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ABSTRACT

We here review the procedure by which the injected power in bremsstrahlung-producing electrons is determined
from the hard X-ray spectra that they produce. In particular, we note that low-energy photons are produced in
large part by electrons with energies that do not greatly exceed the thermal energy of the target with which they
interact, so that the commonly used assumption of “cold-target” energy loss is not applicable over the entire
energy range. We show that this significantly reduces the inferred energy content of the injected electron distri-
bution and even makes the oft-dwelt-upon concept of a “lower cutoff energy” in the injected electron spectrum
moot. Convenient formulae are provided for the total power in the injected electrons.

Subject heading:Sun: flares

1. INTRODUCTION

The Reuven Ramaty High Energy Solar Spectroscopic Im-
ager (RHESSI) instrument has produced many high-quality
hard X-ray spectra from solar flares. These spectra are of suf-
ficient quality that the corresponding electron distribution func-
tion can be accurately computed. Holman et al. (2003) and
Piana et al. (2003) have used such hard X-ray spectra to cal-
culate the mean sourceelectronspectrum (see Brown,F̄(E)
Emslie, & Kontar 2003) for a series of times throughout the
2002 July 23 event. Analysis of the form of allows us,F̄(E)
through modeling of the behavior of the electrons in the source,
to calculate the total power in theinjectedelectrons.

Hard X-ray spectra in solar flares are typically steep (with
a power-law spectral index ). The electron spectra derivedg � 3
from these are correspondingly steep (e.g., in the standard
collisional thick-target model of Brown 1971, the spectral
index, , of the injected electron flux spectrum isd F (E )0 0 0

given by ). Since , the injected energy fluxd p g � 1 d 1 20 0

diverges at low energies. To keep the injectedE F (E )dE∫ 0 0 0 0

energy flux finite, authors have usually applied a low-energy
“cutoff” to the integral, leading to results of the form “so many
ergs cm s injected above a certain (arbitrary) reference�2 �1

energy.”
Hard X-ray spectra typically show two regions: a steep (ther-

mal) spectrum at low energies (�30 keV) and a flatter power-
law spectrum at higher energies. Since these two regimes merge
smoothly together, the application of an abrupt “low-energy cut-
off” in the injected electron spectrum is clearly inappropriate.
Moreover, as we show here, it is alsounnecessary. The standard
relation between the observed hard X-ray spectrum and the in-
jected electron flux spectrum (e.g., Brown 1971) assumes that
the injected electrons steadily lose energy in a “cold” target (i.e.,
one with thermal energy ). However, electrons with in-kT K E
jected energy lose energy at a rate significantly less thanE � kT
in a cold target, and below about , the electrons are partE � kT
of a thermally relaxed distribution, as likely togain energy as
lose it. Therefore, the power in the injected electron distribution
is obtained by integrating only over energies , with anE � kT
appropriate “warm-target energy-loss reduction factor” included
in the integrand. This results in a finite (and straightforwardly
calculable) value for thetotal injected electron power, rather than
the amount of power above an (arbitrary) “lower cutoff energy.”

2. ENERGETICS OF THE INJECTED ELECTRONS

The hard X-ray flux observed at the Earth (in units of photons
cm s keV ) from the injection of a beam of electrons with�2 �1 �1

an energy spectrum (in units of electrons cm s�2 �1F (E )0 0

keV ) into a thick target can be written as (Brown &�1

MacKinnon 1985)

�
A Q(e, E)

I(e) p H(E)dE, (1)�24pR G (E)e c

where A is the flare area,R is the Earth-Sun distance,
(in units of cm2 keV ) is the cross section for emission�1Q(e, E)

of a photon of energye by an electron of energyE,
[in units of keV (cm ) ] is the energy-loss rate�2 �1G (E) p K/Ec

per unit column density in a fully ionized, collisionally cold
target (cf. Emslie 1978),

�
1

H(E) p F (E )dE , (2)� 0 0 0g(E) E

and is the ratio of the actual energy-loss rate tog(E) G(E)
. Brown et al. (2003) have pointed out that the onlyG (E)c

characteristic of the electron population that can be inferred
solely from fitting (Holman et al. 2003) or inverting (Piana et
al. 2003) the hard X-ray spectrum using a known bremsstrah-
lung cross section is themean electron spectrum in theF̄(E)
source, defined through

�
1 ¯¯I(e) p nV Q(e, E)F(E)dE, (3)�24pR e

where is the mean source density andV is the emitting vol-n̄
ume. Comparing equations (1) and (3), we see that

¯¯ ¯nV nV F(E)¯H(E) p F(E)G (E) p K . (4)cA A E

Multiplying both sides of equation (2) by , differenti-g(E)
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Fig. 1.—Ratio of injected electron energy flux above reference energyE1

relative to the same quantity inferred through a cold-target ( ) analysiskT K E1

(see eq. [9]). Curves are shown for various values ofd, which is the power-
law spectral index of , the instantaneous mean electron flux spectrum inF̄(E)
the source.

ating with respect toE, and then substituting for fromH(E)
equation (4) give

¯n̄V d F(E)
F (E ) p � K g(E) . (5)[ ]0 0 A dE E EpE0

Equation (5) is the general relation between the mean source
electron spectrum and the injected spectrum . ForF̄(E) F (E )0 0

a cold target, , and we recover equation (11) of Browng(E) p 1
& Emslie (1988), viz.,

¯ ¯n̄V F(E ) d ln F0F (E ) p K 1 � . (6)( )0 0 2A E d ln E0 EpE0

For a power law , this gives , where�d �d¯ 0F(E) ∼ E F (E ) ∼ E0 0 0

the injected spectral index . However, ford p d � 2 g(E) (0

, the actual form for can differ substantially from this1 F (E )0 0

power-law form. Specifically, if is less than unity and ang(E)
increasing function of energy, it can readily be shown from
equation (5) that will be everywhere less than the valueF (E )0 0

appropriate to a collisional cold target—physically, this is be-
cause the decrease in energy-loss rate with decreasing energy
leads to a smaller number of electrons required at low energies.
This has significant implications for the energy content of the
injected electron distribution, as we shall see below.

The injected energy flux (in units of ergs cm s ) above�2 �1

the reference energy is . Substituting�E F p E F (E )dE∫E1 1 0 0 0 01

from equation (5) for and integrating by parts, we obtainF (E )0 0

� ¯n̄V F(E)¯F p K F(E )g(E ) � g(E)dE . (7)[ ]1 1 1 �A EE1

The electron energy flux thus depends on a combinationF1

of and a weighted integral of it; it is therefore fairlyF̄(E)
insensitive to the detailed form of . Hence, for illustrativeF̄(E)
purposes, we now assume that has been fitted with aF̄(E)
power-law form [although the analysis to follow�dF̄(E) p CE

can be straightforwardly generalized to arbitrary forms of
]. This givesF̄ (E)

�
n̄V

�d �d�1F p KC E g(E ) � E g(E)dE . (8)[ ]1 1 1 �A E1

For a fully ionized cold target, , and we obtaing(E) p 1
. This expression clearly di-�d¯F p (nV/A)KC [(d � 1)/d] E1 1

verges as , requiring that we impose an arbitrary finiteE r 01

value for in order to keep the total injected energy flux finite.E1

However, using the substitution in equation (8), wex p E /E1

find that theactual injected energy flux above energy differsE1

from the cold-target–inferred value by the factor

1
d

d�1f (E ; d) p g(E ) � x g(E /x)dx , (9)[ ]1 1 � 1
d � 1 0

which is equal to 1 for and less than unity ifg(E) { 1
everywhere. (Reduced energy-loss rates for theg(E) ! 1

bremsstrahlung-producing electrons require fewer electrons for
a given hard X-ray yield.)

As pointed out by Brown & MacKinnon (1985), there are
several factors that can influence the expression for . Forg(E)
example, a varying degree of target ionization renders the
energy-loss rate a function of position in the targetG(E)
(Brown 1972) and hence implicitly a function ofE. The primary
interest here, however, is the determination of the total energy
content in the injected electrons. Since the bulk of the electron
energy content is contained in low-energy electrons, which
interact principally with the ionized (coronal) regions of the
flare volume, the principal factor controlling is the effectg(E)
of a “warm” target (i.e., ), through equation (7) or equa-E ∼ kT1

tion (8), on . Spitzer (1962, eq. [5-24]) gives the formula forF1

the energy-loss rate in a target of temperatureT, from which
we obtain the expression for the energy-loss rate relative to a
fully ionized cold target:

E E E′� � �g (E) p erf � 2 erf , (10)( ) ( )th kT kT kT

where is the error function. Figure 1 showserf (x) f (E /kT)1

for various values ofd. For , , and a cold-(E /kT) � 5 f � 11

target analysis is indeed appropriate. However, for lower values
of , there is a substantial reduction in the injected electronE /kT1

energy flux relative to that inferred from a cold-target analysis.
For values of , the energy-loss rate given by equa-E/kT � 1

tion (10) isnegative: particles gain more energy from the high-
energy tail of the ambient Maxwellian distribution than they
lose to the bulk. The energy regime is more appro-E � kT
priately described as a thermally relaxed ensemble of particles,
with no secular energy losses. Thetotal injected power

therefore approaches afixedvalueP p F Atot tot

�

�d�1¯P p nVKC E g (E )dE , (11)tot � 0 th 0 0
0.98kT

where 0.98kT is the value of for which . TheE g(E ) p 01 1

product is directly determined from the observed photonn̄VC
spectrum (see eq. [1] of Brown et al. 2003); hence, we can
evaluate directly from the observed photon spectrum. WePtot
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Fig. 2.—Ratio of total injected electron power to the power above 0.98kT
inferred through a cold-target analysis (see eq. [12]), as a function of the mean
electron flux spectral indexd.

Fig. 3.—Ratio of total injected electron power to the power above 5kT
inferred through a cold-target analysis, as a function of the mean electron flux
spectral indexd.

stress that this lower limit on the integral in equation (11) is
not an arbitrary reference value; it is imposed by the physics
of electron energy loss in the target.

The ratio of (eq. [11]) to the “cold-target” injected powerPtot

above reference energy (viz., ¯E p 0.98kT P p nVKC[(d �1 1

) is (by eq. [9])�d1)/d] (0.98kT)

1
d 0.98

d�1R (d) p x g dx. (12)0.98 � ( )d � 1 x0

Figure 2 shows the behavior of . Thetotal injectedR (d)0.98

power in the electrons is only some 2%–10% of the “cold-
target” injected power above 0.98kT. This may seem like a
very small percentage; however, it is based on a very low value
of . A more informative quantity would be , the ratio ofE R1 5

the total injected power to the cold-target power in the truly
cold-target regime (Fig. 1). Since the cold-target powerE 1 5kT
scales as , . Figure 3 shows .�d dE R (d) p (5/0.98)R R (d)1 5 0.98 5

For example, for , the total power over the entire electrond p 3
distribution is 7.4 times the cold-target injected electronPtot

power above 5kT. [Equivalently, we could state that the total
power is equivalent to the cold-target power above an “effective
cutoff” energy , where ; i.e.,�d �dE E p R (d)(5kT) E p00 00 5 00

. For , this gives an effective cutoff energy of�1/d5kTR d p 35

2.57kT.]
For the 2002 July 23 flare, Holman et al. (2003) estimate

the temperature of the thermal source to vary between 2 and
K, corresponding tokT in the range of 2–3 keV. It73.5# 10

is reasonable to assume that this is representative of the target
with which the nonthermal electrons interact. The column den-
sity required to stop a 30 keV (110kT, well into the cold-target
regime) electron is only of order 1020 cm (cf. Emslie 1978),�2

less than the column density of the flaring corona several

minutes into the main phase of the flare. Thus, the electrons
carrying the bulk of the injected power (i.e., those with energies
in the range from�kT to �5kT) principally interact with the
hot coronal regions of the flare.

For power-law forms , the total injected power�dF̄(E) ∼ E
can be obtained from multiplying the cold-target–inferredPtot

injected power above 5kT by . The total energy contentR (d)5

for the main phase of the 2002 July 23 flare has been estimated
by Holman et al. (2003) using such a procedure. For more
general forms of (see Piana et al. 2003), equation (7),F̄(E)
with , can be used.E p 0.98kT1

3. SUMMARY AND CONCLUSIONS

We have shown that consideration of energy loss by brems-
strahlung-producing electrons in solar flares leads naturally to a
finite total injected electron power. There is no need to impose
an arbitrary low-energy cutoff to the injected electron distribu-
tion. Electrons with energies�kT essentially lose no energy in
the target, while those with energies in the range from∼kT to
∼5kT suffer a significantly smaller energy-loss rate than they
would if the target were cold. Hence, the total injected power

can be calculated using an expression (eq. [7]) that is similarPtot

to that for a cold-target analysis but that incorporates a factor
that is close to zero at energies , thereafter in-g(E ) E � kT0 0

creasing smoothly toward unity at energies . ContraryE � 5kT0

to the behavior in the cold-target case, this integral is finite and
provides the total power in the injected electron distribution.
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