The r-Process in the Neutrino Winds of Core-Collapse Supernovae and U-Th Cosmochronology

, , , , and

© 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A.
, , Citation Shinya Wanajo et al 2002 ApJ 577 853 DOI 10.1086/342230

0004-637X/577/2/853

Abstract

The discovery of the second highly r-process-enhanced, extremely metal poor star, CS 31082-001 ([Fe/H] = -2.9) has provided a powerful new tool for age determination by virtue of the detection and measurement of the radioactive species uranium and thorium. Because the half-life of 238U is one-third that of 232Th, the U-Th pair can, in principle, provide a far more precise cosmochronometer than the Th-Eu pair that has been used in previous investigations. In the application of this chronometer, the age of (the progenitor of) CS 31082-001 can be regarded as the minimum age of the Galaxy, and hence of the universe. One of the serious limitations of this approach, however, is that predictions of the production ratio of U and Th have not been made in the context of a realistic astrophysical model of the r-process. We have endeavored to produce such a model, based on the "neutrino winds" that are expected to arise from the nascent neutron star of a core-collapse supernova. In this model, the proto-neutron star mass and the (asymptotic) neutrino sphere radius are assumed to be 2.0 M and 10 km, respectively. Recent hydrodynamic studies indicate that there may exist difficulties in obtaining such a compact (massive and/or small in radius) remnant. Nevertheless, we utilize this set of parameter choices since previous work suggests that the third r-process peak (and thus U and Th) is hardly reached when one adopts a less compact proto-neutron star in the framework of the neutrino-wind scenario. The temperature and density histories of the material involved in the neutron-capture processes are obtained with the assumption of a steady flow of the neutrino-powered winds, with general relativistic effects taken into account. The electron fraction is taken to be a free parameter, constant with time. The r-process nucleosynthesis in these trajectories is calculated with a nuclear reaction network code including actinides up to Z = 100. The mass-integrated r-process yields, obtained by assuming a simple time evolution of the neutrino luminosity, are compared to the available spectroscopic elemental abundance data of CS 31082-001. As a result, the "age" of this star is determined to be 14.1 ± 2.5 Gyr, in excellent agreement with lower limits on the age of the universe estimated by other dating techniques, as well as with other stellar radioactive age estimates. Future measurements of Pt and Pb in this star, as well as expansion of searches for additional r-process-enhanced, metal-poor stars (especially those in which both U and Th are measurable), are of special importance to constrain the current astrophysical models for the r-process.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1086/342230