Abstract
Several physical mechanisms have been studied in order to explain why composite supernova remnants (SNRs) have shell-like morphologies in the radio continuum while their X-ray emission is centrally peaked. One of the proposed mechanisms has been the presence of thermal conduction, which can raise the density at the center of SNRs, increasing the X-ray emission from these regions. In this work, we have carried out axisymmetric numerical simulations with the adaptive grid Yguazú-a code, which includes advection of the magnetic field and thermal conduction. We have considered cases with anisotropic and isotropic thermal conduction, as well as with no conduction. We have simulated X-ray (as well as radio synchrotron) emission maps from our numerical simulations, which can be directly compared with observations.