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ABSTRACT

We here review the procedure by which the injected power in bremsstrahlung-producing electrons is determined
from the hard X-ray spectra that they produce. In particular, we note that low-energy photons are produced in
large part by electrons with energies that do not greatly exceed the thermal energy of the target with which they
interact, so that the commonly used assumption of “cold-target” energy loss is not applicable over the entire
energy range. We show that this significantly reduces the inferred energy content of the injected electron distri-
bution and even makes the oft-dwelt-upon concept of a “lower cutoff energy” in the injected electron spectrum
moot. Convenient formulae are provided for the total power in the injected electrons.

Subject headingSun: flares

1. INTRODUCTION 2. ENERGETICS OF THE INJECTED ELECTRONS

The hard X-ray flux observed at the Earth (in units of photons

The Reuven Ramaty High Energy Solar Spectroscopic Im- cm? st keV!) from the injection of a beam of electrons with

ager (RHESS) instrument has produced many high-quality . . 21
hard X-ray spectra from solar flares. These spectra are of SUf-iQV?P)eI}?]¥OSge?ﬁ’ilc”lfot(;())et ég]n uggsv\zfittilr?cggn(s;g)v n Z
ficient quality that the corresponding electron distribution func- MacKinnon 1985) 9
tion can be accurately computed. Holman et al. (2003) and
Piana et al. (2003) have used such hard X-ray spectra to cal- .
culate the mean souradectronspectrumF(E) (see Brown, I(e) = A Qe E)
Emslie, & Kontar 2003) for a series of times throughout the " 47R? ). GU(E)
2002 July 23 event. Analysis of the form B{E)  allows us,
through modeling of the behavior of the electrons in the source,
to calculate the total power in thinjectedelectrons.

Hard X-ray spectra in solar flares are typically steep (wit

a power-law spectral index= 3 ). The electron spectra derived G.(E) = K/E [in units of keV (cm? )* ] is the energy-loss rate

from these are correspondingly steep (e.g., in the standar ; oo - S
collisional thick-target model of Brown 1971, the spectr_al tai;gtnét:f?oélﬁnrgﬂedfgig)){ in a fully ionized, collisionally cold

index, 6,, of the injected electron flux spectruRy(E,)

given byé, = v + 1). Sinces,> 2 , the injected energy flux L
E,F,(E,)dE, diverges at low energies. To keep the injected _ L

{energy flux finite, authors have usually applied a low-energy H(E) = g(E)L Fo(Eo)dEs, @)

“cutoff” to the integral, leading to results of the form “so many

ergs cm? s' injected above a certain (arbitrary) reference

energy.”

H(E)dE, (1)

where A is the flare areaR is the Earth-Sun distance,
h Q(e, E) (in units of cnt keV?) is the cross section for emission
of a photon of energye by an electron of energyE,

and g(E) is the ratio of the actual energy-loss r&ik) to

. L G.(E). Brown et al. (2003) have pointed out that the only
Hard X-ray spectra typically show two regions: a steep (ther- characteristic of the electron population that can be inferred

mal) spectrum at low energies=80 keV) and a flatter power- 6|y from fitting (Holman et al. 2003) or inverting (Piana et
law spectrum at higher energies. Since these two regimes mergg 2003) the hard X-ray spectrum using a known bremsstrah-

smoothly together, the application of an abrupt “low-energy cut- |yng cross section is theean electron spectruf(E) in the
off” in the injected electron spectrum is clearly inappropriate. soyrce, defined through

Moreover, as we show here, it is algnnecessarylhe standard

relation between the observed hard X-ray spectrum and the in- -

jected electron flux spectrum (e.g., Brown 1971) assumes that I(e) = 1 ﬁvj Qe E)E(E)dE ©)
the injected electrons steadily lose energy in a “cold” target (i.e., 47R? . ’ ’

one with thermal energkT <« E ). However, electrons with in-
jected energ¥ = kT lose energy at a rate significantly less than
in a cold target, and below abot= kT , the electrons are part
of a thermally relaxed distribution, as likely tyain energy as
lose it. Therefore, the power in the injected electron distribution _
is obtained by integrating only over energiesz kKT, with an — 3

appropriate “v)\//arm-gt:]arge?ener{;y-loss redt?ction factor” included H(E) = %/F(E)GC(E) = n—AVK @ : (4)

in the integrand. This results in a finite (and straightforwardly

calculable) value for thtotal injected electron power, rather than

the amount of power above an (arbitrary) “lower cutoff energy.”  Multiplying both sides of equation (2) by(E) , differenti-

L119

wheren is the mean source density an the emitting vol-
ume. Comparing equations (1) and (3), we see that
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can be straightforwardly generalized to arbitrary forms of

1.0
[ F (E)]. This gives
0.8] ] Y )
I T = KC Elég(El)Jrf E~*"‘g(E)dE| . (8)
E;
0.6 n
. For a fully ionized cold targetg(E) = 1 , and we obtain
0L ] F = (NVIAKC[(6 + 1)/8] E;®. This expression clearly di-
L verges a€, — 0 , requiring that we impose an arbitrary finite
[ ] value forE, in order to keep the total injected energy flux finite.
0.2k - However, using the substitution= E,/E  in equation (8), we
I find that theactualinjected energy flux above energy differs
ool from the cold-target—inferred value by the factor
0 2 4 6 8 10 1

£,/kT HEy 5) =6%1[g(E1)+ f x“g(Ellx)dy], ©)

0
Fic. 1.—Ratio of injected electron energy flux above reference enkrgy

relative to the same quantity inferred through a cold-tark€tf E, ) analysis . . _ L
(see eq. [9]). Curves are shown for various values,afihich is the power- which is equal to 1 forg(E) = 1 and less than unity if

law spectral index of(E) , the instantaneous mean electron flux spectrum in §(E) < 1 everywhere. (Reduced energy-loss rates for the
the source. bremsstrahlung-producing electrons require fewer electrons for
a given hard X-ray yield.)

) ) L As pointed out by Brown & MacKinnon (1985), there are
ating with respect td, and then substituting fad(E)  from  geveral factors that can influence the expressiomfg) . For
equation (4) give example, a varying degree of target ionization renders the

energy-loss rate5(E) a function of position in the target

nv d I_:(E) (Brown 1972) and hence implicitly a function&f The primary
Fo(Bo) = = L Kgg| g 9B : (5) interest here, however, is the determination of the total energy
E=Eo content in the injected electrons. Since the bulk of the electron

) ) ) energy content is contained in low-energy electrons, which
Equation (5) is the general relation between the mean sourcenteract principally with the ionized (coronal) regions of the

electron spectrurf(E)  and the injected spectigfE;) . For flare volume, the principal factor controllingdE) s the effect
acoldtargetg(E) = 1 , and we recover equation (11) of Brown of a “warm” target (i.e.E, ~ kT ), through equation (7) or equa-
& Emslie (1988), viz., tion (8), on’E, . Spitzer (1962, eq. [5-24]) gives the formula for
B the ener_gy—loss rate in_ a target of temperaflirérom whi_ch
W _ HE,) ( din F) we o_bta_ln the expression for the energy-loss rate relative to a

F(E,) = —K 1- . 6 :

2(Eo) A £ dinEl_., (6) fully ionized cold target
For a power lawF(E) ~ E~* , this give§,(E,) ~ E;* , where _ (, /E) _or|E ot (\ /_51)
the injected spectral index, = 6 +2 . However, fo(E) # Gn(E) erf KT, 2 kTerf k7’ (10)

1, the actual form foiR,(E,) can differ substantially from this
power-law form. Specifically, i(E) is less than unity and an whereerf (x) is the error function. Figure 1 shoW&,/kT)
increasing function of energy, it can readily be shown from for various values ob. For (E,/kT) = 5,f= 1, and a cold-
equation (5) thak,(E,) will be everywhere less than the value target analysis is indeed appropriate. However, for lower values
appropriate to a collisional cold target—physically, this is be- of E,/kT, there is a substantial reduction in the injected electron
cause the decrease in energy-loss rate with decreasing energgnergy flux relative to that inferred from a cold-target analysis.
leads to a smaller number of electrons required at low energies. For values oE/kT < 1 , the energy-loss rate given by equa-
This has significant implications for the energy content of the tion (10) isnegative particles gain more energy from the high-
injected electron distribution, as we shall see below. energy tail of the ambient Maxwellian distribution than they

The injected energy flux (in units of ergs cfn "*s ) above |ose to the bulk. The energy reginte< kT  is more appro-
the reference enerdy, 8 = [c, E,F(E)dE, . Substituting priately described as a thermally relaxed ensemble of particles,
from equation (5) foF,(E,) and integrating by parts, we obtain with no secular energy losses. Thetal injected power

Po: = ForA therefore approachesfixedvalue

%0

Por = NVKC f B Gh(Eo)dE,, (11)

0.9&T

= Vi Fepoey + j Byee. @

The electron energy fluf; thus depends on a combination
of F(E) and a weighted integral of it; it is therefore fairly where 0.98T is the value ofE, for whichg(E,) = 0 . The
insensitive to the detailed form 6{E) . Hence, for illustrative productnVC is directly determined from the observed photon
purposes, we now assume tHi(E) has been fitted with aspectrum (see eq. [1] of Brown et al. 2003); hence, we can
power-law formF(E) = CE™ [although the analysis to follow evaluate®,, directly from the observed photon spectrum. We
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Fic. 2.—Ratio oftotal injected electron power to the power above &B8 ~ FiG. 3.—Ratio oftotal injected electron power to the power aboveT5
inferred through a cold-target analysis (see eq. [12]), as a function of the meaninferred t'hrough a cold-target analysis, as a function of the mean electron flux
electron flux spectral inde& spectral index.

minutes into the main phase of the flare. Thus, the electrons
carrying the bulk of the injected power (i.e., those with energies
in the range from=KT to =5kT) principally interact with the

hot coronal regions of the flare.

For power-law forms=(E) ~ E™® , the total injected power
P, can be obtained from multiplying the cold-target—inferred
injected power aboveld by R;(6). The total energy content

1 for the main phase of the 2002 July 23 flare has been estimated
— _6 51 (ﬁfﬁ) by Holman et al. (2003) using such a procedure. For more
Ro.06(0) X" g dx (12) ( )
6+1/, X general forms ofF(E) (see Piana et al. 2003), equation (7),
with E; = 0.9&T, can be used.

stress that this lower limit on the integral in equation (11) is
not an arbitrary reference value; it is imposed by the physics
of electron energy loss in the target.

The ratio of?,, (eq. [11]) to the “cold-target” injected power
above reference enerdy, = 0.9KT  (vizP, = nVKCI[(s +
1)/8] (0.98T)?) is (by eq. [9])

Figure 2 shows the behavior &®,.(6) . Thetal injected

power in the electrons is only some 2%-10% of the “cold- 3. SUMMARY AND CONCLUSIONS

target” injected power above 08B This may seem like a . .

very small percentage; however, it is based on a very low value e have shown that consideration of energy loss by brems-
of E,. A more informative quantity would b&, , the ratio of :s_trahlung—prpducmg electrons in solar flargs leads naturgilly toa
the total injected power to the cold-target power in the truly finite total injected electron power. There is no need to impose
cold-target regim& > 5kT  (Fig. 1). Since the cold-target power an arbitrary low-energy cutoff to the injected electron distribu-
scales a€;® R, (8) = (5/0.98JR, . . Figure 3 showr{s) . tion. Electrons with energieskT essentially lose no energy in
For example, fob = 3 , the total power over the entire electron the target, while those with energies in the range frekii to
distribution ®,, is 7.4 times the cold-target injected electron ~5KT suffer a significantly smaller energy-loss rate than they
power above BT. [Equivalently, we could state that the total Would if the target were cold. Hence, the total injected power
power is equivalent to the cold-target power above an “effective T Can be calculated using an expression (eq. [7]) that is similar

cutoff’ energy E,,, whereE;2 = R{8)(5KT) ™ ; i.€.F o= to that for a cold-target analysis but that incorporates a factor
5KkTR:. For & = 3, this gives an effective cutoff energy of g(Eo)_that is close to zero at energiés = kT , thereafter in-
2.57%KT)] creasing smoothly toward unity at energi€s= 5kT . Contrary

For the 2002 July 23 flare, Holman et al. (2003) estimate 0 the behavior in the cold-target case, this integral is finite and
3.5 x 10’ K, corresponding t&T in the range of 2-3 keV. It
is reasonable to assume that this is representative of the target This work was supported by NASA'’s Office of Space Science
with which the nonthermal electrons interact. The column den- via aRHESSrant through the University of California, Berke-
sity required to stop a 30 ke\A{0KT, well into the cold-target  ley. | thank John Brown for several very helpful comments. The
regime) electron is only of order 0cm™2 (cf. Emslie 1978), research at GSFC and Berkeley is supported in part by NASA
less than the column density of the flaring corona several contract NAS5-98033.
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