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ABSTRACT

We discuss the mass-radius (M-R) relations for low-mass (M < 0:1 M�) white dwarfs (WDs) of arbitrary
degeneracy and evolved (He, C, O) composition. We do so with both a simple analytical model and models
calculated by integration of hydrostatic balance using a modern equation of state valid for fully ionized
plasmas. TheM-R plane is divided into three regions where either Coulomb physics, degenerate electrons, or
a classical gas dominates the WD structure. For a givenM and central temperature Tc, theM-R relation has
two branches differentiated by the model’s entropy content. We present the M-R relations for a sequence of
constant-entropy WDs of arbitrary degeneracy parameterized by M and Tc for pure He, C, and O. We
discuss the applications of these models to the recently discovered accreting millisecond pulsars. We show the
relationship between the orbital inclination for these binaries and the donor’s composition and Tc. In
particular, we find from orbital inclination constraints that the probability XTE J1807�294 can
accommodate a He donor is approximately 15%, while for XTE J0929�304 it is approximately 35%. We
argue that if the donors in ultracompact systems evolve adiabatically, there should be 60–160 more systems
at orbital periods of 40 minutes than at orbital periods of 10 minutes, depending on the donor’s composition.
Tracks of our mass-radius relations for He, C, and O objects are available in the electronic version of
this paper.

Subject headings: binaries: close —
pulsars: individual (XTE J0929�314, XTE J1751�305, XTE J1807�294) —
white dwarfs — X-rays: binaries

On-line material: source code

1. INTRODUCTION

The discovery of three X-ray transient ultracompact
accreting millisecond pulsars (MSPs), XTE J1751�305
(Markwardt et al. 2002), XTE J0929�314 (Galloway et al.
2002), and XTE J1807�294 (Markwardt, Juda, & Swank
2003a; Markwardt, Smith, & Swank 2003b) have demon-
strated the existence of binary pulsar systems with low-mass
(M2 � 10�2 M�) donors. These three ultracompact systems
(here defined as binaries with orbital periods Porb < 60
minutes) are remarkably homogeneous, with measured Porb

values of 42.4, 43.6, and 40.1 minutes, respectively, well
below the minimum period for a system with a donor com-
posed primarily of hydrogen (Rappaport, Joss, & Webbink
1982). Since the nature of the donors in these systems today
depends on the prior evolution of the system, it is useful
to discuss the potential formation mechanisms for these
systems.

Binary systems with Porb < 80 minutes can form through
at least two channels. Stable mass transfer from an evolved
main-sequence star (Nelson, Rappaport, & Joss 1986;
Fedorova & Ergma 1989; Podsiadlowski, Rappaport, &
Pfahl 2002; Nelson &Rappaport 2003) or a He-burning star
(Savonije, de Kool, & van den Heuvel 1986) onto a neutron
star (NS) is one mechanism. In this scenario, the main-
sequence star is brought into Roche lobe (RL) contact
because of orbital angular momentum losses from magnetic

braking at a time when the core has nearly completed H
burning. Such a systemwill evolve to orbital periods compa-
rable to the ultracompact MSPs and can reach Porb � 10
minutes (Podsiadlowski et al. 2002; Nelson & Rappaport
2003). Podsiadlowski et al. (2002) and Nelson & Rappaport
(2003) show that the resulting ultracompact binaries have
donor masses M2 � 0:1 0:2 M� as they pass through
Porb � 40 minutes on their way toward a shorter period.
These masses are significantly greater than those measured
in the ultracompact MSPs (Galloway et al. 2002;
Markwardt et al. 2002; Bildsten 2002). However, systems
evolving through 40 minutes on the way out from the period
minimum have masses more in line with the measurements
(M2 � 0:01 M�), and by this time the donors have become
partially degenerate with core temperatures Tc � 105 106 K
(Nelson &Rappaport 2003).

The second scenario that may form ultracompact systems
involves triggering a common-envelope phase during an
unstable mass transfer episode from the donor onto the NS.
The core of the donor, either a He or C/O white dwarf
(WD), and the NS spiral-in to shorter orbital periods until
the envelope is expelled (Paczyński 1976). Several authors
have proposed binary evolution scenarios in which the
system, after emerging from the common-envelope phase,
suffers in-spiral because of gravitational wave (GW) emis-
sion and eventually reestablishes contact (Iben & Tutukov
1985; Rasio, Pfahl, & Rappaport 2000; Dewi et al. 2002;
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Yungelson, Nelemans, & van den Heuvel 2002). During this
long GW in-spiral, the WD will have had time to cool, set-
ting the entropy of the donor at the onset of the second mass
transfer phase (Bildsten 2002). Tauris (1996) finds that a
large fraction of the NS-WD binaries that undergo a com-
mon-envelope phase will reach contact within 1 Gyr. Even
considering a longer 4 Gyr delay between the formation of
the WD secondary and the onset of mass transfer, a HeWD
will have Tc � 3� 106 to 107 K (Althaus & Benvenuto
1997; Driebe et al. 1999; Serenelli et al. 2001), while a C/O
WD will have Tc � ð2 3Þ � 106 K (Salaris et al. 2000). The
mass transfer timescale at contact is much shorter than the
WD cooling timescale for these WDs, so the initial entropy
of these objects is the minimum attainable. As noted by
Bildsten (2002), if these objects adiabatically expand under
mass loss, their Tc-values will have been reduced by a factor
of�15 by the time they have reachedM2 � 0:01 M�.

In addition to the evolutionary arguments that donors
in the ultracompact MSPs have not reached a T ¼ 0
configuration, the system XTE J1751�305 provides
observational evidence for a hot donor since, as noted by
Bildsten (2002), a fully degenerate companion composed of
He or C cannot fill its RL in this system. Hence, in examin-
ing the donors in the ultracompact accreting MSPs, we need
to consider them to be arbitrarily degenerate low-mass
objects of evolved (He or C/O) composition. To further
constrain the nature of these donors (for example, their Tc)
requires knowledge of their mass-radius (M-R) relation.
For the compositions (He, C/O) and mass (�0:01 M�) and
Tc (�105 107 K) ranges of relevance to these objects, the
corresponding central densities (�c � 103 g cm�3) are such
that Coulomb and thermal contributions to the equation of
state (EOS) provide nonnegligible corrections to the degen-
erate electron pressure, impacting their M-R relations. In
this paper, we detail the M-R relation for low-mass stellar
objects of finite Tc, extending theM-R relations of Zapolsky
& Salpeter (1969) for T ¼ 0 objects. In particular, we make
clear that there is a continuous connection between fully
degenerate objects (i.e., WDs), fully convective low-mass
stars (i.e., n ¼ 3=2 polytropes), and Coulomb-dominated
objects.

We begin in x 2.1 by constructing a simple model of these
objects using an approximate EOS. Although crude, this
model describes adequately the relevant physics and yields an
analytic description of the qualitative behavior of the M-R
relations and how they are affected by Coulomb and thermal
contributions to the EOS.We find that at finiteTc, arbitrarily
degenerate sequences exhibit a two-branch solution, a fact
noted previously (e.g., Cox & Guili 1968; Cox & Salpeter
1964; Hansen & Spangenberg 1971; Rappaport & Joss 1984).
Further, for sufficiently high values of Tc, the sequence of
solutions on these two branches exhibits a mutual endpoint
at a nonzero mass Mmin, below which equilibrium solutions
do not exist. When Coulomb contributions are small and
electrons are nonrelativistic, fully convective stellar models of
arbitrary degeneracy are well represented by n ¼ 3=2 poly-
tropes (Hayashi &Nakano 1963; Stevenson 1991; Burrows&
Liebert 1993; Ushomirsky et al. 1998). In x 2.2 we review the
role played by degeneracy in determining the M-R relation
for n ¼ 3=2 polytropes and the existence of a two-branch sol-
ution for the polytrope M-R relation. Other authors have
noted that for a given M, there is a maximum Tc that such
polytropemodels may have (Cox&Guili 1968; Rappaport &
Joss 1984; Stevenson 1991; Burrows & Liebert 1993;

Ushomirsky et al. 1998). We connect the existence of a maxi-
mum Tc with that of Mmin. In x 2.3 we construct realistic
M-R relations using an EOS for fully ionized plasmas. There
we exhibit explicitly the impact of Coulomb physics on the
M-R relations. Like the simplified and polytrope models,
we find that the M-R relations of this model exhibit a
two-branch solution and a nonzero Mmin at high values
ofTc.

In x 3 we apply our stellar models to the ultracompact
MSP systems. For each of these systems, there is a donor (of
some composition and Tc) which will fill the RL at the
required Porb for any given orbital inclination. Also, for a
given composition, there is in each system a relation
between orbital inclination and Tc. We examine what con-
straints this places on the composition and Tc of the donors
in these systems. For example, in XTE J1807�294, C and
He donors can have any Tc, while an O donor’s Tc has a
minimum value. In XTE J1751�305, all He or C/O donors
must be hot. We also examine how the future evolution of
these systems depends on donor composition and Tc and
highlight the fact that a multiple-valued M-R relation leads
to a multiple-valued relation between Porb and the system’s
mass transfer rate _MM. Finally, in the context of adiabatic
evolution, we discuss the expected number distribution of
ultracompact systems as a function ofPorb. In a steady state,
this distribution depends almost solely on the response of
the donor radius R2 to mass loss through the quantity
nR � d lnR2=d lnM2. The increased importance of
Coulomb physics in C/O donors alters nR as compared to
He donors, and the expected distribution for the two donor
types differs dramatically. Depending on donor type, the rel-
ative number of systems at Porb � 40 minutes as compared
to those at Porb � 10 minutes is �60 for He donors and
�160 for C/O donors. We conclude in x 5 by discussing
future applications of and refinements to our models.

2. MASS-RADIUS RELATIONS FOR LOW-MASS
ARBITRARILY DEGENERATE STARS

In the mass range of interest (M2 < 0:1 M�), M-R rela-
tions for various objects have previously been constructed.
For H-rich objects, Burrows et al. (2001) summarize the
work that has been done on the structure and evolution of
brown dwarfs and related objects. For these objects, the
models include detailed treatment of the EOS and atmo-
spheric physics. On the other hand, for objects with more
evolved composition (i.e., He or C/O), the theory is not so
mature. Zapolsky & Salpeter (1969) calculated the M-R
relations for T ¼ 0 objects using the EOS they derived from
the Thomas-Fermi-Dirac equation (Salpeter & Zapolsky
1967). This EOS treats in an approximate manner the cor-
rections due to Coulomb interactions and exchange effects
in a fully degenerate plasma. AdditionalM-R relations pro-
duced by several different T ¼ 0 EOSs are presented in Lai,
Abrahams, & Shapiro (1991) but do not differ appreciably
from the Salpeter & Zapolsky (1967) results. For the
partially degenerate case, there is a large body of literature
for He- and C/O-core WDs more massive than 0:1 M�
(Fontaine, Brassard, & Bergeron 2001; Panei, Althaus, &
Benvenuto 2000), but only recently have M-R relations for
arbitrarily degenerate He and C/O WDs with masses less
than 0:1 M� been calculated (Bildsten 2002), and only
for a limited number of cases. Here we fill this gap by
constructing low-massWDmodels utilizing a realistic EOS.
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2.1. A SimpleModel for Arbitrarily Degenerate Stars

Degenerate stellar objects with 10�3dM=M�d10�2

have central densities �c � 102–103 g cm�3. In this density
range, the relative energy contributions to the plasma from
an ideal Fermi gas and Coulomb interactions can be compa-
rable. Also, for these densities, at a temperature T � 106 K,
the thermal contributions to the pressure are about 10% of
those of the electrons. At lower densities, Coulomb and
thermal effects become even more significant in calculating
the EOS. To examine the interplay between these contribu-
tions and how they impact the structure of low-mass stars,
we start with a simple EOS for a plasma composed of ions
with charge numberZ and atomic mass numberA,

Pð�;TÞ ¼ Peð�Þ þ Pidð�;TÞ þ PCð�Þ ; ð1Þ

where Pe is the pressure of a fully degenerate noninter-
acting Fermi gas of electrons, Pe ¼ Ke�5=3, Pid is the
pressure of an ideal gas of ions and electrons, Pid ¼ Kid�T ,
and PC is the negative pressure contribution due to
Coulomb interactions in the Wigner-Seitz approximation,
PC ¼ �KC�4=3. Here Ke ¼ 3:323� 1012ð2=leÞ

5=3 dynes
cm3 g�5=3 (le is the mean molecular weight per electron
and equals A=Z in a single composition plasma), Kid ¼
8:25� 107ð1þ ZÞ=A dynes cm g�1K�1; and KC ¼ 2:23�
1012Z2=3ð2=leÞ

4=3 dynes cm2 g�4=3:
Consider a one-zone stellar model, i.e., a spherical system

characterized by a single pressure and density, P and �.
From dimensional analysis, P � GM2=R4 and � � M=R3,
where M and R are the mass and radius of the star and G is
the Newtonian constant of gravitation. With the pressure
given by equation (1),

G
M2

R4
� KidT

M

R3
þ Ke

M5=3

R5
� KC

M4=3

R4
ð2Þ

In the T ! 0 limit, the term involving Kid vanishes, and
solving forR gives

RðT ¼ 0Þ ¼ KeM1=3

KC þ GM2=3
; ð3Þ

showing that the gravitational and Coulomb attractions act
to collapse the star, which is supported by the degenerate
electron pressure. As M ! 0, Coulomb forces dominate
gravity and R / M1=3. As M ! 1, Coulomb forces
become negligible and R / M�1=3. The transition from a
gravitational to a Coulomb-dominated regime occurs where
M � ðKC=GÞ3=2 � 10�4Zð2=leÞ

2 M�. The relation R /
M1=3 in the low-M limit implies a constant density �min fixed
by the balance between the electron pressure and Coulomb
attraction. Exhibiting � explicitly as a function of M,
� ¼ ðGM2=3 þ KCÞ=Ke and �min ¼ ðKC=KeÞ3 ¼ 0:671Z2 g
cm�3.

For T > 0, equation (2) has solutions given by

R ¼ M1=3

2KidT

�
KC þ GM2=3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK2

C � 4KeKidTÞ þ 2KCGM2=3 þ G2M4=3

q �
: ð4Þ

Figure 1 exhibits several isotherms of the M-R relation
of equation (4). The two-branch nature of this relation is

apparent, as is the clear separation into three classes of
stellar objects. The large-M lower branch is made up
of gravitationally bound objects supported by degeneracy
pressure. On the lower branch at small M, we have
Coulomb-dominated objects. The upper branch consists of
objects supported by thermal pressure.

For T > 0, there exists a minimum mass Mmin found by
setting the discriminant in equation (5) to zero,

Mmin ¼ 2ðKeKidTÞ1=2 � KC

G
: ð5Þ

This expression is positive only if T > 4:53� 103AZ4=3=
ð1þ ZÞð2=leÞ K. For He (C) this temperature is
1:5� 104 ð8:5� 104Þ K. Above this critical temperature,
the two branches meet at a mutual endpoint and no solution
withM < Mmin exists. When Coulomb physics is negligible,
Mmin occurs at the point where Pe ¼ Pid along the solution
curve. The existence of Mmin results from the fact that for
M < Mmin, the pressure provided by Pe þ Pid at any � is
greater than that needed to support the star (this is not the
case for either an ideal gas or a Fermi gas independent of
the other; in either of these cases it is well known that equili-
brium solutions down to M ¼ 0 exist). Alternately, for a
given M, the isotherm on which M ¼ Mmin gives the maxi-
mum T for which solutions exist with this mass. For an
object starting out on an upper branch solution, e.g., a
recently expired star, as it loses entropy via radiation, it con-
tracts. For a fixed mass, a star supported by thermal pres-
sure has T / R�1 and it heats up, as expected. The thermal
pressure in this case goes as Pid / R�4, but Pe / R�5 and
eventually Pe dominates, halting substantial contraction.

Fig. 1.—Schematic M-R relation of our simple model given by eq. (5).
The curves show isotherms at T ¼ 104; 105; and 106 K for pure He (solid
curves) and C (dashed curves) compositions. The curves on the upper branch
are labeled with their respective temperatures. The lower branch curves at
lowM haveT ¼ 104 K.
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Further entropy loss leads to a reduction in T. For a given
T and M, the two possible solutions are physically
distinguished by their entropy.

2.2. PolytropeModels for Low-Mass Stars
Neglecting Coulomb Physics

Ignoring nonideal effects and assuming that the electrons
are nonrelativistic, a fully convective object has an EOS
obeying P / �5=3 and is modeled by an n ¼ 3=2 polytrope.
The specific entropy s throughout such a model is a con-
stant. Since s depends only on the degeneracy parameter �,
defined as the ratio of the chemical potential of the electrons
to kT (k being the Boltzmann constant), � is also a constant
of the model (Ushomirsky et al. 1998). Following
Ushomirsky et al. (1998), this allows us to write the pressure
of a noninteracting gas of electrons and ions as

P ¼ �

leffmp
kT ; ð6Þ

wheremp is the mass of a proton and leff is defined as

1

leff
¼ 1

li
þ

2F3=2ð�Þ
3leF1=2ð�Þ

; ð7Þ

thus varying as � changes. Here li is the ion mean molecular
weight and Fk is the Fermi-Dirac function of order k from
Cox & Guili (1968). We then utilize the n ¼ 3=2 polytrope
relations, equation (6), and the fact that F1=2ð�Þ /
�=ðleT3=2Þ to determine M and R as functions of � and Tc.
These results can be expressed as

R

R�
¼ 0:359

M

0:01 M�

� ��1=3

ðl2=3e leffF
2=3
1=2 Þ

�1 ; ð8Þ

Tc ¼ 3:42� 105 K
M

0:01 M�

� �4=3

ðl1=3e leffF
1=3
1=2 Þ

2 ; ð9Þ

which is a minor rewrite of the results in Ushomirsky et al.
(1998).

Equation (9) shows the relation between Tc and M is a
function of � through the combination leffF

1=3
1=2 , which has

a single maximum at � � 3–5 for expected WD interior
compositions. Just as in the simple models of x 2.1, this
shows explicitly the connection between a maximum Tc for
a given M and the existence of an Mmin for a fixed Tc. Here
again there are two equilibrium radii for a given M and Tc

differentiated by their degree of degeneracy or, equivalently,
their entropy.

The transition from a thermal pressure–dominated to
degeneracy pressure–dominated state in these models
approximately determinesMmin. This transition occurs near
where 1=li � 2F3=2=3leF1=2. For increasing values of li, this
occurs at lower values of �, i.e., at lower values of �c if le
and Tc are held fixed. With P / �5=3, dimensional analysis
shows M / �

1=2
c ; a lower density at the transition between

degenerate and nondegenerate states gives a smaller Mmin.
For a fixed Tc, a pure-CWDwill have a smallerMmin than a
pure-HeWD.

2.3. Mass-Radius Relations for IsentropicWhite Dwarfs

We now calculate the M-R relations derived from stellar
models that include Coulomb physics. In these calculations,
we assume that the interior profiles of our stellar models are
adiabatic. In reality, the actual entropy profile in a given

donor will depend on its evolutionary history. Many fac-
tors—such as whether the system formed through a stable
or unstable mass transfer channel, whether or not H burn-
ing is still ongoing at the point of contact, and how the mass
transfer rate changes with time—can impact either the
initial entropy profile of the donor or its subsequent evolu-
tion. In calculating models for donors in ultracompact
binaries, without choosing their evolutionary history, a rea-
sonable approximation of their internal entropy profile is
the best that can be done. Since we aim to construct models
that will enable analysis of the donor’s properties today,
irrespective of their past histories, we must assume some
internal profile in calculating them.

A system that initiates mass transfer at Porbd40 minutes
has a donor mass M2e0:01 M�. The mass transfer time-
scale for such a system with an NS primary is roughly
M2= _MMd1 100 Myr, depending on M2. Consideration of
the flux through the half-mass point in our models due to
electron conduction (calculated using the conductive opac-
ities of Potekhin et al. 1999) compared to the heat content of
the interior half of the model shows roughly that the time
required to transport this heat out of the interior is �100
Myr to 1 Gyr, again depending on M2. Thus, during the
mass transfer episode that would lead up to the creation of
systems at Porb � 40 minutes, the internal evolution is to
first order an adiabatic expansion and, in the absence of
tidal heating, the initial entropy profile should be more or
less preserved with some corrections due to heat transport.
To whatever degree this occurs, the critical point is that the
interior will not be able to maintain an isothermal profile.
We chose to use an adiabatic profile instead of another arbi-
trary choice, since it provides several convenient features: it
is a limiting case for the possible thermal profiles of the
donor and produces the most compact configuration for a
given Tc andM2, it is completely determined by the utilized
EOS, and it allows parameterization of a set of models by
one quantity, the specific entropy that is constant through-
out the model. In addition, the calculations of Nelson &
Rappaport (2003) show that He donors tend to become
adiabatic as they lose mass. These latter calculations also
highlight that throughout the mass loss episode, donors
remain far from isothermal except in the deep interior of the
star, and then only at masses near 0.1 M� (Nelson &
Rappaport 2003).

2.3.1. Equation of State

For the EOS, we use the results of Chabrier & Potekhin
(1998) and Potekhin & Chabrier (2000). Their work pro-
vides accurate prescriptions for calculating the EOS for a
fully ionized plasma in either liquid or solid states that
includes the ideal contributions from nondegenerate ions
and degenerate electrons and the nonideal contributions
due to Coulomb interactions. We also include the radiation
contribution, a small effect. In the calculations below, we
assume that the plasma is in the solid state when the
quantity

� � ðZeÞ2

akT
e173 ð10Þ

(Farouki & Hamaguchi 1993). Here a is the inter-ion spac-
ing given by a ¼ ð4�ni=3Þ�1=3, ni being the number density
of ions. The quantity C is a measure of the strength of the
ionic Coulomb interactions. We display a set of isotherms
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for a pure-He plasma calculated with this EOS in Figure 2
with the solid and dotted lines. The dotted lines indicate
regions in parameter space where T and � are such that the
plasma will likely become only partially ionized. In these
regimes this EOS is not strictly valid.

The dashed lines in Figure 2 show representative adiabats
for this EOS, some of which cross into regions of partial ion-
ization. Since we utilize an adiabatic internal profile in cal-
culating our models in x 2.3.2, in some of these models there
can be a point in their outer layers where our EOS becomes
invalid. We use our EOS in these regimes despite this prob-
lem for two reasons: First, in the models of most interest
only the very outermost layers of the models lie in regimes
where ionization state transitions become an issue and the
calculated M-R relation is not affected. Second, this EOS
provides a simple method of calculating the EOS for various
compositions over a wide range of � and T, and this ease of
use would be sacrificed by constructing composition-specific
extensions to the EOS. We highlight in our results models in
which these EOS concerns may cause more than a few
percent uncertainty in the calculatedM-R relations.

2.3.2. Calculation of theModels and Results

We constructed models for arbitrarily degenerate objects
by integrating mass conservation and hydrostatic balance
while presuming an adiabatic temperature profile. The cal-
culation of our models proceeds as follows: In the interior,
where degeneracy pressure dominates, we integrate

dT

dr
¼ �2 � 1

�2

T

P

dP

dr
; ð11Þ

where �2 is the adiabatic exponent

�2

�2 � 1
¼ @ lnP

@ lnT

� �
ad

ð12Þ

found from the EOS. The density at each integration step is
then solved for fromP andT using the EOS. At low �, where
Coulomb effects on the pressure become significant, we
switch to integrating

d�

dr
¼ 1

�1

�

P

dP

dr
; ð13Þ

where

�1 ¼
@ lnP

@ ln �

� �
ad

ð14Þ

is another adiabatic exponent, and solve for T at each inte-
gration step from P and �. Each model integration was
terminated once the following criteria were met: (1) between
two integration steps in which P differed by more than a
factor of �20%, m and r changed by no more than 1 part in
108, and (2) the current pressure was such thatP=Pc < 10�8.

We change the integrated variable because as P ! 0
along an adiabat, � becomes very insensitive to P and it
becomes numerically intractable to determine � by root-
finding from P and T. On the other hand, in the low-P limit,
determining T accurately from P and � is possible, some-
thing that was not true in the highly degenerate regime. We
switch from integrating T to integrating � when a rough
measure of the degeneracy, 167�=leT

3=2 < 100, is satisfied
(where � and T are in cgs units). In the solid state, when
�4180, �241 because of the rapid decline in the plasma’s
specific heat once crystalline. We use an adaptive step-size,
explicit Runge-Kutta algorithm to integrate our equations,
with the step size chosen to maintain a fixed fractional accu-
racy. A dramatic increase in �2 causes a sharp decline in the
speed of the integration as the algorithm tries to maintain
this accuracy in all three integrated quantities, m, P, and T.
To deal with this problem, once T ¼ 100 K, we set
dT=dr � 0. This causes no issues in the M-R relations
because by this point we are already well within the T ! 0
limit as far as the P-� relation is concerned in any of our
models.

Finally, in these models the ion coupling parameter C
increases with r. This is due to the fact that along an adiabat,
�3 � 1 ¼ ðd lnT=d ln �Þad varies from 2

3 to �1
2 in a Coulomb

plasma. Since � / �1=3=T and T / ��3�1, C goes as � to a
negative power. This is true not only for adiabatic profiles;
any object with a profile T / �� for � > 1

3 will have C
increasing with r (assumingZ is fixed). Because of this, some
models transition from liquid to solid in their outer layers.
For these cases we do not attempt to match adiabats in the
solid and liquid phase (i.e., we do not account for the latent
heat). Instead, the integration assumes continuity of P and
T; the entropy in these models has a small discontinuity. If
crystallization of the object were to actually occur from the
surface inward, this could have significant impact on the
mass-loss rate, since the primary’s gravitational field would
have to overcome the Coulomb binding of the crystal to
effect mass transfer. More realistic calculations are
obviously needed to consider this further, and consideration
of this potential effect in evolutionary calculations is
encouraged.

Fig. 2.—HeEOS that we utilize showing the comparison isotherms (solid
and dotted lines) and a set of representative adiabats (dashed lines). The
isotherms are for temperatures incremented by D logðT=KÞ ¼ 0:5, with
the upper curves corresponding to logðT=KÞ ¼ 7. Along the isotherms, the
dotted lines indicate regions where the plasma is not fully ionized. The
adiabats typically cross into regions where full ionization of the plasma is
not definite and is a source of uncertainty in some of our models.

No. 2, 2003 WHITE DWARF DONORS IN ULTRACOMPACT BINARIES 1221



Typical results for our model calculations are shown in
Figures 3 and 4. Figure 3 shows for pure-Hemodels how the
results utilizing the EOS of x 2.3.1 differ from the polytropes
that neglect Coulomb physics. In this figure and in Figure 4
the portions of the M-R curves shown in dotted lines indi-
cate models where more than 5% of the mass lies in regions
where our EOS is not strictly valid. The impact of Coulomb
interactions on the structure of low-mass WDs is clear from
the comparison of the He polytrope models (dashed lines)
with the realistic EOSHemodels (solid lines).

Figure 4 displays a set ofM-R isotherms for our He (solid
lines) and C (dashed lines) models along with lines of con-
stantPorb for a donor filling its RL overlaid (dot-dashed lines
with Porb indicated ). Again, the dotted portions of the M-R
relations indicate models in which more than 5% of the
model’s mass lies in a regime where the EOS is not strictly
valid. From Figures 3 and 4, it is clear that the realistic
treatment of Coulomb physics in the EOS is necessary to
calculate accurately the structure of low-massWDs.

3. APPLICATION OF THE MODELS TO
ULTRACOMPACT ACCRETING

MILLISECOND PULSARS

We now apply the adiabatic models of x 2.3 to the three
known ultracompact accreting MSPs and the high-field
X-ray pulsar 4U 1626�67. In Figure 5 we display (short-
dashed lines) theM-R relations of RL-filling donors in XTE
J0929�314, XTE J1751�305, and XTE J1807�294
(Markwardt et al. 2002; Galloway et al. 2002; Markwardt
et al. 2003a, 2003b) and M-R relations for our adiabatic

Fig. 3.—Comparison betweenM-R relations for polytropes and the full
adiabatic models with Coulomb physics for pure He. The dashed curves
show theM-R relation for n ¼ 3=2 polytropes of pure He at Tc ¼ 104; 105;
and 106 K. The solid curves show He WDs calculated with the full EOS of
x 2.3.1 at the same set of Tc as the polytropes. The significance of Coulomb
interactions at the masses shown on the M-R relation is obvious. The
dotted portions of the full curves indicate models where more than 5% of
the model’s mass is located in regions where the EOS is not strictly valid.

Fig. 4.—M-R relations for adiabatic models composed of He (solid lines)
and C (dashed lines). The dotted portions of these curves indicate models
where more than 5% of the model by mass is located in regions where
the EOS is not strictly valid. The He curves show models with
Tc ¼ 102; 105; 5� 105; 106, and 5� 106 K, and the C curves showmodels
with Tc ¼ 104; 106; 3� 106; and 5� 106 K. The dot-dashed lines are the
M-R relations for objects filling their RLs at the noted orbital period.

Fig. 5.—Comparison between the M-R relations for our adiabatic He
(solid lines), C (long-dashed lines), and O (dot-dashed lines) models, along
with M-R relations for RL-filling donors in the three known accreting
MSPs and 4U 1626�67 (short-dashed lines). The He M-R relations have
Tc ¼ 102 and 3� 106 K; the C and O have Tc ¼ 104 and 3� 106 K. The
low Tc relations show approximately the T ¼ 0 relation for each composi-
tion. The RL-filling solution for 4U 1626�67 extends down to M ¼ 0 to
indicate that this system has not yet had its mass functionmeasured.
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models. We show two isotherms each for He, C, and O
models, an approximate T ¼ 0 M-R relation and one for
hot (Tc ¼ 3� 106 K) models. If the donors in all three
systems are He WDs, then T ¼ 0 objects are allowed in
XTE J0929�314 and XTE J1807�294, but XTE J1751�305
requires a hot donor (Bildsten 2002). For C/O donors,
whose M-R relations will lie between the C and O models
shown, only XTE J1807�294 permits an RL-filling cold
donor. The other two systems both require hot C/O donors.
The curves showing the RL-filling M-R relations are
parameterized by the orbital inclination i (where i ¼ 0 is a
face-on system), and there is a correspondence between Tc

and i for each donor composition, as shown in Figure 6.
From Figure 6, the donor in XTE J1751�305 must have
Tce106 K. From orbital inclination constraints, the proba-
bility that XTE J1807�294 can accommodate a He donor is
15% (for XTE J0929�304, it is�35%).

The other ultracompact accreting pulsar, 4U 1626�67, at
Porb ¼ 41:4 minutes (Middleditch et al. 1981; Chakrabarty
1998) is also shown in Figure 5. Although the orbit has not
yet been detected by timing the pulsar, the current upper
limit of ax sin i < 8 lt-ms (Levine et al. 1988; Chakrabarty
et al. 1997) allows us, in conjunction with our theoretical
work, to constrain the nature of the donor star. Ever since
the discovery of a neon emission line (Angelini et al. 1995)
from this system, there have been active discussions of the
nature of the donor. The Schulz et al. (2001) measurement
of a high Ne-to-O ratio (further inferred in other ultra-
compact binaries by Juett, Psaltis, & Chakrabarty 2001) led

them to suggest that the donors in these binaries are the
cores of previously crystallized C/O WDs. Homer et al.
(2002) have since also seen strong C and O lines but no
evidence for helium. Hence, this system seems a likely one to
use for probes of C/O donors.

For any sin i, a star that fills the RL at the measured Porb

for each of the ultracompact binaries can always be found
by some combination of entropy, composition, and mass,
and the current values of each impact the orbital evolution
of the system. For M2=M1 < 0:8, the Roche radius RL can
be approximated by (Paczyński 1967)

RL � 0:46a
M2

M1 þM2

� �1=3

; ð15Þ

where a is the separation between M1 and M2. Combined
with Kepler’s third law, this leads to the so-called period–
mean density relationship,

Porb ’ 8:9 hr
R2

R�

� �3=2 M�
M2

� �1=2

: ð16Þ

Assuming conservative mass transfer, the mass transfer rate
(a positive quantity) is given by (Verbunt 1993)

_MM

M2
¼ 2

_JJ

J

1

nR þ 5=3� 2M2=M1
; ð17Þ

where J is the orbital angular momentum, _JJ the angular
momentum loss rate set by GW emission (Landau &

Fig. 6.—Relation between the orbital inclination i and Tc of our adiabatic He, C, and O donors in the ultracompact systems. Hot donors are required in
XTE J1751�305 for either He or C/OWD donors; C/O donors in XTE J0929�314 must be hot, while for XTE J1807�294 a T ¼ 0 C/O donor is allowed if
the system is nearly edge-on.
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Lifshitz 1962), and

nR � d lnR2

d lnM2
: ð18Þ

denotes how the donor’s radius changes with mass loss.
For a given system, _JJ will depend on the inclination

through M2 and a. The rate at which the orbit evolves will
vary accordingly, as will the _MM-Porb relation over the course
of the evolution. To illustrate this, we calculated the
forward evolution of XTE J0929�304 assuming a He donor
and four different sin i values. We assumed that the NS has
M1 ¼ 1:4 M� (and ignore the change in M1 due to
accretion) and set

nR ¼ nad � d lnR2

d lnM2

� �
ad

; ð19Þ

so that the donor evolves adiabatically, ignoring any heat-
ing mechanisms (such as irradiation or tidal heating) and
cooling. We show the results in Figure 7, displayingM2 and
_MM as a function of Porb. These relations are not single
valued, but parameterized by orbital inclination or, equiva-
lently, by the donor’s entropy. A smaller sin i requires a
more massive donor (which must be hotter than a lower
mass donor if it is to have the fixed mean density implied by
the system’s Porb; see also Fig. 6). This gives a higher _MM for
a fixed Porb, as seen in Figure 7. This also impacts the rate at
which the orbit evolves. In Figure 7, the age of the system
from today is indicated along each curve by symbols, and it
can be seen that the smaller the sin i, the faster the system
will evolve in Porb.

At a given orbital inclination in a specified system, a C/O
donor must have a higher Tc to fill the RL than a He donor.
This is due to the stronger Coulomb physics in the C/O
object, which also causes nad to differ between the donor
types and impacts the binary’s evolution. The difference in
nad between composition is shown in Figure 8 for two repre-
sentative adiabatic tracks for each composition. The solid
dots show the Zapolsky-Salpeter nR for the same composi-
tions. The effect of different values of nad on orbital evolu-
tion is evident in Figure 9, which compares the evolution of
XTE J0929�304 for sin i ¼ 0:6 and He, C, and O donors.
The difference in the tracks comes about because of the dif-
ference in nad due to composition; higher Z donors evolve
fastest in mass but slowest in Porb because they remain more
dense than lowerZ donors at a given mass.

4. THE PERIOD DISTRIBUTION FOR
ADIABATICALLY EVOLVING
ULTRACOMPACT SYSTEMS

These evolution calculations highlight the dependence of
observables (Porb and _MM) on the donor’s entropy and
composition. We now emphasize the impact of the donor
composition on the ultracompact population, especially the
resulting orbital period distribution. In the scenario of cool-
ingWDs reaching contact via in-spiral (e.g., Nelemans et al.
2001), the relative number of He versus C/O WDs that
come into contact and stably reach longer orbital periods is
difficult to know. However, what we show here is the ability
to constrain the relative populations of, say, He donors, at
one orbital period versus another.

Fig. 7.—Relation between M2, _MM, and Porb for XTE J0929�314 over
the course of its orbital evolution forward from today as it depends on sin i
or, equivalently, the entropy of the donor. In particular, the _MM-Porb

relation is parameterized by the donor’s entropy. Along each curve, the
symbols designate time from today: triangles, 500 Myr; squares, 1 Gyr;
pentagons, 5 Gyr; circles, 10 Gyr. A smaller sin i requires a more massive
donor and will produce a faster evolution in Porb for the system.

Fig. 8.—Adiabatic change in donor radius with respect to mass, nad, for
He (solid lines), C (dashed lines), and O (dot-dashed lines) stars along two
representative adiabats for each composition. The lower curve in each set
has Tc ¼ 107 K at the high-mass end; the upper curve has Tc ¼ 102 K (i.e.,
it is effectively the T ¼ 0 sequence for each composition). The stronger
Coulomb physics decreases the magnitude of the radius response to mass
loss in the C/O WDs as compared to He WDs. The large dots show nR for
theT ¼ 0 Zapolsky-Salpeter models for He, C, and O (bottom to top).
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A more complete picture of this dependence is shown in
Figure 10, where we display for He (solid lines), C (dashed
lines), and O (dot-dashed lines) donors the _MM-Porb relation
along M-R isotherms with Tc ¼ 102; 3� 106; 107, and

3� 107 K, assuming M1 ¼ 1:4 M� and n ¼ nad. These are
instantaneous _MM-values along an adiabatic track at a given
Porb and Tc. One can see immediately that for a given Porb,
_MM can constrain the combination of donor Tc and composi-
tion. In particular, a sufficiently strong upper limit on _MM
can rule out a He donor for a given Porb. Above the mini-
mum _MM for a He donor, further information about the
donor composition is difficult to infer without constraints
onTc.

Now consider adiabatic evolution with initial M1 ¼
1:4 M� and donors of varying composition and Tc that
fill their RLs at Porb ¼ 10 minutes. We evolve these systems
assuming the donor responds adiabatically to mass loss.
The resulting tracks in the _MM-Porb diagram are shown in
Figure 11, along with the measured periods of the known
ultracompact binaries with an NS primary (vertical dotted
lines) and the critical _MM below which the accretion disk in
these systems is subject to thermal instabilities for both irra-
diated (hatched region; Dubus et al. 1999) and nonirradiated
disks (nearly horizontal lines; Menou, Perna, & Hernquist
2002). As compared with Figure 10, it can be seen that for
systems at Porb > 30 minutes to have time-averaged mass
transfer rates _MM > 10�10 M� yr�1, the donor cannot have
evolved adiabatically from systems coming into contact at
Porb � 10 minutes. There are potentially two examples of
such systems: 4U 1626�67 (Porb ¼ 41:4 minutes and

Fig. 9.—Comparison between the evolution of XTE J0929�304
assuming different donor types for an orbital inclination of sin i ¼ 0:6.
Shown are M2 and _MM as a function of Porb for He, C, and O donors. The
contrast in the initial evolution between the three donor types comes from
the differences in their nad. The symbols mark the age of the system from
today.

Fig. 10.— _MM-Porb relations assuming nR ¼ nad for He (solid lines), C
(dashed lines), and O (dot-dashed lines). For each composition, the four
curves show lines of constant Tc ¼ 102; 3� 106; 107, and 3� 107 K
(bottom to top). The thicker lines are theT ¼ 102 K curves.

Fig. 11.— _MM-Porb relations along adiabatic evolutionary tracks. Each
track starts with a donor filling its RL at Porb ¼ 10 minutes. For each com-
position—He (solid lines), C (dashed lines), and O (dot-dashed lines)—tracks
for models with initial Tc ¼ 102; 3� 105; 2� 106; 5� 106, and 107 K are
shown (bottom to top). By the time these systems have evolved to Porb > 30
minutes, _MMd10�10 M� yr�1; donors in binaries with Porbe30 minutes
that have persistent _MM-values higher than this cannot have adiabatically
evolved from Porb � 10 minutes. The vertical dotted lines show the orbital
periods for ultracompact systems with an NS primary. For each composi-
tion, the upward-sloping lines show the critical _MM below which the
accretion disk is thermally unstable ignoring irradiation (Menou et al.
2002). The shaded horizontal band gives the critical _MM for an irradiated
disk (Dubus et al. 1999) for a range of irradiation efficiencies. The band
corresponds to the range of values for the Dubus et al. (1999) C parameter
of�50% the fiducial value.
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_MM > 2� 10�10 M� yr�1; Chakrabarty et al. 1997) and 4U
1916�05 (Porb ¼ 49:8 minutes, _MM � 5� 10�10 M� yr�1;
Swank, Taam, & White 1984). If these measured _MM-values
reflect the long-term average _MM-value, then the donors must
be extremely hot (>107 K; see Fig. 10). However, the typical
_MM-values at these orbital periods are below where a He or
C/O disk is thermally stable (see Fig. 11; Menou et al. 2002;
Dubus et al. 1999). In that case, we would explain the
present _MM-value as a higher rate indicative of a system in
outburst. Indeed, the luminosity from 4U 1626�67 is
observed to be in a steady slow decline (Mavromatakis
1994; Chakrabarty et al. 1997).

If the ultracompact binaries evolve adiabatically, we can
determine their relative numbers as a function of Porb.
DefiningNðPorbÞ such thatN dPorb is the number of systems
with orbital period between Porb and Porb þ dPorb and
demanding continuity gives

dðN _PPorbÞ
dPorb

¼ 0 ; ð20Þ

leading to the expected relation between _PPorb andN:

N

N0
¼

_PPorb;0
_PPorb

; ð21Þ

where N0 and _PPorb;0 are the respective quantities at some
reference orbital period, Porb;0. For nad fixed, R / Mnad ,
and withM25M1, equations (15), (16), and (21) lead to the
simple relation

d lnN

d lnPorb
¼ d ln _PPorb

d lnPorb
¼ � � 11=3� 5nad

1� 3nad
: ð22Þ

In this case

N

N0
¼ Porb

Porb;0

� ��

; ð23Þ

and from this it is clear that nad alone determines the number
distribution. As � increases with nad, systems with C/O
donors will have a stronger increase in N with Porb than
those with He donors because of the difference in nad shown
in Figure 8. In the more general case, nad is variable and
equation (22) becomes, up to terms of orderM1=M2,

d lnN

d lnPorb
¼ 11=3� 5nad

1� 3nad
þ 18

ð3nad þ 5Þð3nad � 1Þ
dnad

d lnPorb
;

ð24Þ

and in general the distribution is almost solely a function
of nad.

While equations (22) and (24) highlight the centrality of
nad in determiningN, to calculateN for each of the adiabats
in Figure 11 it is more straightforward, and slightly more
accurate because of the small dependence of N on M2=M1,
to calculate _PPorb numerically and evaluate equation (21).
We calculate _PPorb from

_PPorb ¼ � dPorb

dM2

_MM2 ¼ � P

2M2
ð3nad � 1Þ _MM2 ; ð25Þ

where _MM2 ¼ � _MM. We display the resulting N-distribution
for each adiabatic track, normalized to the value of N0 at
Porb;0 ¼ 10 minutes, in Figure 12. It is clear that the distri-
bution is a strong function of composition, through the

differing values of nR ¼ nad, but only weakly depends on the
entropy of the donor. The entropy dependence of N derives
from the fact that _PPorb / M2 (eqs. [15], [17], and [24]) and
donors with a higher entropy at a fixed mean density have
larger values of M2 (see Fig. 5). Figure 12 also shows that
depending on donor type and entropy, we expect to see
roughly 60–160 (for He and C/O donors, respectively) times
as many systems at Porb � 40 minutes than at 10 minutes.
While consideration of nonadiabatic evolution will change
the value of this ratio, the fact that it will be larger for C/O
donors than for He donors is expected to be a robust result,
regardless of the evolutionary scenario considered.

5. DISCUSSION AND CONCLUSIONS

We have presented models for arbitrarily degenerate
stellar objects including Coulomb physics with masses
M < 0:1 M�. At these low masses, the well-known M-R
relations for n ¼ 3=2 polytropes (R / M), WDs
(R / M�1=3), and Coulomb-dominated objects (R / M1=3)
merge and transition from one to another. The connection
between T ¼ 0 degenerate and Coulomb-dominated objects
has been found from the Zapolsky & Salpeter (1969) M-R
relations. The connection between polytropes and degener-
ate objects, neglecting Coulomb physics, is seen in the
n ¼ 3=2 polytropes. Our models make the final connection
between the three classes of objects, filling in the gap
occupied by T 6¼ 0 objects in which Coulomb physics
cannot be neglected.

As discussed in x 2, a ubiquitous feature of stellar M-R
relations at sufficiently high values of Tc is the existence of a

Fig. 12.—Number distribution NðPorbÞ of ultracompact systems along
the adiabats shown in Fig. 11. Each distribution is normalized to 1 at
Porb ¼ 10 minutes. For each composition, from top to bottom, the tracks
are for donors with initial Tc ¼ 102; 3� 105; 2� 106; 5� 106, and 107 K.
The differences in the distributions between donor types are caused by the
differences in their nad values. The differences in nad can be seen to play a
more significant role in determining NðPorbÞ than those in the initial donor
entropy.
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minimum mass Mmin below which equilibrium solutions do
not exist. The cause of this is the transition from ideal gas to
degenerate electrons providing the pressure support, and we
showed in x 2.2 that the well-known maximum Tc in
n ¼ 3=2 polytropes for a fixed M (Cox & Guili 1968;
Rappaport & Joss 1984; Stevenson 1991; Burrows & Liebert
1993; Ushomirsky et al. 1998) is the same physics. The value
ofMmin depends on both Tc (in fact,Mmin ¼ 0 at sufficiently
low Tc) and the strength of Coulomb physics. In general,
the lower the value of Tc and the stronger the Coulomb
interactions, the smaller the value of Mmin. The existence of
an Mmin may have a profound impact on the evolution of a
donor undergoing mass loss. For our He WDs, Mmin > 0
for models with Tce105 K. As discussed in Bildsten (2002),
the existence of an Mmin > 0 leads to the possibility of dis-
rupting the donor through mass loss. This could be accom-
plished through stable mass loss down toM2 ¼ Mmin or via
a mass transfer instability. The latter will occur if the expan-
sion of the donor under mass loss exceeds that of the RL.
The entropy input needed to cause this instability and the
fate of the donor are the subject of future work.

We have applied our model to the accreting ultracompact
MSPs. In XTE J1751�305, the donor must be hot regard-
less of its composition; in XTE J0929�314 and XTE
J1807�294, fully degenerate donors are possible, depending
on the composition. From orbital inclination constraints,
the probability that XTE J1807�294 can accommodate a
He donor is 15%, while for XTE J0929�304 this probability
is�35%, providing support to the notion that some of these
donors are likely C/O WDs (Schulz et al. 2001; Juett et al.
2001; Homer et al. 2002). The evolution of each system will
differ depending on the orbital inclination. In particular,
how far the system can evolve in Porb in a specified time and
the expected _MM-Porb relation depends on sin i through the
mass, core temperature, and composition of the donor. In
general, the _MM-Porb relation is additionally parameterized
by the donor Tc and composition. We find that the number

distribution of systems as a function of Porb, NðPorbÞ, is
determined by the donor’s nR. The distribution for systems
with C/O donors thus varies significantly from those with
He donors. In the case of adiabatic evolution, the relative
number of systems at 40 minutes to that at 10 minutes is
�160 for C/O donors and �60 for He donors. In addition
to the accreting MSP systems, our models are applicable to
the AM CVn binary systems, which are believed to be
double-WD binaries with a He donor (Warner 1995). The
application of our models to these systems is the subject of
current work.

The constant-entropy models we have calculated give a
lower limit on R for a given M, Tc, and composition. The
actual thermal profile of a donor will depend on its prior
evolution: how entropy is deposited into the star, entropy
losses, and how quickly heat transport occurs as compared
with mass loss. To determine the entropy profile of a donor
in a specific system requires consideration of the coupled
evolution of the binary and the donor. While our models do
not address this uncertainty, they do provide limiting M-R
relations based on the total entropy content of the model in
a consistent and systematic treatment without consideration
of past evolution. As such they will be useful in considera-
tion of binary systems with low-mass WD companions
where time evolution of the donor’s structure coupled to
that of the binary itself is not computationally feasible or
necessary. Tracks of ourM-R relations and nad as a function
of �c and Tc for He, C, and O donors are available in the
electronic edition of the Journal as a UNIX tar file.
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