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ABSTRACT
We analyze three-dimensional numerical simulations of driven incompressible magnetohydrodynamic

(MHD) turbulence in a periodic box threaded by a moderately strong external magnetic Ðeld. We sum
over nonlinear interactions within Fourier wave bands and Ðnd that the timescale for the energy cascade
is consistent with the Goldreich-Sridhar model of strong MHD turbulence. Using higher order longitudi-
nal structure functions, we show that the turbulent motions in the plane perpendicular to the local mean
magnetic Ðeld are similar to ordinary hydrodynamic turbulence, while motions parallel to the Ðeld are
consistent with a scaling correction that arises from the eddy anisotropy. We present the structure tensor
describing velocity statistics of and turbulence. Finally, we conÐrm that anAlfve� nic pseudo-Alfve� nic
imbalance of energy moving up and down magnetic Ðeld lines leads to a slow decay of turbulent
motions, and speculate that this imbalance is common in the interstellar medium, where injection of
energy is intermittent both in time and space.
Subject headings : ISM: general È methods : numerical È MHD È turbulence

1. INTRODUCTION

The interstellar medium (ISM) is complicated and
dynamic. The magnetic Ðeld and dynamic pressure (o¿2/2)
usually dominate the thermal pressure (nkT ), dramatically
inÑuencing the star formation rate (see McKee 1999 for a
review). There are cosmic rays that provide pressure and
heating as well.

One approach to studying the ISM is to perform time-
dependent numerical simulations to model the ISM, includ-
ing as many of the interacting phenomena as is practical. Of
course, the physics included in such models must necessar-
ily be highly simpliÐed, and it is difficult to determine which
features of the Ðnal model result from which physical
assumptions (or initial conditions). Our approach is to use
simpliÐed numerical simulations for studying the inÑuences
of various physical phenomena in isolation. We want to
obtain a physical feeling for the general e†ects that each
phenomenon has on the nature of the ISM. In this paper,
we consider the inÑuence of random forces per unit volume
on MHD turbulence in an incompressible medium. It is
obvious that the real ISM is compressible, but we want to
separate the e†ects of magnetic turbulence from those
involving compression. In later papers, we will include com-
pression for comparison with the present models, thereby
isolating its importance directly.

Historically, hydrodynamic turbulence in an incompress-
ible Ñuid was successfully described by the eddy cascade
(Kolmogorov 1941), but MHD turbulence was Ðrst
modeled by wave turbulence (Iroshnikov 1963 ; Kraichnan
1965 ; hereafter IK). This theory assumes isotropy of the
energy cascade in Fourier space, an assumption that has
attracted severe criticism (Montgomery & Turner 1981 ;
Shebalin, Matthaeus, & Montgomery 1983 ; Montgomery
& Matthaeus 1995 ; Sridhar & Goldreich 1994). Indeed, the
magnetic Ðeld deÐnes a local symmetry axis, since it is easy
to mix Ðeld lines in directions perpendicular to the local B

and much more difficult to bend them. The idea of an aniso-
tropic (perpendicular) cascade has been incorporated into
the framework of the reduced MHD approximation
(Strauss 1976 ; Rosenbluth 1976 ; Montgomery 1982 ; Zank
& Matthaeus 1992 ; Bhattacharjee, Ng, & Spangler 1998).

In a turbulent medium, the kinetic energy associated with
large-scale motions is greater than that of small scales.
However, the strength of the local mean magnetic Ðeld is
almost the same on all scales. Therefore, it becomes rela-
tively difficult to bend magnetic Ðeld lines as we consider
smaller scales, leading to more pronounced anisotropy. A
self-consistent model of MHD turbulence that incorporates
this concept of scale-dependent anisotropy was introduced
by Goldreich & Sridhar (1995, hereafter GS95).

Within the GS95 theory, the energy cascade becomes
anisotropic as a consequence of the resonant conditions for
three-wave interactions. A strict application of the resonant
three-wave interaction conditions gives an energy cascade
that is purely in the direction perpendicular to the external
Ðeld. However, it is intuitively clear that the increase in k

Mmust at some point start a†ectingk
A
.

The cornerstone of the GS95 theory is the concept of a
““ critically balanced ÏÏ cascade, where andk

A
VA D k

M
v
l
, k

Mare wavenumbers perpendicular and parallel to thek
Abackground Ðeld, respectively, is the rms speed of turbu-v

llence at the scale l and is the speed. In this model,VA Alfve� n
the rate is equal to the eddy turnover rateAlfve� n (k

A
VA)

(k
M

v
l
).

Using this concept, GS95 showed that the energy cascade
is not strictly perpendicular to the background Ðeld, but is
relaxed, so that k

A
P k

M
2@3.

Their model predicts that the one-dimensional energy
spectrum is of Kolmogorov-type if expressed in terms of
perpendicular wavenumbers, i.e., E(k

M
) P k

M
~5@3.

Numerical simulations by Cho & Vishniac (2000a, here-
after CV00) and Maron & Goldreich (2001, hereafter
MG01) have mostly supported the GS95 model and helped
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to extend it. Both analyses stressed the point that scale-
dependent anisotropy can be measured only in local coordi-
nate frames that are aligned with the locally averaged
magnetic Ðeld direction. CV00 calculated the structure
functions of the velocity and magnetic Ðeld in the local
frames, and found that the contours of the structure func-
tions do show scale-dependent anisotropy, consistent with
the predictions of the GS95 model. In their calculation, the
strength of the uniform background magnetic Ðeld is
roughly the same as the rms velocity. MG01 tested the
GS95 model for a much stronger uniform background Ðeld
and also obtained results supporting the GS95 model, but
they produced E(k)P k~3@2. They also calculated timescales
of turbulence, interactions between pseudo- and shear-

modes, growth of imbalance, and intermittency.Alfve� nic
Other related recent numerical simulations include Mat-
thaeus et al. (1998), & Biskamp (2000), and MilanoMu� ller
et al. (2001).

These studies left a number of unresolved issues, includ-
ing the exact scaling relations, the comparison of inter-
mittency in MHD and in hydrodynamic turbulence, and the
timescale of turbulence decay. Moreover, for many practical
applications, a more quantitative description of MHD turb-
ulence statistics is necessary. These are vital for understand-
ing various astrophysical processes, including star
formation (McKee 1999), cosmic-ray propagation &(Ko� ta
Jokipii 2000), and magnetic reconnection (Lazarian & Vish-
niac 1999).

In this paper, we further investigate implications of the
GS95 model. In ° 2 we explain our numerical method. In ° 3
we further elucidate the scaling relation implied by the
GS95 model. In particular, we discuss the timescale, veloc-
ity scaling relations, and intermittency. In ° 4 we derive the
correlation tensor and discuss some astrophysical applica-
tions. While the GS95 model predicts that the MHD turbu-
lence decays in just one eddy turnover time, in ° 5 we show
that the decay timescale increases when the cascade is
unbalanced and discuss some consequences of this fact. In
° 6 we brieÑy discuss the implications of this work. In ° 7 we
give a summary and our conclusions. As before, we consider
the case in which the uniform background magnetic Ðeld
energy density is comparable to the turbulent energy
density.

2. METHOD

2.1. Numerical Method
We have calculated the time evolution of incompressible

magnetic turbulence subject to a random driving force per
unit mass. We have adopted a pseudospectral code for
solving the incompressible MHD equations in a periodic
box of size 2n :

L¿
Lt

\ [ ($ Â ¿) Â ¿] ($ Â B) Â B ] l+2¿] f ] $P@ , (1)

LB
Lt

\ $ Â (¿ Â B)] g+2B , (2)

$ Æ ¿\ $ Æ B \ 0 , (3)

where f is a random driving force, isP@4 P/o] ¿ Æ ¿/2, ¿
the velocity, and B is the magnetic Ðeld divided by (4no)1@2.
In this representation, can be viewed as the velocity mea-¿

sured in units of the rms velocity v of the system, and B as
the speed in the same units. The time t is in units ofAlfve� n
the large eddy turnover time (DL /v), and the length is in
units of L , the inverse wavenumber of the fundamental box
mode. In this system of units, the viscosity l and magnetic
di†usivity g are the inverse of the kinetic and magnetic
Reynolds numbers, respectively. The magnetic Ðeld consists
of the uniform background Ðeld and a Ñuctuating Ðeld :

We use 21 forcing components withB \ B0] b.
2 ¹ k ¹ (12)1@2, where the wavenumber k is in units of L ~1.
Each forcing component has a correlation time of one. The
peak of energy injection occurs at k B 2.5. The amplitudes
of the forcing components are tuned to ensure vB 1 We use
exactly the same forcing terms for all simulations. The

velocity of the uniform background Ðeld, is set toAlfve� n B0,1. We consider only cases in which viscosity is equal to
magnetic di†usivity :

l\ g . (4)

In pseudospectral methods, the temporal evolution of equa-
tions (1) and (2) are followed in Fourier space. To obtain the
Fourier components of nonlinear terms, we Ðrst calculate
them in real space and then transform back into Fourier
space. The average kinetic helicity in these simulations is
not zero. However, previous tests have shown that our
results are insensitive to the value of the kinetic helicity. In
an incompressible Ñuid, P@ is not an independent variable.
We use an appropriate projection operator to calculate the
$P@ term in Fourier space and also to enforce the
divergence-free condition We use up to($ Æ ¿\$ Æ B \ 0).
2563 collocation points. We use an integration factor tech-
nique for kinetic and magnetic dissipation terms and a leap-
frog method for nonlinear terms. We eliminate the 2*t
oscillation of the leap-frog method by using an appropriate
average. At t \ 0, the magnetic Ðeld has only its uniform
component, and the velocity Ðeld is restricted to the range
2 ¹ k ¹ 4 in wavevector space.

Hyperviscosity and hyperdi†usivity are used for the dissi-
pation terms (see Table 1). The power of the hyperviscosity
is set to 8, so that the dissipation term in the above equation
is replaced with

[l8(+2)8¿ , (5)

where is determined from the conditionl8 l
h
(N/2)2h *t B

(see Borue & Orszag 1996). Here *t is the time step, and0.5
N is the number of grid points in each direction. The same
expression is used for the magnetic dissipation term. We list
the parameters used for the simulations in Table 1. We use
the notation where X \ 144 or 256 refers to theXY -B0Z,
number of grid points in each spatial direction, Y \ H
refers to hyperviscosity, and Z\ 1 refers to the strength of
the external magnetic Ðeld.

Diagnostics for our code can be found in Cho & Vishniac
(2000b). For example, our code conserves total energy very

TABLE 1

PARAMETERS

Run a N3 l g B0
144H-B01 . . . . . . 1443 3.20] 10~28 3.20] 10~28 1
256H-B01 . . . . . . 2563 6.42] 10~32 6.42] 10~32 1

a For 2563 (or 1443) grids, we use the notation 256X-Y (or
144X-Y ), where X \ H or P refers to hyper- or physical viscosity ;

refers to the strength of the external magnetic Ðelds.Y \ B0 1
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well in simulations with l\ g \ 0, and the average energy
input is almost exactly the same as the sum of(\f Æ ¿)
magnetic and viscous dissipation in simulations with
nonzero l and g. The runs and are256H-B01 144H-B01exactly the same as the runs and REF2 in CV00.256H-B01The energy spectra as a function of time for these runs can
be found in that paper.

2.2. DeÐning the L ocal Frame
The GS95 model deals with strong MHD turbulence and

should be distinguished from theories that deal with weak
MHD turbulence (e.g., Sridhar & Goldreich 1994 ; Ng &
Bhattacharjee 1996 ; Galtier et al. 2000 ; see also Goldreich
& Sridhar 1997). In strong MHD turbulence, eddy-like
motions mix up magnetic Ðeld lines perpendicular to the
local direction of the magnetic Ðeld. Thus, as in the case of
hydrodynamic turbulence, the correlation time for coherent
structures is comparable to the inverse of for any scalek

M
v
kThese mixing motions are strongly coupled to wavel-k

M
~1.

ike motions with a correlation time The GS95(k
A

VA)~1.
model is based on the concept of a critical balance between
these timescales, that is, This results in ak

A
VA D k

M
v
k
.

scale-dependent anisotropy, so that the eddiesk
A

P k
M
2@3,

are increasingly elongated on smaller scales.
The turbulent magnetic Ðeld changes its direction in the

global system of reference. It is important that the mixing
motions are available only in the direction perpendicular to
the local direction of magnetic Ðeld. Thus, the theory must
be formulated using the system of reference aligned with the
local magnetic Ðeld. CV00 discusses in detail one way of
deÐning this system, given numerical data.

Figure 1 is a schematic representation of the GS95
model.1 In Fourier space, the energy injected on large scales
excites large-scale Fourier components of the magnetic Ðeld
(the dark region at the center in Fig. 1a). The external mag-

1 Note that Fig. 1 is local frame representation of the GS95 model. See
below for more details.

netic Ðeld makes the subsequent energy cascade to small
scales anisotropic : it occurs in the directions perpendicular
to the mean external Ðeld.

The GS95 model states that most of the energy is con-
Ðned to the region and as the energy cascadesk

A
\ ^k

M
2@3,

to larger values of the energy of the Fourier componentsk
M
,

between and decreases ask
M

k
M

] 1 E(k
M
) P k

M
~5@3.

As illustrated in Figure 1b, eddies are not aligned along
the mean Ðeld Instead, they are aligned along the localB0.mean Ðeld lines. The local mean magnetic Ðeld deÐnes the
physically relevant background for the eddy dynamics and
is determined by the Fourier components whose wavenum-
bers are a bit less than the characteristic wavenumber of the
eddy. In practice, it can be obtained by averaging the mag-
netic Ðeld in the vicinity of the eddy over a volume slightly
(for example, 2 times) larger than the size of the eddy (see
CV00 for details). The solid curves in Figure 1b represent
this kind of locally deÐned mean, formed by all magnetic
Fourier components whose scales are a bit larger than eddy
1 (or 1@). The characteristic scale of this wandering is L D

the energy injection scale, because eddy 1 (or 1@) is only1/k
L
,

slightly smaller than the energy injection scale. This large-
scale wandering is smooth, but dominates over smaller scale
e†ects because the magnetic energy is concentrated on
larger scales. Wandering by smaller scale magnetic Ðelds is
weaker and causes smaller deviations from the large-scale
wandering. We depict the additional wandering caused by
scales a bit larger than eddy 2 as a dashed curve in Figure
1b. For eddy 1, the solid curve deÐnes the local mean mag-
netic Ðeld, and for eddy 2, the dashed curve.

The GS95 model is dominated by local dynamics ; that is,
in this model, disturbances lose their coherence when pro-
pagating over a single wavelength. To the extent that the
dynamics are local, it is obvious that the only relevant mag-
netic Ðeld is the local mean Ðeld. As an example, consider
eddies 1 and 2 in Figure 1b again. For eddy 1, the solid
curve can be regarded as a local mean Ðeld line, and the

FIG. 1.È(a) Fourier-space structure. (b) Real-space structure. Large eddies (eddy 1 or 1@) have similar semimajor axes and semiminor axes(D1/k
A,1)Therefore, they are almost isotropic. Smaller eddies (eddy 2 or 2@) have a relatively larger semimajor axis axis(D1/k

M,1). (D1/k
A,2)ÈtoÈsemiminor (D1/k

M,2)ratio. Therefore, they are relatively more elongated. Energy cascades in the directions perpendicular to large-scale magnetic Ðeld lines (e.g., direction AA@ or
DD@ in both [a] and [b]). This e†ect obscures scale-dependent anisotropy (e.g., in the GS95 model) when we perform Fourier analysis in the globalk

A
P k

M
2@3

frame. In (b), the solid curves represent the wandering of magnetic Ðeld lines by the large-scale magnetic Ðelds. The solid curves can deÐne the directions of the
local mean magnetic Ðeld line for eddy 1 or 1@. Similarly, the dashed curves can deÐne the directions of the local mean magnetic Ðeld line for the eddy 2 or 2@.
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energy cascade takes place perpendicular to this Ðeld, along
the direction AA@. Smaller eddies, such as eddy 2, see the
dashed curve as their local background magnetic Ðeld, with
a slightly di†erent direction for the energy cascade. Since
the di†erence between the two curves is small, the direction
of the energy cascade di†ers only slightly as a function of
scale. Basically, energy cascades along AA@ in the region
near eddy 1. Similarly, energy cascades along DD@ in the
region near eddy 1@. We are left with an energy cascade that
di†ers both as a function of scale and as a function of loca-
tion. However, the dynamics are not entirely local, in the
sense that disturbances do propagate along Ðeld lines
without retaining phase coherence. Consequently, perpen-
dicular motions in eddy 1 can lead to similar motions in
eddy 1@, even though AA@ and DD@ are not parallel vectors.
This is one of the key features of the GS95 model, and
carried with it is the implication that dynamic variables
need to be evaluated in terms of the local mean Ðeld direc-
tion, rather than a global coordinate system. Conversely,
the ability to generate a more meaningful description in
terms of a local and scale-dependent coordinate system can
be taken as an indirect conÐrmation of some features of the
GS95 model.

In summary, when we want to describe the scaling of
eddy shapes, we should correctly identify the direction of
the local mean magnetic Ðeld. When we talk about anisot-
ropy, we talk about anisotropy with respect to local mean
magnetic Ðeld lines. Because of this, it is necessary to intro-
duce a ““ local ÏÏ frame in which the direction of the local
mean magnetic Ðeld lines is taken as the parallel direction.
When we consider the GS95 picture (i.e., ink

A
P k

M
2@3)

Fourier space, we are considering the local frame in real
space, and vice versa. When we describe turbulence with
respect to the global frame, which is Ðxed in real space, the
corresponding Fourier-space structure no longer shows the
GS95 picture. Instead, we have a relation close to k

A
P k

M
.

This is because when energy cascades along AA@, DD@, or
some intermediate direction in real space (Fig. 1b), it cas-
cades along the directions between AA@ and DD@ in Fourier
space (Fig. 1a), which implies that when we perform the
Fourier transform with respect to the Ðxed global frame,2
we get The true scaling relation is eclipsed by thek

A
P k

M
.

wandering of large-scale magnetic Ðeld lines.
It is very important to identify the local frame. In this

paper, when we calculate decay timescale, intermittency,
and the correlation tensor, we always refer to the local
frame.

3. SCALING RELATIONS

3.1. T imescale of Motions
One of the basic questions in the theory of MHD turbu-

lence is the slope of the one-dimensional energy spectra. As
we have seen, GS95 obtained a spectral index of [5/3. In
the numerical simulations of CV00, the spectral index is
close to [5/3, while it is very close to [3/2 in MG01. The
IK theory predicts a k~3@2 scaling, although the other fea-
tures of this model are deÐnitely inconsistent with all the
numerical evidence. MG01 attributed their result to the
appearance of strong intermittency in their simulations. We
note that the inertial range of the solar wind shows a spec-

2 Many astrophysical observations, for instance, interferometric obser-
vations of turbulent H I (Lazarian 1995), provide the statistics measured in
the global frame.

tral index of [1.7 (Leamon et al. 1998 ; see also Matthaeus
& Goldstein 1982), but this number should be considered
cautiously. The physics of the solar wind is undoubtedly
more complicated than the simulations described here.

Can we test which scaling is correct? The cascade time as
a function of scale presents us with an interesting constraint.

The IK theory and GS95 model predict di†erent scalings
for the turbulent cascade timescale In both theories,(tcas).can be determined by the scale-independence of thetcascascade :

v
k
2/tcas \ const . (6)

Since is proportional to kE(k), we havev
k
2

tcas,IKP k~1@2 , tcas,GS P k~2@3 (7)

for the IK theory and GS95 model, respectively. This result
is also useful for certain intermittency theories (see ° 3.3).
MG01 studied the cascade timescale using three di†erent
methods and obtained slopes comparable to (i.e.,[23 tcas Pin two methods and [1/2 in the other method.k
M
~2@3)
Here we consider a di†erent method of evaluating tcas.The purpose of our calculation is to test MG01Ïs result

using another numerical method and demonstrate the
e†ects of large-scale Ñuid motions on the calculation of tcas.Symbolically, we can rewrite the MHD equations as

¿5
k
\ N

k
v , (8)

b5
k
\ N

k
b , (9)

where Nv and Nb represent nonlinear terms. We have
ignored the dissipation terms. Naively, we might obtain the
timescale by dividing by However, this giveso ¿

k
o oN

k
v o .

where the exponent is almost exactly [1. This istcas P k~1,
not actually a measure of the cascade time. We note that
CV00 obtained a similarly misleading relation for the
cascade time and attributed it to the e†ect of large-scale
translational motions. Although they used a di†erent
method for calculating the cascade time, the same argument
applies here. If we consider the interaction between a small
eddy and a large-scale (translational) Ñuid motion, then the
translation can be removed by a Galilean transformation,
and there is no associated energy cascade. However, the
phase of the Fourier components that represent the small
eddy is a†ected by the large-scale translational motion and
changes at a rate kV , where V is the large-scale velocity.
The corresponding nonlinear term has a magnitude of

which accounts for the (misleading) rela-oN
k
o D o ¿

k
o kV ,

tion The cascade time as a function of wavenum-tcas D k~1.
ber can be evaluated directly from our simulations, but only
after we Ðlter out translational motions arising from eddies
much larger than the scale under consideration.

We correct for the presence of large-scale motions by
restricting the evaluation of the nonlinear terms to contri-
butions coming from the interactions between the mode at k
and other modes within the range3 of k/2È2k. In doing this,
we retain the uniform magnetic component We showB0.the result in Figure 2. Our result supports the GS95 model :

In comparison with MG01, we obtained thistcas P k~2@3.
result using a di†erent method and for a di†erent kinetic/
magnetic energy ratio.

In the GS95 model, is determined by the relationtcasThis means that the cascade timescale is vir-tcas D l
M
/v

lM
.

3 This assumes some sort of locality, which may not be exact in the
presence of strong intermittency.
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FIG. 2.ÈCascade timescale for run The GS95 model pre-256H-B01.
dicts while the IK theory predicts Our resulttcas P k~2@3, tcas P k~1@2.
supports the GS95 model.

tually synonymous with the eddy turnover time, which is
also true for hydrodynamic turbulence. It is obvious that
the cascade time determines the decay timescale of turbu-
lence. As a consequence, the GS95 model implies that
MHD turbulence decays as fast as hydrodynamic turbu-
lence (e.g., few eddy turnover times). Note that notdecay \ a
matter how strong the external Ðeld is, strong MHD turbu-
lence decays within a few eddy turnover times. We discuss
the implications of this result, and some limitations, in ° 5.

These results support the original GS95 theory. However,
we are not in a position to directly confront the results of
MG01. Our simulations di†er from theirs in many ways,
including the shape of the computational box, the range of
length scales, and the strength of the uniform background
Ðeld. We will address those issues elsewhere. In ° 3.3 we
discuss what the study of intermittency implies about the
slope of energy spectra.

3.2. Velocity Scaling
In the GS95 model, is proportional tov

M
2 Dk

M
E(k

M
),

where is the one-dimensional energy spectrum. SinceE(k
M
)

we have or whereE(k
M
)P k

M
~5@3, v

M
2 P l

M
2@3, SF2(lM, 0) P l

M
2@3,

is the second-order structure function :SF2
SF2(lM, l

A
)\ S[¿(x ] l)[ ¿(x)]2T , (10)

where the angle brackets denote the spatial average over x
and The vectors and are unit vectorsl \ l

M
e
M

] l
A

e
A
. e

M
e
Aperpendicular and parallel to respectively. The vectorB

L
,

denotes the local mean magnetic Ðeld.B
LWhat can we say about the velocity scaling parallel to

We can consider two di†erent quantities. First, we canB
L
?

consider the scaling of components in the directionAlfve� n
parallel to Second, we can also consider the scaling ofB

L
.

components along the direction of Thepseudo-Alfve� nic B
L
.

components are the incompressible limit ofpseudo-Alfve� nic
slow magnetosonic waves. While they have the same disper-
sion relations as the modes, the velocities of polar-Alfve� n v

lization are completely di†erent : the directions lie in the
plane determined by and k. Note that the modesB0 Alfve� n
have velocities perpendicular to the plane determined by B0and k.

There are several ways to derive the scaling relation for
turbulence from the GS95 model. First, supposeAlfve� nic

that the second-order structure function along local B
Lfollows a power law: SF2(0, l

A
) P l

A
m.

When we equate and 0), we shouldSF2(0, l
A
) SF2(lM,

retrieve the GS95 scaling relation, (see MG01). Wel
A

P l
M
2@3

conclude that m\ 1 and SinceSF2(0, l
A
) P l

A
. k

A
Ev(k

A
) (P

0), we have Alternatively, wev
A
2) PSF2(lA, Ev(k

A
) P k

A
~2.

can write

E3v (kM
, k

A
) P k

M
~10@3 g(k

A
/k

M
2@3) , (11)

where is the three-dimensional energy spectrumE3v (kM
, k

A
)

and g is a function that describes distribution of energy
along the direction in Fourier space. We give a reason-k

Aable Ðt to its functional form in the next section.
We plot our results in Figure 3, in which we observe that

0) (across and (parallel toSF2(lM, B
L
) P l

M
2@3 SF2(0, l

A
)

The velocity Ðeld follows these relations quiteB
L
) P l

A
.

well, while the magnetic Ðeld follows a slightly di†erent
relation across Both and com-B

L
. Alfve� nic pseudo-Alfve� nic

ponents follow similar scalings in the directions parallel to
In ° 4 we also show that the three-dimensional spectrumB

Lof motions has a form similar to equationpseudo-Alfve� n
(11). On this basis, we conclude that the scaling Ev(k

A
)P

also applies to motions, where thek
A
~2 pseudo-Alfve� n

velocities are mostly parallel to the local mean magnetic
Ðeld The corresponding velocities whichB

L
. v

A
2 P k

A
Ev(k

A
),

means that This result is important forv
A
2 P k

A
~1P l

A
.

many problems, including dust transport (H. Yan et al., in
preparation). Note that the energy spectrum is steeper when
expressed as a function of the parallel direction.

In this subsection we extended the GS95 model for the
parallel motions and modes and conÐrmed itpseudo-Alfve� n
through numerical simulations.

3.3. Intermittency
MG01 studied the intermittency of dissipation structures

in MHD turbulence using the fourth-order moments of the

FIG. 3.ÈSecond-order structure functions for run Across256H-B01.
local mean magnetic Ðeld lines, the second-order structure functions follow
r2@3. Along the local mean magnetic Ðeld lines, they follow r1. For pseudo-

modes, this deÐnes the scaling of motions parallel to local meanAlfve� n
magnetic Ðeld lines. The terms and denote the second-orderVSF2 BSF2structure functions for the velocity and magnetic Ðelds, respectively.
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Elsasser Ðelds and the gradients of the Ðelds. Their simula-
tions show strong intermittent structures. We use a di†er-
ent, but complementary, method for studying intermittency,
based on the higher order longitudinal structure functions.
Our result is that by this measure, the intermittency of the
velocity Ðeld in MHD turbulence across local magnetic Ðeld
lines is as strong as, but not stronger than, in hydrodynamic
turbulence.

In fully developed hydrodynamic turbulence, the
(longitudinal) velocity structure functions S

p
\SM[¿(x ] r)

are expected to scale as For[ ¿(x)] Æ rü NpT 4Sdv
L
p(r)T rfp.

example, the classical Kolmogorov (1941) phenomenology
predicts The (exact) result for p \ 3 is the well-f

p
\ p/3.

known 4/5 relation : where v is theSdv
L
p(r)T \ [(4/5)vr,

energy injection rate (or energy dissipation rate). On the
other hand, She & Leveque (1994, hereafter SL94) proposed
a di†erent scaling relation : f

p
SL \ p/9 ] 2[1 [ (2/3)p@3].

Note that She-Leveque model also implies f3\ 1.
So far in MHD turbulence, to the best of our knowledge,

there is no rigorous intermittency theory that takes into
account scale-dependent anisotropy. Therefore, we use an
intermittency model based on an extension of a hydrody-
namic model. Politano & Pouquet (1995) have developed
an MHD version of the She-Leveque model :

f
p
PP \ p

g
(1[ x)] C

C
1 [

A
1 [ x

C
Bp@gD

, (12)

where C is the codimension of the dissipative structure, g is
related to the scaling, and x can be interpreted asv

l
D l1@g,

the exponent of the cascade time (In fact, g istcas P lx.
related to the scaling of the Elsasser variable z : Inz

l
D l1@g.)

the framework of the IK theory, where g \ 4, andx \ 12,
C\ 1 when the dissipation structures are sheetlike, their
model of intermittency becomes f

p
IK\ p/8] 1 [ (1/2)p@4.

On the other hand, & Biskamp (2000) performedMu� ller
numerical simulations on decaying isotropic MHD turbu-
lence and obtained Kolmogorov-like scaling [E(k)D k~5@3
and t D l2@3] and sheetlike dissipation structures, which
implies g \ 3, C\ 1, and From equation (12), theyx \ 23.

proposed that

f
p
MB\ p/9 ] 1 [ (1/3)p@3 . (13)

How does anisotropy change intermittency? We deter-
mined the scaling exponents numerically, working in the
local frame. We performed a simulation with a grid of 1443
collocation points and integrated the MHD equations from
t \ 75È120. We calculated the higher order velocity struc-
ture functions for 75 evenly spaced snapshots. We averaged
over Ðve consecutive values, since the correlation time of
the turbulence corresponded to Ðve snapshots. We calcu-
lated the scaling exponents from these averaged structure
functions. We obtained a total of 15 (\75/5) such structure
functions and scaling exponents. We believe that these 15
data sets are mutually independent. We plot the result in
Figure 4 (left panel). The Ðlled circles represent the scaling
exponents of longitudinal velocity structure functions in
directions perpendicular to the local mean magnetic Ðeld. It
is surprising that the scaling exponents are close to the
original (i.e., hydrodynamic) SL94 model. This raises an
interesting question. In our simulations, we clearly observe
that and E(k) P k~5@3. It is evident that MHDtcas P l2@3
turbulence has sheetlike dissipation structures (Politano,
Pouquet, & Sulem 1995). Therefore, the parameters for our
simulations should be the same as those of &Mu� ller
BiskampÏs (i.e., g \ 3, C\ 1, and x \ 2/3), rather than sug-
gesting C\ 2. We believe that this di†erence stems from the
di†erent simulation settings : their turbulence is isotropic
and ours is anisotropic. In fact, we expect that the small-
scale behavior of MHD turbulence should not depend on
whether or not the largest scale Ðelds are uniform or have
the same scale of organization as the largest turbulent
eddies. Nevertheless, given the limited dynamical range
available in these simulations, it would not be surprising if
the scale of the magnetic Ðeld has a dramatic impact on the
intermittency statistics. It is not clear how scale-dependent
anisotropy changes the intermittency model in equation
(12), and we do not discuss this issue further. Instead, we
simply stress that we have found a striking similarity

FIG. 4.ÈL eft : Intermittency for run Our result ( Ðlled circles) suggests that MHD turbulence looks like ordinary hydrodynamic turbulence144H-B01.
when viewed across the local Ðeld lines. SL represents the original She-Leveque model for ordinary hydrodynamic turbulence. IK and MB stand for the IK
theory and the model, respectively. Error bars are for the 1 p level. Right : The second-, third-, and Ðfth-order longitudinal velocity structureMu� ller-Biskamp
functions. These are structure functions averaged over the time interval (75, 120).
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between ordinary hydrodynamic turbulence and MHD
turbulence in perpendicular directions. MG01 attributes the
deviation of their spectrum from the Kolmogorov-type to
the turbulence intermittency present in the MHD case.
Since we do not reproduce their power spectrum, the fact
that our intermittency statistics do not support this conjec-
ture is unsurprising. Clearly, more studies of the issue are
necessary.

In Figure 4 (left panel), we also plot the scaling exponents
(represented by Ðlled squares) of longitudinal velocity struc-
ture functions along directions of the local mean magnetic
Ðeld. Although we show only the exponents of longitudinal
structure functions, those of transverse structure functions
follow a similar scaling law. It is evident that intermittency
along the local mean magnetic Ðeld directions is completely
di†erent from that of previous (isotropic) models. Roughly
speaking, the scaling exponents along the directions of the
local magnetic Ðeld are 1.5 times larger than those of per-
pendicular directions. Interestingly, this result, which
implies anisotropy, becomes scale independent under the
following transformation : This is consis-(r

M
, r

A
)] (r

M
, r

A
2@3).

tent with the idea that eddies are stretched along the direc-
tions of the local mean magnetic Ðeld ; if we shrink them in
the scale-dependent manner described above along the local
Ðeld lines, the result is similar to ordinary hydrodynamic
turbulence. In this interpretation, it is not surprising that
MHD turbulence looks similar to ordinary hydrodynamic
turbulence across the local mean magnetic Ðeld lines ; the
scaling relation in perpendicular directions is not a†ected
by the local mean magnetic Ðeld. Clearly this result is diffi-
cult to explain using previous models, for example, the IK
theory. The error bars are larger for parallel directions
because a fewer number of pairs are available for calcu-
lation of the structure functions in these directions than in
perpendicular directions.

In Figure 4 (right panel), we plot average longitudinal
velocity structure functions. The slope of the third-order
structure function is very close to 1. The third-order struc-
ture function is slightly di†erent from the one discussed
earlier in that we calculate instead ofS o dv

L
o 3(r)T

S(dv
L
)3(r)T.

The second-order exponent is related to the one-f2dimensional energy spectra : PreviousE(k
M
)P k

M
~(1`f2).

two-dimensional driven MHD calculations for byB0\ 0
Politano, Pouquet, & Carbone (1998) also found f2D 0.7.
However, Biskamp & Schwarz (2001) obtained f2D 0.5
from decaying two-dimensional MHD calculations with

Our result suggests that is closer to rather thanB0\ 0. f2 23,
to (It is not clear whether or not the scaling exponents12.
follow the original SL94 model exactly. At the same time,
our calculation shows that the original SL94 model can be a
good approximation for our scaling exponents. The SL94
model predicts that Therefore, our result sup-f2D 0.696.)
ports the scaling law at least for velocity. ForE(k

M
)P k

M
~5@3,

the parallel directions, the results support E(k
A
) P k

A
~2,

although the uncertainty is large.

4. THE MHD FLUCTUATION TENSOR

For many purposes, e.g., cosmic-ray propagation and
acceleration, heat transfer, etc., it is necessary to know the
tensor describing the statistics of the magnetic and velocity
Ðelds. For those applications, the one-dimensional spec-
trum described in MG01 is not adequate, and a more
detailed description is necessary.

General second-rank correlation tensors are important
tools in the statistical description of turbulence. Oughton,
Radler, & Matthaeus (1997) gave a comprehensive formal-
ism for the tensors for MHD turbulence, and we use their
results as the starting point of our argument. Consider the
velocity correlation tensor

R
ij
v \ Sv

i
(x)v

j
(x ] r)T , (14)

where the angle brackets denote an appropriate ensemble
average. The Fourier transform of this tensor is

S
ij
v \ Svü

i
(k)vü

j
*(k)T , (15)

where the asterisk denotes the complex conjugate. We can
rewrite equation (20) of Oughton et al. (1997) as

S
ij
v \

A
d
ij
[ k

i
k
j

k2
B
Ev(k) ]

C
(e

i
k
j
] e

j
k
i
)(e Æ k)

[e
i
e
j
k2[ k

i
k
j

k2 (e Æ k)2
D
Fv(k) ] X

ij
, (16)

where Ev(k) is the (three-dimensional) kinetic energy spec-
trum of all (shear ] pseudo) modes, Fv(k) is the di†erence of

energy and energy at waveshear-Alfve� n pseudo-Alfve� n
vector k divided by e is a unit vector along andk

M
2 , B0,X

ij
\ [i(d

ik v
jab]d

jk v
iab)ea kb(ek k2[kk e Æ k)Cv]iv

ija ka Hv
is a term that describes deviation from mirror symmetry. In
this paper, we consider axisymmetric turbulence (caused by

with mirror symmetry, so that We need onlyB0) X
ij
4 0.

two scalar generating functions, Ev and Fv, for the corre-
lation tensor. This is consistent with Chandrasekhar (1951 ;
see also Oughton et al. 1997).

In this subsection, we show that the tensor is suitably
described by

S
ij
\ A1

A
d
ij
[ k

i
k
j

k2
B
k
M
~10@3 exp

A
[A2

k
A

k
M
2@3
B

, (17)

where and are parameters.A1D B02/L1@3 A2D L1@3
First, we choose e \ (0,0,1), the direction of Then,B0.equation (16) becomes

S
ij
v \

A
d
ij
[ k

i
k
j

k2
B
Ev(k) ]

C
(d3i kj ] d3j ki)k3

[d3i d3j k2[ k
i
k
j

k2 k32
D
Fv(k) . (18)

In the absence of anomalous damping of the pseudo-
modes, as in our simulations, we can show that F inAlfve� n

the above expression is negligibly small. Note that F\
where S and P are the squares of the amplitudes(S[ P)/k

M
2 ,

of the shear- and modes (i.e., three-pseudo-Alfve� n
dimensional energy spectra). To evaluate S and P, we mea-
sured their strength in the global frame. (It is nontrivial to
correctly deÐne modes and modes inAlfve� n pseudo-Alfve� n
the local frame.) Figure 5 shows that they have similar
strengths. We assume that the same relation holds true in
the local frame. Since F is the di†erence between S and P, it
follows that F(k) is small compared to E(k).

In the previous paragraph, we assumed that there is no
special damping mechanism for the modes.pseudo-Alfve� n
However, it is known that modes in the ISMpseudo-Alfve� n
are subject to strong damping due to free streaming of colli-
sionless particles along the Ðeld lines (Barnes 1966 ; Minter
& Spangler 1997). When the modes arepseudo-Alfve� n
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FIG. 5.ÈEnergy distribution of shear- and waves for runpseudo-Alfve� n
They have similar energy distributions in Fourier space (global256H-B01.

frame). Numbers by the contours are log10 [E3(k)].

absent, equation (16) becomes

S
ij
v \

A
d
ij
[ k

i
k
j

k2
B
Ev(k)]

C
(d3i kj ] d3j ki)k3

[d3i d3j k2[ k
i
k
j

k2 k32
D Ev(k)

k
M
2 . (19)

For i, j\ 1, 2, this becomes S
ij
\ (d

ij
[ k

i
k
j
/k2)E

and it is easy to[ (k
i
k
j
/k2)(k

A
/k

M
)2EB (d

ij
[ k

i
k
j
/k2)E,

show that This is easily understood when weS
i3\ S3i\ 0.

note that shear waves do not have Ñuctuations alongAlfve� n
B0.In summary, the tensor reduces to

<

t

>

t

t

(1[ k12/k2)E [(k1 k2/k2)E [(k1 k3/k2)E[(k1 k2/k2)E (1[ k22/k2)E [(k2 k3/k2)E[(k1 k3/k2)E [(k2 k3/k2)E (1[ k32/k2)E

=

t

?

t

t
(20)

for turbulence with both and com-Alfve� nic pseudo-Alfve� nic
ponents, and

<

t

>

t

t

(1[ k12/k2)E [(k1 k2/k2)E 0
[(k1 k2/k2)E (1[ k22/k2)E 0

0 0 0

=

t

?

t

t
(21)

for shear turbulence. In equation (21), E stands forAlfve� nic
the energy of components only, which is roughlyAlfve� n
one-half of the E in equation (20).

The remaining issue is the form of E. Note that the trace
of is 2Ev. In real space, the trace is the velocity corre-S

ij
v

lation function. Consequently, we can obtain Ev through a
FFT of the real-space velocity correlation function, which is
directly available from our data cube. However, the velocity
correlation function in real space contains considerable

numerical noise. In order to minimize its e†ects while
obtaining an empirically useful form for E, we Ðrst guess Ev
in Fourier space, do the FFT transform, and then compare
the transformed result with the actual velocity correlation
function. Since the trace of is the (three-dimensional)S

ij
v

energy spectrum in Fourier space, we start with the original
expression in GS95, given by equation (11) :

E3(kM, k
A
) D

B02
k
M
10@3 L1@3 g

A
L1@3 k

A
k
M
2@3
B

, (22)

where the functional form of g(y) was not speciÐed. We have
tried several functional forms for g ; Gaussian [g P exp

exponential and a step([Bk
A
2/k

M
4@3)], [exp ([Bk

A
/k

M
2@3)],

function. We have found that an exponential form for g
gives the best result (Fig. 6). Figure 6 (top panel) is the actual
data that we obtained from our simulation, and Figure 6
(bottom panel) is the Fourier-transformed velocity corre-
lation function. Note the similarity of the contours in both
plots. We conclude that the tensor can be suitably described
by equation (20) or (21), with

E(k
M
, k

A
) \
A B0
L1@3
B
k
M
~10@3 exp

A
[L1@3 k

A
k
M
2@3
B

, (23)

where and should both be interpreted as the absolutek
M

k
Amagnitudes of those wavevector components.

However, it is worth noting a clear limitation of equation
(23) : it has a discontinuous derivative near One wayk

A
\ 0.

to overcome this difficulty is to use the Castaing function4

4 Our motivation for introducing the Castaing function is phenomeno-
logical, not theoretical. The theory of the distribution function for MHD
turbulence is uncertain, and far beyond the scope of this paper.

FIG. 6.ÈTop : Velocity correlation function from simulations. Bottom :
Velocity correlation function generated using the tensor in eq. (23). Parallel
and perpendicular directions are taken with respect to local mean mag-
netic Ðeld.
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(Castaing, Gagne, & HopÐnger 1990)

%j(u)\ 1
2nj

P
0

=
exp

A
[ u2

2p2
B

exp
C
[ ln 2 (p/p0)

2j2
D dp

p2 ,

(24)

which is smooth near zero, but looks exponential over a
broad range. It is possible to see that for j \ 1 and p0\
k
M
2@3/L1@3,

exp
A
[L1@3 k

A
k
M
2@3
B

B
1
2n
P
0

=
exp

A
[ k

A
2

2p2
B

] exp
C
[ ln 2 (L1@3p/k

M
2@3)

2
D dp

p2 . (25)

However, for many practical applications, we feel that the
expression in equation (23) is adequate. For instance, in a
forthcoming paper (H. Yan et al., in preparation), this
tensor is used for describing cosmic-ray propagation, and
we Ðnd a strong suppression of cosmic-ray scattering com-
pared with the generally accepted estimates (for example,
Schlickeiser 1994). However, if the behavior around isk

Aimportant, the Castaing function would be preferred. In our
simulations, there is no way to distinguish between expo-
nential and Castaing distributions.

5. DECAY OF MHD TURBULENCE

Turbulence plays a critical role in molecular cloud
support and star formation, and the issue of the timescale of
turbulent decay is vital for understanding these processes.

If MHD turbulence decays quickly, then serious prob-
lems face researchers attempting to explain important
observational facts, i.e., turbulent motions seen within
molecular clouds without star formation (see Myers 1999)
and rates of star formation (McKee 1999). Earlier studies
attributed the rapid decay of turbulence to compressibility
e†ects (Mac Low 1999). Our present study, as well as earlier
ones (CV00 ; MG01), shows that turbulence decays rapidly,
even in the incompressible limit. This can be understood in
the framework of the GS95 model, in which mixing motions
perpendicular to magnetic Ðeld lines form hydrodynamic-
type eddies. Such eddies, as in hydrodynamic turbulence,
decay in one eddy turnover time.

How grave is this problem? Some possibilities for recon-
ciling theory with observations were studied earlier. For
instance, some problems may be alleviated if the injection of
energy happens on the large scale, the eddies are huge, and
the corresponding timescales are much longer (see Lazarian
1999). The fact that the turbulence decays according to a
power law, rather than exponentially, also helps. Indeed, if
turbulent energy decays as t~1, as suggested by Mac Low,
Klessen, & Burkert (1998), a substantial level of turbulence
should persist after 4È5 turnover times.

There is, however, another property of astrophysical
turbulence related to the peculiar nature of the energy injec-
tion. It is accepted that sources of interstellar turbulence are
localized. As a result, there is a substantial imbalance
between the ingoing and outgoing energy Ñux surrounding
every source. Below, we consider the e†ect of this imbalance
on the turbulence decay timescale.

For an imbalanced turbulence, it is useful to consider the
Elsasser variables, which describe wave packetszB \¿ ^ b,

traveling in opposite directions along the magnetic Ðeld
lines. Imbalanced turbulence means that wave packets trav-
eling in one direction (say, z`) have signiÐcantly larger
amplitudes than the other. In astronomy, many energy
sources are localized. For example, supernova explosions
and OB winds are typical point energy sources. Further-
more, astrophysical jets from young stellar objects are
believed to be highly collimated. With these localized
energy sources, it is natural to think that interstellar turbu-
lence is typically imbalanced. In fact, the concept of an
imbalanced cascade is not new. Earlier papers (e.g., Mat-
thaeus, Goldstein, & Montgomery 1983 ; Ting, Matthaeus,
& Montgomery 1986 ; Ghosh, Matthaeus, & Montgomery
1988) have addressed the role and evolution of cross-helicity

Since nonzero(4¿ Æ b). 4S¿ Æ bT \S(z`)2T[ S(z~)2T,
cross-helicity implies an imbalanced turbulent cascade.
These works, however, were mainly concerned with the
growth of imbalance in decaying turbulence. Ghosh et al.
(1988) investigated the evolution of cross-helicity and
various spectra in driven turbulence. Hossain et al. (1995)
discussed the e†ects of cross-helicity and energy di†erence
D\ Sv2T [ Sb2T on the decay of turbulence. Their low-
resolution three-dimensional numerical simulations show
the e†ect of cross-helicity, although that e†ect is not very
conspicuous. A further study of imbalanced turbulence was
given in MG01, who also suggested a connection between
spontaneous appearance of local imbalance in the turbulent
cascade and intermittency in MHD turbulence.

In this subsection, we explicitly relate the degree of imbal-
ance and the decay timescale of turbulence in the presence
of a strong uniform background Ðeld.

In Figure 7, we demonstrate that an imbalanced cascade
does extend the lifetime of MHD turbulence. We use the
run to investigate the decay timescale. We ran144H-B01the simulation up to t \ 75, with nonzero driving forces.
Then, at t \ 75, we turned o† the driving forces and let the
turbulence decay. At t \ 75, there is a slight imbalance
between upward and downward moving components

and This results from a natural(E
`

\ 0.499 E~\ 0.40).
Ñuctuation in the simulation. The case of (E

`
)
t0

\ 0.8(E~)
t0corresponds to the simulation that starts o† from this initial

imbalance. In other cases, we either increase or decrease the
energy of z~ components and, by turning o† the forcing
terms, let the turbulence decay. We can clearly observe that
imbalanced turbulence extends the decay timescale substan-
tially. Note that we normalized the initial energy to 1. The
y-axis is the total (\up ] down) energy.

In the right panel of Figure 7, we replot the left panel of
Figure 7 in log-log scale. For the balanced case (i.e., zero
cross-helicity case ; solid curve), the energy decay follows a
power law E(t) P ta, where a is very close to 1. This result is
consistent with the previous three-dimensional result by
Hossain et al. (1995). Note that hydrodynamic turbulence
decays faster than this. For example, Kolmogorov turbu-
lence decays as E(t) P t~10@7. In this sense, it may not be
absolutely correct to say that both hydro- and MHD turbu-
lence decay within one eddy turnover time. However, note
that the power law does not hold true from the beginning of
decay. We believe that at the initial stage of decay, the speed
of decay is still roughly proportional to the large-scale eddy
turnover rate.

How far does a wave packet travel when there is an
imbalance? Consider the equations governing an imbal-
anced cascade. From the MHD equations, Hossain et al.
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FIG. 7.ÈL eft : Decay of unbalanced turbulence for run An imbalanced cascade can extend decay time. It is clear that the decay of turbulence144H-B01.
depends on the degree of imbalance. Right : Same as the left panel, but log-log scale. Note that about 3 time units is one eddy turnover time.

(1995) and MG01 derived a simple dynamical model for
imbalanced turbulence. For decaying turbulence, they
found

dE
`

dt
\ [E

`
E~1@2
L

, (26)

dE~
dt

\ [E~E1̀@2
L

, (27)

where L is the largest energy-containing eddy scale.5 From
these coupled equations, they showed that imbalance grows
exponentially in decaying turbulence. Now let us consider a
large-amplitude wave packet traveling in an already
(weakly) turbulent background medium. Suppose that the
large-amplitude wave packet corresponds to z`. Using the
simpliÐed equations, we obtain If theE0

`
/E

`
\ [E~1@2/L .

background turbulence has a constant amplitude, the z`
wave decays exponentially. It can travel

v`*t D (E1̀@2/E~1@2)L , (28)

where we use This means that the wave packetv`D E1̀@2.
can travel a long distance when imbalance is large (i.e.,

In real astrophysical situations, the problem isE1̀@2? E~1@2).not as simple as this. Instead, the wave packet and the
background turbulence can have di†erent length scales (as
opposed to the single scale L in the equations). We also
need to consider the fact that the amplitude of the back-
ground turbulence does not stay constant and the front of
the wave packet decays faster than the tail of the packet.
Finally, MHD turbulence can inÑuence the pressure
support only if turbulent motions are at least comparable to
the sound speed, which obviously requires a fully compress-
ible treatment. Preliminary calculations with a compress-
ible code (J. Cho & A. Lazarian, in preparation) show
marginal coupling of compressible and incompressible

5 For our current purposes, this simple system of equations is enough.
For more rigorous equations on the evolution of readers can refer toE

B
(k),

earlier closure equations, e.g., Grappin et al. 1982. See also Hossain et al.
1995 for time evolution of L .

motions, while the development of the parametric insta-
bility (Fukuda & Hanawa 1999) requires more time to
develop. We plan to investigate these possibilities in the
future.

In this section, we found that turbulence decay time can
be slow. This Ðnding is very important for many astro-
physical problems.

6. DISCUSSION

How relevant are our calculations for the ““ big picture ÏÏ ?
First of all, they provide more support for the GS95 theory,
indicating that for the Ðrst time, we have an adequate, if
approximate, theory of MHD turbulence. Second, they
extend the theory by treating new cases, e.g., an imbalanced
cascade. Third, they establish new scaling relations and
determine critical parameters, e.g., the functional form of g
in equation (11), that will allow the theory to be applied to
various astrophysical circumstances.

Our calculations are made within an intentionally simpli-
Ðed model, which is based on the physics of an incompress-
ible Ñuid. This surely raises the question of the applicability
of our scaling relations and conclusions to realistic circum-
stances. There are situations in which our scalings should be
applicable. For instance, turbulence at very small scales is
small amplitude, and therefore essentially incompressible.
Processes that depend on the Ðne structure of turbulence,
such as the scintillation, reconnection, and propagation of
cosmic rays of moderate energies should be well described
using our results.

If we consider the interstellar medium at larger scales, it is
deÐnitely compressible and has a whole range of energy
injection/dissipation scales (see Scalo 1987), and the relative
roles of vortical versus compressible motions are unclear.
Nevertheless, we believe that our simpliÐed treatment may
still elucidate some of the basic processes. To what extent
this claim can be justiÐed will be clear when we compare
compressible and incompressible results. However, if we
accept that fast and slow MHD modes are subjected to fast
collisionless damping (see Minter & Spangler 1997), the
remaining modes are incompressible modes. ThoseAlfve� n
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should be well described by our model when turbulence is
supersonic, but Our preliminary results (J.sub-Alfve� nic.
Cho & A. Lazarian, in preparation) show that the coupling
of the modes is marginal, even in the compressible regime.
Incidentally, recent studies of turbulence of H I in both our
Galaxy and the SMC (Lazarian 1999 ; Lazarian & Pogosy-
an 2000 ; Stanimirovic & Lazarian 2001) show spectra
of velocity and density consistent with the Kolmogorov
scalings.6

Our approach is complementary to MG01. They studied
turbulence in the regime where the magnetic energy is sub-
stantially larger than the kinetic energy at the energy-
injection scale. Physically, their regime better reÑects the
properties of turbulence on small scales, at which the mag-
netic energy is indeed dominant. In our calculations, the
kinetic energy is equal to the magnetic energy at the energy-
injection scale, and therefore they reÑect, for instance, what
is happening in the interstellar medium at large scales. Our
results show that even on those scales, GS95 scaling is
applicable. This suggests that the astrophysical turbulence
may be well tested not only via scintillations, which reÑect
properties of the turbulence on small scales, but with other
techniques, e.g., synchrotron emission.

7. SUMMARY

Our Ðndings can be summarized as follows :
The energy cascade timescale at a length scale l (D1/k) is

proportional to l2@3 (k~2@3), which is consistent with the
prediction of the GS95 model and numerical simulations by
MG01, who used a di†erent method for obtaining this
scaling. In this respect, MHD turbulence is similar to
hydrodynamic turbulence. This scaling is distinctly di†er-
ent from the prediction of Iroshnikov-Kraichnan theory,
tcas P l1@2.

6 If density acts as a passive scalar, its spectrum mimics that of velocity
over the inertial range.

We found that velocity Ñuctuations in the direction
parallel to the local magnetic Ðeld follow a similar scaling
for both and modes. We deter-Alfve� nic pseudo-Alfve� nic
mined that parallel motions due to pertur-pseudo-Alfve� n
bations obey the scaling This Ðnding is importantv

A
D k

A
1@2.

for practical applications, e.g., for description of dust-grain
motion.

To study intermittency, we calculated higher order longi-
tudinal velocity structure functions in directions perpen-
dicular to the local mean magnetic Ðeld and found that the
scaling exponents are close to f

p
SL \ p/9] 2[1 [ (2/3)p@3].

As this coincides with the She-Leveque model of inter-
mittency in hydrodynamic Ñow, we speculate that there
may be more similarities between magnetized and
unmagnetized turbulent Ñows than has been previously
anticipated.

We obtained correlation tensors that provide a good Ðt
for our numerical results. These tensors are valuable for
theoretical applications, e.g., for describing cosmic-ray
transport.

We found that the rate at which MHD turbulence decays
depends on the degree of energy imbalance between wave
packets traveling in opposite directions. A substantial
degree of imbalance can substantially extend the decay
timescale of the MHD turbulence and the distance the turb-
ulence can propagate from the source.

The authors are thankful to Peter Goldreich for attract-
ing our attention to the case of imbalanced cascade and for
many valuable discussions. We also thank John Mathis for
many useful suggestions and discussions. A. L. and J. C.
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E. V. acknowledges the support of NSF Grant AST00-
98615. This work was partially supported by National
Computational Science Alliance under CTS 980010N and
AST 000010N and utilized the NCSA SGI/CRAY
Origin2000.
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