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ABSTRACT

A nonlinear theory of the perpendicular diffusion of charged particles is presented, including the influence of
parallel scattering and dynamical turbulence. The theory shows encouraging agreement with numerical simulations.

Subject headings: diffusion — turbulence

1. INTRODUCTION

The behavior of charged test particles in a turbulent magnetic
field is a problem of long-standing importance in space and
astrophysics, and one for which it has been unexpectedly dif-
ficult to achieve closure (Jokipii 1966; Giacalone & Jokipii
1999; Mace, Matthaeus, & Bieber 2000). The diffusion tensor,
for particle transport parallel and perpendicular to the ordered
magnetic field, is essential for describing solar energetic par-
ticles (Droege 2000), the modulation of Galactic cosmic rays
(Burger & Hattingh 1998), diffusive shock acceleration, and
the lifetime of cosmic rays in the Galaxy (Jokipii & Parker
1969). Perpendicular diffusion continues to pose a number of
enigmatic problems in heliospheric studies, in which obser-
vations provide strong constraints. It is also troubling that direct
numerical simulations have failed to verify known theoretical
formulations of perpendicular diffusion. Some problems, such
as channeling or dropouts (Mazur et al. 2000) or the occurrence
of subdiffusive transport (Kota & Jokipii 2000; Qin, Matthaeus,
& Bieber 2002a), may require significant theoretical refor-
mulations. In the latter case, the onset of collisionless parallel
diffusion, usually the stronger of the two effects, can thwart
the occurrence of perpendicular diffusion. However, perpen-
dicular transport can be diffusive, when the three-dimensional
random magnetic field possesses adequate complexity in the
directions transverse to the mean field. In this Letter, we de-
velop a nonlinear theory of perpendicular diffusion that is ap-
plicable to this incompletely explored regime.

2. APPROACH AND METHODS

The standard description of perpendicular diffusion is that the
gyrocenters of charged particles follow magnetic field lines, and
thus their diffusive spread perpendicular to the mean magnetic
field is governed by the diffusive spread of field lines. This field
line random walk (FLRW) limit of particle transport emerges
from quasi-linear theory (QLT; Jokipii 1966) and provides a
physically appealing picture. However, the FLRW has not proved
to be accurate for all particle energies in numerical experiments
(Giacalone & Jokipii 1999; Mace et al. 2000), nor is it clear that
it accounts for observed cross-field transport. Test particle studies
show that the FLRW is accurate at high particle energies (the
Larmor radiusrL is much greater than the parallel turbulence
correlation scale ). For medium-energy ( ) to low-energyk kl r ≈ lc L c

( ) particles, transport occurs at rates progressively lesskr K lL c
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than the FLRW rate. An alternative theory (“BAM”) based on
the Taylor-Green-Kubo (TGK) formulation (Bieber & Matthaeus
1997; Forman 1977) gives a perpendicular diffusion that is
weaker than the FLRW at low energy but underestimates the
simulation values. Generally speaking, at moderate to low en-
ergies, the FLRW and BAM results bracket the numerical results
(Giacalone & Jokipii 1999; Mace et al. 2000). A substantial
complication is the interaction between perpendicular and par-
allel scattering, which can reduce perpendicular transport to sub-
diffusive levels (Lingenfelter, Ramaty, & Fisk 1971; Urch 1977;
Rechester & Rosenbluth 1978; Kota & Jokipii 2000; Qin et al.
2002a). Particles parallel-scatter, reversing direction relative to
the large-scale guide field. If the field lines sampled by the gy-
romotion are closely similar to those encountered before the
reversal, then perpendicular displacements are suppressed. The
property that determines whether perpendicular diffusion is lost
(Qin et al. 2002a) or recovered (Qin, Matthaeus, & Bieber 2002b)
is evidently the transverse complexity of the magnetic field. Flux
surfaces with high traverse complexity (see Fig. 1) are charac-
terized by the rapid separation of nearby field lines. Long ago
recognized as important for particle transport (Jokipii 1973), field
line separation has been discussed extensively in the context of
nonlinear dynamics and fusion devices, in which Coulomb col-
lisions, shear, and other effects (Rechester & Rosenbluth 1978;
Kadomtsev & Pogutse 1979) are invoked to explain perpendic-
ular diffusion at non-QLT/FLRW levels.

Some descriptions invoke rapid exponential separation or
the “stochastic instability” (Zaslavskii & Chirikov 1972) of
field lines and/or weak Coulomb collisions in order to restore
diffusion (Rechester & Rosenbluth 1978) in the presence of
parallel scattering. Conclusions vary widely. For example, the
argument that even vanishingly weak collisions can restore the
FLRW level of transport (Rechester & Rosenbluth 1978) is at
least partially dependent on the occurrence of exponential sto-
chastic instability up to a scale of the correlation length, a
proposition that we find to be questionable in broadband tur-
bulence (see Rax & White 1992). It has also been suggested
that the exponential separation itself guarantees the restoration
of diffusion (Chandran & Cowley 1998). Counterexamples to
these propositions are found in recent numerical results (Qin
et al. 2002a, 2002b). For example, perpendicular transport can
be suppressed to subdiffusive levels even when there is no
ignorable coordinate, although the stochastic instability argu-
ment would appear to be in force. Likewise, cases are found
in which, lacking collisions entirely, perpendicular diffusion is
restored, although to levels lower than the FLRW.

Here we develop a nonlinear theory in which transverse com-
plexity is invoked to decorrelate trajectories after parallel scat-
tering, thus restoring perpendicular diffusive transport. Among
our assumptions is that decorrelation of nearby field lines is
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Fig. 1.—Flux surfaces for two magnetic field models.Left: Slab model with no transverse structure. The field lines do not separate.Right: Two-component
model, with 80% of its energy in two-dimensional modes, exhibiting considerable transverse complexity. The nearby field lines rapidly separate.

diffusive, not exponential. We will compare our conclusion and
several other theories with direct numerical simulations.

3. FORMULATION OF NONLINEAR PERPENDICULAR DIFFUSION

Consider a statistically homogeneous magnetic fieldB p
, with a uniform constant oriented in the -directionˆB � b B z0 0

and a random fluctuation . Define an ensemble averageb(x, t)
such that and . The fluctuations are sta-A…S ABS p B AbS p 00

tionary and homogeneous, so the two-point, two-time covari-
ances vary only with spa-R (r, t) p Ab (x, t)b (x � r, t � t)Sij i j

tial and temporal lags andt. For convenience, we specializer
to transverse fluctuations .b · B p 00

The perpendicular (Fokker-Planck) diffusion coefficient is
, for a component of transverse displacement2k p A(Dx) S/2Dtxx

and a suitable limiting timescale . In numerical work, theDx Dt
running diffusion coefficient is useful. We1 2k̃ p dA(Dx) S/dtxx 2

will develop an approximate expression for in the TGKkxx

formulation (e.g., Kubo 1957)

�

′ ′k p Av (0)v (t )Sdt (1)xx � x x
0

by modeling the integrand, i.e., the two-time single-particle
velocity autocorrelation, employing a series of physically mo-
tivated approximations.

First, we assume that perpendicular transport is governed by
the velocity of gyrocenters that follow field lines. Accordingly,
in equation (1), we replace thex-direction velocity withvx

ṽ { av b /B , (2)x x 0z

wherea is a proportionality constant to be determined after the
fact. The crucial effect of gyromotion in sampling the transverse
structure of the turbulence is not ignored—rather it will be built
into additional developments (see below). Using equation (2)
converts the TGK integrand into a fourth-order correlation func-
tion involving particle veloc-′ ′ ′Av (0)b [x(0), 0]v (t )b [x(t ), t ]Sx xz z

ities and magnetic fluctuation values at the particle positions.
Next, we assume that the particle velocities are uncorrelated with
the local magnetic field vector. This is exact for any distribution

symmetric about 90� pitch angle. Thus, the more daunting fourth-
order correlation is replaced by a product of second-order cor-
relations, . The TGK for-′ ′ ′Av (0)v (t )SAb [x(0), 0]b [x(t ), t ]Sx xz z

mula becomes

�2a ′ ′ ′ ′k p dt Av (0)v (t )SAb [x(0), 0]b [x(t ), t ]S. (3)xx � x xz z2B0 0

This reduces to the FLRW result in an appropriate limit.4

The two-time parallel-velocity autocorrelation is modeled by
the (isotropic) assumption , where

′2 v′ � t /lkAv (0)v (t )S p (v /3)ez z

is the mean free path for parallel scattering and is thel vk

particle speed. This is consistent with the TGK definition of
.� ′ ′k p vl /3 p dt Av (0)v (t )S∫0zz k z z

A key step is the modeling of the Lagrangian magnetic au-
tocorrelation . QLT replaces the par-′ ′Ab [x(0), 0] b [x(t ), t ]Sx x

ticle trajectory by an unperturbed trajectory. Here we treat′x(t )
as a random variable and employ Corrsin’s independence′x(t )

hypothesis (Corrsin 1959; Salu & Montgomery 1977; McComb
1990), thus retaining the stochastic character of the particle
position vector. In real space form,

′ ′ ′ ′ 3Ab [x(0), 0]b [x(t ), t ]S p R (y, t )P(yFt )d y, (4)x x � xx

where is the Eulerian two-point, two-time correlation′R (y, t )xx

and is the probability density of the particle having′P(yFt )
displacement at time . We find that′y t

�22a v S (k) ′ ′xx v3 ′ � t /l ′ ik·x(t )kk p d k dt e G (k, t )Ae S ,[ ]xx � � xx23 B0 0

(5)

where we introduce the spectral amplitudeS (k, t) pxx

4 For constant , , and a one-dimensional slab model magnetic field,v a p 1z

eq. (3) becomes , where is�22 2 ′ ′k p a v /B Ab (0)b (z p v t )Sdt � vD /2 D∫0xx 0 x x ⊥ ⊥z z

the Fokker-Planck coefficient for field line wandering (Jokipii 1966).
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Fig. 2.—Perpendicular (upper panel) and parallel (lower panel) diffusion
coefficient as a function of , with and .slab 2Dr /l b/B p 0.2 E : E p 20 : 80L c 0

The particle velocity varies by a factor of 50.Upper panel, solid line: fromkxx

numerical simulation;dotted line: from present NLGC theory (eq. [7]);kxx

dashed line: from FLRW limit; dash-dotted line: from BAM theory.k kxx xx

Lower panel, solid line: from numerical simulation;dashed line: fromk kzz zz

QLT.

; for convenience, we define��3 ′ �ik·z 3(2p) R (z, t )e d z∫�� xx

so that .′ ′ ′G (k, t ) S (k, t ) p S (k)G (k, t )xx xx xx xx

Proceeding, we assume that the components of the trajectory
have uncorrelated axisymmetric Gaussian distributions

and, furthermore, that the distribution of displacements′P(yFt )
is diffusive for all values of time. This immediately leads to

′ 2 ′ 2 ′ik·x(t ) �k k t �k k t⊥ xx k zzAe S p e , (6)

where and , thus achieving a statistical2 2 2k p k � k k p k⊥ x y k z

closure for in terms of and itself. The above as-k k kxx zz xx

sumption stands in formal contrast to the assumption that tra-
jectories (or field lines) separate exponentially (Rechester &
Rosenbluth 1978; Chandran & Cowley 1998).

Using these approximations and for simplicity letting
, equation (5) becomes, after an elementary
′′ �g(k)tG (k, t ) p exx

integration,

22a v S (k)dk dk dkxx x y k
k p . (7)xx �2 v 2 2 23B � (k � k )k � k k � g(k)0 x y xx k zzlk

This equation determines subject to our understanding ofkxx

the parallel mean free path, the dynamical decay rate, and the
form of the spectrum. We refer to it as the nonlinear guiding
center (NLGC) theory.

4. NUMERICAL SIMULATION RESULTS

Numerical tests are employed to assess the accuracy of the
NLGC theory, for the particular case of a static [ ]g(k) p 0

two-component, slab/two-dimensional model magnetic field5

with a spectral index . The spectral bend-over scalesl5n p 6

and , in thez- andx-direction, respectively (proportional tol x

the respective correlation lengths and ), are chosen sol lc c, x

that (and therefore ). This produces al p 10l l K lx c, x c

strong transverse complexity that guarantees diffusive perpen-
dicular transport. We fix the ratio of the energiesslabE {

and in the slab and two-dimensional com-2 2D 2Ab S E { Ab Sslab 2D

ponents,6 respectively, while controlling the ratio of the rms
fluctuation amplitude to DC magnetic field strength . Web/B0

choose the numerical factor to be .�a p 1/ 3
The diffusion coefficient is computed numerically7 using the

procedures described previously (Giacalone & Jokipii 1999;
Qin et al. 2002a). The ratio of the gyroradius to the parallel
correlation scale, , is varied by changing the particle speed.r /lL c

For the selected parameters, using a single realization of the
turbulence, 1000 particle trajectories are computed over time-
scales approximately equal to several hundred to 1000,vt/l
and the running diffusion coefficients and are computed.˜ ˜k kxx zz

A usable value of is obtained when a stable “flat” regimekxx

is observed for a period of several hundred . In all casesvt/l
in which a stable regime of is observed, has already˜ ˜k kxx zz

attained a stable value. Thus, the diffusion coefficients we re-
port here are in the regime of the “second” diffusion (Qin et
al. 2002b).

Figure 2 shows the results for relatively weak turbulence,
, and the spectral components in the ratiob/B p 0.20

, believed to be consistent with solar windslab 2DE : E p 20 : 80
observations (Bieber et al. 1996). The ratio is varied fromr /lL c

1/200 to 1/4, and the results are compared with the present
theory and the FLRW and BAM predictions. The simulations
show that is comparable to, or somewhat less than, the QLTkzz

result. FLRW and BAM results bracket the numerically deter-
mined at low energies as previously reported (Giacalone &kxx

Jokipii 1999; Mace et al. 2000) . The present theory provides
much better agreement with the computed values.

Another set of numerical results is compared with theory in
Figure 3, for parameters similar to those above, but with
stronger turbulence, . Here we show an additionalb/B p 1.00

comparison, with a theoretical result designated as “CC&RR,”
. This is essentially a colli-k p (vD /3)l / [l log (l /r )]xx ⊥ k c c L

sionless adaptation of the Rechester & Rosenbluth (1978) and
Stix (1978) result for perpendicular transport in weakly colli-
sional toroidal plasmas, as formulated by Chandran & Cowley
(1998). In contrast to the present theory, CC&RR assumes an
exponential separation of field lines to at least the correlation
scale. Once again, we see that for nearly 2 orders of magnitude
in , the present theory provides the best account of ther /lL c

computed values.

5. SUMMARY AND DISCUSSION

The above sections outline a theory of the perpendicular
diffusion of charged particles, based on the hypothesis that

5 The two-component, slab/two-dimensional spectrum model (Bieber, Wanner,
& Matthaeus 1996) ignores the usually smaller parallel variance and includes
only excitations with wavevectors either purely parallel to or purely perpendicular
to the mean magnetic field , leading to 2D slabB S (k) p S (k )d(k ) � S (k )d(k ),0 xx xx ⊥ z xx z ⊥
where, e.g., we choose , andslab 2 2 2 �n 2DS (k ) p C(n)lAb S(1� k l ) S (k ) pxx z slab z xx ⊥

, where .12 2 2 �n 1/2 �1C(n)l Ab S(1� k l ) /pk C(n) p (2p ) G(n)/G(n � )2x 2D ⊥ x ⊥
6 Typically, the slab component is generated by choosing 222 Fourier modes

with a fixed spectral shape, and random phases, in a large periodic box of size
104l. The two-dimensional component is generated similarly in a 4096#

Fourier series in a box of size 102l (see Qin et al. 2002b).4096
7 Particles are integrated using a fourth-order adaptive-step Runge-Kutta

method with a relative error control set to 1 part per billion.
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Fig. 3.—Perpendicular diffusion coefficients as a function of , withr /lL c

and .Thick solid line: from numerical sim-slab 2Db/B p 1 E : E p 20 : 80 k0 xx

ulation; dotted line: from NLGC theory (eq. [7]);thin solid line: CC&RRkxx

theory;dashed line: FLRW limit; dash-dotted line: BAM theory. The turbu-
lence amplitude is larger than in Fig. 2, and parallel diffusion (not shown) is
no longer accurately given by QLT for these parameters. The NLGC theory
is more accurate than the other theories shown.

decorrelation, which is necessary to achieve a diffusive random
walk, is accomplished by particle gyrocenters following mag-
netic field lines, which themselves diffusively separate as a
result of the transverse complexity of the turbulence. The effect
of parallel (pitch angle) scattering as well as the influence of
dynamical turbulence are included explicitly through the dif-
fusion assumption, which, along with Corrsin’s independence
hypothesis, allows a reasonably general formulation of per-
pendicular diffusion. At no point have weak Coulomb collisions
or the exponential separation of field lines been invoked.
Through comparison with direct numerical simulations of test
particles, we have shown evidence that this NLGC theory of
perpendicular diffusion behaves well for a wide range of test
particle parameters and is noticeably better than several other
theories of perpendicular transport included for comparison.
The present theory also predicts that the ratio –k /k ≈ 0.02xx zz

0.05 for the range of parameters considered, consistent with
previous reports (Giacalone & Jokipii 1999). We are currently
studying the application of the present theory in heliospheric
and cosmic-ray physics in the hope that an improved formu-
lation of perpendicular diffusion might be useful in solving a
number of observational puzzles.
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