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ABSTRACT

Knowledge of the structure of galaxy clusters is essential for an understanding of large-scale structure in the
universe and may provide important clues to the nature of dark matter. Moreover, the shape of the dark matter
distribution in the cluster core may offer insight into the structure formation process. Unfortunately, cluster cores
also tend to be the site of complicated astrophysics. X-ray imaging spectroscopy of relaxed clusters, a standard
technique for mapping their dark matter distributions, is often complicated by the presence of cool components in
cluster cores, and the dark matter profile one derives for a cluster is sensitive to assumptions made about the
distribution of this component. In addition, fluctuations in the temperature measurements resulting from normal
statistical variance can produce results that are unphysical. We present here a procedure for extracting the dark
matter profile of a spherically symmetric, relaxed galaxy cluster that deals with both of these complications. We
apply this technique to a sample of galaxy clusters observed with the Chandra X-Ray Observatory and comment
on the resulting mass profiles. For some of the clusters we compare their masses with those derived from weak and

strong gravitational measurements.

Subject headings: dark matter — galaxies: clusters: general — X-rays: galaxies: clusters

1. INTRODUCTION

The cold dark matter (CDM) paradigm of modern cosmology
has enjoyed spectacular success in describing the formation of
large-scale structure in the universe (Navarro et al. 1997; Moore
et al. 1999b; Lahav et al. 2002; Peacock et al. 2001). There are,
however, several nagging inconsistencies between the results of
numerical CDM experiments and observations. On small scales,
the dark matter halos in dwarf and low surface brightness gal-
axies are much less cuspy than in CDM simulations (Burkert
1995; McGaugh & de Blok 1998; Moore et al. 1999b). Disk
galaxies produced in simulations tend to have inadequate masses
and angular momenta (Navarro & Steinmetz 2000). The num-
ber of Milky Way satellites appears to be at least an order of
magnitude lower than CDM predictions (Kauffman et al. 1993;
Moore et al. 1999a; Klypin et al. 1999). On larger scales, some
studies (Tyson et al. 1998; Smail et al. 1995) report galaxy clus-
ters with central density profiles that are flatter than CDM pre-
dictions, although these are somewhat controversial (Broadhurst
et al. 2000; Shapiro & Iliev 2000).

The density profile of bound structures that form through the
hierarchical assembly of smaller structures is usually parame-
terized as a power law at small scales and a separate power law
on large scales (e.g., Jing & Suto 2002):

Po
(rfr" (T rfr)

The four parameters in this description are the density p, at
some fiducial radius, the inner power-law index «, the outer
power-law index -, and the scale radius r, setting the break
between the two power laws. While it is generally agreed that
v =3, the value of a has generated considerable debate.
Simulations predict a value between 1.0 (Navarro et al. 1996,

p(r) = (1)
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1997) and 1.5 (Moore et al. 1999b; Fukushige & Makino 2001),
roughly independent of halo mass and formation epoch. In na-
ture, however, o shows a larger variation and is likely a func-
tion of halo mass. Ha rotation curves of low surface brightness
galaxies indicate density profiles that are significantly flatter
(o ~0.5) than CDM predictions (Swaters et al. 2000, 2003;
Dalcanton & Bernstein 2000; Borriello et al. 2003). X-ray ob-
servations of galaxy clusters generally show steeper profiles,
however, with o ~ 1.2 (Lewis et al. 2003) to 1.9 (Arabadjis
et al. 2002).

These discrepancies are often ascribed to limitations of the
astrophysics or the physics included in the simulations. Baryon
physics, if included, may be tacked on at the conclusion of a
simulation according to a set of semianalytic and/or empirical
prescriptions. It is likely that baryon physics will play a sig-
nificant role in the evolution of the central halo. Reports of a
halo “entropy floor” (Ponman et al. 1999; Lloyd-Davies et al.
2000) suggest nongravitational sources of heating and feed-
back either prior to or during halo formation (Balogh et al. 1999;
Loewenstein 2000; Wu et al. 2000) that are probably baryonic
in origin (see, however, Mushotzky et al. 2003). The question
then becomes one of determining where baryon physics ceases
to be important. While the inclusion of baryon astrophysics in
sufficient detail may remedy these problems, its effects will re-
quire a great deal of effort to disentangle (Frenk 2002).

It could be, however, that the missing ingredients in the
simulations are not all astrophysical. One possibility is that
the initial power spectrum of the primordial fluctuations is not
scale invariant. If the primordial spectral index of density per-
turbations is not precisely 1 (as is normally assumed by appeal-
ing to standard inflationary cosmology), the formation epoch
of halos may be delayed sufficiently to ameliorate the central
density problem (Alam et al. 2002; Zentner & Bullock 2002).
Another possibility is that important dark matter particle phys-
ics is being overlooked and that the assumption of no non-
gravitational self-interactions is faulty. Proposed modifications
of CDM include, although are not limited to, self-interacting
dark matter (Spergel & Steinhardt 2000; Firmani et al. 2000),
warm dark matter (Hogan & Dalcanton 2000), annihilating dark
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matter (Kaplinghat et al. 2000), scalar field dark matter (Hu &
Peebles 2000; Goodman 2000), and mirror matter (Mohapatra
et al. 2002), each of which is invoked to soften the core density
profile. Many of these modifications will soften the core profile
of galaxy clusters as well, in conflict with many X-ray determi-
nations of mass profiles, although other astrophysical processes
such as the adiabatic contraction of core baryons (Hennawi &
Ostriker 2002) may mitigate this effect.

In an effort to discriminate between CDM modifications and
other astrophysical influences, we are mapping the dark matter
profiles of a large sample of galaxy clusters. Specifically, we
use imaging spectroscopy from the Chandra X-Ray Observa-
tory (Weisskopf et al. 2002) to determine the deprojected tem-
perature and density profiles of the baryonic content of each
galaxy cluster, which we then use to derive its dark matter pro-
file. In this paper we describe our method and apply it to a
sample of low- and moderate-redshift clusters. We describe our
spectral deprojection technique in § 2. We discuss the problems
involved in converting these results to a mass profile and our
solution in § 3. We examine the effects that cooling flow model
assumptions have on our profiles and present a statistical anal-
ysis of the models and a prescription for choosing among them
using Markov Chain Monte Carlo sampling in § 4. In § 5 we
apply these techniques to a sample of Chandra clusters and
discuss our results. Finally, we summarize our findings in § 6.
In a subsequent paper we will examine these profiles for their
implications for large-scale structure formation and dark matter
particle properties (J. S. Arabadjis & M. W. Bautz 2004, in
preparation, hereafter AB04).

2. SPECTRAL DEPROJECTION

We begin with a Chandra imaging spectroscopic observa-
tion of a galaxy cluster using the ACIS detector, with either the
S3 chip or the I array. We start with a level 2 data set that has
been processed in the usual way, filtered for periods of high
background using the procedures described in the CIAO Sci-
ence Threads,’ with point sources removed (for details see
Arabadjis et al. 2002). After locating the center of the projected
emissivity, we lay down a series of adjacent, concentric annuli
centered on the emission peak. The annular dimensions are set
to include enough source photons (1000—2000+) to reliably de-
termine the plasma temperature. RMF and ARF response matri-
ces are constructed, as is a background spectrum from a region
external to the outermost annulus. The spectra are recorded in PI
format and grouped such that there is a minimum of 20 counts
per channel.

Our spectral deprojection has been presented elsewhere
(Arabadjis et al. 2002), and so we just briefly summarize here.
To derive spherical radial profiles, we construct a model con-
sisting of NV concentric spherical shells whose inner and outer
radii correspond to the inner and outer cylindrical radii of the
projected annuli in the data set. The volume intersection matrix
V, whose elements V;; contain the volume of spherical shell
j intersected by a cylindrical shell formed by the projection
of annulus i, is used to set the linear relations between each of
the normalizations as specified by the binning geometry. Each
shell i on [1, N] (1 is the innermost shell—a sphere—and N is
the outermost shell) contains an optically thin thermal plasma
whose emission characteristics are determined by the MEKAL
model (Mewe et al. 1985, 1986; Kaastra 1992; Liehdal et al.
1995) within XSPEC (Arnaud 1996) using two free parame-
ters, the temperature T and the normalization K.

3 See http://asc.harvard.edu /ciao/threads/all.html.
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In some models we allow the innermost N,. shells to contain
a second emission component at a (lower) temperature 7, as a
first-order treatment of the cooler plasma. This cool component
is assumed to be in pressure equilibrium with the hot compo-
nent; this means that the cool and hot components cannot both
be in hydrostatic equilibrium. We assume that the hot compo-
nent is in hydrostatic equilibrium. We adopt this form for the
cooling flow model for two reasons: (1) there is no evidence
that the plasma in cooling flow cluster cores cools below about
1 keV (Peterson et al. 2003) as in the isobaric cooling flow
model of Mushotzky & Szymkowiak (1988), and (2) it is ar-
guably the simplest adjustment that can be made to the uniphase
model. The cool component could be arranged in droplets or
filaments that are replenished as they migrate to the unspecified
sink at » = 0, effecting a hydrodynamical equilibrium. The de-
tails of the geometry of the cool component are unimportant
since they are below our spatial resolution limit; it is only our as-
sumption that it is in pressure equilibrium with the hot com-
ponent that has observational consequences. In this study we use
the pressure gradient in the core to measure the radial depen-
dence of the enclosed gravitating mass.

The number of parameters in this model is rather large. Each
MEKAL component contains six parameters, of which two (T
and K) are allowed to vary. Thus, the N annuli in the data set
are modeled using N + N, emission components. Including a
Galactic absorption column yields a model with 6(N + N,) + 1
parameters (although only a subset of these actually vary).
Each of the N annuli independently constrains between 1 and N
of the model shells in the fitting, and so the complete XSPEC
model contains N[6(N + N,) + 1] components, 2(N + N,) + 1
of them variable. The current version of XSPEC admits models
with 1000 parameters, any 100 of which can vary. This limits
our model to N = 12 annuli for N, = 0 (876 parameters, 25
variable) and N = 10 annuli for N, = 2 (730 parameters, 25
variable). We have written a program that reads in the data
annuli dimensions and writes out an XSPEC script that handles
all of the data manipulation. The script initializes the model
parameters, performs the x> minimization, and calculates pa-
rameter uncertainties. This software is available to the public
through requests to the authors.

Most spectral deprojection schemes rely on an ‘“onion
peeling” approach (Fabian et al. 1981; Allen & Fabian 1997;
David et al. 2001; Lewis et al. 2002; Sun et al. 2003): the
outermost annulus is modeled using the outermost spherical
shell; its model parameters are then frozen and its emission is
subtracted from all annuli interior to it. The next most outer
shell is then modeled, the resulting model again frozen and
subtracted from the interior, and so forth, until the entire clus-
ter has been modeled. The virtue of this technique is that the
number of model components scales as N instead of N2, al-
lowing for greater spatial detail. However, because the param-
eters of each model shell are frozen and the model is subtracted
from interior shells as if it contained zero uncertainty, the
technique does not find the global “best fit”” of the model pa-
rameters. In many cases, the errors quoted in onion peeling
analyses are the uncertainties associated with a single layer
of the onion (David et al. 2001). Error estimates derived from
Monte Carlo simulations are more reliable, limited primarily by
the number of simulations used to estimate the uncertainties
(Lewis et al. 2002). In our study all of the model parameters are
fitted simultaneously; the subsequent determination of error
in subsets of interesting variables is a true expression of the
parameter uncertainties in the model. We note here that al-
though our model appears to have many more parameters than
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the other techniques, in actuality the numbers are equivalent
because of the web of linear dependencies among the compo-
nent normalizations.

3. MASS PROFILES

Many deprojection methods rely on analytic formulae for
the radial run of temperature, surface brightness, or mass, ei-
ther during or after the fitting process (Allen et al. 2001; David
et al. 2001; Hicks et al. 2002; Pizzolato et al. 2003). The
greatest advantage of a parametric treatment is numerical sta-
bility. In addition, it is common practice to smooth noisy profiles
before using them in subsequent calculations. The latter tech-
nique is especially useful when deriving gravitating mass pro-
files since a numerical derivative must be computed. A serious
drawback of these approaches is that it is difficult to quantify the
effect of the parameterization, or the smoothing, on the results.
Additionally, it is often difficult or impossible to propagate er-
rors through to the results.

Our nonparametric deprojection technique does not guar-
antee smooth temperature and density profiles, so we have
devised a method whereby the mass profile is computed from
within the error envelope of [p(r), T(r)]. By choosing a sta-
tistically reasonable realization of the model, we are able to
compute mass profiles that not only are smoother than those
obtained from the unconstrained (p, T') set but also avoid the
unphysical results that arise owing to the statistical fluctuations
inherent in measurements. Essentially, our procedure imposes
physically motivated constraints to reduce the uncertainty in
the temperature and mass profiles and provides a statistic that
characterizes the reliability of the mass reconstruction.

The standard procedure for extracting the gravitating mass
profile of a galaxy cluster is to insert its deprojected tempera-
ture and density profiles into the hydrostatic equation (Sarazin
1988):

M — kT <d logT dlog p> ' 2)

B Gumy/r \ dlogr = dlogr

Here T and p are the local (baryonic) plasma temperature and
density, 7 is the spherical radius, M, is the total mass enclosed
within 7 (i.e., baryons plus dark matter), and m, and p are the
proton mass and mean particle weight, respectively. Implicit
here is the assumption that the cluster is supported solely by an
isotropic thermal pressure gradient, i.e., that random motions
greatly exceed the bulk rotational motion, and that the mag-
netic field energy density is negligible in comparison with the
thermal energy content of the plasma. We further assume that
no recent merger event has caused a disruption in the pressure
and density. Given the run of density and temperature in our
binning scheme (r;, p;, and T;, i=1, 2, ..., N), we can
calculate M; using a simple difference equation version of
equation (2):

M:_AriTi( +1 1+ dig1 1)7 3)

Xit1 — Xi-1

where A = k/Gum,, x;=1log,y(r;), d;=1logy(p;), and t; =
log,((T;). Since the goal of this technique is to derive enclosed
mass profiles, we define r as the outer radius of each shell.
Because of measurement error, a mass profile calculated in
this way is not guaranteed to be physically reasonable. Even if
the assumptions of spherical symmetry and hydrostatic equi-
librium were valid, statistical fluctuations in the temperature
measurements could result in unphysical points in our derived
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mass profile, for example, dM, /dr < 0 or even M, < 0. To deal
with the nonphysical fluctuations, we proceed under the assump-
tions that all unphysical values in the mass profile are due to
measurement uncertainty in either p or 7. Specifically, to esti-
mate the (p, T') profiles, we impose the condition that the com-
puted total gravitating mass profile is consistent with

p(total) = p(baryons) + p(dark matter) > 0 for r > 0. (4)

Since p(total) = (1/4nr2)(dM, /dr) and 1/47r? is positive def-
inite, this is equivalent to the constraint

dM, /dr > 0. (5)

Combining equation (5) with the boundary condition M,(0) >
0 (e.g., allowing for the presence of an unresolved central ob-
ject), we obtain a second constraint:

M,(r) > 0. (6)

Perhaps the most natural way to impose these conditions
would be to invoke them as a Bayesian prior in the spectral fitting
procedure. Bayes’s theorem (Bayes 1763; Papoulis 1984) states
that the probability of model M given data set D [the posterior
distribution P(M|D)] is proportional to the product of the prob-
ability of that data set given the model [the likelihood function
P(D|M)] and the probability of the model itself [the prior know]-
edge function P(M)]:

P(M|D)  P(D|M) - P(M). (7)

The model prior could be chosen to enforce the constraints
in equations (5) and (6). Thus, for certain combinations of
model parameters 7;, p;, we could choose a prior such that
P(M(T;, pi)) = 0.

Unfortunately, this approach is computationally impractical.
The difficulty lies in the fact that the relatively simple constraints
on M(r) and dM/dr lead to complicated (nonlinear) constraints
of the coupled parameters of the spectral models (K;, 7;). The
problem is more tractable if we instead apply the Bayesian con-
straints after unconstrained density and temperature profiles have
been determined using the spectral deprojection method de-
scribed in § 2. Thus, we compute an unconstrained mass profile
from equation (3) and check it for consistency with the con-
straints in equations (5) and (6). These three equations yield
constraints on the solutions to the difference equations that we
define using Y; and Z;:

Yi=—(tin — tisi +dig1 —diz1) >0, (8)

fiys— ti+ diio— d;
Z[ _ r[+1Ti+1 ( i+2 i i+2 i
Xi+2 — Xi

it — tiy + digy — di
) LU
Xit1 — Xi—1

Physically these constraints prohibit the pressure of the X-ray—
emitting plasma from rising with radius. Using the model pa-
rameter error estimates as a guide, we allow the temperature
and normalization of each model component to vary if either of
these constraints is violated by the profile. Our goal is thus to
find a new set of density and temperature values p and 7 that
are as close as possible to the original profiles (““fidelity’’) but
obey the constraints of equations (8) and (9) (“physicality™).
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At first glance this appears to be a standard problem in
constrained optimization. Two features of the problem suggest
than an alternate route is preferable, however. First, as men-
tioned above, the constraints are nonlinear functions of the inde-
pendent variables, so the constrained optimization approach is
very complex. Second, if we exercise control over the compet-
ing interests of fidelity and physicality, as incorporated in a
penalty function, rather than simply eliminating solutions that
violate equations (8) and (9), we retain the ability to modulate
departures from the unconstrained profiles. For example, it may
be the case that the temperature profile would need substantial
alteration in order to satisfy the rigid imposition of constraint
equations (8) and (9), but that a minor violation of equation (9)
(say, at only one point in the mass profile) would allow a tem-
perature profile of much greater fidelity. In this instance it is to
our advantage to have the ability to set the relative weighting be-
tween the fidelity and physicality terms in the penalty function.

Implicit in our choice of a penalty function to represent the
constraints is the assumption that our estimate of the loca-
tion of the peak of the model probability distribution function
Pest(M(T;, p;)), obtained by enforcing fidelity, is close to the
actual peak of the distribution Po(M(7;, p;)), which would ob-
tain if the Bayesian priors were utilized during the spectral de-
projection. This idea is shown schematically in Figure 1. As
the figure illustrates, in the absence of significant small-scale
structure in P(M(T;, p;)), Pest(M(T;, p;)) will indeed lie near
Po(M(T;, p))) in parameter space. We therefore cast our physi-
cality constraints as terms in a cost function and henceforth
refer to the optimized solution for M as the constrained pro-
file, with the understanding that it is an estimate of the fully
Bayesian solution and that the constraints do not rigorously
forbid excursion into disfavored regions of parameter space.
Our formulation of the cost function will reflect our subjective
assessment of the relative importance of fidelity versus phys-
icality and use standard optimization algorithms to minimize it.

We use the likelihood to characterize the fidelity term in the
cost function. The probability density P at the vector (p, )=
(p1, P2, - - PNy, Thy, To, ..., Ty), which is near the un-
constrained profiles (p, T), is given by

N ~ 2 F 2
P = @n) P (op0n) e P P BTV (g0)
i=1

where we have assumed that the errors in p and 7 are uncor-
related and normally distributed, characterized by o, and o7,
respectively.* In maximum likelihood methods, cost functions
are conveniently defined as the negative log of the likelihood
(e.g., von Mises 1964), so we define the fidelity penalty func-
tion Q as

Q=—-2logP
= N log (2m)
N ~ 2 5 2
(pi—p)° (L —T)
+2 2 log 0, + log o, + 2‘72,- + ZJZT[
=00+ x". (11)

* In principle, it would be more accurate to make use of the fact that the
luminosity of a shell i, L; o< p2T 1-1 2, is tightly constrained by the observations
and therefore that deviations in d and 7 are correlated: 6d = —ét/4. In practice,
however, this is unnecessary since the relative uncertainty in the temperature
of a shell is enormous compared to the uncertainty in its density.
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Fic. 1.—Schematic representations of the unconstrained probability dis-
tribution function (Py; top) and the constrained distribution (P; bottom) for a
two-dimensional parameter space. The estimated peak of the constrained
distribution is shown in blue; the true peak is shown in violet. (For clarity we
have not renormalized P after removing the physically disallowed region of
parameter space.)

Here Q, is a constant that depends only on the measurement
errors and x? is the 2 N-dimensional variance:

N ~ 2 5 2
2 (Pi — pi) (Ti - Ti)
X = Z 2 + o2
i=1 pi T;
=2+ x5 (12)

We ignore Q, since it will not affect the minimization.

We follow a similar procedure to derive the physicality
terms in the cost function. We wish to incorporate the physi-
cality constraints by penalizing negative values of ¥; and Z; in
equations (8) and (9) without attempting to maximize them if
they are positive. Consider the penalty function

n n
X0 X0 X0 X0
1
- lnEJrlnC (n>1). (13)

This function has several useful properties: (1) it has a value of
zero for 0 < x < xo; (2) it increases rapidly forx < 0 or x > xo;
(3) it has a continuous first derivative everywhere for n > 2 (or
everywhere but x = 0 or x = xj for 1 < n < 2), making it well
suited for optimization routines that rely on gradient infor-
mation to increase their efficiency; and (4) A(x) = e 9™ g a
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FiG. 2.—Penalty function g(x) and the associated (approximate) probability
distribution function A(x) = e 90 for n = 7/2. Here h(x) is nearly, but not
precisely, normalized; we have set C =1 (see eq. [13]).

well-behaved probability distribution function. C is of order 1;
for arbitrary values of 17 > 1 it can be determined numerically.
Functions g(x) and A(x) are shown in Figure 2.

We employ g(x) to characterize the two physicality require-
ments, M, > 0and dM, /dr > 0, in their difference equation form
(egs. [8] and [9]). In both cases xj is set to a large value that we
do not expect to exceed. In the former case we set it to 103 M/ ;
in the latter we can use the equivalent of d log M,./d logr < 3,
corresponding to the upper limit for a monotonically decreas-
ing density profile. We can ignore the normalization and set
K =1 since we will be weighting the physicality penalties
against the fidelity penalty. The complete cost function f for
the minimization is thus

=Y [Aig(Y) + A29(Z)] + X (14)

i=1

The weights 4, and 4, and the exponent 7 are chosen to
determine whether the departure from the unconstrained pro-
file is reasonable to achieve a physically acceptable solution.

Conveniently, this technique has a built-in gauge of the fi-
delity, the x? value of the constrained profiles (although it
should be noted that it is not distributed as the classical x2). If
x2 <1, then we consider the new profile to be a reasonable
excursion within the profile’s uncertainty envelope. Moreover,
we identify the constrained profiles (p, T, M,) as a closer
approximation to the true profiles, under the assumption that
our model is correct. Conversely, x? >> 1 indicates that the (p,
T') profiles require excessive alteration to produce a physically
sensible mass profile. This could indicate that our assumptions
of spherical symmetry and/or hydrostatic equilibrium are in-
valid, that there is significant spatial or spectral substructure, or
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that our thermal emission model is inadequate. Regardless of
the root cause, the accuracy of such a profile is suspect.

Nulsen & Bohringer (1995, hereafter NB95) developed a
nonparametric approach to this problem that also makes use
of the fact that the enclosed gravitating mass of a cluster must
be monotonically increasing. With their method one obtains a
series of interdependent constraints on the mass at each point
in 7. These constraints are translated into a set of likelihood
functions that are assumed to be independent for computational
ease. These likelihood functions are jointly maximized to de-
rive the mass profile. Our method is similar in that it makes use
of a likelihood function based on excursions within an uncer-
tainty envelope. The methods differ significantly, however, in
the deprojection algorithm (NB95 use onion peeling) and in
the enforcement of the mass constraints. In NB95, the mass
constraints are absolute; in our method they can be invoked to
any degree: they can be rigidly enforced, completely ignored,
or somewhere in between. The x> metric of the fidelity is a
powerful tool. If the physicality weight is set to an arbitrarily
large value, we force the profile to monotonically increase, in
effect obtaining the result of the NB95 technique. As a by-
product, we obtain the plasma temperature and density profiles
that are required, and the x? value immediately tells us how
likely it is that the temperature and density measurements con-
spired to achieve this condition. In cases in which rigid impo-
sition of the constraints yields an unacceptably high x? value,
one can experiment with different weights and examine the re-
sulting profiles to ascertain, for example, if the problem is due
to a single outlier or is more systemic, possibly indicative of
a breakdown of hydrostatic equilibrium. Thus, the flexibility of
our method with regard to the mass constraints allows us to ex-
tract information about the dynamical state of the X-ray plasma
and the presence of statistical anomalies in the data.

4. CHOOSING A MODEL: THE F-TEST AND MARKOV
CHAIN MONTE CARLO SAMPLING

In the previous section we assumed that the underlying
model is correct. There is some uncertainty, however, about the
form the model should take. As mentioned previously, the best
candidates for this type of analysis are relaxed cooling flow
clusters. These systems are currently not well understood, yet
the way we model the cool plasma can have a significant effect
on the resulting mass profile and conclusions we may draw
about the properties of dark matter particles or the evolution of
large-scale structure (Arabadjis et al. 2002).

A standard procedure for choosing between a simple model
M?® and a complex model MC is to utilize the F-test (Bevington
1969). This is done by computing the F-value for the data set D,

_ X*(M°[D) — x*(M°[D)
V(MFD)/n(MF)

(15)

and comparing it to the standard F-distribution. Here
x*(M®|D) and x2(M®|D) are the sum of the squares of the error-
weighted residuals in the spectroscopic least-squares fit to the
simple and complex models, respectively, and v(M®) is the num-
ber of degrees of freedom in the simple model.

Unfortunately, the standard F-test is not applicable in this
context. As Protassov et al. (2002) have pointed out, the stan-
dard F-test is valid only in cases in which the simple model
is nested within the complex model. In the present case, the
simple model lies on a boundary of the complex model. That is,
the simple model is a special case of the complex model, with
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distribution function of the simple model, simulating a data set 10 £ s = 100/100 =

for each sample item, and applying both models to the simu- 5E 3

lated data. Once our F-distribution has been constructed, we o E R

can judge the significance of the extra emission component c — T3

based on the location within the distribution of the F-value for 20 E =

the data (Protassov et al. 2002). 15 M./M, = 0.133 3

We employ the Markov Chain Monte Carlo (MCMC) sam- 10 £ s = 100/100 3

pling technique (Neal 1993; van Dyk et al. 2001; Lewis & 5E 5

Bridle 2002; Hobson & McLachlan 2003) to build a large sam- 0E 3 3

ple of data realizations from which to construct an empirical
F-distribution. Let P(x) represent the posterior probability dis-
tribution function of the parameters x = xy, x5, . . ., xy de-
termined by fitting the simple model MS to a real data set D,,.
We can sample P(x) by taking a rejection-based random walk
through the parameter space. We define a transition probability
T(x,, x,+1) as the probability of moving from an initial set of
parameters x, to a new set of parameters xX,1. T’ depends on the
value of the posterior distribution at the original and new pa-
rameter sets. Let g(x,, x,.1) be an arbitrary proposal distribu-
tion, that is, the probability that the new proposed parameter set
is x,+1 given that we are presently at x,. If we accept the pro-
posed parameter set with probability «, then

T(xm xn+1)
q(xih xn+l) ’

(16)

« (xna xn+l) =

which takes into account the odds of actually stepping to the
new location in parameter space, g(x,, X,+1), and the odds of
such a transition between the two locations being accepted,
T(x,, x,+1)- The acceptance probability « is calculated from

P(xi1+1)q(xn+la xn)
P(xn)q(xm xn+l) ' (17)

a(xm xn+1) =min |1,

In our case we use a particular form of MCMC sampling
called the Metroplis algorithm (see, e.g., Neal 1993), which
uses a symmetric proposal distribution function:

q(xna xn-H) - q(xn-Hy xn)- (18)

This prescription for wandering through parameter space con-
stitutes a Markov Chain since each new parameter set is chosen

F (arbitrary scaling)

Fic. 4—Empirical F-distributions for models M® and MC of five simulated
data sets. The cold-to-hot plasma mass ratio, assuming that the two are in
pressure equilibrium, is shown for each case, along with the significance of the
presence of the cool component as determined through 100 MCMC simulations
(see eq. [21]). The F-value of the original data set is indicated by a vertical
dashed line.

according to a probability distribution function that depends only
on the previous set of values. In the case of the Metropolis
algorithm, it is straightforward to show that P(x) is an invariant
distribution of the Markov Chain. Using equations (16) and (17),
we have

P(xn)T(xnv xn+l) = P(xn)q(xm xn+1)a(xn> xn+l)
= q(xm anrl)min[P(xn)a P(xn+1>]' (19)

TABLE 1
GaLAaxy CLUSTER SAMPLE

Cluster z

0.181

0.0631
0.2523
0.0765
0.1554
0.1523
Hydra A .ooooveee 0.0522
MS 1358 0.328

MS 2137 0.313

ZW 3146 0.2906
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Fic. 5.—Baryon density, baryon temperature, spherically enclosed mass,
and cylindrically enclosed (projected ) mass profiles of A1689, for N, = 0 (left)
and 2 (right). The hot plasma is shown in red, the cool component in blue.
Arrows represent points that lie outside the ordinate range. Reconstructions
adhering to constraint eq. (6) are shown by solid black lines. Weak (violer) and
strong ( green) gravitational lensing measurements are shown for comparison in
the bottom panels. (A solid violet line represents an isothermal sphere fit to the
weak-lensing data set.) See Table 3 for lensing references.

Making use of the symmetry of ¢ in the Metropolis algorithm,
we have

P(x,)T(xp, Xnt1) = q(Xps1, X,)min[P(x,), P(Xy11)]

P(xn+1)Q(xn+la xn)a(xn+17 xn)v
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Fic. 6.—Same as Fig. 5, but for A1795.
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Fic. 7.—Same as Fig. 5, but for A1835.
resulting in
Px,)T(xn, Xn41) = Pxi1)T (Xns1, Xn). (20)

This statement of detailed balance demonstrates that P(x) is a
stationary distribution of the Markov Chain. This is necessary,
although not sufficient, to ensure that we can sample P(x) di-
rectly using an appropriately selected chain of Monte Carlo
simulations. The other necessary condition, ergodicity, ensures
that any substring of the Markov Chain will asymptotically
approach P(x) regardless of the initial conditions, although a
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LU BELEELLL B L L e e N R R R R R R RN AL
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Fic. 8.—Same as Fig. 5, but for A2029.
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Fic. 9.—Same as Fig. 5, but for A2104. Note that there is no reconstruction
solution in the N, = 2 case that is consistent with constraint egs. (5) and (6).

derivation of this property is beyond the scope of this paper.
For a complete discussion see Neal (1993).

In many applications of MCMC sampling one pays spe-
cial attention to the finite “burn-in” period during which the
Markov Chain equilibrates. The length of the burn-in phase
depends on the sensibility of the starting point and the appro-
priateness of the scale chosen for the proposal probability dis-
tribution step. This is not a consideration in our case because
we start each MCMC sample at the (already known) peak of
the probability distribution function P(x).

Given P(x) computed by the MCMC process, we can con-
struct an empirical F-distribution and perform an F-test on the
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Fic. 10.—Same as Fig. 5, but for A2204.

Vol. 617
- _25 ||||| T T T ||||| T
@ 10 = HydraA 3
S N0
ag
~— r e T
g 107 E
E F 3
2 - ]
S8 1 | T R | a
15 __IIII T T ||||II| I__
> 10 -
3
\.&/ C ]
= o[ .
~ - s o °% °
O_IIIII | T R L
§||||| T T ||||II| ® T §
108 E <
© F =
2 = -
. 10 & =
= o 3
11
O
13 | ]
> 107 F 3
2 - .
. 10% =
= = =
11_ ]
10 Elllll 1 1 I|IIII| Ia
5 10 50 100

r (kpc)

Fic. 11.—Same as Fig. 5, but for Hydra A. Note that there is no recon-
struction solution in the N, = | case that is consistent with constraint egs. (5)
and (6) and that the Hydra A data set did not admit N, = 2 emission models.

significance of a second emission component in the core. The
entire procedure is as follows:

1. Model the real data set Dy with MS; call the best-fit pa-
rameters x;.

2. Use XSPEC to calculate P(Dy|x) (i.e., the likelihood).

3. Use Bayes’s theorem to calculate P(x|Dy) (see eq. [7]).
We discard all unphysical excursions in parameter space, i.e.,
where 7 < 0 or p < 0. (In practice, we discard at the level of the
model normalization, not p, but p is simply a function of the
normalization and the binning geometry.)

4. Create a large sample of model parameters x? using
P(x|Dy) and the Metropolis algorithm form of the MCMC tech-
nique. For each x?, compute a fake data set D;, including in-
strumental effects of the Chandra telescope and detectors, as
well as counting statistics.

5. Model each D, using both M® and MC.

6. For each pair of models tabulate its F-value given by
equation (15).
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Fig. 12.—Same as Fig. 5, but for MS 1358.

7. Bin up the set of F-values, creating an unnormalized
histogram, and superimpose the F-value of the original data.

In practice, this recipe is computationally intensive, not
because of any features of the MCMC sampling per se, but be-
cause each of the faked spectra must be modeled twice. For a
sample size of 1000 simulations, XSPEC must simulate 1000
spectra and calculate 2002 sets of best-fit values for the model
parameters (including the original data). This fact leads us to
simplify the method. First, in order to reduce the modeling
time, we have adopted a simplified core-halo geometry. In this
scheme the “core” is represented by a single shell (in this case
a sphere), while the halo is represented by another shell. Thus,
MS contains four parameters, the temperature and density of
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Fic. 13.—Same as Fig. 5, but for MS 2137.

Fic. 14—Same as Fig. 5, but for ZW 3146.

each of the two shells, while MC contains six, the additional two
parameters representing the temperature and density of a second
cospatial emission component in the core. This simplification
also greatly improves the numerical stability of the fitting pro-
cedure. The algorithm (steps 16 above) is implemented in a Tcl
script run within XSPEC.

Once we have completed step 7, we can distinguish between
the models. The location of the F-value of the data within this
empirical F-distribution contains information regarding the rel-
ative merit of M® and M®. We define the significance S of the
distribution as

f(fda!a N(F)dF

f(;”N(F)dF ' 1)
The significance § = 1 — Py, where Py is the probability that
the simple model constitutes the better description and that the
F-value of the data is this large strictly by chance. Thus, for a
one-parameter model, S = 0.68, 0.90, and 0.99 may be inter-
preted as 1, 2, and 3 o detections of the additional component.
We checked the sensitivity of this method by applying it to five
simulated data sets with known mixtures of hot (7 = 5.0 keV)
and cold (7 =1.0 keV) X-ray plasmas in pressure equilib-
rium. We use mass ratios of Mc/My = 0.000, 0.0222, 0.0500,
0.0857, and 0.133 and run 100 MCMC simulations for each.
Figure 4 shows an empirical F-distribution for each of these
cases. The F-value of the data is shown by a dashed vertical
line. For a multiphase plasma of which only 2.2% is in the cold
component, the detection of the multiphase plasma is better
than 2 0. At 5% and greater, the detection is statistically highly
significant.

5. APPLICATION TO CHANDRA CLUSTERS

We illustrate these techniques using X-ray observations of
a sample of bright, apparently relaxed galaxy clusters (see
Table 1). Each of these clusters (except A1689) contains a
significant amount of cooler plasma in its core and is known as
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TABLE 2

FIDELITY MEASURES OF BARYON DENSITY (Xf,) AND TEMPERATURE (XZT) oF EacH CoNSTRAINED MaAss PROFILE (SEE EQ. [12])
AND MULTIPHASE CORE PLASMA SIGNIFICANCE S

Cluster X5 (N, = 0) X2 (N. = 0) X2 (N =2) X2 (N. =2) N

0.00150 0.467 0.00825 1.14 0.342

0.0777 7.45 0.0156 1.29 0.823

0.00229 1.13 1.188 1.41 0.483

0.00774 1.17 0.00773 1.20 0.998

0.00251 0.624 0.190 451 0.661

0.000994 0.759 0.00947 0.284 0.999

Hydra A ..ooooeoeeseeeeeeenes 0.197 243 .
MS 1358.. 0.00663 0.381 0.00454 0.356 0.987
MS 2137 .. 0.0101 1.08 0.0110 1.38 0.271
ZW 3146 0.0293 1.25 0.0150 0.913 0.989

Vol. 617

Note.—Hydra A data did not admit an N, = 2 emission model.

a classical “cooling flow cluster” since the core radiative
cooling time is shorter than the age of the cluster. We prepared
each archived data set as described in Arabadjis et al. (2002)
and modeled the emission using the two models described in
§ 2. In the first model, each shell contains isothermal plasma
(N. = 0), while in the other, the central two shells are also al-
lowed a second (cooler) emission component (N, = 2), and the
best-fit parameter values are obtained iteratively using XSPEC.
Figures 5—14 show baryon density, baryon temperature, en-
closed spherical gravitating mass, and enclosed cylindrical
gravitating mass profiles for each cluster in the sample. The left
panels show N, = 0 models; the right panels show N, = 2 mod-
els. The unconstrained profiles are shown as data points, with
red (blue) symbols representing the hot (cool) plasma compo-

nents. (Data points that lie outside the ordinate range are indi-
cated by arrows.) Constrained profiles are shown by solid lines;
the density and temperature contributions to the x> value of
the constrained solutions are listed in Table 2. The last column
in that table lists the MCMC significance S of the presence
of multiphase gas in each cluster core as determined from the
MCMC-derived empirical F-distributions shown in Figure 15.
For the subset of five clusters that are arguably the most re-
laxed and are best described by an NFW profile (A1689, A1835,
A2029, MS 1358, and MS 2137; see AB04), we overlay the
projected mass profiles with weak- and/or strong-lensing mea-
surements from the literature (see Table 3 for references). Weak-
lensing mass profiles or isothermal sphere fits to weak-lensing
data are shown in violet; strong-lensing measurements are shown

A1689 A1835
S=0.342 S=0.483
A2104 HydraA
[z, S=0.661 S=0.0
«Q
E
Z
M$1358 MS2137 :7W3146
5=0.987) $=0.271 :5=0.989
F

FiG. 15.—Empirical F-distributions and the MCMC significance S of a second cospatial core plasma component for each cluster in the sample. The F-value of the
original Chandra data set is denoted by a vertical dashed line. (Note that Hydra A data did not admit an N. = 2 emission model.)
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TABLE 3
LENSING COMPARISONS FOR THE VERY RELAXED CLUSTER SUBSET

Cluster Weak Lensing

Strong Lensing

King et al. (2002)
Clowe & Schneider (2002)
Menard et al. (2003)
Hoekstra et al. (1998)

Wu (2000)
Allen (1998)

Franx et al. (1997); Allen (1998)
Sand et al. (2002)

in green. We adopt Hy = 67 km s~! Mpc~!, Q) = 0.7, and
Q,, =0.3.

A detailed analysis of these profiles and their consequences
for cosmology and dark matter candidates is in preparation
(AB04), so we make only a few brief comments here. Of the 10
clusters presented here, only Hydra A did not admit a second
emission component in the core: attempts to add one resulted
in the temperature of the second component being set to the
temperature of the first in the fitting procedure. This is con-
sistent with previous Chandra (David et al. 2001) and XMM-
Newton (Kaastra et al. 2004) results. Four of the clusters show
evidence for multiphase core plasma at the 99% significance
level: A2029, A2204, MS 1358, and ZW 3146 (see Table 2).
This is consistent with the study of Kaastra et al. (2004), which
finds evidence for multiphase plasma in many clusters. (Note
that, with 1000 MCMC simulations per cluster, the precision
of the significance estimate is ~3%.) For comparison, a cluster
that contained no second plasma component would, on the av-
erage, show an MCMC significance of order 0.5, or 50%. These
clusters show a greater difference in their core masses between
the uni- and multiphase models. This phenomenon is illustrated
for two clusters, MS 1358 and MS 2137, in Figures 16 and 17,
respectively. The mass of MS 1358 in the multiphase model is
about a factor of 2 larger than in the uniphase mass, and its
MCMC significance S = 0.987. MS 2137, on the other hand,
with an MCMC significance of 0.271, shows very little differ-
ence between the two mass models. This is perhaps unsurpris-
ing, as one would expect that a significant amount of cospatial
cool plasma in its core would not only display a clear obser-

T T T I T 71T T T T I T 71T
MS1358 ®
> 10"
2 g 3
=" 10° ¢ E
10" %
210" F E
= 100 F E
1012 [ 1 1 ' | 1 1 P R |_
50 100 500 1000
r (kpc)

FiG. 16.—Mass profiles for models N, = 0 (red) and 2 (blue) of MS 1358,
overlaid for comparison. Weak (violef) and strong ( green) gravitational lensing
measurements are shown for comparison.

vational signature but would also affect the equilibrium con-
figuration of the plasma. MS 2137 and ZW 3146 also provide an
interesting contrast. In the pre-Chandra/XMM-Newton era, both
clusters were reported to harbor cooling flows with mass de-
position rates in excess of 1000 M, yr—! (Allen 2000), yet they
show remarkably disparate evidence for multiphase plasma in
their cores [S(MS 2137) = 0.271; S(ZW 3146) = 0.989]. This
suggests that there may be more than one mechanism at work
responsible for the presence of 1 keV plasma at the center of gal-
axy clusters.

For each constrained reconstruction we use 7 = 2.5 and
physicality weights 4, = A, = A, originally set to 1 x 107°.
While this often will not rigidly enforce constraint equation (5),
it is usually sufficient to enforce equation (6). In those cases in
which not even equation (6) is satisfied, we increased 4, by
factors of 10 until the resulting profile was nonnegative ev-
erywhere if possible. This is the origin of the unacceptably
high values of the x? fidelity measures for the N, = 2 model
of A2104 and the N. = 1 model of Hydra A. Obviously, the
fidelity of a constrained profile tends to be greater when the
unconstrained profile shows only one or two significant out-
liers. In some cases (e.g., A1795) a very small adjustment to
the temperature profile produces a large change in the derived
mass. This is due to the competition between the derivatives
in equation (2): if a statistical fluctuation in the temperature
measurement is large enough (and positive), it will swamp the
surface brightness decrement at that radius, resulting in a very
low or even negative mass. In cases in which d log T'/d logr 2
—dlog p/dlogr, a relatively minor adjustment in the tem-
perature can remove an unphysical point from the mass
profile.

ET T T T T T T 1 T T T3
F MS2137 58 3
SR 5 E
= 10° E
_I ] ] ] I 1 11 I ] ] ] ]
]_()12 §| T T L I T T T E
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Fic. 17.—Same as Fig. 16, but for MS 2137.
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The five very relaxed clusters generally show better agree-
ment with weak-lensing mass measurements than they do with
strong lensing. The reprojected profile A1689 shows the least
agreement with the weak lensing, differing by up to a factor of
2 at some radii, although the lensing profile is a singular iso-
thermal sphere (IS) fit to weak-lensing measurements (King
et al. 2002). The strong-lensing measurement of Wu (2000),
however, exceeds our profile again by a factor of 2. The er-
ror bars are derived by assuming two values of the (unknown)
strong-lensing arc redshift (0.8 and 2.0); the discrepancy is thus
unlikely to be due to incorrect source redshift. Our profile is also
systematically in excess of the IS fit to weak-lensing obser-
vations of A1835 (Clowe & Schneider 2002), although it is
consistent with the strong-lensing point of Allen (1998). A2029
and MS 1358 show remarkable agreement with weak-lensing
data (Menard et al. 2003; Hoekstra et al. 1998), although the
strong-lensing measurement in MS 1358 (Franx et al. 1997;
Allen 1998) is moderately discrepant, as is the strong-lensing
measurement of MS 2137 (Sand et al. 2002). These issues will
be addressed in greater detail in AB04.

6. SUMMARY

We have presented a technique for calculating the dark matter
profile of a spherical, relaxed galaxy cluster. We have formulated
a technique for coping with statistical uncertainty in the mea-
surement of the cluster plasma temperature. We have also de-
scribed a method for determining whether there is a statistically
significant presence of multiphase plasma in the galaxy clus-
ter core. We have applied these tools to a sample of relaxed gal-
axy clusters observed with Chandra and find that 4/10 require
a multiphase treatment of their core plasma. Our masses are in
broad agreement with weak-lensing studies, although they are
often exceeded by those derived from strong-lensing models.

J. S. A. would like to thank Steve Allen, Aaron Lewis,
Jimmy Irwin, and Renato Dupke for many enlightening dis-
cussions. The authors would like to thank the anonymous
referee for comments that have improved this paper. This work
was supported by SAO grant AR3-4016X.
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