an
isothermal hydrostatic atmosphere (e.g., Lamb 1932; Mihalas & Mihalas 1984; Wang et al. 1995). For a real frequency !, this
equation is satisfied only for a complex k, with

k ¼ !c

Vph

i 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

!2
c

� 1

s !
; ðA1Þ

where

!c �
gj��j
2Vph�tot

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g

8H(2� þ 1)

r
ðA2Þ

is the critical kink-mode cutoff frequency. The second expression above applies for an isolated flux tube in an isothermal atmosphere
with scale heightH ¼ a2=g, where a is the isothermal sound speed and � is the ratio of gas pressure to magnetic pressure (e.g., Spruit
1981). In this case, the identity Vph=!c ¼ 4H yields the standard form of equation (A1). Other useful identities in the isothermal limit,
all derivable from transverse pressure balance, are

�e
�

¼ � þ 1

�
; �V 2

A ¼ 2gH ; B0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�a2j��j

p
: ðA3Þ

Only for ! > !c can there be a real component of k, and thus a propagating wave. A purely imaginary k corresponds to
evanescence.

For the background plasma state described in x 3, �e=� ¼ 2:35 and Vph ¼ 6:672 km s�1 at the photosphere. With these values, the
critical period (2�=!c) is found to be 12.49 minutes. Above the photosphere, the critical period computed with equation (A2)
decreases to a minimum of 9.53 minutes at a height of�200 km, then begins to increase, formally diverging to infinity at the merging
height where ��! 0 (see eq. [29]). This range of periods compares favorably with the chromospheric estimates of 11.7 minutes
given by Spruit (1981), derived for � ¼ 1, and 9 minutes given by Hasan & Kalkofen (1999), derived for � ¼ 0:3. For reference to
other isothermal models, we use the above relations to derive effective isothermal values of the plasma beta and scale height at the
photosphere; these are � ¼ 0:74 andH ¼ 195 km, although the latter is about 20% larger than the actual density scale height at z ¼ 0.

The imaginary part of k gives the time-averaged radial dependence of the velocity amplitude. For high frequencies corresponding to
propagating kink-mode waves, jv?j is proportional to ez=4H . (Because � / e�z=H , this implies that jv?j / ��1=4 as expected from
WKBAlfvén wave theory.) Thus, the kinetic energy density of the waves integrated over the cross section of the tube (i.e., �jv?j2=B0)
is constant.5 For low frequencies in the evanescent domain, let us define q � (!=!c) < 1, and there are two solutions for the radial
dependence of the amplitude:

jv?j / exp
z

4H
1 	

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p	 
h i
: ðA4Þ

The upper-sign solution is steeper than the propagating solution, and the lower-sign solution is shallower. In the limit q ! 0, the
steep solution goes as ��1=2 and the shallow solution is constant. Thus, for the steep (shallow) solution, the wave energy density
integrated over the tube area grows (decays) with increasing height. In x 6 we see that non-WKB low-frequency waves naturally
‘‘find’’ the shallow solution, probably because it is the more physical solution with decaying—not diverging—energy density (see
also Wang et al. 1995).

An additional reason that a stellar atmosphere may ‘‘choose’’ the shallow evanescent solution instead of the steep solution was
given by Cranmer (1996) for acoustic-gravity waves in a nonmagnetized atmosphere. Despite the fact that the solar wind is extremely
subsonic in the deep photospheric and chromospheric layers we study here, the existence of a nonzero gradient of the outflow speed
leads to additional terms in the wave dispersion relation. Cranmer (1996) showed that these terms yield a nonzero real part of k for all
frequencies, even those below the evanescent cutoff. For a subsonic flow (� � u=aT1) in the evanescent regime (qT1) the real part
of the radial wavenumber is given by

kr �
�3�q=H ; steep;

þ�q=H ; shallow;

�
ðA5Þ

and the shallow solution is the one with a positive (i.e., upward) phase speed!=kr corresponding to the physically relevant situation of
more upward then downward wave power.

5 In the isothermal thin-tube limit, the vertical zeroth-order magnetic pressure (B2
0=8�) must remain proportional to the local gas pressure (�a2), so that B0 /

exp (�z=2H ).
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Finally, we compute the frequency-dependent partition between kinetic energy density (EK ¼ �jv?j2=2) and magnetic energy
density (EB ¼ jB?j2=8�). The linearized induction equation (eq. [27]) is written in the isothermal limit as

!B? ¼ �kB0v?; ðA6Þ

and thus the ratio of energies is

EB

EK

¼
V 2
phjkj

2

!2
: ðA7Þ

Using the analytic solution for k above, the total energy density is given by

Etot(!) ¼ EK (!) ;
2; q � 1;

1þ
�
1 	

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p �2
=q2; q < 1;

(
ðA8Þ

where the upper ( lower) sign gives the steep (shallow) evanescent solution as defined above. Note that in the limit q ! 0, the
shallow solution is dominated by kinetic fluctuations and the steep solution is dominated by magnetic fluctuations.

APPENDIX B

NON-WKB ALFVÉN WAVE TRANSPORT EQUATIONS

Over the years there have been several versions of the non-WKBAlfvén wave equations published in the literature that superficially
do not resemble one another. This introduces a potential difficulty in comparing the results of these past efforts. In this Appendix we
collect several of these differently appearing equations and confirm that they are essentially equivalent.

The transport equations of Heinemann & Olbert (1980) are expressible in terms of our Elsasser variables (eq. [31]) as

@

@t
þ (u
 VA) = :


 �
z	 ¼ z	 (u 	 VA) = :½ � ln �1=4

	 

� z
 (u 	 VA) = :½ � ln �1=4B

�1=2
0

	 

; ðB1Þ

where we have specified that the transverse length scale of the flux tube is proportional to B
�1=2
0 . It is relatively easy to see the

correspondence between the above form and our equation (32) when we assume that the vectors u and VA are purely radial and that
z	 is perpendicular to the radial direction. For mass conservation in a flux tube, the quantity �1=4B�1=2

0 is proportional to V�1=2
A

, and
thus the above logarithmic derivatives yield the scale heights defined in x 5.2. Khabibrakhmanov & Summers (1997) gave essen-
tially the same equations, but allowing for more general wave polarization states and pressure anisotropy.

The Alfvénic transport equations of Zhou & Matthaeus (1990) contain nonlinear terms, and thus in some ways are more general
than the equations discussed in this paper. However, when looking only at their linear terms, one obtains

@z	
@t

þ (u
 VA) = :z	 ¼ z
 � z	
2

� �
: =

u

2
	 VA

� �
� z
 = :u 	 :B0ffiffiffiffiffiffiffiffi

4��
p

� �
ðB2Þ

(see also Dmitruk et al. 2001). The above equation is exactly equivalent to equation (32), but some algebraic manipulation is required
in order to demonstrate this. Among other steps, one needs to apply the auxiliary conditions given by Zhou & Matthaeus (1990),

u = :
1ffiffiffiffiffiffiffiffi
4��

p
� �

¼ 1ffiffiffiffiffiffiffiffi
4��

p : =
u

2

� �
; ðB3Þ

together with the fact that : = B0 ¼ 0.
The non-WKB equations given by Velli (1993) are similar to those of Zhou & Matthaeus (1990). Recasting Velli’s (1993)

differently defined Elsasser variables into our conventional form, one obtains

@z	
@t

þ (u
 VA) = :z	 ¼ z
 � z	
2

	 

: =

u

2
	 VA

	 

� z
 = : u 	 VAð Þ: ðB4Þ

Only the last term differs from equation (B2) above, but—at least for the incompressible transverse waves we study here—they are
equivalent. This can be shown by noting that, for an arbitrary scalar function  (r), one can state that

z = :( B) ¼  z = :B ðB5Þ

only when two conditions are met: (1) the field is divergence-free (: = B ¼ 0), and (2) the fluctuations are purely transverse (i.e.,
when z = : ¼ 0). In the above comparison, this condition is satisfied because  ¼ 1=

ffiffiffiffiffiffiffiffi
4��

p
depends only on the radius r and the

incompressible z amplitudes have a zero r-component.
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Barkhudarov (1991) derived the non-WKB transport equations in terms of nonstandard Elsasser-like variables I	 � (B? 	
v?

ffiffiffiffiffiffiffiffi
4��

p
). Also, in that paper the equations were given only for spherical symmetry. For a more general superradially expanding flux

tube, the equations of Barkhudarov (1991) become

@I	
@t

þ (u
 VA)
@I	
@r

¼ �I	
@u

@r
� u
 VA

2Bo

@B0

@r

� �

 u 	 VA

2VA

@VA

@r
(Iþ � I�); ðB6Þ

and these are the specific equations solved by the numerical Runge-Kutta code described in x 5.2.
For completeness, we also give the full equation of wave action conservation (i.e., wave energy conservation measured in the

comoving wind frame). We use the variable naming convention of Barkhudarov (1991), where f and g correspond to outward and
inward waves, respectively, but we follow Heinemann & Olbert (1980) in defining these quantities in velocity units and for general
superradial expansion:

f 2 � jz�j2(uþ VA)
2

uVA

; g2 � jzþj2(u� VA)
2

uVA

: ðB7Þ

The wave action conservation equation is obtained by writing the four real transport equations (for the real and imaginary parts of
zþ and z�) and multiplying each term in the equations by their corresponding real or imaginary Elsasser component. The sum of all
four equations yields the wave action equation:

@

@t
�u

f 2

uþ VA

� g2

u� VA

� �
 �
þ: = �u( f 2 � g2)

� �
¼ 0: ðB8Þ

In regions dominated by outward propagating waves (jz�j3 jzþj), where both the background properties and wave amplitudes are
time-steady, this reduces to simply

@f 2

@r
¼ 0; ðB9Þ

and the assumption of wave action conservation is equivalent to the assumption that f is constant (see also Jacques 1977; Barkhudarov
1991). This is not necessarily a WKB result, but it applies only in regions of negligible reflection.

APPENDIX C

ISSUES RELATING TO ANISOTROPIC MHD TURBULENCE

In the wave transport models presented in this paper we have not been overly concerned with the direction of the Alfvén wavevector
k relative to the background magnetic field B0. Mainly, this is because the dispersion relation of the waves in the MHD limit depends
only on kk, the parallel component of the wavevector,

! ¼ (u
 VA)kk ðC1Þ

for the z	 modes, and not on the component k? perpendicular to the field. Thus, the monochromatic wave transport equations
‘‘know’’ about kk via their dependence on wave frequency ! but are independent of k?. In this Appendix we investigate several
issues concerning the expected distribution of propagation directions and its evolution as MHD turbulent cascade develops.

From a linear standpoint, an initial distribution of propagation directions 
 (i.e., the angle between k and B0) will evolve with
heliocentric distance as a result of several physical processes. The radial variations of the inertial-frame phase speeds u
 VA induce a
radial ‘‘stretching’’ in wavelength and thus a large-scale decrease in kk with increasing height. The transverse spreading of the open
flux tube should also cause the perpendicular wavenumber k? to decrease with increasing height as well. The overall sense of increase
or decrease in 
 depends on the time-steady properties of the magnetic field and outflow. Other effects can contribute to a radial
variation in 
. First, any transverse gradients of the Alfvén speed can refract oblique waves toward the center of the flux tube, thus
decreasing 
 (Wentzel 1989). Second, viscous damping of high-frequency waves preferentially dissipates oblique fluctuations, since
Lc / cos2
. The analysis in x 6.2.1 assumed 
 ¼ 0, but the impact of viscous damping can be enhanced significantly if the waves are
sufficiently oblique. All of the above effects should be included if the radial variation of 
 (or h
i averaged over the power spectrum) is
to be computed.

As the turbulent cascade develops in the corona, an additional nonlinear evolution of the wave energy within ‘‘wavenumber space’’
(kk; k?) occurs. It has been known for several decades thatMHD turbulence in the presence of a steady-state magnetic field develops a
strong anisotropy in wavenumber. Both numerical simulations and RMHD analytic descriptions indicate that the spectral transport
from large to small spatial scales proceeds mainly in the two-dimensional plane perpendicular to B0 (see, e.g., Higdon 1984; Shebalin
et al. 1983; Goldreich & Sridhar 1995, 1997; Bhattacharjee & Ng 2001; Cho et al. 2002; Oughton et al. 2004). That is, the cascade
spreads out the power to successively larger values of k? while leaving kk relatively unchanged.

Here we follow Cranmer & van Ballegooijen (2003) and give an analytic solution for the turbulent power spectrum in the limit that
the cascade is allowed to proceed to its final ‘‘driven’’ steady state in a small homogeneous volume of plasma. We then compare the
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frequency dependence of this power spectrum to the empirically constrained ( linear) frequency spectrum as presented in Figure 8. Let
us define the three-dimensional total power spectrum as

Utot ¼
Z

d3 kP3D(k); ðC2Þ

where we write the volume element d3k in cylindrical coordinates as 2�k?dk?dkk and thus assume symmetry in the two directions
transverse to the background field. Cranmer & Ballegooijen (2003), following the general development of RMHD anisotropic
cascade theory, assumed that the turbulence eventually leads to a state of complete mixing between the inward and outward modes,
and thusUþ ¼ U� ¼ Utot=2. This assumption is incompatible with the non-WKBwave reflection models computed in this paper, but
we follow the earlier analysis in order to compare the shapes of the relevant power spectra and to obtain insight about how to better
model the turbulent cascade.

For fully developed anisotropic MHD turbulence, we assume the power spectrum to be a separable function of two variables:
k? and a nonlinearity parameter y defined as the ratio of the local wind-frame frequency VAkk to an assumed nonlinear eddy turnover
rate h�V ik? (see, e.g., Goldreich & Sridhar 1995). We use the notation of x 2.3 of Cranmer & van Ballegooijen (2003) and define

P3D(kk; k?) ¼
�VAW

1=2
?

k 3
?

g( y); ðC3Þ

where W?(k?) is a reduced power spectrum, scaled to velocity-squared units and defined as

W?(k?) ¼
k 2
?
�

Z þ1

�1
dkk P3D(kk; k?): ðC4Þ

For the MHD inertial range, W? is proportional to k
�2=3
? . For simplicity, let us define

W?(k?) ¼
0; k? < kout;

Utot(k?=kout)
�2=3(3��)�1; k? � kout;

�
ðC5Þ

for a given outer-scale perpendicular wavenumber kout . The factor of 3�� above is needed to normalize the full power spectrum as
defined in equation (C2).

The kk dependence of the power spectrum is contained in the dimensionless g( y) function in equation (C3). The condition y ¼ 1 is
defined as ‘‘critical balance’’ by Goldreich & Sridhar (1995), and their analysis only constrains the general form of g( y), not its exact
value. The bulk of the wave power is believed to reside at low values of y (e.g., g is nonzero only for jyjP1), where we define

y ¼
kkVA

k?W
1=2
?

: ðC6Þ

This condition captures the highly nonlinear state of turbulence, for which a coherent wave survives for no more than about one
period before nonlinear processes transfer its energy to smaller scales. One reasonable possibility for the parametric dependence of
this function is a normalized Gaussian,

g( y) � 1ffiffiffi
�

p e�y 2

: ðC7Þ

Cho et al. (2002) analyzed numerical simulations of MHD turbulence and found that g( y) can be fitted reasonably well by decaying
exponential or Castaing functions. Cranmer & van Ballegooijen (2003) solved a simple wavenumber diffusion equation to obtain
the analytic form

g( y) ¼ �(n)

�(n� 0:5)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�(1� � )2

�


s
1þ �(1� � )2y2





 ��n

; ðC8Þ

which is normalized to unity when integrated over all y, and with

n ¼ (�=�)þ � þ 1

2(1� � )
: ðC9Þ

For the MHD inertial range, � ¼ 1=3, and the three constants 
 , �, and � describe the relative strengths of kk diffusion, k? advec-
tion, and k? diffusion, respectively. We assume 
 ¼ �, thus leaving the only ‘‘free’’ parameter to be the ratio �=�. Cranmer &
van Ballegooijen (2003) discussed the most realistic values of this ratio; earlier models implied that �=� � 1, but one would need
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this ratio to be smaller than about 0.25 in order to produce enough parallel cascade in the corona to heat protons and heavy ions
via cyclotron resonance.

With the above definitions it becomes possible to derive the effective frequency power spectra P̃	 (!) that are consistent with fully
developed anisotropic turbulence. Noting that we define ! as the frequency measured in the inertial frame centered on the Sun, we
define

P̃	 (!) ¼
1

2

Z
d3kP3D(k)� !� (u
 VA)kk

� �
; ðC10Þ

where the Dirac delta function collapses the three-dimensional wavenumber spectrum into a one-dimensional frequency spectrum.
This ‘‘translation’’ must be done differently for the inward and outward mode spectra, as indicated by the difference between the
inertial-frame phase speeds of the two modes. The above expression is defined formally for both positive and negative frequencies;
below we multiply by 2 in order to consider only positive frequencies. For the purposes of this Appendix, let us use the simpler
form of equation (C7) for g( y) that gives the straightforward analytic solution

P̃	 (!) ¼
Utot!out;	

2�1=2!2
1� exp � !

!out;	

� �2
" #( )

; ðC11Þ

where we define the effective outer-scale frequency

!out;	 ¼ ju
 VAjkout
VA

ffiffiffiffiffiffiffiffiffi
Utot

3��

s
ðC12Þ

and we assume kout ¼ 2�=L?. We note that the use of equation (C8) for g( y) would have yielded a solution similar to the above
form of P̃	 , only differing slightly in a small region of frequency near !out;	. This frequency sets the scale for the spectrum. We use
the effective outer-scale frequency for outward propagating waves to define the nonlinear ‘‘driving time’’ t0 ¼ 2�=!out;� plotted in
Figure 14.

Figure 19 compares the above turbulent frequency power spectra P̃	 (!) with the empirically constrained linear frequency spectra
P	 (!) as derived in x 5 above. For simplicity we plot the spectra at only one heliocentric distance (r ¼ 2 R�) and note that one can use
the radial dependences of the various timescales plotted in Figure 14 in order to extend these results to other heights. The above
assumption of full mixing for the nonlinear cascade (i.e., U� ¼ Uþ) is far from the linear non-WKB result of U� 3Uþ in the
extended corona. The inability of the analytic RMHD anisotropic cascade theory to take account of the strong imbalance between
inward and outward wave amplitudes is a major shortcoming of this kind of model. We need a better understanding of the detailed
wavenumber dependence of the inward-to-outward power ratio for MHD turbulence.

In Figure 19 we use the preferred normalization� ¼ 0:35 to set the scale of L?. With this normalization at r ¼ 2 R�, the outer-scale
driving timescales 2�=!out;	 are 5.7 and 4.1 minutes for the plus and minus signs, respectively. The peaks of the scaled power spectra

Fig. 19.—Comparison of scaled fluctuation power spectra at 2 R�. The linear, empirically constrained frequency spectra !P� (solid line) and !Pþ (dashed line)
are plotted alongside the nonlinear cascade frequency spectra projected from three-dimensional wavenumber space at the same height: !P̃� (dotted line) and !P̃þ
(dash-dotted line).

ALFVÉN WAVES: PHOTOSPHERE TO HELIOSPHERE 291No. 2, 2005



!P̃	 occur at frequencies of �1:12!out;	 , but the empirically constrained linear spectra !P	 contain most of their power at slightly
higher frequencies (i.e., shorter periods). The fact that the two spectra exhibit maxima within the same order of magnitude of
frequency, though, may be just a result of choosing the radius of r ¼ 2 R�. Figure 14 shows that if the curves in Figure 19 were
computed instead at 1 AU, the peaks of the linearP	 curves would be in the same range of periods (1 to 5minutes), but the peaks of the
P̃	 curves would be at periods between 30 and 40 minutes. At 1 AU the bulk of the power in the linear frequency spectrum would be
at an extremely high local frequency from the standpoint of the cascade (i.e., y31). This suggests that the Sun emits a ‘‘fossil’’
frequency spectrum that eventually can advect into a region of the three-dimensional wavenumber spectrum that was previously
believed to be strongly depleted because of the anisotropic cascade. The implications of this result will be investigated in future work.
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