This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy. Close this notification
NOTICE: Ukraine: Read IOP Publishing's statement.

The American Astronomical Society (AAS), established in 1899 and based in Washington, DC, is the major organization of professional astronomers in North America. Its membership of about 7,000 individuals also includes physicists, mathematicians, geologists, engineers, and others whose research and educational interests lie within the broad spectrum of subjects comprising contemporary astronomy. The mission of the AAS is to enhance and share humanity's scientific understanding of the universe.

The Institute of Physics (IOP) is a leading scientific society promoting physics and bringing physicists together for the benefit of all. It has a worldwide membership of around 50 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policy makers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications.

Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329*

, , , , , , , , , , , , , , , , , , , , , and

Published 2003 June 6 © 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A.
, , Citation K. Z. Stanek et al 2003 ApJ 591 L17



We present early observations of the afterglow of GRB 030329 and the spectroscopic discovery of its associated supernova SN 2003dh. We obtained spectra of the afterglow of GRB 030329 each night from March 30.12 (0.6 days after the burst) to April 8.13 (UT) (9.6 days after the burst). The spectra cover a wavelength range of 350-850 nm. The early spectra consist of a power-law continuum (Fν ∝ ν-0.9) with narrow emission lines originating from H II regions in the host galaxy, indicating a low redshift of z = 0.1687. However, our spectra taken after 2003 April 5 show broad peaks in flux characteristic of a supernova. Correcting for the afterglow emission, we find that the spectrum of the supernova is remarkably similar to the Type Ic "hypernova" SN 1998bw. While the presence of supernovae has been inferred from the light curves and colors of gamma-ray burst afterglows in the past, this is the first direct, spectroscopic confirmation that a subset of classical gamma-ray bursts originate from supernovae.

Export citation and abstract BibTeX RIS


  • Based on data from the Multiple Mirror Telescope Observatory 6.5 m telescope, the Magellan 6.5 m Clay telescope, and the Fred Lawrence Whipple Observatory 1.5 m telescope.

Please wait… references are loading.