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ABSTRACT

We investigate stationary axisymmetric configurations of magnetized stars in the framework of general
relativistic ideal magnetohydrodynamics. Our relativistic stellar model incorporates a toroidal magnetic field and
meridional flow in addition to a poloidal magnetic field for the first time. The magnetic field and meridional flow
are treated as perturbations, but no other approximation is made. We find that the stellar shape can be prolate rather
than oblate when a toroidal field exists. We also find that, for fixed baryonic mass and total magnetic helicity, the
more spherical the star is, the lower the energy it has. Further, we find two new types of the frame-dragging effect
that differ from the standard one in a rotating star or Kerr geometry. They may violate the reflection symmetry
about the equatorial plane.

Subject headings: gravitation — MHD — relativity — stars: interiors — stars: magnetic fields — stars: neutron

1. INTRODUCTION

Equilibrium configurations of stars are fundamental to study their dynamics, such as the precession, oscillation, and gravitational
wave emission (Ioka 2001; Bonazzola & Gourgoulhon 1996; Cutler 2002; Ioka & Taniguchi 2000). Among the main factors that
affect the stellar structure, the magnetic stress may be very important especially for neutron stars (Bocquet et al. 1995; Bonazzola &
Gourgoulhon 1996; Ioka 2001; Konno, Obata, & Kojima 1999). While most neutron stars have magnetic fields of �1012–1013 G,
there is growing evidence for the existence of supermagnetized neutron stars with �1014–1015 G, the so-called magnetars, and their
birthrate is estimated to be high, k10% of all neutron stars (Kouveliotou et al. 1998; Duncan & Thompson 1992; Mereghetti et al.
2002; Thompson 2001). Larger magnetic fields k1016 G may be generated by the helical dynamo inside a newborn neutron star
(Duncan & Thompson 1992; Thompson & Duncan 1993). Even the maximum field strength allowed by the virial theorem �1018 G
could be achieved if the central engines of gamma-ray bursts are magnetars (Usov 1992; Nakamura 1998; Kluźniak & Ruderman
1998; Wheeler et al. 2000). In a previous paper (Ioka & Sasaki 2003) we presented a formalism to study the equilibrium
configurations of magnetars. In this paper, based on this formalism, we calculate the actual configurations of magnetars.

There has been some work on stationary axisymmetric configurations of magnetized stars in the framework of general relativistic
magnetohydrodynamics (MHD), but allowing the existence of only a poloidal magnetic field (Bonazzola et al. 1993; Bocquet et al.
1995; Konno et al. 1999; Cardall, Prakash, & Lattimer 2001). The reason is that the existence of only a poloidal field is compatible
with the circularity of the spacetime (Gourgoulhon & Bonazzola 1993; Oron 2002), and once the circularity is assumed, the
spacetime metric becomes substantially simple. In a circular spacetime, there exists a family of two surfaces everywhere orthogonal
to the plane defined by the two Killing vectors associated with stationarity �� ¼ ð@=@tÞ� and axisymmetry �� ¼ ð@=@’Þ�
(Papapetrou 1966; Carter 1969, 1973). Thus, one may choose the coordinates x�ð Þ ¼ t; x1; x2; ’ð Þ such that the metric components
g01, g02, g31, and g32 are identically zero. As a consequence, the problem is simplified dramatically. However, nonnegligible toroidal
magnetic fields are likely to exist in nature. In addition, a meridional flow may also exist in the interior of a neutron star, which also
violates the circularity of the spacetime (Gourgoulhon & Bonazzola 1993; Oron 2002). Thus, we have to consider noncircular
spacetimes.

The problem to obtain an equilibrium configuration of a magnetized star can be separated into two parts. The first part is the matter
and electromagnetic field equations in a given spacetime geometry (e.g., Zanotti & Rezzolla 2002; Rezzolla, Ahmedov, & Miller
2001a, 2001b). The second part is the Einstein equations that determine the spacetime geometry under a given configuration of matter
and electromagnetic fields. In Ioka & Sasaki (2003), we formulated the first problem, i.e., the equations of motion for the matter and
electromagnetic fields in a curved spacetime. We reduced basic equations to a single differential equation, the so-called Grad-
Shafranov (GS) equation for the magnetic flux function in a noncircular (i.e., the most general) stationary axisymmetric spacetime.

In this paper we develop a relativistic stellar model in which both a toroidal magnetic field and meridional flow are incorporated,
in addition to a poloidal magnetic field, in a self-consistent way for the first time. We solve the GS equation and the perturbed
Einstein equations simultaneously to determine the effects of toroidal fields and meridional flows on the spacetime geometry and
stellar structure. We assume that magnetic fields are weak compared with gravity. This assumption is valid as long as the magnetic
field strength is smaller than the maximum value allowed by the virial theorem �1018 G (Bocquet et al. 1995; Bonazzola &
Gourgoulhon 1996). We therefore treat the magnetic field as a small perturbation on an already-known nonmagnetized, nonrotating
configuration. Our approach is similar to that developed for slowly rotating stars (Chandrasekhar 1933; Hartle 1967; Hartle &
Thorne 1968; Chandrasekhar & Miller 1974), in which the perturbation parameter is the angular velocity, whereas it is the magnetic
flux function in our case.
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This paper is organized as follows. In x 2 we briefly review general relativistic ideal MHD in stationary axisymmetric spacetimes
and recapitulate the GS equation obtained in Ioka & Sasaki (2003). In x 3 we take a weak magnetic field limit of the GS equation.
This makes it possible to solve the GS equation by separation of variables. In x 4 we derive the perturbed Einstein equations for the
metric perturbations. In x 5 we numerically solve the GS equation and the perturbed Einstein equations to obtain the magnetic field
and fluid flow structure, the mass shift due to the magnetic field, the deformation of stars, and the frame-dragging effects. Finally, we
summarize our results in x 6.

We use the units c ¼ G ¼ kB ¼ 1. Greek indices (�, �, � , �, : : :) run from 0 to 3, lowercase Latin indices (i, j, k, : : :) from 1 to 3,
and uppercase Latin indices (A, B, C, : : :) from 1 to 2, where x0 ¼ t and x3 ¼ ’. The signature of the 4-metric is (�, +, +, +).

2. GENERAL RELATIVISTIC IDEAL MHD IN STATIONARY AXISYMMETRIC SPACETIMES

The ideal MHD equations for a stationary axisymmetric system can be reduced to a single equation, the relativistic GS equation
(Ioka & Sasaki 2003; Punsly 2001). It is a second-order, nonlinear partial differential equation for a quantity called the flux function
�. The flux function � is such that it is constant over each surface generated by rotating the magnetic field lines (or equivalently the
flow lines) about the axis of symmetry and the GS equation determines the transfield equilibrium. Any physical quantities can be
calculated from the solution � of the GS equation. The relativistic GS equation in a noncircular (i.e., the most general) stationary
axisymmetric spacetime was derived in Ioka & Sasaki (2003). In this section we briefly review the derivation. The weak magnetic
field limit of the GS equation is given in x 3.

2.1. General Relativistic MHD Equations

The basic equations for general relativistic ideal MHD are as follows (Lichnerowicz 1967; Novikov & Thorne 1973; Bekenstein
& Oron 1978). Baryons are conserved,

ð�u�Þ;� ¼ 0; ð1Þ

where � is the rest-mass density (i.e., the baryon mass times the baryon number density) and u� is the fluid 4-velocity with
u�u

� ¼ �1. The electromagnetic field is governed by the Maxwell equations,

F½��;� � ¼ 0; ð2Þ

F��;� ¼ 4�J�; ð3Þ

where F�� and J� are the field strength tensor and the electric current 4-vector, respectively. Equation (2) implies the existence of a
vector potential A�: F�� ¼ A�;� � A�;� . The electric and magnetic fields in the fluid rest frame are defined as

E� ¼ F��u
�; ð4Þ

B� ¼ �1
2
	����u

�F��; ð5Þ

where 	���� is the Levi-Civita antisymmetric unit tensor with 	0123 ¼ �gð Þ1=2. In the ideal MHD, we assume the perfect
conductivity, so that

E� ¼ F��u
� ¼ 0: ð6Þ

The equations of motion for the fluid are given by T��;� ¼ 0, where T�� is the total energy momentum tensor of the fluid and the
electromagnetic field,

T�� ¼ ð�þ �	þ pÞu�u� þ pg�� þ 1

4�
u�u� þ 1

2
g��

� �
B2 � B�B�

� �
: ð7Þ

Here 	 and p are the internal energy per unit mass and pressure, respectively, B2 � B�B�, and we have used the perfect
conductivity condition given by equation (6). Assuming local thermodynamic equilibrium, the First Law of Thermodynamics is
given by

d	 ¼ �pd
1

�

� �
þ T dS; ð8Þ

where S and T are the entropy per unit mass and the temperature, respectively. Finally, we supply the equation of state,

p ¼ pð�; SÞ: ð9Þ

2.2. Conservation Laws in the Axisymmetric Stationary Case

We take �� ¼ ð@=@tÞ� and �� ¼ ð@=@’Þ� so that x0 ¼ t and x3 ¼ ’ are the time and azimuthal coordinates associated with the
Killing vectors �� and ��, respectively. Thus, all physical quantities are independent of t and ’.
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In a stationary axisymmetric MHD system, there exist five conserved quantities along each flow line constructed from the energy-
momentum tensor (Bekenstein & Oron 1978, 1979; Ioka & Sasaki 2003): D, L, �, C, and S. By exploiting the gauge freedom to
make A�;��

� ¼ A�;0 ¼ 0 and A�;��
� ¼ A�;3 ¼ 0, we can show that the magnetic potential � � A��

� ¼ A3 and the electric potential
� � A��

� ¼ A0 are constant along each flow line, i.e., u��; � ¼ u��; � ¼ 0. Henceforth we label the flow line by�, which we refer to
as the flux function. The � ¼ const surfaces are called the flux surfaces, which are generated by rotating the magnetic field lines (or
the flow lines) about the axis of symmetry. Then one can show that

F03 ¼ 0; ð10Þ

F0A ¼ �FA3; ð11Þ

F31 ¼ ��;1 ¼ C
ffiffiffiffiffiffiffi�g

p
�u2; ð12Þ

F23 ¼ �; 2 ¼ C
ffiffiffiffiffiffiffi�g

p
�u1; ð13Þ

F12 ¼ C
ffiffiffiffiffiffiffi�g

p
� u3 � �u0
� �

; ð14Þ

where �(�) and C(�) are conserved along each flow line and hence are functions of the flux function �. It may be useful to rewrite
the above equations as

B� ¼ �C� u0 þ �u3ð Þu� þ �� þ ���½ �: ð15Þ

In addition, we can show that E(�), L(�), and D(�) are also conserved along each flow line where

�D ¼ �ðu0 þ �u3Þ; ð16Þ

�E ¼ �þ B2

4��

� �
u0 þ Cðu0 þ �u3Þ

B0

4�
; ð17Þ

L ¼ �þ B2

4��

� �
u3 þ Cðu0 þ �u3Þ

B3

4�
; ð18Þ

and

� ¼ 1þ 	þ p

�
ð19Þ

is the enthalpy per unit mass. These conserved quantities are not mutually independent, but there is a relation among them,

D ¼ E � �L: ð20Þ

Except for the entropy per unit mass S(�), there are no perfectly relevant physical interpretations of these quantities. Nevertheless,
by considering several limiting cases, we may associate them with terms that describe their qualitative nature. We may call D(�)
the fluid energy per unit mass, E(�) the total energy per unit mass, L(�) the total angular momentum per unit mass, �(�) the
angular velocity, and C(�) the magnetic field strength relative to the magnitude of meridional flow. Since these conserved
quantities are essentially the first integrals of the equations of motion, specification of these functions characterizes the
configuration of the electromagnetic field and fluid flow.

2.3. ð2þ 1Þ þ 1 Formalism

To describe the metric of the noncircular (the most general) stationary axisymmetric spacetime in a covariant fashion, we adopt the
ð2þ 1Þ þ 1 formalism developed by Gourgoulhon & Bonazzola (1993). Note that this formalism is different from the ð2þ 1Þ þ 1
formalism by Maeda et al. (1980) and Sasaki (1984; see also Nakamura, Oohara, & Kojima 1987), which is suitable to the
axisymmetric gravitational collapse. Here we adopt the formalism by Gourgoulhon & Bonazzola (1993) because it is more
convenient for a spacetime, which is not only axisymmetric but also stationary.

Let n� be the unit timelike 4-vector orthogonal to the t ¼ const hypersurface �t and oriented in the direction of increasing t,

n� ¼ �Nt;�: ð21Þ
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The 3-metric induced by g�� on �t is given by

h�� ¼ g�� þ n�n�: ð22Þ

Similarly, let m� be the unit spacelike 4-vector orthogonal to the t ¼ const and ’ ¼ const hypersurface �t’ and oriented in the
direction of increasing ’,

m� ¼ Mh �
� ’;� ¼ M’j�; ð23Þ

where the vertical bar denotes the covariant derivative associated with the 3-metric h��. The induced 2-metric on �t’ is given by

H�� ¼ h�� � m�m� ¼ g�� þ n�n� � m�m�: ð24Þ

The covariant derivative associated with the 2-metric H�� is denoted by a double vertical bar. There is a relation between the
determinants as �gð Þ1=2¼ Nh1=2 ¼ NMH1=2.

Any 4-vector can be decomposed into its projection onto �t’, the component parallel to n� and that to m�. The Killing vectors
are decomposed as

�� ¼ N n� � N� ¼ N n� �MN’m� � N
�
�; ð25Þ

�� ¼ Mm� �M
�
�; ð26Þ

where the shift vector N� is (minus) the projection of �� onto �t, M
�
� is (minus) the projection of �� onto �t’, and N

�
� is the

projection of N� onto �t’. For our choice of the coordinates, i.e., for x
0 ¼ t and x3 ¼ ’, the component expressions for n� andm� are

n� ¼ 1

N
;
N 1

N
;
N 2

N
;
N’

N

� �
; ð27Þ

m� ¼ 0;
M 1

�

M
;
M2

�

M
;

1

M

� �
: ð28Þ

Note that N
�
� ¼ 0; N 1

�; N
2
�; 0

� �
and NA ¼ NA

� þ N’MA
�. We can express the 4-metric g�� in terms of N, N’, NA

� ,M,MA
�, and HAB as

g�� dx
� dx� ¼� N 2 �M 2 N’ð Þ2�N�AN

A
�

h i
dt2 � 2 M 2N’ � NA

�M�A

� �
dt d’

� 2N�A dt dx
A þ HAB dx

A dxB � 2M�A d’ dxA þ M 2 þM�AM
A
�

� �
d’2; ð29Þ

where the functions N, N’, NA
�, M, MA

�, and HAB depend only on the coordinate (x1, x2). We note that the presence of N
�
� and M

�
�

characterizes the degree of noncircularity of the spacetime. Since we only assume that physical quantities are independent of x0 ¼ t
and x3 ¼ ’, the metric g�� in equation (29) has some degrees of freedom in the choice of coordinates. Nevertheless, the norms
N
�
�N�� andM

�
�M�� cannot be set equal to zero for a general noncircular spacetime. In x 2.5 the GS equation is given as an equation

projected onto �t’.

2.4. Physical Quantities from Flux Function �

Provided that the metric g�� is given and the conserved quantities E(�) [or D(�)], L(�), �(�), C(�), and S(�) are given as
functions of �, all the physical quantities can be evaluated once the (effectively two-dimensional) configuration of the flux function
� is known (Ioka & Sasaki 2003).

The fluid 4-velocity is expressed as

u� ¼ u� �
� þ ���ð Þ þ u� �

� þ���ð Þ þ ũ
�
�; ð30Þ

where

u� ¼
E � �L

G��
� Ñ�

G�
¼ D

G��
� Ñ�

G�
; ð31Þ

u� ¼ � ðL��EÞ
G��

4��

G�C2�

� �
1� 4��

G�C2�

� ��1

þ M̃�

G�
; ð32Þ

ũ
�
� ¼ 1

NMC�
	���;� ; ð33Þ
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and we define

� ¼ � �� �
� þ ���ð Þ

�� �� þ ���ð Þ ¼ � g03 þ �g33
g00 þ �g03

; ð34Þ

G� ¼ � �� þ ���
� �

�� þ ���ð Þ ¼ � g00 þ 2�g03 þ �2g33
� �

; ð35Þ

G� ¼ �� þ���
� �

�� þ���ð Þ ¼ g33 þ 2�g03 þ�2g00; ð36Þ

Ñ� ¼ ũ
�
� N�� þ �M��

� �
; ð37Þ

M̃� ¼ ũ
�
� M�� þ�N��

� �
; ð38Þ

	�� ¼ 	����n�m�: ð39Þ

In equation (30), the orthogonality ð�� þ ���Þð�� þ���Þ ¼ 0 is satisfied. Note that M 2
Alf � 4��=G�C

2� is the square of the
effective Alfvén Mach number MAlf. At the Alfvén point MAlf ¼ 1, the numerator L��E in equation (32) should vanish to keep
the velocity u� finite.

Thus, from equations (30)–(33), given the metric g�� and the conserved functions E(�) [or D(�)], L(�), �(�), C(�), and S(�),
if the density � and the enthalpy � are additionally known (see below), the fluid 4-velocity u� can be obtained from the flux
function � and its first derivatives �;A. The magnetic field is also calculated from the flux function � by using equation (15). The
ð2þ 1Þ þ 1 decomposition of the fluid 4-velocity is performed with equations (25), (26), and (30) as

u� ¼ unn
� þ umm

� þ u
�
�; ð40Þ

where

un ¼ N u� þ�u�
� �

; ð41Þ

um ¼ M �� N’ð Þu� þ 1� N’�ð Þu�
� 	

; ð42Þ

u
�
� ¼ ũ

�
� � u� þ�u�

� �
N
�
� � u� þ �u�

� �
M

�
�: ð43Þ

The pressure p, the internal energy 	, the enthalpy �, and the temperature T are functions of the density � and the entropy S from
equations (19), (8), and (9). Hence, given S as a function of �, the only remaining quantity to be known is the density �. The
density � is determined by the normalization of the 4-velocity, which yields

� D2

G��2
þ ð4�Þ2ðL��EÞ2

G�G2
�C

4�2
1� 4��

G�C2�

� ��2

þ HAB�;A�;B

N2M2C2�2
þ Ñ 2

�

G�
� M̃ 2

�

G�
¼ �1: ð44Þ

This equation is called the wind equation.
The following components of the electric current are also calculated from the flux function:

J 0 ¼ 1

4�NM
ffiffiffiffi
H

p NM
ffiffiffiffi
H

p
F0A


 �
;A
¼ 1

4�NM
NMF0A
� �

jjA; ð45Þ

J 3 ¼ 1

4�NM
ffiffiffiffi
H

p NM
ffiffiffiffi
H

p
F3A


 �
;A
¼ 1

4�NM
NMF3A
� �

jjA; ð46Þ

where

F0A ¼ g00gAB � g0BgA0
� �

��;B þ g0BgA3 � g03gAB
� �

�;B þ g01gA2 � g02gA1
� �

F12

¼� 1

N 2
HAB þ MA

�M
B
�

M 2

� �
��;B þ

1

N2
N’HAB � MA

�N
B
�

M 2

� �
�;B �

NB
� þ N’MB

�

N2

� �
	 A
B þ MA

�N
B
�M

C
� 	BC

N 2M 2

� �
F12ffiffiffiffi
H

p ; ð47Þ
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F3A ¼ g30gAB � g3BgA0
� �

��;B þ g3BgA3 � g33gAB
� �

�;B þ g31gA2 � g32gA1
� �

F12

¼� 1

N2
N’HAB � NA

�M
B
�

M 2

� �
��;B �

1

M 2
� N’

N

� �2
" #

HAB � NA
�N

B
�

N2M 2

( )
�;B

þ 1

M 2
� N’

N

� �2
" #

MB
� � N’NB

�

N2

( )
	 A
B þ NA

�N
B
�M

C
� 	BC

N2M 2

 !
F12ffiffiffiffi
H

p ; ð48Þ

F12 ¼C
ffiffiffiffiffiffiffi�g

p
� u3 � �u0
� �

¼ C
ffiffiffiffiffiffiffi�g

p
�u� 1� ��ð Þ: ð49Þ

Thus, J 0 and J 3 are expressed in terms of � and its first and second derivatives.

2.5. Relativistic Grad-Shafranov Equation

The equation for the flux function �, that is, the GS equation, is given by (Ioka & Sasaki 2003)

J 3 � �J 0 þ 1

NMC
	ABð�u�AÞjjB � � u� þ�u�

� � dE

d�
� �

dðC�Þ
d�

� �
þ � u� þ �u�
� � dL

d�
� �

dC

d�

� �
þ �T

dS

d�
¼ 0; ð50Þ

where the double vertical bar denotes covariant differentiation with respect to the 2-metric HAB, and we have defined the auxiliary
quantity

� ¼ 1

4�
u0B3 � u3B0ð Þ ¼ 1

4�
C� G�u� � M̃�

� �
g00 þ �g03ð Þ: ð51Þ

In the previous subsection we have seen that u�, u�, u
A
�, �, �, �, T, J 0, and J 3 are all expressed in terms of � and its derivatives,

given the conserved functions E(�) [or D(�)], L(�), �(�), C(�), and S(�) and the metric g�� . Thus, in order to obtain the
configuration of matter and electromagnetic fields in a curved spacetime, we have only to solve the GS equation (50) with the aid
of the wind equation (44).

3. GRAD-SHAFRANOV EQUATION IN THE WEAK MAGNETIC FIELD LIMIT

It is formidable to solve the GS equation (50) in a general case because of its high nonlinearity. However, it becomes tractable if
we take the weak magnetic field limit. In this section we derive the GS equation in the weak-field limit with the flux function �
being the perturbation parameter. This perturbation method is essentially similar to that developed by Chandrasekhar (1933),
Chandrasekhar & Miller (1974), Hartle (1967), and Hartle & Thorne (1968) for slowly rotating stars, in which the perturbation
parameter is the angular velocity.

3.1. Zeroth Order

In Ioka & Sasaki (2003), we showed that no magnetic field limit is obtained by letting � ! 0 and C ! 1. In this limit, the GS
equation (50) and the wind equation (44) are reduced to the integrability condition and Bernouilli’s equation for the rotating
isentropic (dS=d� ¼ 0) star, respectively (Ioka & Sasaki 2003). Thus, a rotating fluid star is the zeroth-order configuration in the
weak magnetic field approximation.

Let us further suppose that there is no rotation � ¼ 0 at the zeroth order in �. Then the background metric ḡ�� is spherically
symmetric,

ḡ�� dx
� dx� ¼ �e2� dt2 þ e2k dr2 þ r2 d
2 þ sin2
 d’2

� �
; ð52Þ

and the zeroth-order configuration is obtained by the Tolman-Oppenheimer-Volkoff equations,

m0 ¼ 4�r2�ð1þ 	Þ; ð53Þ

p0 ¼ � 1

r2
e2k�� mþ 4�pr3

� �
; ð54Þ

� 0 ¼ � 1

��
p0; ð55Þ

RELATIVISTIC STARS WITH MAGNETIC FIELDS 301No. 1, 2004



where the prime denotes differentiation with respect to r, and the mass m(r) inside radius r is defined by

e2k ¼ 1� 2m

r

� ��1

: ð56Þ

The value r ¼ R� at which p ¼ 0 is the radius of the star, and the total mass of the star is given by mðR�Þ ¼ M�. The boundary
conditions are mðr ¼ 0Þ ¼ 0 and 2�ðr ¼ R�Þ ¼ ln ð1� 2M�=R�Þ.

3.2. First Order

We perform linearization with respect to the flux function �. To proceed, we have to specify the functional forms of the
conserved functions D(�) [or E(�)], L(�), �(�), C(�), and S(�), which characterize the configuration of the fluid flow and the
electromagnetic field. In this paper we assume the following:

C(�): We consider the case in which the magnetic field is confined in the interior of a star. Hence, � must vanish at the stellar
surface. Then, the Alfvén point M 2

Alf ¼ 4��=G�C
2� ¼ 1 exists near the stellar surface � � 0 in equation (32) unless C diverges at

the stellar surface. Therefore, we assume the form

C ¼ C̃

�
; ð57Þ

where C̃ ¼ const ¼ Oð1Þ. We note that as long as the magnitude of C̃ is much greater than �, the discussion below is valid, but we
assume it to be O(1) for the sake of order counting.

�(�): Since our primary interest is the effect of magnetic fields on the stellar structure, we consider a slow (rigid) rotation that is
of the same order as the one induced by the presence of a magnetic field. Hence, we set

� ¼ const ¼ Oð�2Þ: ð58Þ

Here, although we may consider the case � ¼ Oð�Þ, we choose not to do so and assume that the rotation is subdominant. Note that
the observed magnetars have long rotation periods (approximately seconds), so that this assumption is justified.

S(�): We consider an isentropic star for simplicity,

S ¼ const: ð59Þ

D(�) and L(�): These functions are chosen in such a way that the GS equation becomes separable with respect to r and 
,
namely,

D ¼ D0 þ D1�þ D2; ð60Þ

L ¼ const ¼ O C̃
� �

; ð61Þ

where D0 ¼ const ¼ Oð1Þ, D1 ¼ const ¼ Oð�Þ, and D2 ¼ const ¼ Oð�2Þ. Note that the conserved function L(�) does not
necessarily vanish at zeroth order at which there is no rotation. This is because L(�) does not exactly coincide with the angular
momentum.

With these assumptions for the conserved quantities, we can estimate the orders of the variables from equations (31)–(39), (43),
and (15) as

� ¼ O �2
� �

; u� ¼ Oð1Þ; u� ¼ O �2
� �

; ũ
�
� � u

�
� ¼ O �2

� �
; B0 ¼ O �3

� �
; Bi ¼ O �ð Þ; ð62Þ

where we have used the fact that the metric perturbations are O(�2), i.e., in equation (29) we have

N’ ¼ O �2
� �

; N
�
� ¼ O �2

� �
; M

�
� ¼ O �2

� �
; ð63Þ

and g03 ¼ O �2
� �

, which will be confirmed in x 4. Note that N ¼ e� , M ¼ r sin 
, Hrr ¼ e2k, and H

 ¼ r2 at zeroth order from
equations (29) and (52).

Now let us derive the GS equation in the weak magnetic field limit. To O(�), equation (50) is reduced to

J 3 � �u�
dE

d�
� �u��

dC

d�
¼ 0; ð64Þ
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where, from equations (46) and (48), the electric current is given by

J 3 ¼ 1

4�
ffiffiffiffiffiffiffi�g

p
ffiffiffiffiffiffiffi�g

p
F3A

� �
;A
¼ � 1

4�
ffiffiffiffiffiffiffi
�ḡ

p
ffiffiffiffiffiffiffi
�ḡ

p 1

M 2
HAB�;B

� �
;A

: ð65Þ

Up to O(�2), equations (35), (36), (31), and (32) are reduced, respectively, to

G� ¼ �g00; ð66Þ

G� ¼ g33; ð67Þ

u� ¼
D

ð�g00Þ�
; ð68Þ

u� ¼
4�L

g00g33C
2�
: ð69Þ

Hence, the wind equation (44) is reduced to

D2

ð�g00Þ�2
¼ D

�
u� ¼ ð�g00Þu2� ¼ 1; ð70Þ

where we note that g00 and g33 include perturbations up to O(�2). Then, at O(�), the second term in equation (64) is given by

��u�
dE

d�
¼ ��u�

dðDþ �LÞ
d�

¼ ��u�D1 ¼ ��e��D1; ð71Þ

where we have used u� ¼ 1=ð�ḡ00Þ
1=2 ¼ e�� at zeroth order that follows from equation (70). Note that we have D0 ¼ �e� at zeroth

order. Similarly, from equations (51), (57), and (32), the third term in equation (64) is approximated as

��u��
dC

d�
¼ � 1

4�r2 sin2


4�L

C̃

� �2

e�2��: ð72Þ

Then, by combining equations (64), (65), (71), and (72), the GS equation valid to O(�) is given by

ek�� @r e��k@r�
� �

þ e�þk

r2
sin 
@


1

sin 

@
�

� �� �
þ 4�L

C̃

� �2

e2ðk��Þ�þ 4�r2 sin2
�e2k��D1 ¼ 0; ð73Þ

where we have used the form of the background metric ḡ�� given in equation (52). Note that, under the assumptions for the
conserved quantities we have made, the GS equation at this order is an inhomogeneous linear differential equation for � with the
last term proportional to D1 as a source.

Let us separate the angular variables in the GS equation. We expand the flux function � by the vector spherical harmonics
(Regge & Wheeler 1957; Zerilli 1970) as

� ¼
X1
l¼1

 lðrÞ sin 

@Plð cos 
Þ

@

; ð74Þ

where Pl is the Legendre polynomial of degree l, and we have discarded the ’ dependence of the harmonics because of the
axisymmetry. Substituting this form into equation (73), we find the equation for the dipole  1 as

 00
1 þ � 0 � k0ð Þ 0

1 þ L̃2e�2� � 2

r2

� �
e2k 1 � 4�r2�e2k��D1 ¼ 0 ð75Þ

and for the higher multipoles as

 00
l þ � 0 � k0ð Þ 0

l þ L̃2e�2� � lðl þ 1Þ
r2

� �
e2k l ¼ 0 ðl � 2Þ; ð76Þ

where we have introduced

L̃ ¼ 4�L

C̃
: ð77Þ
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Equations (75) and (76) are the basic equations for the matter and electromagnetic fields for the conserved quantities of the
assumed forms in the weak magnetic field limit.

Since we are interested in magnetic fields confined in the stellar interior or interior magnetic fields with magnitude much larger
than exterior magnetic fields, we assume that the magnetic field vanishes at the stellar surface. Thus, to the lowest order in �, we
require

 lðR�Þ ¼ 0;  0
lðR�Þ ¼ 0 ðl � 1Þ: ð78Þ

Near the origin r ¼ 0, the regular solutions of equations (75) and (76) should have the behavior

 l ! rlþ1� l ðl � 1Þ; ð79Þ

where � l is a constant.
First, consider the dipole  1. With the boundary conditions given above, equation (75) becomes an eigenvalue equation with L̃

being the eigenvalue to be determined. There will be a discrete set of eigenvalues. For a given eigenvalue, the constant D1 then just
determines the normalization of  1. Now we consider the higher multipoles  l (l � 2). Once L̃ is determined, it is in general
impossible to find nontrivial solutions for l � 2 that also satisfy the same boundary conditions given by equations (78) and (79).
Thus, under our assumptions that the conserved quantities are of the forms given by equations (57)–(61) and that magnetic fields
are confined in the stellar interior, the only nontrivial solutions are of dipole type. Of course, once we relax the assumption of
confined magnetic fields, the existence of higher multipoles will be allowed.

In the numerical analysis, it is convenient to integrate equation (75) from the stellar surface with equation (78) as initial data.
By varying L̃, we look for a solution that behaves as regularly as possible at the origin. This procedure determines the eigenvalue
L̃. Next we integrate equation (75) from the origin with the behavior given by equation (79) and the fixed eigenvalue L̃. Then the
constant �1 is determined by demanding that the boundary condition at the stellar surface, equation (78), is satisfied.

4. METRIC PERTURBATION EQUATIONS

In this section we derive the field equations for the metric perturbation,

�g�� ¼ g�� � ḡ��: ð80Þ

By linearizing the Einstein equations about the background metric ḡ�� , we have

�g ;�
��;� ��g ;�

�� ;� ��g ;�
�� ;� þ�g �

� ;�;�


 �
þ ḡ�� �g ;� ;�

�� ��g � ;�
� ;� ��g��R

��

 �

þ�g��R ¼ �16��T��; ð81Þ

where �T�� is the perturbation of the energy momentum tensor and R�� and R are the Ricci tensor and the Ricci scalar,
respectively. As shown below, the metric perturbation �g�� is O(�2). Our method is similar to that developed by Hartle (1967),
Hartle & Thorne (1968), and Chandrasekhar & Miller (1974) for slowly rotating relativistic stars. We obtain the field equations for
the interior of the star in x 4.1 and solve the exterior equations to give the junction conditions at the stellar surface in x 4.2.

4.1. Interior Field Equations

The study of the metric perturbation in a spherical spacetime was initiated by Regge & Wheeler (1957) and Zerilli (1970).
Because of the spherical symmetry of the background, the perturbation equations are separable in the angular variables by using 10
tensor harmonics. We can eliminate some components of the metric perturbation with the aid of the gauge freedom. In the gauge
used by Regge & Wheeler (1957), the metric perturbation belonging to a given l is of the form

�g�� ¼

�2e2�Hl Il 0 0

Il
2

r
e4kMl 0 0

0 0 2r2Kl 0

0 0 0 2r2 sin2
Kl

0
BBBBBBB@

1
CCCCCCCA
Plðcos 
Þ þ

0 0 0 Vl

0 0 0 Wl

0 0 0 0

Vl Wl 0 0

0
BBB@

1
CCCA sin 


@

@

Plðcos 
Þ; ð82Þ

where the first term is of parity (�1)l (even parity), the second term is of parity ð�1Þlþ1
(odd parity), and we may discard the ’

dependence of the harmonics because of the axisymmetry. Since there are fewer independent tensor harmonics for l ¼ 0 and 1, we
may further simplify the metric by adopting a gauge in which I0 ¼ 0, K0 ¼ 0, V0 ¼ 0, W0 ¼ 0, K1 ¼ 0, and W1 ¼ 0 (Zerilli 1970).

The energy momentum tensor perturbation �T�� is obtained by taking the perturbation of equation (7). The components of the
magnetic field to O(�) are given from equations (15), (30)–(33), (62), (63), and (70) as

B0 ¼ O �3
� �

; ð83Þ

B1 ¼ � 2

r2
e�k 1 cos 
; ð84Þ
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B2 ¼ 1

r2
e�k 0

1 sin 
; ð85Þ

B3 ¼ L̃

r2
e�� 1: ð86Þ

Since the energy momentum tensor is quadratic in B�, we need �T�� to the accuracy of O(�2). To this order, from equations (30)–
(33), (62), (63), and (70), the fluid flow is given by

u0 ¼ u� ¼
1ffiffiffiffiffiffiffiffiffiffi�g00

p ; ð87Þ

u1 ¼ 2

C̃�r2
e�k��  1ð Þ2 sin2
 cos 
; ð88Þ

u2 ¼ � 1

C̃�r2
e�k�� 1 

0
1 sin

3
; ð89Þ

u3 ¼ �u� þ u� ¼ �e�� � L̃

C̃�r2
e�2�  1ð Þ2 sin2
: ð90Þ

Expanding the perturbation of the enthalpy in equation (19) in the form

��

�
¼
X1
l¼0

� ln �ðrÞ½ �l Plðcos 
Þ; ð91Þ

we obtain from equations (70) and (82) the equations

ð� ln �Þ0 ¼ �H0 �
2

3

D1

D0

 1 þ
D2

D0

; ð92Þ

ð� ln �Þ2 ¼ �H2 þ
2

3

D1

D0

 1; ð93Þ

and ð� ln �Þl ¼ �Hl for l 6¼ 0, 2. From the First Law of Thermodynamics, equation (8), with equation (19), we have the relations
ð�pÞl ¼ �ð��Þl and ð�	Þl ¼ ð p=�2Þð��Þl, where (�p)l, (�	)l, and (��)l are the lth pole perturbations of the pressure, the internal
energy, and the rest mass density, respectively. For the polytropic equation of state p ¼ K�1þ1=n, we have ð�pÞl ¼
ð1þ 1=nÞð p=�Þð��Þl.

From the Einstein equation (81) with �g�� given by equation (82), we obtain the following independent equations that have
nonzero source terms:

M 0
0 ¼ 4�r2�2�

d�

dp
ð� ln �Þ0 þ

1

3
L̃2e�2� þ 2

r2

� �
 1ð Þ2þ 1

3
e�2k  0

1

� �2
G00ð Þ; ð94Þ

H 0
0 ¼� ð� ln �Þ0

� 	0� 2

3�
e��D1 

0
1

¼ 1

r2
þ 8�p

� �
e4kM0 þ 4�re2k��ð� ln �Þ0

þ 1

3r
e2k L̃2e�2� � 2

r2

� �
 1ð Þ2þ 1

3r
 0
1

� �2
G11ð Þ; ð95Þ

I1 ¼� 32�

5

�

C̃
ek  1ð Þ2 G01ð Þ; ð96Þ

I3 ¼
16�

15

�

C̃
ek  1ð Þ2 G01ð Þ; ð97Þ

V 00
1 � � 0 þ k0ð ÞV 0

1 �
2

r
� 0 þ k0 þ 1

r

� �
V1 ¼

64�

5

L̃

C̃
�e2k��  1ð Þ2�16���r2e2k� G03ð Þ; ð98Þ

RELATIVISTIC STARS WITH MAGNETIC FIELDS 305No. 1, 2004



V 00
3 � � 0 þ k0ð ÞV 0

3 �
2

r
� 0 þ k0 þ 1

r
þ 5

r
e2k

� �
V3 ¼� 32�

15

L̃

C̃
�e2k��  1ð Þ2 G03ð Þ; ð99Þ

W2 ¼� 2

3
L̃ek��  1ð Þ2 G13ð Þ; ð100Þ

H2 þ
1

r
e2kM2 ¼

2

3
e�2k  0

1

� �2� 2

3
L̃2e�2�  1ð Þ2 G22 �

G33

sin2


� �
; ð101Þ

� 0 þ 1

r

� �
K 0
2 �

2

r2
e2kK2 þ

1

r
H 0

2 �
3

r2
e2kH2 �

1

r

1

r2
þ 8�p

� �
e4kM2 ¼ 4�e2k��ð� ln �Þ2 �

1

3r2
e2k

L̃2e�2� þ 4

r2

� �
 1ð Þ2� 1

3r2
 0
1

� �2
G11ð Þ; ð102Þ

K 0
2 þ H 0

2 �
1

r
� � 0

� �
H2 �

1

r

1

r
þ � 0

� �
e2kM2 ¼

4

3r2
 1 

0
1 G12ð Þ; ð103Þ

where we have indicated the component of the field equation in the parentheses at the end of each equation from which it is
derived. The remaining components of the Einstein equations that are not listed in the above are either trivially satisfied or not
independent from the above set because of the Bianchi identities (Zerilli 1970).

To avoid the cancellation of significant digits in the numerical calculation, it is convenient to define

Y2 ¼ H2 þ K2 �
1

6
e�2k  0

1

� �2� 2

3r
e�2k 1 

0
1 �

2

3r2
 1ð Þ2 ð104Þ

and solve for Y2 instead of K2. With equations (93) and (101), we can rewrite equations (102) and (103) as

Y 0
2 þ 2� 0H2 ¼ � 0e�2k  0

1

� �2þ 1

3
L̃2e�2� þ 2

r
� 0 þ k0ð Þe�2k � 4m

r3

� �
 1 

0
1 �

2

3
� 0L̃2e�2�  1ð Þ2� 4�

3
r�e��D1 r 0

1 þ 2 1

� �
; ð105Þ

H 0
2 þ

2

r2� 0
e2kY2 þ 2� 0 � 1

� 0
e2k 4���� 2m

r3

� �� �
H2 ¼

2

3
� 0e�2k  0

1

� �2þ 4

3r2
 1 

0
1

þ 1

3
�2� 0 þ 1

r2� 0
e2k

� �
L̃2e�2�  1ð Þ2� 8�

3� 0
�e2k��D1 1: ð106Þ

We have six differential equations (94), (95), (98), (99), (105), and (106) for six unknown functions; M0, ð� ln �Þ0, V1, V3, Y2, and
H2. A practical method to solve these equations is discussed in the next section. The functions H0, I1, I3, W2, M2, K2, and ð� ln �Þ2
are determined algebraically from equations (92), (96), (97), (100), (101), (104), and (93), respectively.

4.2. Exterior Solutions and Boundary Conditions

The equations derived in the previous subsection apply to the interior of the star. Outside the star, in the vacuum, we have
 1 ¼ 0, mðrÞ ¼ M�, e

2� ¼ 1� 2M�=r, and � ln � ¼ 0 and the resulting equations can be solved explicitly. The solutions for which
the metric g�� is asymptotically flat are obtained as

M0 ¼ �M�; ð107Þ

H0 ¼ � �M�

r � 2M�
; ð108Þ

I1 ¼ I3 ¼ 0; ð109Þ

V1 ¼
2�J

r
; ð110Þ

V3 ¼
�V

8M3
�
Vf

r

2M�

� �
; ð111Þ

W2 ¼ 0; ð112Þ
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H2 ¼
5�Q

8M 3
�
Q2

2

r

M�
� 1

� �
; ð113Þ

Y2 ¼ � 5�Q

8M3
�

2M�

rðr � 2M�Þ½ �1=2
Q1

2

r

M�
� 1

� �
; ð114Þ

M2 ¼ �ðr � 2M�ÞH2; ð115Þ

where �M*, �J, �V, and �Q are constants, Vf is the function defined by

Vf ðzÞ ¼
7

2

1

z
þ 5þ 30z� 210z2 þ 180z3 þ 60z2 3z2 � 5zþ 2

� �
ln 1� 1

z

� �� �
; ð116Þ

and Qm
n are the associated Legendre functions of the second kind,

Q2
2ðzÞ ¼

z 5� 3z2ð Þ
z2 � 1

þ 3

2
z2 � 1
� �

ln
zþ 1

z� 1
; ð117Þ

Q1
2ðzÞ ¼

2� 3z2

z2 � 1ð Þ1=2
þ 3

2
z z2 � 1
� �1=2

ln
zþ 1

z� 1
: ð118Þ

In the limit z ! 1, we have Vf ðzÞ ! 1=z3, Q2
2ðzÞ ! 8=5z3, and Q1

2ðzÞ ! �2=5z3. We may identify �M
*
and �J with the mass

shift and the angular momentum of the star, respectively, and �Q and �V with the mass quadrupole and current hexapole
moments, respectively (Thorne 1980), apart from numerical factors.

Let us now explain our strategy to solve six unknown functions M0, ð� ln �Þ0, V1, V3, Y2, and H2. First, to obtain M0 and
ð� ln �Þ0, we need to specify what quantity is to be fixed when we add the perturbation. Although we may fix the central density
(Hartle 1967; Hartle & Thorne 1968; Chandrasekhar & Miller 1974) or the total mass, here we adopt the baryon mass as the fixed
parameter. From equation (1), the total baryon mass is given by (Hartle 1967)

MB ¼
Z

d3x
ffiffiffiffiffiffiffi�g

p
�u0: ð119Þ

Then, from equations (82) and (87), the perturbation of the total baryon mass up to O(�2) is given by

�MB ¼
Z R�

0

dr 4�r2ek
1

r
e2k�M0 þ ð��Þ0

� �
: ð120Þ

This may be written in the differential form

�M 0
BðrÞ ¼ 4�r2ek

1

r
e2k�M0 þ ��

d�

dp
ð� ln �Þ0

� �
; ð121Þ

where �MB(r) is the baryon mass within radius r, and we have used the equality ð��Þ0 ¼ ��ðd�=dpÞð� ln �Þ0 for an isentropic
fluid. To fix the baryon mass, we solve this equation with the boundary conditions �MBð0Þ ¼ 0 and �MBðR�Þ ¼ 0, together with
equation (94) for M0 and equation (95) for ð� ln �Þ0. Near the origin these functions have the behaviors

M0 !
1

3
r3 4��2

c�c
d�c
dpc

ð� ln �Þ0c þ 2�2
1

� �
; ð122Þ

ð� ln �Þ0 ! ð� ln �Þ0c; ð123Þ

�MB ! 4�

3
r3�c�c

d�c
dpc

ð� ln �Þ0c; ð124Þ

where �1 is the constant introduced in equation (79), i.e.,  1 ! r2�1, and the subscript ‘‘c’’ means the value at the center of the
star. With these initial behaviors, equations (94), (95), and (121) can be integrated from the center to the stellar surface. We first
determine the central value ð� ln �Þ0c so as to satisfy the boundary condition �MBðR�Þ ¼ 0. Then the value of M0 at r ¼ R� gives
the mass shift �M* from equation (107), and the solution for ð� ln �Þ0, together with equations (92) and (108), determines the
constant D2.
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Next, to obtain V1, it is convenient to express it as the sum of a particular solution and a homogeneous solution

V1 ¼ V
ðPÞ
1 þ c1V

ðHÞ
1 ; ð125Þ

where c1 is a constant and the homogeneous solution V
ðHÞ
1 satisfies equation (98) with the right-hand side being zero. Near the

origin, we have

V
ðPÞ
1 ! r2; V

ðHÞ
1 ! r2: ð126Þ

Then, V
ðPÞ
1 and V

ðHÞ
1 can be obtained by integrating equation (98) from the center with the initial behavior given by equation (126)

to the stellar surface. The constant c1 in equation (125) and the angular momentum � J in equation (110) can be determined by
requiring the continuities of the value V1 and its derivative V 0

1 with the exterior solution in equation (110).
A similar method can be applied to equation (99) for V3. In this case, the behavior near the origin is

V
ðPÞ
3 ! r4; V

ðHÞ
3 ! r4: ð127Þ

Then the solution determines the current hexapole moment �V from equation (111).
Finally, to obtain Y2 and H2, we again express them as the sum of a particular solution and a homogeneous solution

Y2 ¼ Y
ðPÞ
2 þ c2Y

ðHÞ
2 ; H2 ¼ H

ðPÞ
2 þ c2H

ðHÞ
2 ; ð128Þ

where c2 is a constant and the homogeneous solutions Y
ðHÞ
2 and H

ðHÞ
2 satisfy equations (105) and (106), respectively, with the right-

hand side being zero. Near the origin, they behave as

Y
ðPÞ
2 ! r4

6
L̃2e�2�c�2

1 � 8��ce
��cD1�1

� �
; H

ðPÞ
2 ! 8

3
r2�2

1; ð129Þ

Y
ðHÞ
2 ! � 2�

3
r4 �c þ �c	c þ 3pcð Þ; H

ðHÞ
2 ! r2: ð130Þ

These functions can be calculated by integrating equations (105) and (106) from the center with the initial behaviors given
by equations (129) and (130) to the stellar surface. The constant c2 in equation (128) and the mass quadrupole moment �Q
in equations (113) and (114) can be determined by requiring the continuities of Y2 and H2 with the exterior solutions given by
equations (113) and (114).

5. NUMERICAL RESULTS

In this section we present the results of our numerical integration of the linearized GS equation (75) and the metric perturbation
equations in x 4. We adopt the fifth-order Runge-Kutta method with the adaptive step size control (Press et al. 1992) and use it
iteratively when necessary. We adopt the polytropic equation of state

p ¼ K�1þ1=n; ð131Þ

with the polytropic index n ¼ 1. We consider the nonrotating case � ¼ 0 to concentrate on the magnetic effects.

5.1. Magnetic Field and Fluid Flow Structure

The GS equation (75) for  1 is the basic equation to obtain the fluid flow and the electromagnetic field. The boundary condition
given by equation (78) is satisfied for discrete eigenvalues L̃. The first few roots of the (dimensionless) eigenvalue R�L̃ are given in
Table 1 for several relativistic factors M

*
/R

*
. Although L̃ can take both signs, we assume L̃ > 0 in the following.

The components of the magnetic field B� are given by equations (83)–(86). Although the magnetic field is defined in the fluid
frame in equation (5), the fluid 4-velocity u� there may be identified with the unit vector n� normal to the t ¼ const hypersurface to
the accuracy of O(�). Therefore, it is convenient to express the magnetic field in terms of the orthonormal tetrad components in the
background metric given by equation (52). They are given by

Br̂ ¼ � 2

r2
 1 cos 
; ð132Þ

B
̂ ¼
1

r
e�k 0

1 sin 
; ð133Þ

B’̂ ¼ L̃

r
e�� 1 sin 
: ð134Þ
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In Figure 1 we show Br̂ð
 ¼ 0Þ, B
̂ð
 ¼ �=2Þ, and B’̂ð
 ¼ �=2Þ normalized by 2�1 as a function of radius r for the smallest two
eigenvalues of L̃. Note that the magnetic field strength at the center of the star is given by B2

c ¼ ð2�1Þ2. From these figures, we can
see that the magnetic structure is more complicated for a larger eigenvalue L̃. To be precise, the number of nodes at which the r
derivative of the magnetic field vanishes increases as L̃ becomes large. This is also illustrated in Figure 2, in which the magnetic
field lines projected on the meridional plane, i.e., the � ¼ const lines in the (r, 
)-plane, are shown. In Figure 3 we show the
projection of a truncated piece of a magnetic field line onto the equatorial plane. Only the part of it in the upper hemisphere
(
 < �=2) is shown. As we can see from the figure, the flux surface forms a torus and the magnetic field line winds around the
torus.

The fluid flow is determined from equations (87)–(90). The orthonormal tetrad components of the fluid velocities in the
background metric given by equation (52) are given by

v r̂ ¼
2

C̃�r2
e��  1ð Þ2 sin2
 cos 
; ð135Þ

v
̂ ¼ � 1

C̃�r
e�k�� 1 

0
1 sin

3
; ð136Þ

v’̂ ¼ �e��r sin 
� L̃

C̃�r
e�2�  1ð Þ2 sin3
; ð137Þ

where we set � ¼ 0 in the present analysis. In Figure 4 we show v r̂ð
 ¼ �=4Þ, v
̂ð
 ¼ �=2Þ, and v’̂ð
 ¼ �=2Þ as functions of radius
r for the smallest two eigenvalues of L̃, normalized by the dimensionless quantity

RV � M�R�

C̃

R4
��

2
1

M 2
�
: ð138Þ

As in the case of the magnetic field, the velocity field is more complicated for a larger eigenvalue. In Figure 5 we plot the velocity
field on the meridional plane (’ ¼ const plane). The flow line resides on the constant flux surface.

Fig. 1.—Components Br̂ð
 ¼ 0Þ, B
̂ð
 ¼ �=2Þ, and B’̂ð
 ¼ �=2Þ of the magnetic field in the orthonormal basis in eqs. (132)–(134) normalized by the central
magnetic field 2�1, as functions of radius r/R*

. We adopt the polytropic index n ¼ 1 and the relativistic factor M�=R� ¼ 0:2. The left-hand panel shows the case of
the eigenvalue L̃ ¼ L̃1 and the right-hand panel the case of L̃ ¼ L̃2 given in Table 1.

TABLE 1

First Few Roots of the (Dimensionless) Eigenvalue R�L̃

Eigenvalue M�=R� ¼ 0:24 M�=R� ¼ 0:2 M�=R� ¼ 0:1 M�=R� ¼ 0:01

R�L̃1
�� �� ...... 2.8704 3.9079 5.7924 7.2638

R�L̃2
�� �� ...... 4.1284 5.6017 8.3151 10.475

R�L̃3
�� �� ...... 5.3393 7.2568 10.795 13.615

R�L̃4
�� �� ...... 6.5432 8.9031 13.258 16.729

R�L̃5
�� �� ...... 7.7448 10.545 15.711 19.829

Notes.—The first few roots of the (dimensionless) eigenvalue R�L̃ in eq. (75) are
shown for several relativistic factors M

*
/R

*
. Note that the configuration M�=R� ¼ 0:24

is unstable against radial perturbations.
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In equation (138), the dimensionless quantity

RM � R4
��

2
1

M 2
�

¼ 3

2

B2
c=8�

� �
4�R3

�=3
� �

M 2
� =R�

ð139Þ

describes the ratio of the magnetic energy to the gravitational energy, apart from a numerical factor. The quantity C̃ controls the
magnitude of the meridional flow. As mentioned in x 3.2, our perturbation method is valid as long as

C̃
�� ��3 R3

��1

�� �� ¼ Oð�Þ: ð140Þ

The limit C̃
�� ��! 1 corresponds to the limit of zero meridional flow.

Fig. 2.—Magnetic field lines projected on the meridional plane, i.e., the � ¼ const lines in the (r, 
)-plane. The dashed line is the stellar surface. We adopt the
polytropic index n ¼ 1 and the relativistic factor M�=R� ¼ 0:2. The left-hand panel shows the case of the eigenvalue L̃ ¼ L̃1 and the right-hand panel the case of
L̃ ¼ L̃2 given in Table 1.

Fig. 3.—Truncated piece of the magnetic field line on a certain flux surface (� ¼ const surface) projected onto the equatorial plane (
 ¼ �=2 plane). Only the part
of it in the upper hemisphere (
 < �=2) is shown. The dashed line is the stellar surface. The dotted lines are the cross section of the flux surface with the equatorial
plane. We adopt the polytropic index n ¼ 1, the relativistic factor M�=R� ¼ 0:2, and the eigenvalue L̃ ¼ L̃1 in Table 1.
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5.2. Mass Shift and Magnetic Helicity

By integrating the metric perturbation equations in x 4 according to the prescription of x 4.2, we can calculate the change in the
central density (��)0c, the mass shift�M*, the angular momentum�J, the mass quadrupole moment�Q, and the current hexapole
moment �V. In Table 2 we list the numerical results for several configurations. Each value is normalized appropriately as indicated
in the first column. Here the dimensionless variable RV defined in equation (138) measures the magnitude of the meridional flow
velocity and RM defined in equation (139) measures the ratio of the magnetic energy to the gravitational energy. We also introduce
the dimensionless magnetic helicity HM as defined in equation (145). The numbers given in Table 2 can be easily converted to
physical units once we specify the mass M* and the dimensionless variables RV (or C̃) and RM (or �1).

The mass shift �M*/M*HM increases for larger eigenvalue L̃. This means that the configuration with the smallest eigenvalue
L̃ ¼ L̃1 is the lowest energy state for a fixed baryon mass MB and total magnetic helicity HM. The magnetic helicity is conserved in
a perfect conducting plasma (Woltjer 1958), and it describes topological properties such as links, twists, and kinks of magnetic field
lines (Moffatt 1969; Berger & Field 1984). When the topology of the field lines changes, the conductivity should be finite, which

Fig. 4.—Components v r̂ð
 ¼ �=4Þ, v
̂ð
 ¼ �=2Þ, and v’̂ð
 ¼ �=2Þ of the fluid velocity in the orthonormal basis in eqs. (135)–(137), normalized by the
dimensionless variable RV in eq. (138), as functions of radius r/R*. We adopt the polytropic index n ¼ 1 and the relativistic factor M�=R� ¼ 0:2. The left-hand panel
shows the case of the eigenvalue L̃ ¼ L̃1 and the right-hand panel the case of L̃ ¼ L̃2 given in Table 1.

Fig. 5.—Velocity field in the meridional plane (’ ¼ const plane). The lengths of the vectors are proportional to the fluid velocity in the orthonormal basis in eqs.
(135)–(137). The dashed line is the stellar surface. We adopt the polytropic index n ¼ 1, the relativistic factor M�=R� ¼ 0:2, and the eigenvalue L̃ ¼ L̃1 in Table 1.
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TABLE 2

Parameters of Weakly Magnetized Stars in General Relativity

M
*
/R

*
L̃ ð��Þ0c=�cHM �M�=M�HM �J=M�R�RV �Q=M�R

2
�HM �V=M�R

3
�RV ð�rÞ0=R�HM e

*
/HM HM/RM

0.24 (�cM
2
� ¼ 1:3304E � 2,

pc=�c ¼ 5:4344E � 1,

	c ¼ npc=�c).................... L̃1 �1.7201E�1 2.2123E�2 �1.9030E�2 �2.4813E�3 1.6221E�4 7.8089E�2 �6.8901E�3 1.8450E�1

L̃2 �1.3834E�1 2.8090E�2 �3.7484E�2 �7.5644E�3 5.0828E�4 1.2146E�1 �2.1005E�2 2.2614E�1

L̃3 �1.3433E�1 3.3088E�2 �1.3583E�2 �1.3770E�2 2.3390E�4 1.6951E�1 �3.8237E�2 7.4362E�2

L̃4 �1.2457E�1 3.8033E�2 �1.7557E�2 �2.0184E�2 3.3273E�4 2.1765E�1 �5.6046E�2 9.2887E�2

L̃5 �1.2618E�1 4.3057E�2 �9.0243E�3 �2.6556E�2 1.7827E�4 2.6526E�1 �7.3741E�2 4.7016E�2

0.2 (�cM
2
� ¼ 6:7418E � 3,

pc=�c ¼ 2:5582E � 1,

	c ¼ npc=�c).................... L̃1 2.5443E�1 2.4450E�2 �2.5850E�2 �6.1618E�3 3.6056E�4 �2.5991E�2 �1.5050E�2 2.5561E�1

L̃2 4.0620E�1 3.0662E�2 �7.0990E�2 �1.8749E�2 1.4779E�3 9.0360E�3 �4.5796E�2 4.3463E�1

L̃3 5.3048E�1 3.6320E�2 �2.0397E�2 �3.2930E�2 5.1754E�4 4.1634E�2 �8.0431E�2 1.1531E�1

L̃4 6.7339E�1 4.2004E�2 �3.0716E�2 �4.7192E�2 8.3493E�4 7.3899E�2 �1.1527E�1 1.6900E�1

L̃5 7.9653E�1 4.7794E�2 �1.4039E�2 �6.1198E�2 3.9211E�4 1.0519E�1 �1.4948E�1 7.6323E�2

0.1 (�cM
2
� ¼ 7:9326E � 4,

pc=�c ¼ 7:0273E � 2,

	c ¼ npc=�c).................... L̃1 �4.2056E�2 1.7802E�2 �2.5913E�2 �1.9571E�2 6.8215E�4 9.0505E�2 �3.6533E�2 2.7778E�1

L̃2 1.1871E�1 2.2276E�2 �8.7908E�2 �6.0171E�2 3.2927E�3 1.8445E�1 �1.1232E�1 5.8027E�1

L̃3 1.8560E�1 2.6519E�2 �2.2024E�2 �1.0366E�1 9.7473E�4 2.7967E�1 �1.9350E�1 1.3491E�1

L̃4 3.0621E�1 3.0791E�2 �3.6953E�2 �1.4668E�1 1.7212E�3 3.7327E�1 �2.7381E�1 2.2085E�1

L̃5 3.8261E�1 3.5149E�2 �1.5645E�2 �1.8861E�1 7.4237E�4 4.6484E�1 �3.5208E�1 9.2516E�2

0.01 (�cM
2
� ¼ 7:8563E � 7,

pc=�c ¼ 5:1447E � 3,

	c ¼ npc=�c).................... L̃1 �1.0732E�1 2.2215E�3 �2.3000E�2 �3.9173E�2 8.9803E�4 1.3237E�1 �5.9957E�2 2.6217E�1

L̃2 1.1140E�1 2.7927E�3 �7.9968E�2 �1.2203E�1 4.3637E�3 2.7151E�1 �1.8677E�1 5.5877E�1

L̃3 1.8112E�1 3.3291E�3 �2.0174E�2 �2.0944E�1 1.2846E�3 4.1207E�1 �3.2056E�1 1.3056E�1

L̃4 3.4219E�1 3.8697E�3 �3.4439E�2 �2.9532E�1 2.2933E�3 5.4972E�1 �4.5201E�1 2.1748E�1

L̃5 4.3170E�1 4.4214E�3 �1.4475E�2 �3.7878E�1 9.7915E�4 6.8415E�1 �5.7975E�1 9.0471E�2

Notes.—Parameters of weakly magnetized stars in general relativity are shown for several relativistic factors M
*
/R

*
and eigenvalues L̃ given in Table 1. Shown are (��)0c

(central density shift), �M
*
(mass shift), �J (angular momentum), �Q (mass quadrupole moment), �V (current hexapole moment), (�r)0 (l ¼ 0 deformation of the stellar

surface), e
*
(ellipticity at the stellar surface), and HM (dimensionless magnetic helicity). The dimensionless quantitiesRV and RM defined in eqs. (138) and (139), respectively,

measure the magnitude of fluid flow and magnetic field energy.



implies nonconservation of the magnetic helicity. However, it was conjectured that the total magnetic helicity is still approximately
conserved on reconnection or relaxation timescales (Taylor 1974; Berger 1984). This hypothesis has been successful in laboratory
plasmas (Taylor 1986). It is uncertain whether or not the total magnetic helicity is nearly conserved in the neutron star. In any case,
we may speculate that the configuration with the smallest eigenvalue is preferred if the free energy could be released by the
rearrangement of the magnetic field (see also Ioka 2001).

In the covariant language, the 4-current of magnetic helicity is defined (Carter 1978; Bekenstein 1987) by

H� ¼ 1
2
	����A�F��: ð141Þ

This is conserved in the ideal MHD,

H�
;� ¼ 0: ð142Þ

Thus, the total magnetic helicity is defined by
R
d3x �gð Þ1=2H0. Although the 4-current of magnetic helicity H� is not gauge

invariant locally, the total magnetic helicity is gauge invariant for confined magnetic fields. From equations (14), (87), and (90) we
have

F12 ¼ L̃ek�� 1 sin 
: ð143Þ

Hence, using the gauge freedom to take A2 ¼ 0, we find

A1 ¼ L̃ek�� 1 cos 
: ð144Þ

Therefore, we define the (dimensionless) total magnetic helicity by

HM � 1

M 2
�

Z
d3x

ffiffiffiffiffiffiffi�g
p

H0 ¼ 1

M 2
�

Z R�

0

dr
16�

3
L̃ek��  1ð Þ2: ð145Þ

5.3. Spherical and Quadrupolar Deformations

The magnetic stress distorts a star. The isobaric ( p ¼ const) surface that lies at a radius r0 in the background configuration is
displaced in the perturbed configuration to a radius

r ¼ r0 þ ð�rÞ0ðr0Þ þ ð�rÞ2ðr0ÞP2ðcos 
Þ; ð146Þ

where, from equation (55) and �pð Þl¼ � ��ð Þl, we have

ð�rÞl ¼
1

� 0
ð� ln �Þl ðl ¼ 0; 2Þ: ð147Þ

The spherical deformation is characterized by the monopole displacement (�r)0. However, to describe the quadrupolar deformation
in a geometrically invariant manner, the coordinate radius r is not quite appropriate. Instead of r, the circumferential radius
r2� ¼ r2½1þ 2K2P2ð cos 
Þ� is more appropriate (Hartle & Thorne 1968). Then the isobaric surface is expressed as

r�ðr0; 
Þ ¼ r0 þ ð�rÞ0ðr0Þ þ ð�rÞ2ðr0Þ þ r0K2ðr0Þ
� 	

P2ðcos 
Þ: ð148Þ

We describe the quadrupolar deformation by the ellipticity defined by

e�ðrÞ ¼
r�ðr; �=2Þ � r�ðr; 0Þ

r
¼ � 3

2

� ln �ð Þ2
r� 0

þ K2

� �
: ð149Þ

In Table 2 we also list (�r)0 and e* at the stellar surface r ¼ R� for various configurations. We can see that the stars are more
deformed for larger eigenvalues of L̃, for the baryon mass and total magnetic helicity fixed. This is intuitively consistent with the
results in the previous subsection that the energy (the mass shift) is higher for larger L̃ for constant baryon mass and total
magnetic helicity. We also find that the configurations are prolate rather than oblate since e� < 0. This is in contrast with the case of
stars with only poloidal fields that are oblate rather than prolate (Bocquet et al. 1995; Konno et al. 1999). This difference is due to the
fact that the magnetic stress of a toroidal field tends to make a star prolate, working like a rubber belt tightening up the equator of
the star (Ostriker & Gunn 1969; Ioka 2001). Our model is the first example that demonstrates the validity of this picture in
relativistic stars.
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5.4. Frame Dragging

In general relativity, inertial frames are dragged not only by the fluid flow but also by the magnetic field. The dragging of inertial
frames manifests itself in the off-diagonal components of the metric given by equation (82). In addition to the t’ component (Vl),
which is familiar in the case of rotating stars and Kerr black holes, there also exist the tr component (Il) and the r’ component (Wl)
in the Regge-Wheeler gauge. These components originate from the meridional flow and the toroidal magnetic field, which are
incorporated into the relativistic stellar model for the first time in this paper.

The 4-velocity of an observer whose world line is orthogonal to the t ¼ const hypersurface �t is given by n� in equation (21). To
the lowest order in �, the coordinate angular velocity and the coordinate radial velocity of such observers are given by

d’

dt
¼ n3

n0
¼ N’ ¼ V1

r2
þ V3

r2
3

2
5 cos2
� 1
� �

; ð150Þ

dr

dt
¼ n1

n0
¼ N 1 ¼ �e�2kI1 cos 
� e�2kI3

1

2
5 cos3
� 3 cos 

� �

; ð151Þ

from equations (27), (29), and (82).
In Figure 6 we show the t’ component of the metric perturbation that describes the coordinate angular velocity, for M�=R� ¼ 0:2

(relativistic case) and M�=R� ¼ 0:01 (Newtonian case). The left-hand panel shows the dipole (l ¼ 1) component of the
(normalized) coordinate angular velocity ðV1=r

2Þ=ðM�RV=R
2
�Þ, and the right-hand panel shows the hexapole (l ¼ 3) component

ðV3=r
2Þ=ðM�RV=R

2
�Þ. From these figures, we can see that the normalized coordinate angular velocity does not depend on the

relativistic factor M
*
/R

*
so much. Thus, if the velocity of the meridional flow is fixed, i.e., RV ¼ const, the coordinate angular

velocity is nearly proportional to (M
*
/R

*
)2 for fixed mass. Note that the t’ component (Vl) is gauge invariant for stationary

perturbations (see eq. [D3] in Zerilli 1970).
In Figure 7 we show the dipole and hexapole components of the (normalized) coordinate radial velocity in equation (151),

�e�2kI1/(M*
RV/R*

) and �e�2kI3/(M*
RV/R*

), respectively. From these figures, and from the left-hand panel of Figure 4 where we
see that the fluid velocity v is about v � 0:1RV , as an order-of-magnitude estimate, the coordinate radial velocity is found to be
�ðM�=R�Þv. It is interesting to note that the presence of the components I1 and I3 violates the reflection symmetry about the
equatorial plane, i.e., I1 and I3 are of parity (�1) in equation (82). Note that the tr component (Il) is gauge specific by itself (see
eq. [D4] in Zerilli 1970). For example, we may choose a gauge in which g01 ¼ 0. However, for such a gauge we will have g02 6¼ 0.
What is significant is that we have a new frame-dragging effect due to nonvanishing N

�
� because of the noncircularity of the

spacetime, as pointed out at the end of x 2.3.
In analogy with the above arguments, let us consider the components of the unit spacelike 4-vector m� orthogonal to the

t ¼ const and ’ ¼ const hypersurface �t’ in equation (23). To the lowest order in �, from equations (28), (29), and (82), we have

dr

d’
¼ m1

m3
¼ M 1

� ¼ 3e�2kW2 sin
2
 cos 
: ð152Þ

In Figure 8 we show the quadrupole component of the (normalized) coordinate derivative e�2kW2=ðM 2
�HM=R�Þ for M�=R� ¼ 0:2

and 0.01. We find from this figure that dr=d’ / M�=R� for fixed mass and total magnetic helicity. This frame-dragging effect
originates from the magnetic field rather than the fluid flow, since the right-hand side of equation (100) does not depend on C̃ (or

Fig. 6.—The t’ component of the dipole (l ¼ 1) metric perturbation (left) and that of the hexapole (l ¼ 3) metric perturbation (right) as functions of radius,
namely, V1/r

2 normalized by M�RV=R
2
� and V3/r

2 normalized by M�RV=R
2
�, respectively. The solid and dashed lines are for M�=R� ¼ 0:2 (relativistic) and

M�=R� ¼ 0:01 (Newtonian), respectively, while the thick and thin lines are for L̃ ¼ L̃1 and L̃ ¼ L̃2 in Table 1, respectively. We adopt the polytropic index n ¼ 1.
These metric components describe the standard frame dragging due to the angular momentum.
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RV). The component W2 also violates the reflection symmetry about the equatorial plane; i.e., W2 is of parity (�1) in equation (82).
Note, again, that the r’ component (Wl) is gauge specific (see eq. [D3] in Zerilli 1970). For example, we can take a gauge in which
g13 ¼ 0. However, once again, an important point is that we have nonvanishingM

�
� because of the noncircularity, which is a gauge-

invariant statement.

6. SUMMARY

We have investigated stationary axisymmetric configurations of magnetized stars in the framework of general relativistic ideal
MHD. A toroidal magnetic field and meridional flow in addition to a poloidal magnetic field are incorporated into the relativistic
stellar model for the first time. We have treated the magnetic field and meridional flow as perturbations, but no other
approximations were made. We have restricted ourselves to a star with a dipole magnetic field, slow rotation, and polytropic
equation of state and considered magnetic field configurations confined in the interior of the star.

Fig. 7.—The tr component of the dipole (l ¼ 1) metric perturbation (left) and that of the hexapole (l ¼ 3) metric perturbation (right) as functions of radius,
namely, �e�2kI1 normalized by M

*
RV/R*

and �e�2kI3 normalized by M
*
RV/R*

, respectively. The solid and dashed lines are for M�=R� ¼ 0:2 (relativistic) and
M�=R� ¼ 0:01 (Newtonian), respectively, while the thick and thin lines are for L̃ ¼ L̃1 and L̃ ¼ L̃2 in Table 1, respectively. We adopt the polytropic index n ¼ 1.
These metric components describe a new type of frame dragging due to meridional flow.

Fig. 8.—The r’ component of the quadrupole (l ¼ 2) metric perturbation as a function of radius, namely, e�2kW2 normalized by M2
�HM=R�. The solid and dashed

lines are for M�=R� ¼ 0:2 (relativistic) and M�=R� ¼ 0:01 (Newtonian), respectively, while the thick and thin lines are for L̃ ¼ L̃1 and L̃ ¼ L̃2 in Table 1,
respectively. We adopt the polytropic index n ¼ 1. This metric component describes a new type of frame dragging due to a toroidal magnetic field.
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The solutions are found to be characterized by discrete eigenvalues that describe the radial profiles of the magnetic field and fluid
flow, namely, the magnetic field and velocity field configurations become more complicated for larger eigenvalues. We have found
that the stellar shape is prolate rather than oblate because of the stress of the toroidal magnetic field. For fixed total baryonic mass
and magnetic helicity, more spherical stars are found to have lower energy. We have also found two new types of frame dragging
that differ from the one in rotating stars and Kerr black holes. These effects are due to the presence of the meridional flow and
toroidal magnetic field. Interestingly, these effects violate the reflection symmetry about the equatorial plane. This means that the
magnetic field or the meridional flow naturally selects the preferred direction about the axis of symmetry. This mechanism may be
related to the neutron star kick or the jet formation.

K. I. is grateful to F. Takahara and H. Nakano for useful discussions. This work was supported in part by the Monbukagaku-sho
Grant-in-Aid for Scientific Research 00660 (K. I.) and 14047214 (M. S.).
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