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ABSTRACT

We present a method of directly testing whether time continues to have its usual meaning on scales of
≤ s, the Planck time. According to quantum gravity, the timet of an event cannot5 1/2 �44t p (�G/c ) ≈ 5.4# 10P

be determined more accurately than a standard deviation of the form , where anda are positiveaj /t p a (t /t) at 0 P 0

constants∼1; likewise, distances are subject to an ultimate uncertainty , wherec is the speed of light. As acjt

consequence, the period and wavelength of light cannot be specified precisely; rather, they are independently
subject to the same intrinsic limitations in our knowledge of time and space, so that even the most monochromatic
plane wave must in reality be a superposition of waves with varyingq and , each having a different phasek
velocity . For the entire accessible range of the electromagnetic spectrum this effect is extremely small, butq/k
it can cumulatively lead to a complete loss of phase information if the emitted radiation propagated a sufficiently
large distance. Since, at optical frequencies, the phase coherence of light from a distant point source is a necessary
condition for the presence of diffraction patterns when the source is viewed through a telescope, such observations
offer by far the most sensitive and uncontroversial test. We show that theHubble Space Telescope detection of
Airy rings from the active galaxy PKS 1413�135, located at a distance of 1.2 Gpc, excludes all first-order
( ) quantum gravity fluctuations with an amplitude . The same result may be used to deduce thata p 1 a 1 0.0030

the speed of lightin vacuo is exact to a few parts in 1032.

Subject headings: distance scale — early universe — gravitation — radiation mechanisms: general —
techniques: interferometric — time

1. INTRODUCTION: THE PLANCK SCALE

It is widely believed that time ceases to be well defined at
intervals≤ , where quantum fluctuations in the vacuum metrictP

tensor render general relativity an inadequate theory. Both andtP

its corresponding distance scale , the Planck length, playl p ctP P

a vital role in the majority of theoretical models (including su-
perstrings) that constitute innumerable papers attempting to ex-
plain how the universe was born and how it evolved during
infancy (see, e.g., Silk 2001 and references therein). Given this
background, we desperately lack experimental data that reveal
even the slightest anomaly in the behavior of time and space at
such small scales. Although the recent efforts in utilizing grav-
itational wave interferometry and the observation of ultra–high-
energy quanta carry potential (Amelino-Camelia 2001; Ng et al.
2001; Lieu 2002), they are still some way from delivering a
verdict, because the conclusions are invariably subject to inter-
pretational issues. Here we wish to describe how an entirely
different yet well-established technique has hitherto been over-
looked: not only would it enable direct tests for Planck-scale
fluctuations (and reveal the detailed properties of any such ef-
fects), but also the measurements performed to date could already
be used to eliminate prominent theories.

Owing to the variety of proposed models, we begin by de-
scribing the common feature that defines the phenomenon being
searched: if a timet is so small that , even the best clockt r tP

ever made will only be able to determine it with an uncertainty
. To express this mathematically, we may write the in-dt ≥ t

trinsic standard deviation of time as , wherej /t p f (t /t) f Kt P

for and for . Over the range , the1 t k t f ≥ 1 t ≤ t t k tP P P

(hitherto unknown) functionf can be expanded as follows:

a 2 af (x) p x (a � a x � a x � …) ≈ a x for x K 1, (1)0 1 2 0

where and both anda are positive constants (∼1x p t /t aP 0

for all reasonable scenarios). Since for the rest of this Letter
we shall be concerned only with times , we may take ant k tP

approximate form of equation (1) as

aj tt P≈ a . (2)0 ( )t t

Our appreciation of how equation (2) may affect measure-
ments of angular frequencies and wavevectors arises(q, k)
from the realization that if a quantity can beq 1 q p 2p/tP P

determined accurately, such a calibration will lead to a “su-
perclock” that keeps time to within . Thus, as ,dt ! t q r qP P

q should fluctuate randomly such that . Indeed, fordq/q r 1
the case of (i.e., eq. [2] with ), the followingj ≈ t a p 1t P

equation was shown by Lieu (2002) to be an immediate con-
sequence:

j q j Eq E≈ a , or ≈ a , (3)0 0
q q E EP P

where and eV. Fur-28E p �q E p �q p h/t ≈ 8.1# 10P P P

thermore, for any value ofa it can be proved (see Ng & van
Dam 2000) that equation (2) leads to

a aj q j Eq E≈ a , or ≈ a . (4)0 0( ) ( )q q E EP P

The same reasoning also applies to the intrinsic uncertainty in
data on the wavevector (note also that for measurementsk
directly taken by an observer, and , like and , aredq dk dt dr
uncorrelated errors), for if any component of could be knownk
to high accuracy even in the limit of largek, we would be able
to surpass the Planck-length limitation in distance determina-
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tion for that direction. Thus, a similar equation may then be
formulated as

aj qk ≈ a , (5)0 ( )k qP

where hereafter,k is the magnitude of and the right-c p 1 k
hand side is identical to the previous equation becauseq p

for photons. Note, indeed, that equations (4) and (5) holdk
good for ultrarelativistic particles as well.

About the value ofa, the straightforward choice is ,a p 1
which by equation (2) implies ; i.e., the most precise clockj ∼ tt P

has uncertainty∼ . Indeed, is just the first-order term int a p 1P

a power series expansion of quantum loop gravity. However, the
quantum nature of time at scales≤tP may be manifested in other
(more contrived) ways. In particular, for random walk models
of spacetime, where each step has size , (Amelino-1t a pP 2

Camelia 2000). On the other hand, it was shown (Ng 2002) that
as a consequence of the holographic principle (which states that
the maximum degrees of freedom allowed within a region of
space is given by the volume of the region in Planck units; see
Wheeler 1982; Bekenstein 1973; Hawking 1975; t’Hooft 1993;
Susskind 1995) takes the form , leading to2/3j j /t ∼ (t /t)t t P

in equations (3) and (4). Such an undertaking also has2a p 3

the desirable property (Ng 2002) that it readily implies a finite
lifetime t for black holes, viz., , in agreement with2 3 4t ∼ G m /�c
the earlier calculations of Hawking.

Although the choice ofa is not unique, the fact that it appears
as an exponent means different values can lead to wildly vary-
ing predictions. Specifically, even by taking eV [i.e.,20E p 10
the highest energy particles known, where Planck-scale effects
are still only∼ in significance], an incrementa �9a(E/E ) ≈ 10P

of a by 0.5 would demand a detection sensitivity 4.5 orders
of magnitude higher. The situation gets much worse asE be-
comes lower. Thus, if an experiment fails to offer confirmation
at a givena, one can always raise the value ofa, and the
search may never end. Fortunately, however, it turns out that
all of the three scenarios , and 1 may be clinched by1 2a p ,2 3

the rapid advances in observational astronomy.

2. THE PROPAGATION OF LIGHT IN FREE SPACE

How do equations (4) and (5) modify our perception of the
radiation dispersion relation? By writing the relation as

2 2q � k p 0, (6)

the answer becomes clear—one simply needs to calculate the
uncertainty in due to the intrinsic fluctuations in the2 2q � k
measurements ofq and , viz., ,2 2k d(q � k ) p 2qdq � 2kdk
bearing in mind that and are independent variations, asdq dk
already discussed. This allows us to obtain the standard deviation

aq2�j p 2 2q a . (7)2 2q �k 0 ( )qP

Thus, typically equation (6) will be replaced by

aq2 2 2�q � k ≈ �2 2q a . (8)0 ( )qP

In the case of a positive fluctuation on the right-hand term of

equation (6) by unitj, the phase and group velocities of prop-
agation will read, for , asE/E K 1P

aq q�v p ≈ 1 � 2a ,0p ( )k qP

adq q�v p ≈ 1 � 2(1� a)a . (9)0g ( )dk qP

The results differ from that of a particle—here is a2 2q � k
function of q and not a constant, so that both and arev vp g

greater than 1, i.e., greater than the speed of light . Onv p 1
the other hand, if the right-hand side of equation (6) fluctuates
negatively, the two wave velocities will read like

aq q�v p ≈ 1 � 2a ,0p ( )k qP

adq q�v p ≈ 1 � 2(1� a)a , (10)0g ( )dk qP

and will both be less than 1.
Is it possible to force a reinterpretation of equation (8) in

another (more conventional) way; viz., for a particular off-shell
mode, typically assumes aconstant value different2 2q � k
from zero by about the unitj of equation (7)? The point,
however, is that even in this (highly artificial) approach, the
quantities and will still disagreev p q/k v p dq/dk p k/qp g

with each other randomly by an amount∼ , so that thea(q/q )P

chief outcome of equations (9) and (10) is robust.

3. STELLAR INTERFEROMETRY AS AN ACCURATE TEST

But is such an effect observable? Although an obvious ap-
proach is to employ the highest energy radiation, so as to
maximize , such are difficult to detect. More familiar typesq/qP

of radiation, e.g., optical light, have much smaller values of
, yet the advantage is that we can measure their propertiesq/qP

with great accuracy. Specifically, we consider the phase be-
havior of 1 eV light received from a celestial optical source
located at a distanceL away. During the propagation time

, the phase has advanced from its initial valuefDt p L/vg

(which we assume to be well defined) by an amount

v Dt v Lp p
Df p 2p p 2p .

l v lg

According to equations (9) and (10),Df should then randomly
fluctuate in the following manner:

aL q�Df p 2p 1 � 2aa . (11)0 ( )[ ]l qP

In the limit when

�a 2aa0q L 1�a �a�2aa ≥ 1, or E E L ≥ 1, (12)0 P( )q l hP

the phase of the wave will have appreciable probability of
assuming any value between 0 and 2p upon arrival, irrespective
of how sharp the initial phase at the source may be. Since
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and a are free parameters, equations (11) and (12) are aa0

common consequence of many quantum gravity models—both
equations can be derived in a variety of ways—although the
approach presented here may be taken as representative.

From the preceding paragraph, a way toward testing the be-
havior of time to the limit has become apparent. In stellar in-
terferometry (see, e.g., Baldwin & Haniff 2002 for a review),
light waves from an astronomical source are incident upon two
reflectors (within a terrestrial telescope) and are subsequently
converged to form Young’s interference fringes. By equa-
tion (11), however, we see that if time ceases to be exact at the
Planck scale, the phase of light from a sufficiently distant source
will appear random—whenL is large enough to satisfy equa-
tion (12), the fringes will disappear. In fact, the value ofL at
which equation (12) holds may readily be calculated for the case
of and , with the results2a p a p 13

15 �1 �5/3L ≥ 2.47# 10 a (E/1 eV) cm,ap2/3 0

24 �1 �2L ≥ 7.07# 10 a (E/1 eV) cm. (13)ap1 0

For and eV, these distances correspond, re-a p 1 E p 10

spectively, to 165 AU (or pc) and 2.3 Mpc.�48 # 10

4. EXAMINING THE TEST IN MORE DETAIL

Since the subject of our search is no small affair we provide
here an alternative (and closer) view of the proposed ex-
periment.

In a classical approach to the “untilted” configuration of
Young’s interferometry, the phase of a plane wave (from a
distant source) at the position of the double-slit system mayr
be written as , wheret is the arrival time of the wave-qt � k · r
front. The electric fields and of the waves at some pointE E1 2

P behind the slits where they subsequently meet may then
assume the form

i(qt�k · r�f ) i(qt�k · r�f )1 2E p e FE Fe , E p e FE Fe , (14)1 1 1 2 2 2

where denotes the modulus of the (complex) magnitude ofFEF
vector ,e1 ande2 are unit vectors, andf1, f2 are the advancesE
in the wave phase during the transits between each of the two
slits and P. The intensity of light atP is proportional to

, which contains the term essential to the formation2FE � E F1 2

of fringes, viz., , where and2FE FFE F cosf f p f � f1 2 1 2

are taken to be parallel (as is commonly the case).e , e1 2

If, however, there exist intrinsic and independent uncertain-
ties in one’s knowledge of the period and wavelength of light
on scales and , respectively, the most monochromatic planet ctP P

wave will have to be a superposition of many waves, each
having slightly varying q and , and the phase velocityk

will fluctuate according to equations (9) and (10). Forv p q/kp

optical frequencies, the only measurable effect is the phase
separation between these waves after traveling a large distance
at different speeds; i.e., equation (14) will be replaced by

i(q t�k · r�f �v ) i(qt�k · r�f ) ivj j 1 j 1 jE p e FE F a e ≈ e FE Fe a e ,� �1 1 1 j 1 1 j
j j

i(q t�k ·r�f �v ) i(qt�k · r�f ) ivl l 2 l 2 lE p e FE F a e ≈ e FE Fe a e ,� �2 2 2 l 2 2 l
l l

where { } are real coefficients (not to be confused with theai

of eq. [1]) normalized such that equals the occurrence2a a0 i

probability of theith wave, which of course is governed by how
far differs from its zero mean value when compared with thevi

standard deviation in equation (11) [viz., when�2 2pqL/ (q l)P

]. Note that this time the intensity atP depends ona p a p 10

many “cross” terms, each of the form , where2a aFE FFE F cosfj l 1 2

now . If the propagation lengthL isf p (f � f ) � (v � v )1 2 j l

large enough to satisfy equation (12), and , hence ,v v v � vj l j l

will spread over one phase cycle, so that the original term
will no longer be characteristic of the2FE FFE F cos (f � f )1 2 1 2

point P. This is the mathematical demonstration of why no ap-
preciable fringe contrast across the detector can be expected.
Obviously, the argument can readily be generalized to conclude
that if equation (12) is fulfilled, interference effects frommultiple
slits (or a single large slit as limiting case) will also disappear.

5. THE DIFFRACTION OF LIGHT FROM EXTRAGALACTIC POINT
SOURCES: ABSENCE OF ANOMALOUS BEHAVIOR IN TIME

AND SPACE AT THE PLANCK SCALE

Let us now consider the observations to date. The Young’s
type of interference effects were clearly seen at mml p 2.2
( eV) light from a source at 1.012 kpc distance, viz.,E ≈ 0.56
the star S Ser, using the Infrared Optical Telescope Array, which
enabled a radius determination of the star (van Belle, Thomp-
son, & Creech-Eakman 2002). When comparing with equation
(13), we see that this result can already be used to completely
exclude the model, because for such a value ofa and2a p 3

for all reasonable values of ,Df carries uncertaintiesk2p,a0

and the light waves would not have interfered. It is also evident
from equation (13), however, that no statement abouta p 1
can be made with the S Ser findings.

Within the context of § 4’s development, it turns out that
the well-recognized presence of diffraction pattern in the image
of extragalactic point sources when they are viewed through
the finite aperture of a telescope provides even more stringent
constraints ona. Such patterns have been observed from
sources located at distances much larger than 1 kpc, implying,
as before, that phase coherence of light is maintained at the
aperture entrance despite the contrary prediction of quantum
gravity. In particular, to clinch the first-order predictiona p
, we note that Airy rings (circular diffraction) were clearly1

visible at both the zeroth and first maxima in an observation
of the active galaxy PKS 1413�135 ( Gpc) by theL p 1.216
Hubble Space Telescope at 1.6mm wavelength (Perlman et al.
2002). Referring back to equation (13), this means exclusion
of all quantum gravity fluctuations that occur at ana p 1
amplitude (moreover, the speed of light does�3a ≥ 3.14# 100

not fluctuate fractionally by more than , or several parts inl/L
1032). To facilitate those who wish to explore the implications
in full, we offer the following inequality, derivable directly
from equation (12), which the reader can use to readily find
for any value ofa the range of still permitted by the PKSa0

1413 result:

29 a�1(10 )
�3a ! 3.14# 10 . (15)0

a

That equation (15) is highly sensitive toa has already been
discussed. Two consequences immediately emerge from equa-
tion (15): (1) for any of the models to survive, they musta ! 1
involve ridiculously small values of , and (2) remainsa a 1 10

essentially unconstrained.
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Further investigation of sources that lie beyond PKS 1413
will scrutinize the scenarios more tightly than what isa ≤ 1
already a very stringent current limit. More sophisticated ways
of pursuing stellar interferometry are necessary to test the cases
of or systematic effects where the dispersion relation ofa 1 1
equation (6) is modified by definite rather than randomly vary-
ing terms.

Nevertheless, the obvious test bed for quantum gravity has
indeed been provided by this gigaparsec distance source; the
outcome is negative. No doubt one anticipates interesting prop-
ositions on how time and space may have contrived to leave
behind not a trace of their quanta. Thus, from Michelson-Morley

to extragalactic interferometry there remains no direct experi-
mental evidence of any sort that compels us to abandon the
structureless, etherless spacetime advocated by Einstein. These
points, together with in-depth discussions on how Planck-scale
phenomenology affects the appearance of the extragalactic sky,
will be the subject matter of a paper by Ragazzoni, Turatto, &
Gaessler (2003).

The authors are grateful to Gerard van Belle, Roberto Ra-
gazzoni, Jonathan Mittaz, Sir Ian Axford, and Lord James
McKenzie of the Hebrides and Outer Isles for discussions. They
also wish to thank an anonymous referee for helpful comments.
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Note added in proof.—Since the time of writing this Letter, R. L. thanks Professor Gary Gibbons for in-depth discussions, from
which the following point emerged. The possibility of time and space being subject to Planck-scale fluctuations may remain, but
only with the requirement that these ordinarily separate dimensions are correlated microscopically. Upon close examination, however,
it is difficult to see how the idea may be implemented. Any fluctuation in time that changesq must occur in coordination with
the fluctuation in space atall points within the telescope aperture, so as to ensure that across an entire wave frontk is changed
by the corresponding amount to preserve the exactness of . Thus, for the scenario to work, correlations between Planck-c p q/k
scale effects have to occur over a macroscopic spacetime domain that coincides with that of the experiment.


