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ABSTRACT

We consider the effects of collective plasma processes on synchrotron emission from highly relativistic elec-
trons. We find, in agreement with the 1970 work of Sazonov, that strong effects are also possible in the
absence of a nonrelativistic plasma component, due to the relativistic electrons (and protons) themselves. In
contrast with Sazonov, who infers strong effects only in cases in which the ratio of plasma frequency to cyclo-
tron frequency is much larger than the square of the characteristic electron Lorentz factor, �p=�B4�2e , we
also find strong effects for 15 �p=�B5 �2e . The modification of the spectrum is prominent at frequencies
� � �

R� � �p minf�e; ð�p=�BÞ1=2g, where �
R� generalizes the ‘‘ Razin-Tsytovich ’’ frequency �R � �e�p to

the regime �p=�B5 �2e . Applying our results to gamma-ray burst (GRB) plasmas, we predict a strong modifi-
cation of the radio spectrum on a minute timescale following the GRB at the onset of fireball interaction with
its surrounding medium, in cases in which the ratio of the energy carried by the relativistic electrons to the
energy carried by the magnetic field exceeds�105. Plausible electron distribution functions may lead to nega-
tive synchrotron reabsorption, i.e., to coherent radio emission, which is characterized by a low degree of cir-
cular polarization. Detection of these effects would constrain the fraction of energy in the magnetic field,
which is currently poorly determined by observations, and moreover would provide a novel handle on the
properties of the environment into which the fireball expands.

Subject headings: gamma rays: bursts — masers — plasmas — radiation mechanisms: nonthermal —
radio continuum: general

1. INTRODUCTION

According to the model now prevailing (see Piran 2000;
Mészáros 2002 for recent reviews), gamma-ray bursts
(GRBs) originate from the dissipation of the kinetic energy
of a relativistically expanding fireball, caused by a cataclys-
mic collapse of a massive star or by a neutron star–neutron
star (NS-NS) or neutron star–black hole (NS-BH) merger
event, leading to the acceleration of a plasma of electrons
and protons to highly relativistic speed. Part of the kinetic
energy of this expanding ‘‘ fireball ’’ is dissipated in ‘‘ inter-
nal ’’ collisions between different parts of the inhomogene-
ous ejecta, resulting in shocks that accelerate particles via
the Fermi process to ultrarelativistic energies. The nonther-
mal radiation from accelerated electrons reproduces well
the observed MeV gamma-ray spectra. At a later stage of
the expansion, the fireball decelerates because of interaction
with its surrounding medium. The relativistic shock wave
driven into the ambient medium continuously accelerates
new electrons of the surrounding gas, producing a long-
term synchrotron ‘‘ afterglow ’’ emission.

Although observations are in general agreement with
model predictions (see Kulkarni et al. 2000 for a recent
review), the model is incomplete, and there are several open
issues that are not properly understood. One is that of the
burst progenitor. Several alternative models for the ‘‘ inner
engine ’’ were suggested, such as an NS-NS or NS-BH
merger (Paczyński 1986; Goodman 1986) and the gravita-
tional collapse of massive stars (Woosley 1993; Paczyński
1998; MacFadyen & Woosley 1999). Unfortunately, at
present neither GRB nor afterglow observations provide
decisive evidence in support of a particular model. Never-
theless, the environment may be a clue to the progenitor.

Thus, expansion into a relatively uniform interstellar
medium (ISM) with a number density n � 1 cm�3 would be
a natural consequence of a ‘‘ merger ’’ scenario, whereas if
the progenitor is a collapsing star, it is natural to expect a
much higher ambient density due to a wind ejected by the
star at earlier stages of its evolution. The ‘‘ onset ’’ of fireball
interaction with the surrounding medium, i.e., at the radius
where fireball deceleration becomes significant, typically
takes place on a minute timescale (in the observer frame)
following the burst, at which stage the density of the wind
plasma is n � 104 cm�3. At present, afterglow observations
typically begin several hours following the burst and do not
allow a direct probe of the onset of deceleration. Since on a
day timescale the fireball expands to the point where the
wind density drops to values close to that typical for the
ISM, present observations do not provide clear discrimi-
nants between the wind and ISM scenarios (Livio &
Waxman 2000).

A second issue in which basic understanding is still lack-
ing is the physics of acceleration of electrons to high energies
and the buildup of strong magnetic fields by the GRB colli-
sionless shock waves (Gruzinov & Waxman 1999). The
presence of high-energy electrons and strong magnetic fields
is implied by observations, yet there is currently no theory
based on first principles that satisfactorily explains electron
coupling and magnetic-field generation. The ignorance is
usually parameterized by two dimensionless parameters �e
and �B, which stand for the fractions of shock internal
energy density that are carried by the relativistic electrons
and by the magnetic field, respectively. Efforts to constrain
these parameters using afterglow observations are numer-
ous, and �e is typically estimated to be close to its equiparti-
tion value, i.e., �e � 1

3. However, �B is not well constrained
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by observations, and its estimated values range from
�B � 10�1 (e.g., Waxman 1997a; Wijers & Galama 1999) to
�B � 10�6 (e.g., Wijers & Galama 1999; Chevalier & Li
1999; Galama et al. 1999; Waxman & Loeb 1999).

Observations strongly suggest that the radiation emitted
during the afterglow is synchrotron radiation. We show
here that the modification of the refractive index by the rela-
tivistic electrons and protons may strongly affect the emis-
sion at radio wavelengths during the onset of fireball
deceleration, if �B5 1. Moreover, we find that under plausi-
ble assumptions about the electron distribution function,
the synchrotron reabsorption coefficient may become
negative, thus leading to coherent emission from the fireball
on a minute timescale following the GRB. These collective
plasma processes strongly affect the synchrotron spectrum
at frequencies ��

R� ¼ �pð�p=�BÞ1=2, where �p=�B �
�e=�Bð Þ1=2 is the ratio of the plasma frequency and the elec-
tron gyration frequency.

As mentioned above, currently there is a few hours gap
between GRB and afterglow observations. However, the
(operating) High Energy Transient Explorer 2 (HETE-2)
satellite and the Swift satellite (planned to be launched in
2003) may allow observations of early stages of fireball
expansion shortly after the GRB, thus providing data on
the onset of deceleration. We show below that future obser-
vations of collective plasma effects in the emission from
GRB afterglows will serve to constrain the value of �B, as
well as the parameters of the environment into which the
fireball expands, thus providing a handle on both progeni-
tor type and shock physics.

Collective plasma effects on synchrotron emission and
reabsorption have been considered by many authors (e.g.,
Ginzburg & Syrovatskii 1965; Zheleznyakov 1967; Yokun
1968; Crusius & Schlickeiser 1988). Analyses of effects due
to a nonvacuum index of refraction are typically limited to
the case in which the index of refraction is determined by
the presence of a nonrelativistic plasma. These analyses do
not apply to the GRB plasma in which we are interested, in
which no ‘‘ cold ’’ nonrelativistic plasma component is
present. Sazonov (1969, 1970, 1973) has studied the case of
interest for us, in which ‘‘ cold ’’ plasma is absent, and the
effects are entirely due to the presence of the relativistic
plasma. As we show below, his results are too restrictive, as
he infers negative reabsorption only in cases in which
�p=�B4�2e , or in cases in which the electron distribution
function is very anisotropic. We find that these constraints
might be eased and that negative reabsorption is possible
for isotropic distribution functions provided that �p4�B,
thus allowing coherent emission for GRB plasma
parameters.

In x 2 we derive the dispersion relation and the polariza-
tions and refractive indices of normal modes in a highly rela-
tivistic, weakly magnetized (�p=�B41) plasma with
isotropic electron and proton distribution functions. The
frequency range discussed is �p < �5 �e�p � �R, in which
the relativistic plasma may have a strong effect on syn-
chrotron emission. In x 3 we show that the plasma
strongly affects synchrotron radiation at frequencies
� � �

R� ¼ �pð�p=�BÞ1=2, which generalizes the Razin-
Tsytovich frequency �R to a regime in which
ðp=�BÞ1=25 �e—the regime relevant for us. We note that
although �R is commonly quoted as the frequency below
which plasma effects are strong, it is typically found in
numerical analyses of nonrelativistic plasmas that for

�p=�B41, synchrotron emission is strongly modified only at
� � �

R� (e.g., Crusius & Schlickeiser 1988). We show in x 3
that a more careful statement of the qualitative criterion,
which leads to the conclusion that plasma effects are strong
below �R (e.g., Rybicki & Lightman 1979, x 8.3), leads
directly to the result that (for both relativistic and nonrela-
tivistic plasma) such effects are important only below �

R� .
Our results are applied to GRB plasmas in x 4. In x 4.1

we briefly describe GRB and afterglow phenomenology,
give a short review of the fireball model, and derive the
plasma parameters during the onset of fireball deceleration,
considering both expansion into a uniform-density ISM
(x 4.1.1) and expansion into a wind (x 4.1.2). Plasma effects
are discussed in x 4.2. The implications of our results are dis-
cussed in x 5.

We note that coherent radio emission from GRBs has
recently been discussed by Usov & Katz (2000). The sce-
nario considered by these authors for GRB production, the
scattering of ambient-medium electrons and protons by a
magnetically dominated wind (Smolsky & Usov 2000), is
different, however, from the scenario we are considering, in
which observed radiation is produced (in both GRB and
afterglow phases) by the dissipation through collisionless
shocks of fireball kinetic energy, leading to magnetic-field
amplification and to particle acceleration. The processes we
consider are thus different from those considered by Usov &
Katz (2000), and the predicted radio emission is very differ-
ent. For example, while Usov & Katz (2000) find a power-
law spectrum with strong emission at less than 1 MHz for a
strong magnetic field, we find strong emission only for weak
magnetic fields and over a narrow range of frequencies
around�0.1 GHz (which is more readily observable).

Finally, we note that the analysis presented here is
restricted to isotropic electron and proton distributions,
and we show that strong plasma effects on synchrotron radi-
ation occur if �p4�B. We note, however, that anisotropy
may lead to further interesting effects, the discussion of
which is beyond the scope of this work.

2. WAVES IN A WEAKLY MAGNETIZED
RELATIVISTIC PLASMA WITH ISOTROPIC ELECTRON

AND PROTON DISTRIBUTION FUNCTIONS

As explained in the next section, it is the deviation of the
speed at which light propagates in plasma from c that is
responsible for the plasma effects we consider. This implies
that we must first obtain expressions for the refractive indi-
ces n1;2ð!Þ of the transverse electromagnetic modes in the
plasma. In our derivation of the dispersion relation, we
restrict the discussion to plasmas under the following condi-
tions: (1) highly relativistic electrons; (2) a rough energy
equipartition between protons and electrons; (3) isotropic
particle distribution functions; and (4) weak magnetization,
�p=�B41. Afterglow observations imply that conditions 1
and 2 hold for GRB plasmas. Condition 3 restricts the dis-
cussion to plasma effects originating from the deviation of
the refracting indices from their vacuum values. Our discus-
sion is restricted to the weak magnetization case, since as
shown in the next section, strong effects of the plasma on
synchrotron emission are obtained for this case only.
Finally, we restrict the discussion to the frequency range
affected by collective effects, �B5 �p < �5 �e�p.

The assumption �p=�B41 allows a perturbative deriva-
tion (in �B=�p) of the dispersion relation. Moreover, in the
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frequency range �B5 �p < �5 �e�p, the deviation of the
refractive index n ¼ kc=! from 1 is much larger than 1=�2e .
This simplifies the dispersion relations obtained below, thus
allowing analytic estimates. Below we give order-of-magni-
tude estimates of the plasma frequency and the difference
between the refractive indices of the transverse electro
magnetic waves in a relativistic plasma. Exact calculations
are given in the Appendix and are used to verify the simple
estimates.

As we show in x A1, the refractive indices of the trans-
verse electromagnetic waves in a field-free plasma are degen-
erate and approximately satisfy the relation

n2ð�Þ ¼ 1�
�2p
�2

;

�p ¼
1

2�

4�nee
2

�e0me
þ 4�npe

2

�p0mp

� �1=2

; ð1Þ

where �p is the plasma frequency of a relativistic plasma.
This result is exact for monoenergetic electron and proton
distributions, where �e0 and �p0 are the associated Lorentz
factors of the two species, respectively. Detailed calculations
show, however, that the above result is also a good approxi-
mation to the plasma frequency for more general energy dis-
tributions. For a power-law energy distribution implied by
afterglow observations, nð�Þ / ��2 for � > �min, replacing
�0 with �min in equation (1) gives the plasma frequency
with an accuracy of 1%. Note that equation (1) is a natural
generalization to the relativistic regime of the familiar
expression for the plasma frequency, obtained by replacing
the particle mass m with �m. Since we assume that the
energy of the electrons and protons is approximately equi-
partitioned, the contributions of the two species to �p are
comparable.

Once an external magnetic field B0 is introduced, the
plasma cannot be regarded as isotropic any longer, and the
degeneracy of the two refractive indices is removed. For fre-
quencies �5 �B, the effect of the magnetized plasma on the
propagating radiation is small, and the electric field can be
assumed to be approximately transverse to the direction of
propagation, i.e., E ? k. In the Appendix (x A2) we derive
the dispersion relation for the waves of a transverse electric
field. In order to obtain estimates of the refractive indices of
the transverse electromagnetic modes, we solve the Vlasov
equation of a relativistic plasma with isotropic electron and
proton distribution functions. The assumption of weak
magnetization allows a perturbative expansion of the equa-
tion, where the perturbations in the particle distribution
functions are assumed to be linear in the external magnetic
field (i.e., the expansion parameter is �B=�p). This leads to a
significant simplification of the formalism. The dispersion
relation for the components of the transverse electric fields
is given by

k2c2

!2
Ei ¼ �ijEj with i; j ¼ 1; 2 ; ð2Þ

where ! ¼ 2�� is the radian frequency of the wave, k is the
wavenumber, and �ij is the 2� 2 dielectric tensor. The
refractive indices n1;2ð!Þ ¼ ck1;2=! of the plasma are the
square roots of the eigenvalues of this equation. Detailed
numerical calculations showed that the values obtained for
the components of the dielectric tensor and the resulting
refractive indices are not sensitive to the exact shape of the

electron and proton energy distribution functions. Specifi-
cally, we showed that simple expressions obtained for
monoenergetic distribution functions (which are the
estimates used below) are good approximations of the
more cumbersome expressions obtained for power-law
distributions.

The deviation from degeneracy of the two refractive indi-
ces is the consequence of the nondiagonal terms of the
dielectric tensor, which are proportional to cos�, where � is
the angle between the wavevector k and the external mag-
netic field B0 (eqs. [A5a] and [A9]). Hence, the deviation is
largest for radiation propagating along the magnetic field
(� ¼ 0) and vanishes when the direction of propagation is
perpendicular to the magnetic field (� ¼ �=2). Equations
(A6) and (A10), describing the diagonal and off-diagonal
elements of the dielectric tensor, can be used to estimate the
difference between the two refractive indices. For the fre-
quencies in which we are interested, 1� n is larger than, or
at least comparable to, 1=�2e;p. This simplifies the algebra
immensely. Since we assume that the widths of the electron
and proton distribution functions are close and that energy
density in the protons and electrons is approximately equi-
partitioned, the contributions of the two species to
Dn ¼ n1 � n2 are comparable. Hence, an order-of-
magnitude estimate of Dn is

Dn �
�2p�B

�3
cos� ln

�2p
4�2

� �
; ð3Þ

up to a factor of the order of 1.
The result Dn�¼�=2 ¼ 0 is a consequence of the fact that

our derivation only keeps terms that are linear in the mag-
netic field, i.e., first-order terms in �B=�p. If this assumption
is eased and the refractive indices of the ordinary and extra-
ordinary modes are used to estimate Dn�¼�=2, we obtain
Dn�¼�=2 ¼ ð1=2Þð�B=�Þ2ð1� �2p=2�2Þ. As is shown in the
next section, the frequency at which the plasma has a
significant effect on the synchrotron emission is
�
R� ¼ �pð�p=�BÞ1=2. This implies that for plasma parame-
ters of interest to us (�p=�Bd103), the logarithmic factor in
equation (3) is of the order of 10. Hence, we replace equa-
tion (3) with an expression that takes into account the finite
Dn at perpendicular propagation

Dnð�Þ ’

�2p�B

�3
cos� ln

�2p
4�2

� �
;

�

2
� �

��� ��� > 1

10

�B�

�2p
;

1

2

�2B
�2

1�
�2p
2�2

� �
; otherwise :

8>>><
>>>:

ð4Þ

We solved the dispersion relation (eqs. [A6] and [A10])
numerically for two values of �e (920 and 4:6� 104) and for
three values of �B=�p (10�1, 10�2, and 10�3). These values of
�e and �B=�p are representative of typical values for GRB
afterglow plasmas (see x 4). In these calculations, we
assumed a propagation angle � ¼ �=4. The results agree
with the estimate in equation (4) up to a factor of �2. The
numerical calculation also confirmed that for parameters in
the ranges relevant for GRB afterglows, the discrepancy
between the refractive indices of the transverse modes is
small in comparison to the deviation of either of them from
unity, i.e., jn1 � n2j5 ð1� n1;2Þ.

When the radiation propagates parallel to the magnetic
field, the squared refractive indices of the two normal modes
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can be described by the well-known expressions

�R ¼ 1�
�2pe

�ð� � �BeÞ
�

�2pp
�ð� þ �BpÞ

;

�L ¼ 1�
�2pe

�ð� þ �BeÞ
�

�2pp
�ð� � �BpÞ

; ð5Þ

where �Be and �Bp are the gyration frequencies of electrons
and protons in the magnetic field and �pe and �pp are the rel-
ativistic plasma frequencies of the two species, respectively.
It is instructive to compare our estimate in equation (4) with
the difference nR � nL obtained from equation (5). When
exact equipartition is assumed and both the protons and the
electrons are monoenergetically distributed, �pe ¼ �pp ¼ �p
and �Be ¼ �Bp ¼ �B, whence �R ¼ �L ¼ 1� 2�2p=ð�2 � �2BÞ.
This degeneracy is removed if equipartition is not exactly
satisfied or if the widths of the distribution functions of the
two species are different. Since both effects are expected to
be important in the case of our interest, we use equation (4)
as an estimate for Dn.

Our calculations imply that nondiagonal elements of the
dielectric tensor are smaller than its diagonal elements by a
factor of the order of �B=�5 1. The latter, however, are
independent of the magnetic field and thus are identical to
the values we obtained for a field-free plasma (see eq.
[A5a]). As is discussed in x 3, the difference between the
refractive indices of the transverse modes is important for
determining the polarization of the modes and thus for the
calculation of synchrotron self-absorption. However, our
estimate of the frequency at which plasma effects on syn-
chrotron emission become significant is not sensitive to Dn.
Therefore, as far as estimating the frequency
�
R� ¼ �pð�p=�BÞ1=2 is concerned, we use the approximation
given in equation (1).

The detailed expressions we obtained (in the Appendix)
for the elements of the 2� 2 dielectric tensor �ij show that
�11 ¼ �22 and �12 ¼ ��21 (see eqs. [A6] and [A10]). The
assumption of transversality thus implies that the normal
modes are always circularly polarized (clockwise and coun-
terclockwise). To check the consistency of our assumption
of quasi transversality and to obtain the (elliptical) polariza-
tion of the two quasi-transverse modes, we calculated the
eigenmodes of the full 3� 3 dielectric tensor. Following the
method outlined in x A1 (and described in the paragraph
preceding eq. [2]), it is straightforward (yet lengthy) to
obtain expressions for the other elements of �ij with i, j ¼ 1,
2, 3 and without assuming transversality. It is possible to
show that these extra elements contribute an additional
term to Dn, which is smaller than the value obtained from
the transverse calculation by a factor of
�0:1ðln j�B=4�pjÞ�4�p=�B � 10�2 at small and mildly obli-
que propagation angles and becomes comparable to
ð1=2Þð�2B=�2Þ½1� ð�2p=2�2Þ� as j�=2� �j approaches
0:1�B�=�2p . Numerical calculation of the plasma normal
modes confirmed that for plasma parameters of interest to
us (�e ¼ 103 104, �p=�B ¼ 102 103), the normal modes are
indeed transverse to the direction of propagation and are
left- and right-circularly polarized.

3. EFFECTS ON SYNCHROTRON EMISSION

The spectral characteristics of synchrotron emission by a
single relativistic electron are determined by the beaming of

the radiation emitted by the electron into a narrow cone
about the instantaneous direction of the electron’s motion.
When the electron is in a vacuum, the opening angle of this
cone depends on the electron’s Lorentz factor and the fre-
quency of the radiation. Three regimes should be consid-
ered: When the frequency of interest is higher than the
characteristic synchrotron frequency �c, the cone’s opening
angle is D� ’ ð�c=�Þ1=2=�, and � � �c, one obtains the famil-
iar result D� ’ 1=�; If, however, the frequency of interest is
much smaller than �c, one obtains D� ’ ð�c=�Þ1=3=�. Next
we consider an electron that is embedded in a dielectric
medium with a refractive index n 6¼ 1. Since the speed of
light is now c=n, the opening angle of the cone is D� ’
½ð�c=�Þð1=�2Þ þ 1� n2ð�Þ�1=2 for � > �c, D� ’ ½1=�2þ
1� n2ð�Þ�1=2 for frequencies � � �c, and D� ’ ½ð�c=�Þ2=3
ð1=�2Þ þ 1� n2ð�Þ�1=2 for frequencies much smaller than �c.
When the dielectric medium is a plasma, we use
1� n2 ¼ �2p=�2. A strong deviation from vacuum behavior
occurs when the second term ð�p=�Þ2 is comparable to the
first term in the square brackets. Using �c ¼ �3�B, where �B
is the gyration frequency of the electron, we obtain an
expression for the frequency at which the collective plasma
effects greatly influence the synchrotron emission:

�
R� ’ �p min �;

ffiffiffiffiffi
�p
�B

r� �
: ð6Þ

The Razin-Tsytovich frequency �R ¼ �p� is usually given as
an estimate to the frequency below which the plasma
strongly affects synchrotron radiation. Equation (6) shows
that this estimate is not generally valid. We are interested in
the regime �p=�B

� �1=2
5 �e; hence, for plasma parameters

prevailing in GRB afterglows, the frequency at which the
plasma greatly affects the synchrotron radiation is �

R� ¼
�pð�p=�BÞ1=2. It is simple to show that the definition of
the plasma frequency (eq. [1]) implies that �2p=�

2
B ¼ �e=2‘�B,

where ‘ ¼ lnð�e;max=�e;minÞ. Typically, ‘ � 4. Thus,

�
R� ¼ �p

ffiffiffiffiffi
�p
�B

r
¼ �p

1

2‘

�e
�B

� �1=4

: ð7Þ

An immediate consequence of equation (7) is that for the
effect to be apparent, we must have �p4�B (or equivalently,
�e42‘�B). Sazonov (1970) also considered the effects of a
relativistic plasma on synchrotron emission. However, he
only considered a situation in which � � �c5 ��p, which led
him to infer that negative synchrotron reabsorption is only
possible for �p=�B4�2e , or equivalently, if �e=�Be�4e . The
result in equation (7) shows that this condition is far too
restrictive. However, as is discussed in x 4.2, for the effects to
be within the detection range of current radio telescopes, we
must have �e=�Be105.

3.1. The Razin Suppression

All the information regarding the response of the plasma
to electromagnetic waves (e.g., modes propagating through
the plasma, loss and gain, etc.) is contained in the dielectric
tensor. Specifically, the strong effect of plasma on synchro-
tron radiation is a manifestation of the deviation of the
refractive index from 1, that is, the nontrivial (i.e., ‘‘ nonvac-
uum ’’) structure of the dielectric tensor. The expression
derived in the Appendix for the dielectric tensor is not com-
plete, i.e., it does not include self-absorption, since we treat
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the magnetic field perturbatively. Unfortunately, obtaining
a complete expression for the dielectric tensor requires solv-
ing a kinetic equation for the plasma, a process that can be
avoided by introducing the method of Einstein coefficients.
The application of this method requires that over the length
scale of the wave phenomenon (i.e., the wavelength), the
absorption does not change the wave characteristics consid-
erably. Indeed, since we do not obtain the dielectric tensor
explicitly, we do not know a priori the electromagnetic
modes that can propagate through the plasma. We must
assume, however, that whatever these modes are, the modi-
fications introduced to the dielectric tensor due to the pres-
ence of the plasma are dominated by the deviation of the
refractive indices from unity, and not by the absorption,
that is,

1� nðlÞð�Þ
�� ��4 �ðlÞð�Þ	

�� �� ; ð8Þ

where 	 ¼ c=� is the wavelength and l denotes the mode.
When the condition in equation (8) is not satisfied, one must
use a kinetic-equation approach to self-consistently derive a
dispersion relation that incorporates the self-absorption.

Since the refractive index depends on the radiation mode
under consideration, we now have to determine the modes
relevant to the frequency range we are interested in. Moti-
vated by the insight that in ‘‘ vacuum,’’ absorption is present
and the two transverse modes share the same refractive
index (i.e., 1), whereas on the other hand, the result obtained
above (see x 2) shows that when absorption is neglected, one
obtains a finite DnðlÞ (see eq. [4]), we conclude that the ques-
tion of determining the relevant modes is resolved by con-
sidering whether the following inequality holds,

n1ð�Þ � n2ð�Þj j5 �
ð1;2Þ
� 	

��� ��� ; ð9Þ

where �� is the synchrotron self-absorption coefficient and
	 is the wavelength of radiation. When the condition in
equation (9) is satisfied, the normal waves are linearly polar-
ized along and perpendicular to the projection of the mag-
netic field on the plane of observation (Ginzburg 1989). We
denote these polarizations by k and ?, respectively. The
power emitted by a single electron is then given by

P?;kð�; �Þ ¼
ffiffiffi
3

p
e3B sin


2mec2
1þ ��p

�

	 
2
� ��1=2 �

~��c

�
Z 1

�=~��c

K5=3ðzÞ dz� K2=3
�

~��c

� �" #
; ð10aÞ

~��c ¼
3eB sin


4�mec
�2 1þ ��p

�

	 
2
� ��3=2

; ð10bÞ

where B is the strength of the magnetic field and 
 is the
pitch angle.

If, however, the condition in equation (9) is not satisfied,
one cannot neglect the difference between the refractive indi-
ces of the normal modes. We are thus required to consider
the two normal modes of the plasma, discussed previously
in x 2. The normal modes are (quasi-) transverse and are left-
and right-circularly polarized. It can be shown (Ginzburg
1989) that half the total power is ‘‘ converted ’’ into each cir-
cularly polarized normal wave (if we take into account
terms up to the order of 1=�). In this case, the power emitted

by a single electron is

Pð1;2Þð�; �Þ ¼
ffiffiffi
3

p
e3B sin


mec2
1þ �2ð1� n21;2Þ

 ��1=2

� �

~��c

Z 1

�=~��c

K5=3ðzÞ dz ; ð11aÞ

~��c ¼
3eB sin


4�mec
�2 1þ �2ð1� n21;2Þ

 ��3=2

: ð11bÞ

The polarization of synchrotron emission in plasma is fur-
ther discussed in x 3.3.

If the frequencies of interest are higher than �
R� , the

emission does not differ greatly from the emission in vac-
uum. However, for frequencies �d�

R� , the emitted power
is dramatically suppressed for both polarization regimes.
This suppression is usually called the Razin effect.

3.2. Synchrotron Self-Absorption and the Possibility of
Negative Reabsorption

Our calculation of the synchrotron self-absorption coeffi-
cient �� implements the Einstein relations between emission
and absorption coefficients. These relations relate the emis-
sion and absorption coefficients of photons having a specific
polarization state, or to put it in terms of the previous sec-
tion, a specific mode propagating through the plasma,
which we denote by l. Hence, the expression for the self-
absorption coefficient for a specific mode is (Ginzburg 1989)

�ðlÞ
� ¼ � c2

4��2

Z
E2 d

dE

neðEÞ
E2

� �
PðlÞð�; EÞ dE ; ð12Þ

where PðlÞð�; EÞ is the power of l-polarized photons emitted
by an electron with energy E.

Negative contributions to reabsorption come only from
regions where the electron distribution function grows
faster than E2. Indeed, if the distribution function has
regions that are ‘‘ steep ’’ enough, the self-absorption coeffi-
cient becomes negative at low frequencies (�d�

R�). This
corresponds to stimulated emission from the plasma, and
radiation is coherently amplified as it propagates. For this
reason, the effect is sometimes known as a ‘‘maser ’’ effect.

In order to estimate the ‘‘ amplitude ’’ of the negative self-
absorption, we take the electron distribution to be monoe-
nergetic. Substituting neðEÞ ¼ ne�ðE � E0Þ in equation (12)
and using the fact that we are interested in frequencies
�5 �e�p, it can be shown that

�� ’ 2� 10�2 �p�B
c

ffiffiffiffiffi
�e

p
�
�ðZð�ÞÞ ; ð13Þ

where �ðZÞ ¼ 2Z
R1
Z K5=3ðyÞ dy� 2ZK5=3ðZÞ and Zð�Þ ¼

2=3ð Þ �3p=�B�2
� �

. The function �ðZð�ÞÞ has a global mini-
mum at approximately �

R� ¼ �pð�p=�BÞ1=2, and its minimal
value is �0.24. Substituting � � �

R� , we obtain an estimate
of the minimal value of the synchrotron self-absorption,

min�� 	 � 10�2

c
ffiffiffiffiffi
�e

p �B

ffiffiffiffiffi
�B
�p

r
; ð14Þ

up to a factor of the order of unity.
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3.3. Polarization of Synchrotron Radiation in Plasma

We can now use the estimate of the absorption coefficient
obtained above to check the self-consistency of our calcula-
tion. Namely, we show that in the frequency range of inter-
est, the deviation from unity of the refractive indices
dominates the absorption, thus facilitating the validity of
implementation of the Einstein-coefficient method, as
required by the consistency condition in equation (8). In
x A1 we show that the refractive indices can be approxi-
mated by n 	 1� 1=2ð Þð�p=�Þ2. Hence, for �-function
distributions, equation (8) can be rewritten as
102�

1=2
e �

5=3
p =�

3=2
B 4�. Since we are interested in frequencies

of the order of �
R� � �pð�p=�BÞ1=2, this condition is casted

to 102�
1=2
e �p=�B41, which is always satisfied for typical

afterglow parameters (�e � 103, �p=�B � 103).
Next we determine the polarization of the synchrotron

modes in the frequency range of interest for us. We use the
estimate in equation (4) for Dn and substitute equation (14)
for the right-hand side of the inequality in equation (9) with
negative reabsorption. After some algebra, we find that the
condition in equation (9) is only satisfied for radiation prop-
agating almost perpendicular to the magnetic field,
j�=2� �j < 0:1ð�B=�pÞ1=2, given that �B=�p5 0:02�

�1=2
e .

For typical plasma parameters (�e � 103 104, �p=�B � 103),
this inequality is not satisfied, and we conclude that the
plasma is not isotropic; hence, the normal waves at frequen-
cies � � �

R� are circularly polarized.

4. APPLICATION TO GRBs

This section is dedicated to the study of the application of
the results obtained above to the plasma conditions prevail-
ing in GRB afterglows. We briefly review the fireball model
and obtain the physical parameters of the plasma during the
onset of fireball deceleration, considering both expansion
into a uniform density ISM (x 4.1.1) and into a wind
(x 4.1.2). These parameters enable order-of-magnitude esti-
mates of relevant frequencies (xx 4.2.1 and 4.2.2). We then
make a short excursion, referring to the issue of the origin of
negative reabsorption in relation to the shape of the electron
distribution function at low energies (x 4.2.3), and conclude
the section with a numerical calculation of the resulting
spectrum for various electron distribution functions
(x 4.2.4).

4.1. Fireball Plasma Parameters during the
Onset of Deceleration

According to the fireball paradigm (Paczyński 1986;
Goodman 1986), an energetic explosion (E � 1051–1053

ergs) drives a relativistic blast wave into an ambient gas (the
‘‘ forward shock ’’). The expanding shell of accelerated
ambient gas gradually approaches a self-similar behavior
(Blandford & McKee 1976). During the short transition
period before self-similarity is established, the interaction
between the ejecta and the surrounding medium drives a rel-
ativistic shock into the ejecta (the ‘‘ reverse shock ’’)
(Mészáros & Rees 1997) and heats it. The transition to self-
similarity occurs on a timescale comparable to the time it
takes the reverse shock to cross the ejecta (e.g., Waxman &
Draine 2000). The observed radiation is the consequence of
synchrotron emission by relativistic shock-accelerated elec-
trons, which gyrate in the magnetic fields generated by the
shocks.

Recent data support GRB models in which the outflow is
a jet (rather than a sphere), with an opening angle �jet � 0:1
(Waxman, Kulkarni, & Frail 1998; Fruchter et al. 1999;
Stanek et al. 1999; Harrison et al. 1999; see Frail et al. 2001
for an update analysis). The dynamics and resulting light
curves of such models differ from those of isotropic expan-
sion models after the jet Lorentz factor decreases below
1=�jet. Typically, this happens several hours after the main
GRB. We, however, are interested in very early stages of the
expansion (typically �10 s after the main GRB), and so the
analysis we present below, although formulated in terms of
an isotropic model, is also valid for a jetted scenario.

4.1.1. Expansion into a Uniform-Density ISM

Self-similarity is established once the reverse shock
crosses the ejecta. It has been shown (Waxman & Draine
2000) that at this time, both the shocked ISM and the heated
ejecta propagate with a Lorentz factor that is close to that
given by the Blandford-McKee self-similar solution,

�ðRÞ ’ �ðFÞ ’ 17E

1024�nmpc5T3

� �1=8

¼ 184E
1=8
52 n

�1=8
0 T

�3=8
1 ; ð15Þ

where T ¼ 10T1 s is the observed burst duration, which is
typically of the order of 10 s, E ¼ 1052E52 ergs is the explo-
sion energy, and n ¼ 1n0 cm�3 is the density of the ambient
gas. Accordingly, the electron number density behind the
forward shock is

n
0ðFÞ
e ¼ 4�ðFÞn ¼ 735E

1=8
52 T

�3=8
1 n

7=8
0 cm�3 ð16Þ

(where the prime denotes that this is a quantity measured
in the frame comoving with the plasma).

Let �
ðFÞ
p and �

ðRÞ
p be the Lorentz factors associated with

the thermal motion of the protons accelerated by the for-
ward and reverse shocks, respectively. Then it can be shown
(Waxman & Draine 2000) that �

ðFÞ
p ’ �

ðRÞ
p �2=�i, where

�i � 300 is the Lorentz factor of the ejecta prior to its decel-
eration by the ambient gas (and after the production of the
main GRB). This result holds for both relativistic and non-
relativistic reverse shocks. Since the plasmas behind the for-
ward and reverse shocks are separated by a contact
discontinuity, the energy densities in the two plasmas are
similar. Consequently, we obtain

n
0ðRÞ
e ’ �2

�i
n
0ðFÞ
e ¼ 8:27� 104E

3=8
52 T

�9=8
1 n

5=8
0 ��1

i;2:5 cm�3 : ð17Þ

Lacking a fundamental theory of Fermi acceleration and
formation of magnetic fields by shocks, it is customary to
parameterize the fractions of the energy carried by the mag-
netic field and the electrons by two dimensionless parame-
ters, �B and �e, respectively. We assume that the values of
these parameters are similar in the plasmas accelerated by
the forward and reverse shocks, as we expect them to be
associated with ‘‘ microphysics ’’ processes in the plasma.
Since energy densities behind both shocks are similar, we
then have

BðRÞ ’ BðFÞ ¼ 0:07
�B
10�6

� �1=2

E
1=8
52 T

�3=8
1 n

3=8
0 G ; ð18Þ

where we use the normalization ð�B=10�6Þ since we expect
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strong collective plasma effects for small values of �B (see
x 1).

Relativistic shock waves are assumed to accelerate pro-
tons and electrons to high energies, giving power-law distri-
bution functions

n0eð�Þ ¼ K��p; for �e;min < � < �e;max : ð19Þ

Spectral indices pe2 were observed in the cosmic-ray spec-
trum and supernovae radio emission, observations that
were later explained by theoretical work (Blandford &
Eichler 1987). Numeric and analytic calculations of particle
acceleration via the first-order Fermi mechanism in relativ-
istic shocks yield spectral indices p 	 2:2 for highly relativis-
tic shocks (Bednarz & Ostrowski 1998). This result is in
agreement with the value of p inferred from GRB afterglow
observations (Waxman 1997a, 1997b). The maximum Lor-
entz factor �e,max is determined by requiring that the most
energetic electrons lose energy through synchrotron emis-
sion slower than they gain energy through acceleration by
the shock. Normalization then implies

�
e ðFÞ
e;min ¼ 1

‘
�e
mp

me
� ¼ 4:22� 104‘�1

4

�e
0:5

� �
E

1=8
52 T

�3=8
1 n

1=8
0 ;

ð20Þ

where ‘ ¼ lnð�e;max=�e;minÞ. Typically, ‘ � 4. Following the
discussion leading to equation (16), we have
�
e ðRÞ
e;min ’ �

e ðFÞ
e;min�i=�2.

4.1.2. Expansion into aWind

We examine here the simplest model of a ‘‘ wind,’’ in
which the star loses mass at a constant rate _MM during an
epoch prior to the explosion. Material is ejected radially at a
constant speed v, hence producing a nonhomogeneous
ambient gas with n / r�2. Using typical estimates for the
mass-loss rate _MM ¼ 10�5 M
 yr�1 and for the wind velocity
v ¼ 103 km s�1 (Chevalier & Li 1999), one obtains
n ¼ _MM=4�mpvr�2 ’ 3� 1035 _MM�5=v3

� �
r�2 cm�3; here we

use the notations _MM�5 ¼ _MM=ð105 M
 yr�1Þ and
v3 ¼ v=ð103 km s�1Þ. Once the dynamics reach the self-simi-
lar regime, the Lorentz factor and the radius are related
through E ¼ ð16�=9Þmpc2r3nðrÞ�2

B-M ¼ ð4 _MMc2=9vÞ�2
B-Mr.

The physical parameters of the plasmas heated by the for-
ward and reverse shocks are obtained following the reason-
ing employed in x 4.1.1, and so, without further ado:

n
0ðFÞ
e ’ 1:09� 107E

�3=4
52

_MM�5

v3

� �7=4

T
�5=4
1 cm�3 ; ð21Þ

n
0ðRÞ
e ’ 6:56� 107E

�1=4
52

_MM�5

v3

� �5=4

T
�7=4
1 ��1

i;2:5 cm�3 ; ð22Þ

BðRÞ ’BðFÞ ’ 4:18
�B

10�6

� �1=2

E
�1=4
52

�
_MM�5

v3

� �3=4

T
�3=4
1 G ; ð23Þ

�
e ðFÞ
e;min ’ 9:78� 103‘�1

4

�e
0:5

� �
E

1=4
52

_MM�5

v3

� ��1=4

T
�1=4
1 ; ð24Þ

�
e ðRÞ
e;min ’ 1:61� 103‘�1

4

�e
0:5

� �
E

�1=4
52

�
_MM�5

v3

� �1=4

T
1=4
1 �i;2:5 : ð25Þ

4.2. Razin Cutoff and SynchrotronMaser

We now use the lessons of the previous three sections to
estimate �p, �B, and �c (the synchrotron characteristic fre-
quency) and �

R� for the four cases under study, i.e., the
ejecta heated by the reverse shock and the ambient medium
heated by the forward shock in the two fireball expansion
scenarios.

4.2.1. Expansion into a Uniform-Density ISM

The typical Lorentz factor of the ISM accelerated by the
forward shock is very high, �

e ðFÞ
e;min ’ 4:2� 104, and the num-

ber density is n
0ðFÞ
e ’ 735 cm�3. Under the assumption of a

small �B, the magnetic field is B ’ 0:07 G. The values just
stated correspond to the epoch of transition to self-similar
behavior. Using the results of the last section and boosting
to the observer frame (multiplying by C), we obtain

�
ðFÞ
p ’ 2:2� 105‘

1=2
4

�e
0:5

� ��1=2

E
1=8
52 T

�3=8
1 n

3=8
0 Hz ;

�B ’ 870‘4
�e
0:5

� ��1
�B

10�6

� �1=2

E
1=8
52 T

�3=8
1 n

�1=8
0 Hz ;

�
ðFÞ
c ’ 9:8� 1016‘�2

4

�e
0:5

� �2
�B
10�6

� �1=2

E
1=2
52 T

�3=2
1 Hz ;

�
ðFÞ
R� ’ 3:5� 106‘

1=4
4

�e
0:5

� ��1=4
�B

10�6

� ��1=4

� E
1=8
52 T

�3=8
1 n

3=8
0 Hz : ð26Þ

Since �
ðFÞ
e;min, B, and n

0ðFÞ
e are proportional to � / r�3=2, we

find that (in the observer’s frame) �p, �B, and �
R� / r�3=2,

whereas �c / r�6.
The ejecta heated by the reverse shock is characterized by

a lower Lorentz factor �
e ðRÞ
e;min ’ 375, but the number density

is much higher than behind the forward shock,
n
0ðRÞ
e ’ 8:3� 104 cm�3. In the observer’s frame,

�
ðRÞ
p ’ 2:5� 107‘

1=2
4

�e
0:5

� ��1=2

E
3=8
52 T

�9=8
1 n

1=8
0 ��1

i;2:5 Hz ;

�
ðRÞ
B ’ 9:8� 104‘4

�e
0:5

� ��1
�B

10�6

� �1=2

� E
3=8
52 T

�9=8
1 n

1=8
0 ��1

i;2:5 Hz ;

�
ðRÞ
c ’ 7:7� 1012‘�2

4

�e
0:5

� �2
�B

10�6

� �1=2

n
1=2
0 �2

i;2:5 Hz ;

�
ðRÞ
R� ’ 3:9� 108‘

1=4
4

�e
0:5

� ��1=4
�B
10�6

� ��1=4

� E
3=8
52 T

�9=8
1 n

1=8
0 ��1

i;2:5 Hz : ð27Þ

4.2.2. Expansion into aWind

While the reverse shock crosses the ejecta, the heated
wind particles are accelerated by the forward shock to a typ-
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ical Lorentz factor �
e ðFÞ
e;min ’ 9:8� 103. At that time, the num-

ber density is n
0ðFÞ
e ’ 1:1� 107 cm�3 and the magnetic field

isB ’ 4:2 G. Then,

�
ðFÞ
p ’ 1:3� 107‘

1=2
4

�e
0:5

� ��1=2

�
_MM�5

v3

� �3=4

E
�1=4
52 T

�3=4
1 Hz ;

�
ðFÞ
B ’ 5:1� 104‘4

�e
0:5

� ��1
�B

10�6

� �1=2

�
_MM�5

v3

� �3=4

E
�1=4
52 T

�3=4
1 Hz ;

�
ðFÞ
c ’ 7:1� 1016‘�2

4

�e
0:5

� �2 �B
10�6

� �1=2

E
1=2
52 T

�3=2
1 Hz ;

�
ðFÞ
R� ’ 2:0� 108‘

1=4
4

�e
0:5

� ��1=4
�B

10�6

� ��1=4

�
_MM�5

v3

� �3=4

E
�1=4
52 T

�3=4
1 Hz : ð28Þ

Since during the self-similar stage n0e scales as C5, B / �3,
�e;min / �, and � / r�1=2, we obtain the following scaling
relations for later times: �p, �B, and �

R� / r�3=2, and
�c / r�3. However, for earlier times, the forward shock
expands at a uniform Lorentz factor, and so
�e;min / � ¼ const, n0e / �n / r�2, and B / u0ð Þ1=2
/ �2nð Þ1=2/ r�1. Hence, we find that �p, �B, �c, and �

R� all
scale as r�1.

Finally, the electrons in the ejecta heated by the
reverse shock when the fireball expands into a wind have
a Lorentz factor of �

e ðRÞ
e;min ’ 1:6� 103 and a number

density n
0ðRÞ
e ’ 6:6� 107 cm�3. Hence,

�
ðRÞ
p ’ 7:7� 107‘

1=2
4

�e
0:5

� ��1=2 _MM�5

v3

� �1=4

� E
1=4
52 T

�5=4
1 ��1

i;2:5 Hz ;

�
ðRÞ
B ’ 3:1� 105‘4

�e
0:5

� ��1 �B
10�6

� �1=2 _MM�5

v3

� �1=4

� E
1=4
52 T

�5=4
1 ��1

i;2:5 Hz ;

�
ðRÞ
c ’ 2:0� 1015‘�2

4

�e
0:5

� �2
�B
10�6

� �1=2 _MM�5

v3

� �

� E
�1=2
52 T

�1=2
1 �2

i;2:5 Hz ;

�
ðRÞ
R� ’ 1:2� 109‘

1=4
4

�e
0:5

� ��1=4 �B
10�6

� ��1=4 _MM�5

v3

� �1=4

� E
1=4
52 T

�5=4
1 ��1

i;2:5 Hz : ð29Þ

4.2.3. The Electron Distribution Function at Low Energies

As stated in x 3.2, a necessary condition for negative reab-
sorption is a region that grows faster than E2 in the electron
distribution function. We give here a plausible mechanism
that may be responsible for the existence of such a region.
Relativistic shock waves are thought to accelerate electrons
in such a way that the electron distribution function has a
power-law tail extending to high energies. However, there is

no satisfactory theory that predicts the shape of the distri-
bution function at low energies. We thus assume that at low
energies, the distribution function has the simplest possible
behavior, and electrons distribute according to the volume
they occupy in phase space, i.e., neðEÞ / E2. By emitting
synchrotron radiation, the electrons gradually lose their
energy and accumulate at lower energies, thus leading to a
distribution function that grows faster than E2 at low ener-
gies. The excess of electrons above the E2 power law is sensi-
tively dependent on the details of the distribution function
injected by the shock. Consider, for example, an injected
distribution function composed of two pure power laws [i.e.,
neðEÞ / E2 if E � E0, neðEÞ / E�p if E > E0]. This distri-
bution function has a discontinuous derivative at its peak.
Synchrotron cooling thus results in an excess of ‘‘ cooled ’’
electrons just below E0, leading to a strong maser effect. This
issue is treated further in x 4.2.4.

It must be borne in mind, however, that electrons that
are ‘‘ injected ’’ into the hot plasma by the shock at later
times have less time to cool. This leads, in principle, to a sig-
nificant complication in the distribution function of the
shock-accelerated electrons, since the farther away from the
shock front we look, the ‘‘ colder ’’ the distribution is, and in
general, we cannot consider the distribution function of the
shocked plasma to be homogeneous. In particular, in
regions closest to the shock front, where the electrons had
very little time to cool compared to the dynamical time, the
reabsorption is positive, and thus may obscure coherent
emission from regions farther away from the shock front.
Nevertheless, we have shown numerically that these regions
contribute an optical depth of the order of a few, at most,
for typical afterglow parameters; hence, the effect of inho-
mogeneity does not qualitatively change the phenomenon
of coherent emission by the relativistic plasma. Further-
more, if one assumes some turbulent mechanism that acts
on the dynamical timescale of the system and ‘‘mixes ’’ elec-
tron populations that were injected by the shock at different
times, one can disregard that complication and treat the
‘‘ averaged distribution ’’ function.

It is interesting to note that a major effect exists even when
the low-energy electrons are distributed as neðEÞ / E2!
Indeed, there is no negative reabsorption in this case, since
�� < 0 requires a region steeper than E2 in the distribution
function. Nevertheless, the emissivity at � � �

R� is domi-
nated by the low-energy electrons (since j� of electrons with
�e � �e;min is Razin-suppressed at higher frequencies). On
the other hand, the absorption coefficient, albeit always pos-
itive, is dominated by the high-energy electrons and so starts
decreasing at frequencies higher than �

R� . Altogether,
we obtain a high peak in the intensity for ��

R�41 and
a strong suppression when ��

R�5 1, where ��
R� is the

optical depth at �
R� .

4.2.4. Results of Detailed Calculations

We calculated the emitted intensity for a plasma with
�e;min ¼ 103 104, �p=�B ¼ 102 103. Following the discus-
sion in x 3.3, the normal waves propagating in the plasma
are circularly polarized. The intensity of the emitted radia-
tion is given by

I�ð1;2Þ ¼ j�ð1;2ÞD
0 1� e���ð1;2Þ

��ð1;2Þ
; ð30Þ

where j� is the specific emissivity and �� the optical depth.
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The width (as measured in the comoving frame) of the emit-
ting medium along the line of sight D0 is typically �1013 cm
in both expansion scenarios.

Using a shock-injected electron distribution function con-
sisting of two pure power laws with typical afterglow
parameters, we verified that the cooling scheme suggested in
x 4.2.3 results in a maser effect at frequencies �d�

R� . More
realistic distribution functions are expected to have a
smooth transition region between the two power laws. As
an example, we considered the following shock-injected
electron distribution function (following Gruzinov &
Waxman 1999),

n0eðzÞ / z2 1þ az�ðpþ2Þ
	 
�1

; ð31Þ

where z ¼ �=�e;min. The constant a and the overall propor-
tionality factor are chosen such that the distribution is
adequately normalized. This distribution function behaves
asymptotically as �2 at low energies and as ��p at high ener-
gies, with p ¼ 2:4. We applied the cooling scheme described
in x 4.2.3 to two sets of plasma parameters: one with
�p=�B ¼ 250, �e;min ¼ 4� 104, n0e ¼ 103 cm�3, and
�cool=�e;min ’ 2� 103, and the other with �p=�B ¼ 250,
�e;min ¼ 104, n0e ¼ 107 cm�3, and �cool ’ 10�e;min. Here
�cool ¼ 6�mec=
TB2t0dyn is the maximal electron Lorentz fac-
tor allowing significant synchrotron losses within the
dynamic timescale of the system t0dyn. The first parameter set
corresponds approximately to the conditions prevailing in
the ISM heated by the forward shock, when the fireball
expands into a uniform-density ISM, while the other corre-
sponds approximately to the physical conditions in the
plasma accelerated by the forward shock, when the fireball
expands into a wind. The results of the numerical calcula-
tions are displayed in Figure 1. When the first parameter set
is used (Fig. 1, left), there is no negative reabsorption, since
the cooling is not efficient enough. An increase of �1.5

orders of magnitude in the emitted intensity, compared to
the emission in ‘‘ vacuum,’’ is apparent, as explained in
x 4.2.3. On the other hand, the second parameter set, which
corresponds to a much lower value of �cool=�e;min (Fig. 1,
right), clearly shows the maser effect at frequencies �d�

R� ,
reflecting the negative self-absorption coefficient due to the
efficient synchrotron cooling.

5. DISCUSSION

We have derived a dispersion relation for transverse elec-
tromagnetic waves in a weakly magnetized relativistic
plasma, assuming the electron and proton distribution func-
tions are isotropic. The frequency range in which we were
interested was �p < �5 �e�p. Treating the external weak
magnetic field as a perturbation, we have shown that at this
frequency range, the normal modes are circularly polarized,
having refractive indices that can be approximated by
the familiar expression n21;2 ’ 1� ð�=�pÞ2, where
�p ¼ ½ð�NR

pe Þ2=�e þ ð�NR
pp Þ2=�p�1=2. We have shown that this

result is valid whether the electron distribution is assumed
to be a �-function or a power law. We have also calculated
the difference between the two refractive indices (see eq. [4]),
obtaining jDnj ’ ð�2p�B=�3Þ cos� lnð�2p=4�2Þ for radiation
propagating at an angle � < j�=2� 0:1�B�=�2p j with respect
to the external magnetic field, and jDnj ’ �2B=2�

2 for radia-
tion propagating at larger angles (i.e., almost perpendicular
to the field direction).

We next came to consider the effects of the relativistic
plasma on synchrotron emission. We have derived an esti-
mate of the frequency at which the plasma effect on the
emission becomes significant:

�
R� ’ �p min �;

ffiffiffiffiffi
�p
�B

r� �
: ð32Þ
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Fig. 1.—Emitted intensity of circularly polarized synchrotron radiation in plasma. Dashed lines represent the ‘‘ vacuum ’’ values of I�, and solid lines
represent these quantities when plasma effects are considered. The vertical dash-dotted lines at �

R� separate the region where plasma effects are negligible
(� > �

R� ) from the region where these effects are important (�d�
R� ). In order to demonstrate the collective plasma effects given different plasma conditions,

two parameter sets were used for the calculations presented here. Left: Typical plasma conditions behind a forward shock propagating into a uniform density
ISM (�p ’ 2� 105 Hz in the observer’s frame, �e;min ¼ 4� 104, n0e ¼ 103, and �cool=�e;min ’ 2� 103). Although there is no negative self-absorption, a �1.5
order of magnitude increase in the emitted intensity (compared to the emission in vacuum) is apparent at �d�

R� ’ 103�p (see x 4.2.3). Right: Typical plasma
conditions behind a forward shock propagating into a wind (�p ’ 107 Hz as measured in the observer’s frame, �e;min ¼ 104, n0e ¼ 107, and �cool=�e;min ’ 10).
The divergence of the emission at �d�

R� ’ 10�p is the signature of the maser effect.
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This result generalizes the familiar Razin frequency
�R ¼ �e�p to a regime where �p=�B5 �2e , which is the rele-
vant regime for typical plasma parameters at GRB after-
glows; hence, we expect a strong effect of the plasma on the
synchrotron emission at �

R� ¼ �pð�p=�BÞ1=2. Consequently,
we found that a necessary condition for the collective
plasma effects to be observable is �p=�B41. This ratio was
shown to depend only on the ratio of �e to �B and on the
width of the distribution function (eq. [7]). Hence, �e=�B41
is a necessary condition for the effects to be observable.

We applied the above results to plasma parameters
(�e ’ 103 104, �p=�B ’ 102 103) typical to GRB afterglows
and found that for �B ’ 10�6 and �e close to equipartition,
the plasma had a decisive effect on the synchrotron emission
at radio frequencies during the transition of the fireball
dynamics to self-similarity. Two expansion scenarios were
considered: (1) a blast wave into a uniform-density ISM
with ne ’ 1 cm�3, in which we expect a collective plasma
effect on synchrotron emission from the gas heated by the
forward shock at�3.5 MHz; and (2) expansion into a wind,
where the number density decreases as r�2. The number den-
sity is �104 cm�3 at the radius at which the dynamics
become self-similar. In this case, we predict a plasma effect
on synchrotron emission from the wind accelerated by the
forward shock at�0.2 GHz (see eqs. [26]–[29]).

Note that collective plasma effects on synchrotron emis-
sion below �

R� are expected irrespective of the details of the
electron distribution function. This is in contrast to negative
reabsorption and the maser effect, which require a region in
the electron distribution function that rises faster than E2.
The energy distribution of electrons produced by collision-
less shock acceleration is not well known, in particular at
low energy. However, we have shown that for plausible
assumptions about the electron distribution function at low
energy, synchrotron cooling of the electrons may lead to
negative reabsorption. This, however, depends on the
details of the distribution function near its peak. We have
demonstrated negative reabsorption for a distribution that
transforms smoothly (at �e;min) from an E2 power law at low
energies to an E�p (p ¼ 2:4) power law at high energies, for
a certain range of parameters (Fig. 1, right).

One should note, however, that even if the distribution
function permits negative reabsorption, coherent emission
from plasma accelerated by a reverse shock may be com-
pletely obscured by the high optical depth of the ambient
medium heated by the forward shock. Thus, for example,
when the fireball expands into a wind, certain electron dis-
tribution functions may lead to coherent emission from the
reverse shock at 1.2 GHz (eq. [29]). Nevertheless, the maser
due to the reverse shock is completely suppressed by the

�103 optical depth of the forward shock at the GHz fre-
quency range. A similar situation also occurs when the fire-
ball expands into a uniform-density ISM. Note, however,
that if turbulent processes disrupt the shock fronts, so that
‘‘ bulges ’’ of accelerated ejecta lie in front of the forward
shell along the line of sight, the plasma effects occurring in
the reverse shock may become observable.

Our calculations of coherent emission assumed a homo-
geneous distribution function in the emitting shell. How-
ever, we have numerically shown that even if inhomogeneity
due to different cooling times is taken into account, coherent
emission would still be observable: the regions close to the
shock front, where the electrons have little time to cool, only
contribute a positive optical depth of the order of a few and
hence do not completely obscure the maser emission from
regions farther away from the shock front.

We have shown that for typical plasma parameters, the
normal waves propagating in the plasma are circularly
polarized at frequencies of the order of �

R� (see the dis-
cussion following eq. [9] and x 3.3). Since the difference
between the refractive indices of the transverse normal
modes is smaller by a factor of ��B=�5 1 than 1� n1;2ð�Þ,
and it is the latter that enters the equations of reabsorption
and determines the amplification of radiation in both polar-
izations, the resulting optical depths corresponding to radi-
ation in the two polarizations differ by a factor of a few, at
most, if the magnetic field is assumed to be constant
throughout the emitting shell. This factor is expected to
reduce because of saturation of emitted radiation. If, how-
ever, the direction of the magnetic field is assumed to fluctu-
ate randomly on length scales smaller than the shell’s width,
the difference between the two refractive indices also
changes signs randomly, and the difference in the amplifica-
tions of the two polarizations is averaged out. Conse-
quently, we do not expect the observed radiation to have a
high degree of circular polarization at relevant frequencies.

A detection of a strong effect in the radio band at early
stages of the afterglow will place a new independent con-
straint on the value of �B, as it will prove that it must be
much smaller than 1. Since there is a 2 order of magnitude
difference between our estimates of �

R� in the forward
shock in the two expansion scenarios, a flash in the radio
wave band during early afterglow stages seems more prob-
able when the fireball expands into a wind. In this respect,
collective plasma effects may serve as an important clue to
the GRB environment and progenitor type.

E. W. is the incumbent of the Beracha Foundation career
development chair.

APPENDIX

DISPERSION RELATIONS OF TRANSVERSE ELECTROMAGNETIC WAVES IN A RELATIVISTIC PLASMA

Since the rate of binary collisions is much smaller than the frequencies of interest for us, the plasma can be adequately
described by a collisionless Vlasov equation,

@f�
@t

þ p

�m�

x

D

f� þ q� E þ p� B

�m�c

� �
x
@f�
@p

¼ 0 ; ðA1Þ

where the one-particle distribution function f�ðx�; p�; tÞ is defined as the fractional density of particles of a single type in
phase space, and � denotes a single species of particles, i.e., electrons or protons.
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A1. TRANSVERSE ELECTROMAGNETIC WAVES IN A FIELD-FREE PLASMA

Let f�0 be an equilibrium distribution function, and let f�1ðx; p; tÞ be a small perturbation to it, so that f� ¼ f�0 þ f�1. It is
assumed that the equilibrium distribution function carries no net charge or current distributions. Since we assume that
j f�1j5 f�0, equation (A1) can be linearized, and we obtain the (Fourier-transformed) perturbation to the equilibrium
distribution function

f�1 ¼ q�
E x ð@f�0=@pÞ

i !� k x p=�m�ð Þ ; ðA2Þ

where we have used the assumption that f�0 is isotropic. Here ! ¼ 2��. The transverse electromagnetic fields satisfy Maxwell’s
equations,

D

� E ¼ � 1

c

@B

@t
;

D

� B ¼ 1

c

@E

@t
þ 4�

c
j ; ðA3Þ

where the net current is given by j ¼
P

� �nn�q�
R
ðp=�m�Þf�1 d3p, the average number density of the particles of the species � is

�nn�, and � ¼ p2 þm2
�c2ð Þ1=2=m�c is the particle’s Lorentz factor. We choose a system of axes such that the radiation propagates

with a wavevector k ¼ ð0; 0; kÞ along the z-axis, whence the transverse electric field is confined to the x-y plane:
E ¼ ðE?1; E?2; 0Þ, and the particle momentum vector is p ¼ ðp?1; p?2; pkÞ. Equation (A3) leads to a dispersion relation for
the transverse waves,

k2c2=!2Ei ¼ �ijEj with i; j ¼ 1; 2 ; ðA4Þ

where �ij is the dielectric tensor:

�11 ¼ �22 ¼ 1þ
X
�

ð!NR
p� Þ2

!

Z
d3p

1

!� kvk
� � df�0

dp

p2?1

p

m�cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

�c2
p ; ðA5aÞ

�12 ¼ ��21 ¼ 0: ðA5bÞ

Here !NR
p� ¼ ð4��nn�q2�=m�Þ1=2 is the nonrelativistic plasma frequency of the species �. The refractive index nð!Þ ¼ kc=! for the

transverse waves is the square root of the doubly degenerate eigenvalue of equation (A4).
If the electron and proton distribution functions can be approximated by �-functions f�0 ¼ ð1=4�p2�0Þ�ðp� p�0Þ, equation

(A5a) becomes

�11 ¼ �22 ¼ 1�
X
�

ð!NR
p� Þ2

2��0!2
x�

(
x2� 1� 1

�2�0

� �
� 1

� �
ln

x� � 1

x� þ 1

����
����þ 2x� 1� 1

�2�0

� �)
; ðA6Þ

with x� ¼ !=kv�0 and v�0 ¼ p�0=��0m�. It can be shown that in the frequency range of interest and for relevant values of �e,p,
the second term in the curly brackets of equation (A6) dominates the first term for both the electrons and the protons. This can
be used to approximate the refractive index by

na2appð!Þ ¼ 1� !p

!

	 
2

; ðA7aÞ

!p ¼
4��nnee2

�e;0me
þ 4��nnee2

�p;0mp

� �1=2

¼ ð!pNR
pe Þ2

�e;0
þ ð!pNR

pp Þ2

�p;0

" #1=2

: ðA7bÞ

Both observations and theory imply that in afterglow plasmas, the electrons are not distributed monoenergetically, but rather
have a distribution function that extends to high energies as a power law, with a spectral index pe2. However, we have shown
numerically that in the frequency range of interest for us, where j1� ðkc=!Þj41=�2e and for relevant values of electron and
proton Lorentz factors, j1� nPLj differs from j1� n�j by less than 1 part in 104, where n� and nPL are the refractive indices for
the monoenergetic and power-law distribution functions, respectively. Consequently, the result in equation (A7a) still holds
approximately for a power-law distribution. Hereafter, we use �-function distributions to evaluate the deviation of the
refractive index from 1.

A2. TRANSVERSE ELECTROMAGNETIC WAVES IN A WEAKLY MAGNETIZED PLASMA

Let f�0 be an isotropic equilibrium distribution function, which describes a plasma in an external uniformmagnetic field B0.
We introduce a small perturbation to f�0. Since we are interested in frequencies !4!B, we assume that the external magnetic
field is small, so that the perturbation is made up of two contributions, one (which we denote by f�1) that is independent of the
magnetic field, and another (denoted by f�2) that is linear in the magnetic field; thus, f�04j f�1j4j f�2j. We now linearize the
Vlasov equation (see eq. [A1]) and neglect ð@f�2=@pÞ with respect to ð@f�1=@pÞ. Substituting equation (A2) for f�1, we obtain
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(after some algebra)

f�2 ¼ � q2�
�m�c

ðdf�0=dpÞ
p

ðp� B0Þ x
E

!� k x p=�m�ð Þ2
þ ðE x pÞk
�m� !� k x p=�m�ð Þ3

" #
: ðA8Þ

Hence, f�2 is indeed linear in the external magnetic field, consistent with our assumption.
As already mentioned, we are interested in frequencies !4!B. For these frequencies, the effect of the magnetized plasma on

the propagating radiation is small, and the electric field can be assumed to be approximately transverse, i.e., E ? k. Our pre-
vious choice of axes is convenient for the analysis; without any loss of generality, we choose B0 ¼ ð0; B0 sin�; B0 cos�Þ.
Following the steps outlined in equations (A3)–(A5a), we obtain the dielectric tensor for quasi-transverse electromagnetic
waves in a weakly magnetized plasma,

�12 ¼ ��21 ¼ i
X
�

ð!NR
p� Þ2

!
!NR
B� cos�

Z
d3p

1

ð!� kvkÞ2
df�0
dp

p2?1

p

m2
�c2

p2 þm2
�c2

; ðA9Þ

with !NR
B� � jq�jB0=m�c the nonrelativistic gyration frequency. The expression for �11 ¼ �22 is given in equation (A5a). For

monoenergetic electron and proton distributions, equation (A9) becomes

�12 ¼ ��21 ¼ i
X
�

ð!NR
p� Þ2!NR

B�

!3

cos�

2�2�0
x2� 1� 1

�2�0

� �
x� ln

x� � 1

x� þ 1

����
����� 2

�2�0

1

x2� � 1
� 2� 10

�2�0

� �
; ðA10Þ

where x� has the same definition as in equation (A6).
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