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ABSTRACT
We present equations governing the way in which both the orbit and the intrinsic spins of stars in a

close binary should evolve subject to a number of perturbing forces, including the e†ect of a third body
in a possibly inclined wider orbit. We illustrate the solutions in some binary star and triple star situ-
ations : tidal friction in a wide but eccentric orbit of a radio pulsar about a B star (0045[7319), the
Darwin and eccentricity instabilities in a more massive but shorter period massive X-ray binary, and the
interaction of tidal friction with Kozai cycles in a triple star, such as b Per at an early stage in that starÏs
life, when all three components were zero-age main sequence stars. We also attempt to model in some
detail the interesting triple system SS Lac, which stopped eclipsing in about 1950. We Ðnd that our
model of SS Lac is quite constrained by the relatively good observational data of this system and leads
to a speciÐc inclination (29¡) of the outer orbit relative to the inner orbit at epoch zero (1912). We make
some predictions about changes to system parameters in the short term (20È40 yr) and also in the
medium term (up to D3000 yr). Although the intrinsic spins of the stars have little e†ect on the orbit,
the converse is not true : the spin axes can vary their orientation relative to the close binary by up to
120¡ on a timescale of about a century.
Subject headings : binaries : general È celestial mechanics È stars : evolution È

stars : individual (SS Lacertae)

1. INTRODUCTION

We model the e†ect on a short-period binary star orbit, and also on the spins of the two components, of the following
perturbations :

1. A third body (treated as a point mass) in a longer period orbit.
2. The quadrupolar distortion of the stars due to their intrinsic spin.
3. The further quadrupolar distortion due to their mutual gravity.
4. Tidal friction, in the equilibrium-tide approximation.
5. General relativity.

The third bodyÏs e†ect is treated only at the quadrupole level of approximation, although in principle it should not be
difficult to go to a higher order if necessary. The stellar distortion terms are also treated only at the quadrupole level ; it might
be rather more difficult here to go to a higher order, but it is probably even less necessary. Each of the perturbing forces has
been averaged over an approximately Keplerian orbit. We follow the analysis of Eggleton, Kiseleva, & Hut (1998 ; hereafter
EKH98) for e†ects 2È4. The third-body perturbation comes from the same type of analysis (as does the familiar
Schwarzschild-metric correction).

We illustrate the model with some binary and triple examples :

1. The circularization of an initially eccentric orbit of a neutron star (NS) around an obliquely rotating massive normal B
star, based on the SMC radio pulsar 0045[7319 (Kaspi et al. 1994) ; we assume that the B star has a spin inclined at a large
angle (135¡) to the orbit and model the way in which the spin parallelizes as well as pseudosynchronizes with the orbit.

2. The Darwin instability, i.e., the tendency for an orbit to desynchronize if the spin angular momentum of a star is more
than a third of the orbital angular momentum, and the eccentricity instability, in which rapid enough prograde rotation of the
star causes the eccentricity to increase.

3. Kozai cycles, i.e., cyclic large-amplitude variation of the eccentricity of the inner binary due to a highly inclined outer
orbit, which, in combination with tidal friction, can make the inner orbit shrink, even if it is initially too wide for tidal friction
to be important.

We base some of these illustrations on actual stellar systems, but the data on these systems are not (yet) sufficient to test the
model rigorously.
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We then apply the model to the interesting 14.4 day binary SS Lac, which eclipsed for the Ðrst 50 yr of the 20th century and
stopped eclipsing later. Recently, Torres & Stefanik (2000 ; hereafter TS00) have demonstrated the existence of a third body in
a D700 day orbit, which, if inclined at a suitable angle to the inner orbit, could well account for the necessary change in the
orientation of the orbit relative to the observer. We Ðnd that in order to accommodate the data given by TS00, we require the
outer orbit to be inclined at about 29¡ (or 151¡) to the inner orbit. We also require a speciÐc value (37¡) for the longitude of the
outer orbitÏs axis relative to the inner orbital frame in 1912 (epoch zero). We Ðnd a modest variation with time in the
eccentricity and in the rate of change of inclination of the inner orbit to the line of sight. These cause us to revise slightly the
masses found by TS00. Our model is fully constrained by the known data on this system, but it is not overconstrained, so that
unfortunately we are not in a position to conÐrm that the model is correct. We can, however, make predictions for changes
that should be capable of conÐrmation or refutation in about 20 yr.

In ° 2 we set out the equations governing the change in the orbit (and also in the rates of rotation of the two components),
discussing the level of approximation that we use. In ° 3 we illustrate the behavior of the equations in a number of
straightforward cases, two without and one with a third body. In ° 4 we apply our model to SS Lac, and we conclude with a
discussion in ° 5. Some mathematical details are given in the Appendix.

2. EQUATIONS FOR ORBITAL EVOLUTION

The evolution of the orbit under the inÑuence of the perturbations listed in ° 1 is well expressed in terms of the following Ðve
vectors : e, the Laplace-Runge-Lenz vector, which points along the major axis in the direction of periastron and has
magnitude e, the eccentricity ; h, the orbital angular momentum vector, pointing perpendicular to the orbital plane and with
magnitude h, the orbital angular momentum per unit reduced mass k ; q 4 h Â e, which makes a right-handed orthogonal
triad e, q, h with the previous two vectors, since e and h are always mutually perpendicular ; and also the spin vectors andX1of the two components. The vector q is along the latus rectum, the line through the focus parallel to the minor axis. It isX2also convenient to deÐne unit vectors a right-handed orthogonal unit basis. This basis is not an inertial frame, ofeü , qü , hü ,
course, since it varies with time as the system evolves under the perturbations. However, provided that the perturbations are
sufficiently small that they do not a†ect the orbit by more than a small amount on timescales less than the period of the outer
orbit, it is possible to estimate rather simply the rates of change of these Ðve vectors in response to the Ðve perturbative forces
listed above.

The equations governing the rates of change of e, h, and were derived by EKH98, but note that Ðve equations inX1, X2that paper were a†ected by a mistaken factor of 2. The mistaken equations are identiÐed in the Appendix to the present paper,
and the equations presented here include the correction. We are grateful to R. Mardling (2000, private communication) for
pointing this out. Independently, our deÐnition of the tidal-friction timescale in this paper di†ers by a factor of 2 from thatt

Fof in EKH98.tTFThe equations can be written as
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component of the inner pair, are given below. They arise from the quadrupolar distortion of the two components. The Ðrst
two are dissipative terms due to tidal friction, which tend to enforce orbital circularization and synchronous rotation, at least
in the absence of a third-body perturbation. The next three are mainly nondissipative perturbations due to quadrupole
distortions, giving precession and apsidal motion, but X and Y do contain a small dissipative contribution that tends to bring
the stellar rotations into parallel with the orbit. The Z term, giving apsidal motion, contains a general relativity (GR)
correction. The tensor S, with components in the e, q, h frame, is due only to the third body, and its componentsS
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are also given somewhat further below, in equations (15) and (16).
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with similar expressions for star 2. The term is the component of in the direction of i.e., parallel to the)1h 4X1 Æ hü X1 hü ,
orbital axis, and u is the mean angular velocity of the inner orbit, i.e., 2n/P. The tidal-friction timescale is estimated here, int

Fterms of an inherent viscous timescale for each star, ast
V

1
t
F1

\ 9
t
V1

R18
a8

MM2
M12

1
(1[ Q1)2

. (7)

The terms and are the masses of the two components of the inner binary, M their sum, and their radii, and a theM1 M2 R1 R2semimajor axis. The term is a coefficient measuring the quadrupolar deformability of the star ; it is closely related to theQ1apsidal motion constant (EKH98). For an n D 3 polytrope,

I\ 0.08MR2 , Q\ 0.028 . (8)

The intrinsic viscous timescale of the star, is not easily determined, but we use an estimate based on (1) the timescale ont
V1,which the star would be turned over if most of the luminosity were carried by convection (Zahn 1977) and (2) aL 1dimensionless factor c, which comes from integrating over the star the rate-of-strain tensor (squared) of the time-dependent

tidal velocity Ðeld :
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The timescale is of the order of years or decades. The quantity c (see the Appendix) is determined by a model of the tidalt
V1amplitude as a function of radius through the star (EKH98), obtained by solving explicitly the velocity Ðeld required by the

continuity equation if isobaric surfaces within the star are always to be equipotential surfacesÈthe basic assumption of the
equilibrium-tide model.

The contributions and to the rotation of the axes due to rotational and tidal distortion of star 1 (including theX1, Y1, Z1small contribution of tidal friction) are given by
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Here k is the reduced mass, and and are the components of in the directions of and EKH98 give the linear)1e )1q X1 eü qü .
combinations and rather than and directly : see the Appendix to this paper. TheX1)1q [ Y1 )1e X1)1e ] Y1)1q X1 Y1coefficient isA1
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In all of equations (5)È(13), we exchange subscript 1 for subscript 2 to Ðnd the corresponding term for the second component
of the inner binary.

The GR contribution to apsidal motion is

ZGR\ 3GMu
ac2(1[ e2) . (14)

The e†ect of a third body (mass is included here only at the quadrupole level of approximation, following Kiseleva,M3)Eggleton, & Mikkola 1998 (hereafter KEM98). At this level, the center of gravity (CG) of the inner binary and the third body
are unperturbed, and so the outer orbit is exactly constant. Like the inner orbit, it can be described by a right-handed triad
E, Q, H. Within the inner binary, there is a perturbative force that in the lowest approximation is linear in the vector
separation : where d is the separation of the inner pair. The tensor T depends on D, the separation of the outer pairdf
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(i.e., of the third body and the CG of the inner pair). Averaging T over an outer orbit and then averaging the e†ect of df over
the inner orbit, assuming that both orbits are only slowly varying on this timescale, we Ðnd that the tensor S of equations (1)
and (2) is
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The term is the eccentricity of the outer orbit, and is the outer orbital frequency. Then, the e†ect of the force dfo E o4 eout uouton the vectors e and h are as indicated in equations (1)È(2), where on referring to the basis vectors e, q, h, we have
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A somewhat surprising but welcome simpliÐcation is that after averaging T over D, we have dependence only on H, and not
on E and Q as well. Note that C is not a constant, because of its dependence on e.

Equations (1)È(4) are closed by the fact that a and u, which appear in several places on the right-hand sides, are obtained in
terms of e and h by way of the relations

a \ h2
GM(1[ e2) , u2\
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P
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a3 . (17)

As and evolve away from their initial values, along with and we have to compute various vector and scalareü hü X1 X2,products : q \ h Â e, etc.)
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The physical signiÐcance of V , W , X, Y , and Z is perhaps most easily seen by splitting each of the equations (1) and (2) into
two pieces, one each for the moduli (e, h) and one each for the unit vectors eü , hü :
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Equations (19) and (21) can both be written as

duü
dt

\ K Â uü , (22)
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Clearly, K 4 (X, Y , Z) is the angular velocity of the e, q, h frame relative to an inertial frame. The terms4 Xeü ] Y qü ] Zhü
with suffix TB arise from the third body, and can be readily identiÐed with the corresponding S-terms in equations (19) and
(21). It is easy to see that satisÐes the same equation (22) as andqü eü hü .

Equations (1)È(4) can be integrated numerically, using, for example, a four-stage Runge-Kutta procedure. However,
equation (1) as it stands has the slight problem, numerically, that in situations in which e] 0 (usually as a result of tidal
friction), becomes undeÐned. This is easily solved by using instead equations (18) and (19). There is, of course, someeü
redundancy in the equation, but equations (18) and (19) together are very well behaved. There is not the same problem witheü
equation (2), since h can hardly get to zero in realistic circumstances. Consequently, equations (2)È(4), with (18) and (19), i.e., 13
Ðrst-order ordinary di†erential equations in all, are quite readily integrated numerically as they stand. There are, in fact, two
redundancies, since as well aseü Æ h \ 0, eü Æ eü \ 1.

We Ðnd it convenient to use as our computational (and inertial) frame the initial (t \ 0) orbital frame, i.e. Weeü 0, qü 0, hü0.need to be given a number of constant scalars and vectors, i.e., and for each of the inner pair of stars, andM
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H, and for the third body and outer orbit. We also have to supply 12 initial values for e, h, and Some of theeout X1, X2.components are rather trivial, because by the above deÐnition, 0, 0) and 0, 1) at t \ 0, and of course,eü 0\ (1, hü0\ (0, qü 0\ (0,
1, 0). The quantities a and u at t \ 0 follow from e and h at t \ 0 by equations (17).

The nontrivial initial vectors and are all given directions in the obvious spherical-polar form, e.g.,H, X1, X2
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Thus, and are two of the three polar coordinates, the colatitude and longitude, of the vector in the orbital frame. Wea
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Longitude zero (on the equator) is on the axis, i.e., the projection of periastron. The components of are constant in theeü HŒ
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,
of course the X values, unlike H, vary both in the inertial frame and in the instantaneous orbital frame.

In order to be able to determine the radial velocity curve and/or the eclipse light curve, and how they might change with
time, we have to specify in addition the (constant) direction from which the orbit is observedÈconstant (like in theJŒ HŒ )

frame, but not, of course, in the frame. We specify by two angles in the same way as and call them andeü 0, qü 0, hü0 eü , qü , hü JŒ HŒ , a
JThe angle is just the usual inclination of the orbit to the line of sight. The angle is almost the same as the ““ longitudeb
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Jof periastron.ÏÏ The latter quantity is usually called u, but we call it since we have already used u for the orbital frequency.ulp,The relation between and isb
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We think of and Ðrst as given initial conditions, but at later times, they can be evaluated froma
J

b
J

cos a
J
\ JŒ Æ hü , tan b

J
\ JŒ Æ qü

JŒ Æ eü
. (26)

The vector is a constant in space, but variable in the orbital frame since these unit vectors vary with time. The sameJŒ eü , qü , hü ,
equations (26), mutatis mutandis, give the corresponding a (colatitude) and b (longitude) for the other vectors, H, andX1, X2,at later times.

If we are fortunate enough to have very accurate observations over sufficiently long stretches of time, we may be able to
measure some rates of change, such as and Equation (18) already gives and along with equations (17) and (20),P0 , e5 , a5

J
, b5
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. e5 ,

this gives (or orP0 u5 a5 ) :
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The third-body terms cancel, since they are conservative and do no work around a Keplerian orbit at our level of approx-
imation : only tidal-friction terms a†ect P (or a). We can di†erentiate equations (26) with respect to time, keeping constantJŒ
and using equation (22) for any of eü , qü , hü :
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where K is the rotation rate of the frame as given in equation (23). The second relation involved some elementary vector
manipulations, but the Ðrst came directly from equations (22) and (26), using sin a

J
\ o JŒ Â hü o .

We wish to emphasize the following point, which we believe is treated incorrectly in much of the literature that we have
read. The rate of rotation of the line of apses, is usually attributed to Z, the component of K, to the extent that Zu5 lp4 [b5

J
, hü

is normally referred to as ““ apsidal motion.ÏÏ However, it is easy to see that in equation (28) can be nonzero on account ofb5
Jthe and components X and Y of K as well, as will happen with a massive rotating star whose spin axis is highly inclined toeü qü

the orbital axis and precessing about it. We can see that if X, Y \ 0, so that then as expected.K \Zhü , u5 lp4 [b5
J

\ Z,
However, if X and Y are not zero (precession), they contribute to even in the case that Z\ 0. Note that this e†ect does notb5

J
,

depend in any way on the details of our model : it only depends on the fact that the orbital frame e, q, h has some general
angular velocity while the system is viewed from a Ðxed direction with variable colatitude andK \Xeü ] Y qü ] Zhü , JŒ , a

Jlongitude in the e, q, h frame.b
JThe e†ect of precession on is mainly to swing the line of apses back and forward (libration), rather than to advance itb5

Jmonotonically (circulation), as does Z. However, for the case in which (1) X is not parallel to (2) the tidal friction terms inhü ,
equations (10) and (11) are negligible (which they usually are), and (3) the X-dependent term in equation (12) dominates over
the remaining term (which is usually the case for rapidly rotating components), the librating and circulating e†ects are
comparable.

Our model can be used to provide times (or phases) of eclipses, when the inclination is sufficient for eclipses to occur. We
use the simplest approximation, that the stars are spherical. For the beginning and end of an eclipse, we have to satisfy the
equation

o JŒ Â d o\ R1] R2 . (29)

Here d, the vectorial separation of the two stars, has components in the frame given by the usual formula,eü , qü , hü

d \ l
1 ] e cos h

(eü cos h ] qü sin h) , (30)

with l\ a(1[ e2)\ h2/GM being the semiÈlatus-rectum. Equations (29) and (30) give a quartic equation for cos h, which we
solve analytically. The coefficients of the quartic are determined by and which vary with time as the basis set moves.JŒ Æ eü JŒ Æ qü ,
Having determined the four, two, or zero real roots that lie in the range [[1, 1], we can determine the phase ' (i.e., time
divided by period) of ingress and egress from the usual formulae :

2n'\ t[ sin t , cos t\ e] cos h
1 ] e cos h

. (31)

This is phase measured from periastron (h \ 0). We can also determine the phases of other signiÐcant points on the orbit. The
point where the projection on to the orbital plane of the line-of-sight vector intersects the orbit (conjunction) is given byJŒ

whereh \ h1,

[JŒ [ (JŒ Æ hü )hü ] Â d \ 0, i.e., tan h1\ JŒ Æ qü
JŒ Æ eü

. (32)

The point where the radial component of velocity (relative to the CG) vanishes is given by whereh \ h2,

JŒ Æ d5 \ 0 , d5 \ h
l

[[eü sin h ] (e ] cos h)qü ] , (33)
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so that

sin (h2 [ h1) \ e sin h1 . (34)

Thus, the values of h at both of these points are also functions of and There are two values of both and in theJŒ Æ eü JŒ Æ qü . h1 h2range 0¡È360¡ ; in ° 4 we take such that star 1 is in front and such that star 1 is behind. For triple systems, we ignore theh1 h2small e†ect due to the variable motion of the CG of the inner pair. The points where the radial velocity is a maximum (or
minimum) are given by (since in the unperturbed orbit), and hence byJŒ Æ d \ 0 d� p d h3\ h1^ 180¡.

The model we present here has, we believe, the merit of considerable simplicity, both conceptually and numerically. We
emphasize here the approximations on which it is based :

1. Only the quadrupolar component of the distortion of each star is modeled. This assumption may be fairly good in
systems that are only mildly eccentric, but can be expected to be less valid in systems of high eccentricity. For the distortion
due to rotation, it is assumed that the stars are in solid-body rotation.

2. The components are assumed to adjust instantaneously to Ðll an equipotential of the joint gravitational-centrifugal
potential. This leads to a speciÐc tidal velocity Ðeld within each star, whose shear, combined with a viscosity assumed to be
due to convectively driven turbulence, determines the force of tidal friction. Although some analyses have argued that the
e†ect of convection in a star with a radiative envelope and a convective core is small, we follow the analysis of EKH98, which
shows that tidal dissipation within a convective core is not small.

3. The e†ect of the third body is only modeled at the quadrupole level of approximation. This is sufficient to demonstrate
such phenomena as Kozai cycles (Kozai 1962), in which the third body, if placed in an orbit highly inclined to that of the Ðrst
two, causes large Ñuctuations in eccentricity on a long timescale. The approximation is not very good for a parallel orbit, since
all the o†-diagonal components of the tensor S vanish, so that the only e†ect in equations (18)È(21) is the apsidal-motion term.
It therefore does not allow us to model the Ñuctuations in eccentricity that the third body produces in the inner pair ; actually,
these are quite small, according to an N-body integration, but they can be signiÐcant on a long timescale when combined with
tidal friction (KEM98).

4. The same level of approximation means that there is no additional force, or couple, on the outer binary. Consequently,
angular momentum is not conserved : the inner binary can gain or lose angular momentum, but not the outer. Moderate
accuracy relies on the fact that the angular momentum of the outer binary is large compared to the inner, so that a substantial
amount lost by the inner counts as only a small perturbation to the outer. However, angular momentum increases with only
the cube root of the period at given masses, so that a period ratio of 50 (an unusually small value, but appropriate to SS Lac)
means an angular momentum ratio that is not large.

3. SOME ILLUSTRATIVE EXAMPLES

Our model for perturbed orbits is original to the extent that (1) it has a speciÐc formulation for the parallelization of stellar
spin that is initially oblique to, or even antiparallel to, orbital angular momentum, and (2) it includes the e†ect of a third body
along with the other perturbations. (1975) gave a formulation of the third-body e†ect, but without the otherSo� derhjelm
e†ects. As applied to systems that are binary rather than triple, and where the stellar spins are (at least by hypothesis) parallel
or nearly parallel to the orbit, our model does not di†er from lowest order standard analyses. We conÐrm the following
standard results :

1. On a timescale of the spin becomes parallel to the orbit and ““ pseudosynchronous,ÏÏ i.e., it reaches the valueDtTF I)/kh,
at which the viscous couple W in equation (6) is close to zero (Hut 1981). The couple is an average around a Keplerian orbit,
and it vanishes when the larger but short-lived couple near periastron is balanced by the weaker but longer lived (and
opposed) couple at apastron. Equating W to zero gives the pseudosynchronous value of as u multiplied by a function of e.)

h2. On the longer timescale, the orbit is circularized. However, both statements 1 and 2 have to be qualiÐed by thetTF,condition that the spin angular momenta of the stars have to be suitably small when compared to the orbital angular
momentum; otherwise, the binary can become either desynchronized or decircularized.

3. For triples, ignoring the e†ects of quadrupolar distortion, tidal friction, and GR, we obtain equations that allow the
eccentricity and the mutual inclination of the inner orbit to Ñuctuate periodically between limits (Kozai cycles : Kozai 1962 ;
Mazeh & Shaham 1979 ; KEM98). If we start with e\ 0 and these cycles can have largesin a

H
[ (2/5)1@2 (a

H
Z 39¡),

amplitude. The maximum eccentricity reached is

emax2 \ 5
3

sin2 a
H

[ 2
3

B 1 [ 5
3

da
H
2 , if da

H
4

n
2

[ a
H

. (35)

We see that can approach very close to unity if is only moderately close to 90¡. The timescale of these cycles is of orderemax a
H1/C (eq. [15]), and so of order apart from a mass-ratio-dependent factor that is only signiÐcant if the third body isPout2 /P,

much less massive than the other two.

Commonly, among observed binaries, either the orbital period is sufficiently short that tidal friction has already circular-
ized it or sufficiently long that tidal friction is insigniÐcant on a nuclear timescale. This is because of the high power of inR1/aequation (7). There is only a fairly narrow range of periods, perhaps 4È5 days (but depending on mass and age), at which one
might hope to Ðnd binaries in which parallelization is still taking place. However, there exists the interesting SMC radio
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pulsar binary 0045[7319 (Kaspi et al. 1994), in which it is conjectured that, as a result of an asymmetric supernova explosion
(SNEX), the NS is on an inclined orbit relative to the spin of the normal B1V component. In our Ðrst example below, we
endeavor to model the process of parallelization, among others, of the B star in this system. In our second example, on the
supposition that a SNEX may typically put a NS into a nonsynchronous orbit, we also consider a model of a massive
star with a NS companion and various degrees of asynchronism. Such models can experience desynchronization and/or
decircularization.

There is only a rather small number of known triples in which the inclination of the outer to the inner orbit is directly
measured, and even fewer in which it is clearly established that this inclination is large enough to cause Kozai cycles. In fact,
the system b Per (Lestrade et al. 1993) is the only example that we know. We therefore consider how the orbit of this system
might have been modiÐed at an early stage in its life, when it was a detached nearÈzero-age main sequence (ZAMS) system.

In binary orbits that are eccentric, but already (at least by hypothesis) parallelized and pseudosynchronized, the only part of
our model that is testable is the e†ect of tidal distortion and GR on apsidal motion. In this respect, our model is no di†erent
from the classical model : Claret & (1993) have discussed apsidal motion, comparing observed values with thoseGime� nez
expected theoretically from the combination of quadrupole distortion and GR. For many systems, there is reasonably good
agreement. For some systems, however, there is disagreement, even strong disagreement, for example, DI Her (Guinan,
Marshall, & Maloney 1994) and V541 Cyg (Lacy 1998). We suspect that the discrepancies here may be due to the presence of a
third body, so far undetected, although another possible reason for aberrant apsidal motion is that the stars are rotating
obliquely to the orbit. The latter leads to smaller apsidal motion than expected for parallel synchronism, and the apsidal
motion can even have the opposite sign (eq. [12]) if However, a third body can also contribute apsidal motion)1h [ )1/J3.
of either sign.

3.1. Parallelization, Synchronization, and Circularization in a W ide Eccentric Orbit
We consider the e†ect of the perturbative forces within a binary roughly based on the radio pulsar binary 0045[7319 in the

SMC (Kaspi et al. 1994 ; Bell et al. 1995). In this binary (no third body is detected, or suspected), the pulsarÏs orbit is quite wide
(P\ 51.17 days) and highly eccentric (e\ 0.808). The directly measured longitude of periastron gives b

J
4 270¡[ ulp\

from equation (25). The companion B1V star appears to be unusually inactive : it is not a Be star and apparently has154¡.76,
negligible wind, and the pulsar is not accreting signiÐcantly, at least not enough to be an X-ray source. These unusual
circumstances (for massive NS binaries) mean that the radio orbit is unusually well deÐned, so that even slight changes of
orbital parameters, due presumably to tidal friction, apsidal motion, and precession, are measurable.

We refer to the NS component as star 1, because it is descended from what was presumably the originally more massive
component, and the B1V star as star 2. This choice determines which suffix belongs to which star.

Although the mass function of the pulsar is accurately known, there is only a very tentative radial velocity curve for the B
star. Bell et al. (1995), assuming suggest the following parameters : andM1\ 1.4 M

_
, M2D 8.8 M

_
, R2D 6.4 R

_
, L 2D 1.2

] 104 with substantial uncertainties. The consequential inclination of the orbit to the line of sight is (or 136¡).L
_

, a
J
D 44¡

Bell et al. also estimate a projected rotational velocity for the B1V star of km s~1, whichVrot sin i 4 R2 oX2 Â JŒ oD 113
suggests a rotational period for the star of less than 3 days, but depending on the unknown orientation of the stellar spin
relative to the observer. The spin rate, although not clearly known, is marginally consistent with the possibility that the B star
is in pseudosynchronism (Hut 1981). For eD 0.8, pseudosynchronism requires or PD 4 days. It is very likely,)2hD 12.5u
however, that the NS was put into its current highly eccentric orbit by a supernova ““ kick,ÏÏ which also makes it likely that the
stellar spin is inclined, perhaps quite highly inclined, to the orbit. It is, in fact, easier to account for the rate of orbital period
change if the spin is retrograde, since this tends to maximize the contributions of and in equation (26).W2 V2Kaspi et al. (1996) further determined various rates of change : yr~1, rad yr~1, andP0 /PD [2.2] 10~6 a5

J
\ 2.1] 10~4

rad yr~1. The sign of is di†erent if we adopt instead of 44¡. The accuracy of these quantities,b5
J

\ [4.5 ] 10~4 a5
J

a
J
D 136¡

and of is of the order of 3%È10%.Vrot sin i,
Our model is slightly overconstrained by the current observational data, supposing that we take literally the estimate in

equation (9) for the viscous timescale. We adopt the values of P, e, and mentioned above. There is noM2, R2, L 2, M1, a
J
, b

Jevidence for a third body, and so we take We ignore all parameters relating to the NS except its mass, since its spinM3\ 0.
angular momentum is too small to inÑuence the system. This only leaves the three components of to be assigned at t \ 0,X2and there are four constraints to be satisÐed : and should all have the values listed above.P0 /P, Vrot sin i, a5

J
, b5

JFigure 1 is a short evolutionary run starting from )/u\ 20, and On such a short timescale, onlya)2
\ 135¡, b)2

\ 0¡. b)2changes signiÐcantly, by precession. The plotted quantities are the ratios of the computed to observed values for the four
quantities listed. It can be seen that at 195 yr, all four ratios are fairly close to unity, at which point We thereforeb)2

\ 111¡.
adopt this as a new starting value.

Since the starting values used above were a shot in the dark, we can expect to get better agreement by some procedure such
as least squares. However, the answers will be very strongly dependent on (1) the radius which enters to the eighth powerR2,
in equation (7), and (2) the estimate in equation (9) for c, which must be very uncertain. It might be more realistic to treat c as
an unknown, in which case probably an exact solution (and possibly several, because of the nonlinearity of the equations) can
be found, but it will still be very dependent on which cannot be accurately known. Thus, we feel it is premature to attemptR2,a deÐnitive solution, but we feel encouraged by the fact that the model is not obviously wrong.

The evolution of the eccentricity, the component of spin parallel to the orbit (relative to the total spin), and the orbital
period (relative to initial period) is shown in Figure 2a, for a timespan of about 3 Myr into the future. We started with the
parameters listed above (but with The evolution of the B star in this interval has not been allowed for : the mainb)2

\ 111¡).
sequence lifetime of an 8.8 star is expected to be about 33 Myr. The perpendicular spin goes through zero at about 0.5M

_Myr, and the spin is almost completely parallel by 1.7 Myr. Circularization takes a good deal longer and is only half complete
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FIG. 1.ÈEvolution of (plus signs), (asterisks), (circles), and (crosses) with time in a binary such as the SMC radio pulsarlog (P/ oP0 o ) a5
J

b5
J

Vrot sin i
0045[7319. Each quantity is divided by the observational value listed in the text. At about 195 yr, all four quantities are within about 20% of their
observational values. At this point, having started with an arbitrary value of 0¡. Such quantities as P, e, ), and have not changed signiÐcantlyb)2

\ 111¡, a)2in this short time.

by 3 Myr, but it will start to be strongly accelerated by the neglected evolutionary expansion, at this stage. Currently,
yr~1, on our model. This is comfortably below the upper limit found by Kaspi et al. (1996) of 7] 10~6e5 /eD[2.5] 10~7

yr~1.
Figure 2b shows the two components of spin in the orbital plane, and plotted against each other. To make theX2 Æ eü X2 Æ qü ,

Ðgure clearer, the viscous evolution was speeded up by a factor of 108@3 ; this makes for a much less tight spiral pattern.
Evolution starts slightly left of center at the top edge. The rotation axis precesses counterclockwise about 1.25 times, until the
vertical component of Fig. 2a) changes sign, and then precesses clockwise, while the two horizontal spinX2 (X2 Æ hü ,
components diminish toward zero. Had we kept to the more realistic viscous timescale of Figure 2a, there would have been
about 550 revolutions of the axis before it reversed direction.

Figure 2c shows the evolution of four timescales, also using the speeded up model of Figure 2b. The timescales are all
given as logs, and in years. The timescale for period change (plus signs) starts at D103.1 yr, which would be roughlyoP/P0 o
the required value of D5 ] 105 yr if we did not speed up the viscous evolution by 108@3. The eccentricity timescale o e/e5 o
(asterisks) is about 6 times longer to start with, but is more nearly constant. The two other timescales shown are both related
to apsidal motion : 1/Z (circles), and (eq. [27] ; crosses). The term is the actual apsidal motion, which, however, is1/ o b5

J
o b5

JinÑuenced by the precessional terms X and Y as well as by the usual apsidal motion term, Z. Prior to about 1000 yr, when the
vertical spin passes through zero in the speeded-up model, the line of apses turns at a highly variable rate ; probably the axis
was librating rather than circulating just before this. Once the B star is no longer counterrotating, the line of apses circulates
more uniformly, but with an oscillating component that diminishes as the spin becomes more parallelized.

Figure 2d shows two more timescales (also logged) : the precessional timescale 1/(X2] Y 2)1@2 (plus signs) and the timescale
of the change of inclination of the orbit to the line of sight (asterisks). The precessional rate goes through zero once,1/ o a5

J
o

causing the cusp at D1000 yr. The orbital direction oscillates about zero, causing many cusps in the log modulus of its
derivative.

The origin of the present system presents some puzzles and has been the subject of recent controversy (van den Heuvel &
van Paradijs 1997 ; Iben & Tutukov 1998 ; hereafter HP97, IT98). HP97 favor a history that involved Roche lobe overÑow
(RLOF) followed by a SNEX with an asymmetric kick, and IT98 a history that involved a common-envelope (CE) phase
followed by a SNEX without a kick. We believe that neither history is satisfactory and propose a scenario that is somewhat
similar to IT98 in its earlier phase (but requiring a less massive progenitor to the NS) and rather like HP97 in its later phase,
requiring a SNEX kick.

We would normally expect that the system, having started with two massive main sequence (MS) stars, would have evolved
through RLOF, so that star 1 (the originally more massive component) would have become a helium star, perhaps with a
modest H-rich envelope, before heading on to C-burning, and so fairly quickly to a SNEX (HP97). However, two things argue
against this :

1. If star 1 was originally over D10 enough to leave a post-RLOF remnant capable of a SNEX, then RLOF shouldM
_

,
have made star 2 considerably more massive than it is now (even though its mass is by no means certain). In such RLOF, we
normally expect star 2 to become more massive than the original mass of star 1.
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FIG. 2.ÈEvolution of orbit and spin in a binary such as the SMC radio pulsar 0045[7319. (a) Eccentricity (plus signs), cosine of the inclination of the
stellar spin vector to the instantaneous orbital plane vector h (asterisks), and period relative to the initial period (circles). The B star was started with spinX2inclined at to the orbit reached inclination 90¡ after D5 ] 105 yr, and was almost completely parallelized by D1.7] 106 yr. (b)a)2

\ 135¡ (cos a)2
\[0.71),

Two components of B-star spin in the orbital plane, plotted against each other. The spin axis started at the top, left of center, turned through D1.25 rotations
counterclockwise, and then (at the time when the spin was exactly perpendicular to the orbit) reversed its motion to clockwise while spiralling in toward the
center. The evolution was speeded up by artiÐcially decreasing the viscous timescale by a factor of D500, to prevent the spiral being very tightly wound. The
““ real ÏÏ timescale would have required about 600 turns before reversal. (c) Timescales (asterisks) and (plus signs) ; also the timescales 1/Z (circles)e/ o e5 o P/ oP0 o
and (crosses) of apsidal motion (all logged). The Ðrst two timescales are artiÐcially shortened by D500, as in (b). The last two timescales tend toward1/ o b5

J
o

equality as the spin becomes parallelized, but precession due to nonparallel spin causes one to oscillate about the other. (d) Precessional timescales
1/(X2] Y 2)1@2 (plus signs) and the timescale (asterisks) of rate of change of inclination to the line of sight (both logged). The many cusps in the latter1/ o a5

J
o

are due to the fact that the inclination was oscillating between two values.

2. We would expect that as a second result of the RLOF, star 2 would be a very rapid rotator, a Be star more or less,
instead of the rather slowly rotating and unusually inactive star observed.

A possible answer to both these points is that

1. The initial star 1 was only moderately more massive than star 2 is now, being D12 M
_

.
2. The initial star 2 was little di†erent from the star 2 now seen (the B1 star).
3. The binary was fairly wide, initially, about days.PZ 50
4. Star 1 evolved to a point where its outer layers, helped by the disturbing e†ect of the binary companion, became unstable

and blew away, Ðrst as a P Cyg star and then as a Wolf-Rayet (WR) star, perhaps without star 1 ever reaching a radius as large
as its Roche lobe radius.

If star 1 did reach RLOF, this might have been more like a CE event, with much of the envelope disappearing to inÐnity
rather rapidly and with only moderate, or perhaps even negligible, orbital shrinkage. However, we would rather categorize
the process as ““ binary-enhanced stellar wind ÏÏ (BESW), which may have altogether prevented star 1 from ever reaching its
Roche lobe.

The WR binary c2 Vel, with P\ 78.5 days and e\ 0.33 (Schmutz et al. 1997), might be of the same character as the possible
immediate precursor to the 0045[7319 binary, since the high eccentricity argues against there having been an episode of
Roche lobe overÑow. The star 2 of c2 Vel is an O8 III star of 20È30 substantially more massive than we require.M

_
,

Consequently, star 1 would also have been substantially more massive originally, perhaps by about the same factor.
IT98Ïs model was somewhat similar to ours, except that they argued for a more massive initial star 1, D28 This wasM

_
.

required because of their desire to produce the conÐguration of 0045[7319 without an SN kick. They argued for a CE event
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that reduced the period from an initial value of 27È76 days to a value of D3.2 days. They postulated that the obliquity of the
spin to the orbit, strongly suggested by the measured of Kaspi et al. (1996), is simply left over from a primordial obliquitya5

Jand survived any possible tidal friction during the helium-star phase, when in their model, the orbital period was 3.2 days. A
difficulty with this is that with star 1 initially so much more massive than star 2, star 2 should be rather little evolved, and
should be substantially smaller than the value of 6.4 suggested by Bell et al. (1995). Our model supposes a much lessR

_massive star 1, and so allows star 2 to be more substantially evolved. Our model does not predict, nor need to predict, the
orbital period during the helium-burning phase ; we accept the probability of an asymmetric kick, which could in principle
lead to the present period if the intermediate period was anywhere in the range of D3È50 days.

Our model of the current orbital evolution might give an upper limit to the age of the system (since the SNEX) by
integrating backward from present conditions. This is not a very safe process, numerically, in a dissipative system, but we
made an estimate of the accuracy by integrating forward again. It appears that, in fact, the evolution decelerates going
backward, as is hinted at by the behavior of in Figure 2a. We integrated back D9 ] 105 yr, reaching P\ 200 days,)2h/)2e\ 0.922, and on integrating forward again, we recovered P, e, and to Ðve signiÐcant Ðgures, whilea)2

\ 149¡ ; a)2
, )2/u b)2was in error by about D80¡ after several thousand rotations of the axis. The spin period D9 ] 105 yr ago is predicted toX2have been 1.6 days. Although it is marginal, this may be consistent with the B1V componentÏs still being reasonably inactive,

so that the model is still applicable. Thus, it is possible that the system may be as much as D106 yr old in its present form. The
required orbit so long ago might seem improbably long and eccentric, but one might reasonably think the present orbit
improbably long and eccentric if it had been hypothesized rather than measured.

The equilibrium-tide model of tidal friction has often been considered inadequate for systems such as 0045[7319. There
appear to be two main reasons, one of which we largely accept and the other which we reject. In order, they are

1. Near-equilibrium is not very likely to be established in a highly eccentric orbit ; it is more reasonable in a nearly circular
orbit (such as the Earth-Moon system).

2. Although turbulent convection may be a good source of friction in stars with deep convective envelopes, massive stars
are only convective in their cores, where the amplitude of the tide is considered to be too small to be signiÐcant. Radiative
damping in the outer layers might contribute, but this is orders of magnitude smaller.

We believe that item 2 is largely based on a highly inexact estimate of the equilibrium-tide velocity Ðeld.
If the principle is accepted that surfaces of constant density (and pressure) are always closely equal to equipotential surfaces

(the basic assumption of the equilibrium-tide model), then presumably the velocity Ðeld is determinate and comes basically
from conservation. Alexander (1973) and Zahn (1977, 1978) made crude estimates based on the motion being assumed either
incompressible or irrotational and concluded that the amplitude of the tide (whose square is proportional to the rate of
dissipation) goes to zero like r4, approaching the center. If the convective core were about one third of the stellar radius, then
the dissipation would be down by D10~4 relative to a star with a largely convective envelope. However, EKH98 determined
(their eqs. [100] to [112]) an expression for the tidal velocity Ðeld and its rate of viscous dissipation that is exact, to the extent
that (1) the equilibrium-tide model is exact, and (2) dissipation is primarily by the e†ective viscosity of turbulent eddies. The
velocity Ðeld is neither irrotational nor incompressible, nor does it diminish to zero like r4. Rather, the tidal amplitude
diminishes from its surface value by less than a factor of 10 for typical MS models. Thus, the e†ect of dissipation in the
convective core is by no means negligible : it may be down by D10~2 only. This is the basis for our estimate of c in equation
(9). In the Appendix, we brieÑy summarize the analysis of EKH98 regarding the factor c.

Witte & Savonije (1999) computed the spectrum and damping rates of normal modes that can be expected to be excited in a
10 star as a result of perturbation by a NS companion with the orbital parameters of 0045[7319. They obtained aM

_braking timescale that was usually in the range of 105.5È106.5 yr. The timescale changes rapidly by factors of D10, both up
and down, on timescales of only 104 yr or less. There are occasional excursions to values of the braking timescale as low as 103
yr, which result from modes resonating with harmonics of the orbital frequency. There are also occasional episodes of orbital
spin-up, rather than spin-down. Such a detailed model may well be demanded by the physics, but inevitably means that the
interior structure of the star will have to be very precisely known: a good deal more precise than information that is currently
available. We hope that our estimate, equation (7), can serve as a crude average over a range of time of more detailed values
that can only be computed if the structure and rotation of the star are known to considerable accuracy.

3.2. T he Darwin and Eccentricity Instabilities
Inherent in equations (1)È(4) are at least two kinds of instability. First, there is the Darwin instability. Consider the case of a

binary (i.e., no third body) in which the spin of one massive component (star 2) is parallel to the orbit and the companion (star
1) is a point-mass NS, as in the previous example. Equation (25) for can be united with equation (4) for to giveu5 )0 2

tTF2
d
dt

log
)2
u

\ kh
I2)2
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, (36)

where the functions are all functions of e that can be evaluated from equations (5) and (6). All these functions tend tof
a
, . . . , f

dunity as e] 0. It can be seen that as long as

kh
I2)2

[
3f

d
(e)

f
c
(e)

D 3 , if eD 0 , (37)

then as time increases. However, if the inequality in equation (37) is violated, will diverge as time increases. For a)2 ] u )2/uvalue of e that is not small, there still is a critical condition, but it is e-dependent. This well-known instability requires that the
spin angular momentum must be greater than a third of the orbital angular momentum kh (for e\ 0).I2)2
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The eccentricity instability is seen in equations (18) and (5). Specializing once again to the situation in which one star is a
point mass and e\ 0, we see that if

)2h [ 1811 u , (38)

then the eccentricity starts growing exponentially. If e[ 0 to start with, there is still the possibility of e growing, although the
criterion is now e-dependent. In other words, if the star is rotating fast enough, it gives up its angular momentum in spurts
sufficiently concentrated toward periastron that the companion star is Ñung into a wider and wider orbit, but with periastron
not much changed because that is where the largely tangential impulse peaks.

Although both instabilities give exponential growth, the result can sometimes be surprisingly self-limiting. Figure 3a shows
the evolution of a system whose initial conÐguration was unstable to both processes. We took a very massive star (40 M

_
)

evolved substantially across the MS (to 20 put it in a 6 day, e\ 0.1 orbit with a NS of 1.4 and started it in parallelR
_

), M
_

,
rotation at twice the orbital rate. We used the default values from equation (8) of the moment of inertia and quadrupolar
distortion. Both the eccentricity and the degree of noncorotation (measured by )/u) began to grow. For stars of comparable
mass, it is difficult to violate the criterion in equation (37), but if one star is much more massive than the other, it can also be
large enough, without quite Ðlling its Roche lobe, to be Darwin-unstable (D-unstable). However, although the star spins up
relative to the orbit, the orbit gains angular momentum, and so loses angular velocity, fast enough for the D-stable criterion in
equation (37) to become satisÐed later. After between 106 and 107 yr, the orbit Ðrst becomes D-stable and later eccentricity-
stable (E-stable), and tends to both synchronism and circularity with a period of D30 days. However, as before, we have
ignored nuclear evolution in the massive component, which would no doubt Ðll its Roche lobe in little more than 106 yr.

Figure 3b is the same system, except that the stellar spin rate was started at 70% of corotation, rather than twice. This is
substantially E-stable and very slightly D-stable to start with, but as e decreases toward zero and )/u increases (although
only very slightly) toward unity, at about 5000 yr the system crosses the D-unstable margin. Although both ) and u are going
up, trying to approach synchronism, and I) is obviously going up, kh goes down because the orbit shrinks. Hence, the
D-stable criterion in equation (37) crosses into instability, and the system begins to move rapidly away from corotation. The
orbit continues to circularize, but desynchronizes and shrinks rapidly toward a collision at D19,000 yr.

3.3. Kozai Cycles with T idal Friction.
We now consider a problem that has a third body as well as quadrupole distortion and tidal friction. When the outer binary

is sufficiently inclined to the inner binary, it is possible for the eccentricity of the inner binary to Ñuctuate slowly by a large
amount (Kozai cycles). The amplitude of the eccentricity Ñuctuation depends only on the inclination, and not on the outer
period or eccentricity, or third-body mass ; the period of the Ñuctuation is of the order of 2n(1[ e2)1@2/C (eq. [15]). Even if the
inner binary, when it is nearly circular, is too wide for tidal friction to play a role, the increase in eccentricity may make tidal
friction important at some point in the Kozai cycle. Recall that a, like u and P, is una†ected by the third body at our level of
approximation, as shown by equation (27), so that as e increases, the periastron separation decreases. We illustrate this with
the well-known semidetached binary Algol (b Per), which has a third body (D1.7 in a 679 day orbit inclined at 100¡ toM

_
)

the semidetached pairÏs orbit (Lestrade et al. 1993).

FIG. 3.ÈDarwin (D) and eccentricity (E) instabilities. Eccentricity (plus signs), orbital frequency u relative to its initial value (circles), the degree of
asynchronism, log ()/u) (asterisks), and the ratio of spin to orbital angular momentum, log (I)/kh) (crosses). Star 1 is a NS, and star 2 a massive, partly
evolved MS star. The orbit has P\ 6 days and e\ 0.1 to start with. (a) Initially )/u\ 2. (b) Initially )/u\ 0.7. In (a), the system starts both D-unstable and
E-unstable. Eccentricity and asynchronism grow, but the periastron separation remains large enough to avoid collision. Once the orbit has widened, it
becomes stable to both processes and settles down. However, nuclear evolution (neglected) would cause problems before 107 yr. In (b), the orbit is E-stable
and slightly D-stable to start with. However, as the orbit and star gradually spin up, the orbitÏs angular momentum goes down, while the starÏs goes up,
leading to D-instability in about 5000 yr. After that, asynchronism increases, and the stars collide in about 19,000 yr.
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In its present conÐguration, the inner pair is not subject to Kozai cycles, because the perturbation due to the quadrupole
distortion of the lobe-Ðlling component is much larger than the perturbation due to the third body. However, at an early stage
in its life, b Per must have been a detached binary of two near-ZAMS stars, with radii, and therefore quadrupole moments,
substantially smaller than at present.

If we believe that b Per has evolved without mass loss (ML) or angular momentum loss (AML), i.e., conservatively, we
would be able to infer the period at any mass ratio, from

PP
(1] q)6

q3 , q 4
M1
M2

. (39)

Taking an illustrative the present period P\ 2.87 days and q \ 0.216 imply that days. However, althoughq0\ 1.25, P0D 0.6
we accept provisionally that ML may have been negligible, there is direct and indirect evidence that cool Algols experience
AML, presumably by magnetic braking in a stellar wind (Refsdal, Roth, & Weigert 1974 ; Eggleton 2000). For given masses,
the period goes like h3, and so if the system lost 50% of its angular momentum, it must have started with days.P0D 4.8

What we show in this subsection is that the initial period, had it been longer than D3 days, would have shrunk by a
combination of Kozai cycles and tidal friction to a value under 3 days in a fairly short interval of time yr). Consequent-([107
ly, we have an upper limit to the amount of AML that could have taken place subsequently, once star 1 became a cool
subgiant subject to magnetic braking (Eggleton 2001) : about 40% of the initial angular momentum.

Figure 4 shows the evolution of a ““ proto-Algol ÏÏ system with an initial period of 5 days : in Figure 4a, the short term;
Figure 4b, the medium term; and Figure 4c, the long term. The initial Kozai cycles reach up to e\ 0.67 (starting somewhat
arbitrarily at e\ 0.1). This value is well short of the maximum that would be reached (e\ 0.985) if quadrupolar distortion
were negligible, but is nevertheless quite large. Tidal friction near periastron at the peak of the Kozai cycles reduces the range
of variation of e, although somewhat unexpectedly, by increasing the minimum eccentricity even more than by reducing the
maximum. By about 106 yr, the eccentricity Ñuctuates between 0.47 and 0.53, and both the range and the mean reduce until,
by 107 yr, the orbit is circularized at PD 2.1 days.

A point to note is that the inclination of the inner orbit to the outer orbit changes somewhat during the process. Wea
Hstarted from in order to end up with the currently observed value of 100¡. For longer initial periods, the change is larger,97¡.5

which probably means that the period was not in practice much longer than D10 days before the Kozai cycling and tidal
friction reduced the period to D2 days.

It is not clear how triple systems, and especially such close triple systems, formed in the Ðrst place, but a possible
mechanism, arguably the least unlikely, is that fairly early on in the star-forming process, when the stellar density was higher
than it is now, two primordial binaries had a near collision, with one component of one binary captured by the other binary,
and the other component ejected. In this scenario, angles near 90¡ are much more likely than those near 0¡.

Table 1 shows how the period at the end of the shrinkage process depends on the period at the beginning, for ourPend P0speciÐc proto-Algol system. It also shows the time taken in the shrinkage and circularization process, which is always small
compared to the expected nuclear lifetime of the system (D1 Gyr), and gives the starting value of mutual orbital inclination a

Hthat ends up as the current value of 100¡. Assuming that this inclination is distributed randomly, in a capture process, the
range 80¡È100¡ has probability D17%, and the range 86¡È94¡ about 7%.

The combination of Kozai cycles plus tidal friction should mean that there is a shortage of triple systems with (1) fairly high
inclination of one orbit to the other and (2) inner periods above perhaps 3È4 days. This will be difficult to conÐrm, since it is

FIG. 4.ÈEvolution of eccentricity (dots) and log P (thick line) in the inner binary of a proto-Algol triple system. The initial orbital parameters are [(2.5 ] 2
5 days, e\ 0.1)] 1.7 679 days, e\ 0.23 ; (a) First 2000 yr, showing somewhat truncated Kozai cycles ; (b) First 106 yr, showing theM

_
; M

_
; a

H
\ 97¡.5].

orbit settling toward a nearly constant, but slowly decreasing, eccentricity ; (c) First 107 yr. By 107 yr, eD 0, PD 2.1 days, and Some apparenta
H

\ 100¡.
structure in the eccentricity variation in (b) is due to beating between the data-plotting frequency and Kozai-cycle frequency, which can be commensurable.
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TABLE 1

PROTO-ALGOL BINARIES WITH DIFFERENT

INITIAL PERIODS

P0 Pend Tcirc i0
(days) (days) (yr) (deg)

3 . . . . . . . 2.8 3] 107 99.8
5 . . . . . . . 1.9 1] 107 97.3
10 . . . . . . 1.7 8] 105 95.0
15 . . . . . . 0.8 9] 104 94.0

very difficult to determine the inclination of one orbit to another. SS Lac (below) is a triple in which we infer whicha
H

D 29¡,
is not enough to give signiÐcant Kozai cycling ; thus, the inner period of 14 days does not conÑict with our conclusion. If
inclinations are indeed distributed at random, then D50% of triples have and a quite substantial deÐcit of60¡ [ a

J
[ 120¡,

systems with inner periods longer than about 3È4 days can be expected.

4. AN APPLICATION TO SS LAC

SS Lac is a binary that eclipsed before about 1950, but not subsequently. A likely explanation was the presence of a third
body in a noncoplanar orbit, and this was conÐrmed by TS00, who found long-period orbital motion in the CG of the
short-period pair. By coincidence, the longer period in SS Lac is exactly the same as that in Algol (679 days). Following TS00,
we refer to the three components as Aa (star 1), Ab (star 2), and B (star 3), and the two binaries as A and AB. TS00 also
reanalyzed historic light curves of the period 1890È1930, obtaining a mean light curve assigned to epoch 1912. Their
spectroscopic data refer to epoch 1998. In this section we model the dynamical evolution over the period 1912È1998, trying to
Ðnd a model that gives the end of eclipses in 1950.

In general, our model requires 25 input parameters, which we list here in two groups :

QAa, IAa, XAa, L Aa , QAb, IAb, XAb, L Ab ; (40)

MAa, RAa, MAb, RAb , PA, eA , MB, PAB, eAB , a
H
, b

H
, a

J
, b

J
. (41)

However, the A binary is sufficiently wide (PD 14 days) that, provided that its eccentricity (or more speciÐcally, its perihelion
separation) does not vary by a substantial factor, except perhaps intermittently, tidal friction should be quite unimportant.
More helpfully still, the Q-dependent distortion terms that determine X, Y , and Z in equations (1)È(4) are unimportant
compared to the third-body terms (components of the tensor S) in these equations, so that all of the quantities listed in
equation (40) are negligible. The radii and the angles and deÐning the direction to the observer are also unimportantR

i
a
J

b
Jfor the orbital evolution, although they matter for the eclipses and the date of their cessation. Although the have littleQ

iinÑuence on the orbit, they do have a marked e†ect on the spins of the stars because of the couple they cause, as we mention
brieÑy below.

This reduces our signiÐcant input Ðle to the 13 quantities listed in equation (41). Of these, and are well oreA, PA, eAB , PABvery well determined at epoch 1998 (TS00). Although may have (indeed will have) changed since epoch 1912, the othereAthree quantities can be supposed constant. This is because, in our model :

1. At the level of the quadrupole approximation for the perturbing force of the third body, the AB orbit is exactly constant.
2. The perturbing force on the A orbit in the absence of tidal friction is a potential force, and hence does not supply energy

to the A orbit when integrated over an approximately Keplerian orbit ; this means that the semimajor axis and the periodaAare constant, even though and are not.PA eA hA
Thus, among these four quantities, only (1912) must be guessed and ultimately solved for on the basis that in 86 yr, the 1998eAvalue (0.136) must be reached (in conjunction with other constraints).

Similarly, the three masses are constrained, but not uniquely determined, by three observed-mass functions at epoch 1998.
We need the two 1998 inclinations, and TS00 estimated the latter on the basis that (i) is known from theiAB iA. iA(1912)\ 87¡.6
eclipse analysis, (ii) those data implied that must have been in 1950, when eclipses ceased, and (iii) has beeniA 81¡.6 iAdecreasing at a constant rate since 1912. We Ðnd that in general, the rate of change of is not very constant, and so we make aiAguess at the 1998 value of which, of course, has to be consistent with the value that emerges from the calculation. TheiA,
starting value is justa

J
a
J
4 iA(1912)\ 87¡.6.

We also have to know or guess This, however, is constant in time, since (see point 1 above) and are constantiAB. HŒ JŒ
vectors in space, even though their components in the e, q, h frame vary as the frame itself rotates. Dotting the vector

into the vector we haveHŒ \ (sin a
H

cos b
H
, sin a

H
sin b

H
, cos a

H
) JŒ \ (sin a

J
cos b

J
, sin a

J
sin b

J
, cos a

J
),

cos iAB\ cos a
H

cos a
J
] sin a

H
sin a

J
cos (b

H
[ b

J
) . (42)

We therefore have to know or guess and in 1912, being known.a
H

b
H

[ b
J

a
JTS00Ïs analysis of the D1912 light curve gave an inclination of as mentioned above. They also obtained the longitude87¡.6,

of periastron related to by equation (18). The from TS00Ïs 1912 light curve is (see their Table 6, giving andulp, b
J

b
J

121¡.6 ulp,di†ering slightly from their Table 5 value for reasons that they explain). However, this value is based on the assumption that
is constant, and we Ðnd that generally it is not. The most signiÐcant orbital quantity that is given by the light-curveeAanalysis, as TS00 explain, is the departure of eclipse 2 from phase 0.5 relative to eclipse 1. For moderate*'

E2\ [0.072
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eccentricities,

n
2

*'
E2B eA cos ulp4 [eA sin b

J
\ [0.1128 . (43)

For this gives the value of mentioned above. However, in our best near-solutions, we usually Ðnd increasing,eA \ 0.136, b
J

eAi.e., it started in 1912 with a smaller value. Evidently, it cannot have been smaller than 0.1128. Our preferred starting value is
0.115, and this implies A value above rather than below 90¡ is preferred, because TS00Ïs value ofb

J
\ 101¡.2. eA sin ulp\

although substantially less well determined, is fairly deÐnitely positive.[eA cos b
J
,

It may seem rather unsatisfactory that our preferred is very close to the minimum value 0.1128 inferredeA(1912)\ 0.115
from eclipses. However, what can be seen as ““ special ÏÏ about the system is rather the fact that the 1998 value of is extremelyb

Jclose to 90¡ : (TS00, their Table 2, giving Such a value, viewing the system almost exactly along the91¡.7 ^ 0¡.6 ulp\ 178¡.3).
latus rectum, favors the maximum departure of the secondary eclipse from phase 0.5. If we imagine, going backward in(*'

E2)time, that does not change, then we are driven to postulate a rather large change in to the TS00 value to allow foreA b
J

121¡.6,
the fact that the eclipses were substantially closer than this maximum value in 1912. What we conclude here is that less apsidal
motion was necessary, because the eccentricity was a little smaller in 1912. We would quite generally expect that eccentricity
changes on the same timescale as apsidal motion. Both timescales are dictated primarily by the coefficient C in equation (15),
if, as for SS Lac, only the third-body perturbation is signiÐcant.

Our guess at the initial value of therefore provides us, from eclipse data, with a starting value for via equation (43). WeeA b
Jalready have from TS00Ïs light curve data. We have to make two further guesses at the angles and that ina

J
4 iA \ 87¡.6 a

H
b
H1912 gave the orientation of HŒ .

To summarize, of the 13 quantities that we need to start with in 1912, four are known directly from observation : these are
and from the 1998 radial velocity curves and from the 1912 light curve. If we then guess the followingPA, PAB, eAB a

J
4 iAfour quantities, in 1998 and the three starting values and in 1912, we can work out the remaining six startingiA eA, a
H
, b

Hvalues from the following six observationally determined quantities : three mass functions from the 1998 radial velocity curve
and two fractional radii and the phase lag from the 1912 light curve. Having integrated the equations for the 86 yr*'

E2timespan, we then have four further pieces of observational data to constrain our four guesses. Three of these are andeAin 1998 and the cessation of eclipses in 1950. We determine a theoretical the time of cessation, as theb
J
4 270¡ [ ulp T

E
,

average of the two times after t \ 0 (1912) at which the two series of eclipses (primary and secondary) stopped. The
observational value to match is yr. The fourth and last constraint on the four guesses is that the value for in 1998T

E
\ 38 iAshould equal the value guessed in the Ðrst place. Table 2 lists the values used, taken from TS00, and also lists our approximate

solution.
Table 2 groups parameters under ““ observed,ÏÏ ““ guessed,ÏÏ and ““ computed.ÏÏ All the observational data are taken from TS00.

Our guess was based on a preliminary eyeball search of parameter space and reÐned by trial and error.
Since the di†erential equations are nonlinear, there is no guarantee either that a solution satisfying all the constraints exists,

or that if it does, it is unique. However, our very brief search located one quite accurate solution with a fairly modest
inclination between the orbits (29¡), and a rather more extended search suggested that there were unlikely to be any other
solutions, except possibly at high inclination, at which the behavior can become rather chaotic. Another possibility, which we
have not explored, is that the orbital inclination has decreased from rather in 1912.92¡.4 87¡.6

Figures 5a and 5b illustrate some aspects of the model. Figure 5a follows the orbital evolution for 1912È1998, and Figure 5b
follows it for slightly over 3000 yr. The date is plotted horizontally, and the phase (from 0 to 2, so that two complete cycles are
shown) vertically. In Figure 5a, eclipses occurred within the narrow cigar-shaped areas centered at 0.24 (star 14 Aa eclipsed
by star 2 4 Ab) and 0.81 (Ab eclipsed by Aa). The one at 0.24 was slightly deeper and narrower, in 1912 (TS00). The phase in
this Ðgure is measured from periastron. Also shown, starting near 0.24 and 0.8, are the two phases of points determined by
equations (32) and (34).

In Figure 5b, the same information is given for a much longer time span : 1912È5250. Small leaf-shaped patches now
indicate the episodes of eclipses, and the curves indicating the two phases slope generally downward because of apsidal
advance (and other rotation of the orbital frame). It can be seen that the next series of eclipses is not to be expected until about

TABLE 2

SYSTEM PARAMETERS FOR SS LAC

Parameter Observed Guessed Parameter Observed Computed Parameter Observed Computed

PAB (days) . . . . . . . . . . 679 *'
E2 . . . . . . . . . . . [0.072 RAa/aA . . . . . . . . 0.0741

eAB . . . . . . . . . . . . . . . . . . 0.159 b
J

(deg) . . . . . . . . . 101.2 RAb/aA . . . . . . . . 0.0715
PA (days) . . . . . . . . . . . 14.416 iAB (deg) . . . . . . . . 75.7 aA (R

_
) . . . . . . . 44.7

a
J

4 iA (deg) . . . . . . 87.6 f@Aa (M
_

) . . . . . . . 2.56 RAa (R
_

) . . . . . . 3.36
a@

J
4 i@A (deg) . . . . . . 73 f@Ab (M

_
) . . . . . . . 2.49 RAb (R

_
) . . . . . . 3.20

eA . . . . . . . . . . . . . . . . . . . . 0.115 f@B (M
_
) . . . . . . . . 0.22 e@A . . . . . . . . . . . . . 0.136 0.138

a
H

(deg) . . . . . . . . . . . . . 29 MAa (M
_
) 2.93 b@

J
(deg) . . . . . . 91.7 91.6

b
H

(deg) . . . . . . . . . . . . . 37 MAb (M
_

) . . . . . . 2.85 T
E

(yr) . . . . . . . . . 38 37.7
MB (M

_
) . . . . . . . 0.798 a@

J
(deg) . . . . . . . 72.9

Primed quantities refer to epoch 1998 ; all others, apartNOTE.Èf Aa@ \MAa sin3 iA@ ; f Ab@ \ MAb sin3 iA@ ; f B@ \MB sin iAB@ /(MAa] MAb ] MB)2@3.from refer to epoch 1912 or to constants.TE,
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FIG. 5.È(a) Phases of eclipses of SS Lac, as computed here for 1912È1998. Two whole cycles are shown on the vertical axis. Phase zero is periastron.
Eclipses occur in the narrow cigar-shaped areas centered at phases 0.24 (star 1 in front) and 0.81 (star 1 behind), and ending at about 1950. Also shown are
two phases : Ðrst, starting near 0.24, the phase where star 1 crosses the plane containing the line of sight and the orbital axis, star 1 in front (eq. [32]), and
second, starting near 0.8, the phase where the radial velocity of star 1 relative to the CG of the inner binary is zero and decreasing (i.e. star 1 behind ; eq. [34]).
The slight e†ect on the phase of the orbital motion of the inner binary within the outer binary has been ignored. (b) Same as (a), but for the interval
1912È5250. Regions of eclipses are now leaf-shaped. The sloping lines can be identiÐed by comparing the left-hand edge with the whole of (a). The slopes
indicate that periastron is, on the whole, advancing, but occasionally retreats because of precession.

2500. Epochs when eclipses take place appear to be separated alternately by a long interval and a shorter interval, and
unfortunately we seem to be entering a long interval. Each period of eclipses lasts about a century.

The fact that the two phases decrease (mostly, but not always) relative to the phase of periastron, as seen in Figure 5b, is, of
course, due to the motion of the orbital frame. If this motion were just apsidal motion, i.e., if the major axis were rotating only
about the angular momentum axis, we would have a relatively simple relation between the anomalistic period (periastron to
periastron) and the sidereal period (successive passages through a plane Ðxed in an inertial frame and containing the CG), and
the two phases in Figure 5b would have a constant slope. However, with precession as well, the relation between the two
periods can be rather complex. From the point of view of our simple model, it is the anomalistic period that is ““ basic :ÏÏ if the
perturbing forces, however many of them, are conservative, then the anomalistic period P as given by equation (16) is a
constant at our level of approximation.

The period of precession of the inner orbit is about 1000 yr, and the inclination to the line of sight oscillates between(a
J
)

about 47¡ and 105¡. The inclination of the inner orbit relative to the outer oscillates by only about 1¡. It is inherent in our level
of approximation that the inner angular momentum should be small compared to the outer, and unfortunately this is hardly
true for SS Lac, but the fact that the inner orbit oscillates so little may nevertheless make the solution reasonably valid.

We do not discuss the accuracy of the input data and of our Ðt in detail, for four reasons :

1. TS00 discuss fully the accuracy of the observational data. We have used only values that are independent of their
assumptions that (1) is constant, and (2) and change at constant rates. All the standard errors areeA a

J
4 iA b

J
4 270¡ [ ulpless than 1%, except for (13%), (6%), (3%), R/a (3%), and (3%) ; only appears in C, equation (15), and in aeAB *'

E2 fB T
E

eABvery nonsensitive way.
2. We have zero degrees of freedom and four constraints to satisfy, with four unknowns, and so if we can Ðnd a solution at

all, it will be exact, to the extent that the data are. A hypothetical problem is that there might be functional dependences
among the constraints, but the fact that our eyeball search converged very rapidly suggests that there are not. Varying each of
our three guessed angles by 1¡ usually gave a much worse Ðt, and so did varying (1912) by 0.001. Hence, we believe that theeAguesses are right to about this level of accuracy.

3. By deÐning the computed value of as the average of the two times at which the two series of eclipses disappear, weT
Emake it a discontinuous (stepwise) function of the input, and therefore cannot di†erentiate it smoothly. We could develop a

more sophisticated deÐnition, but this seems unnecessary in view of the rather good solution found by trial and error.
4. The main uncertainty is possible systematic error, such as the possibility that equations (1)È(4) are wrong. We had hoped

to Ðnd more constraints than unknowns, and so test the theory more rigorously.

We can, however, make some predictions that are testable : for example, the inclination should decrease to 70¡ in 2011iAand to 65¡ in 2039. This should produce a measurable change in the mass function. The eccentricity should be currently
approaching its peak of D0.138, and so may not change signiÐcantly for about 30 yr, but should drop to 0.132 by 2040. It
should reach a minimum of 0.09 in 2160.

Figure 6 illustrates two possible behaviors of the spin The three components in the instantaneous orbital frame areX1.
shown as functions of time. The stars were started, arbitrarily, with X \ x. If the stars were perfect spheres, they would simply
maintain constant (vectorial) spin in an inertial frame, tidal friction being negligible in this system, and so oscillate sinus-
oidally in the frame of the precessing inner binary. However, because they have quadrupole moments, due partly to their spin
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FIG. 6.ÈThree components of the angular velocity of star 1 in SS Lac as functions of time : (circles), (plus signs), and (asterisks).)1h )1e )1q(a) (b) In both cases, the system was started with parallel corotation.Q1\Q1\ 0.028 ; Q1\Q2\ 0.01.

and partly to their gravitational e†ect on each other, there are couples on them. In Figure 6a, we used our default value of
Q\ 0.028 (n \ 3 polytrope), and in Figure 6b, reduced this to 0.01. We have tried other values of Q and do not see any very
simple relation between the size of Q and the amplitudes or other characteristics of the oscillations. Considering that the orbit
precesses on a cone of half-angle 29¡, it seems surprising that the rotation axes of the component stars (we only plot star
1 4 Aa) can turn by more than 90¡ in the course of D500 yr.

It may be questioned whether the approximation that we make in this paper, that a star rotates with a unique X as if it were
rigid, is sustainable in circumstances in which X is changing in direction by a large amount in a few hundred years. Tidal
friction is the agency that we rely on to achieve this : provided that the structure of a star is not strongly dependent on the
velocity Ðeld within it, viscous dissipation should ensure that a nonuniformly rotating star evolves toward its minimum-
energy state (for a given angular momentum) of uniform rotation. Although tidal friction between the two components of
system A in SS Lac is probably negligible, tidal friction within either Aa or Ab is expected to operate on the timescale oft

Vequation (9), i.e., decades. Thus, it seems quite possible that the star is indeed kept fairly near a state of uniform rotation,
despite major changes in the direction of its rotation axis.

V907 Sco (B9.5 V] B9.5 V; 3.78 days, e\ 0 ; Lacy, Helt, & Vaz 1999) is another system in which eclipses come and go,
even more dramatically than in SS Lac. It eclipsed in the intervals 1899È1918 and 1963È1986, and not in 1918È1963, or after
1986. Lacy et al. (1999) detected the third body, also from the motion of the CG of the short-period pair, with daysPout \ 99.3
and Unfortunately, an analyzable light curve for this system during its eclipsing phase does not exist, for reasonseoutD 0.
mentioned by Lacy et al. (1999), and thus we have less rather than more data with which to test our model.

5. DISCUSSION

Our formulation of the combined e†ect of Ðve di†erent perturbations on a Keplerian orbit, while very simple, appears to
give physically believable results in a number of cases. It is, however, not easy to Ðnd observational data on stellar orbits that
will seriously test the model. A major uncertainty is the viscous timescale of a star. One can question whether anything so
simple as a unique viscous timescale can be adequate. However, the timescale estimated from Ðrst principles in the Appendix
seems surprisingly reasonable for the radio pulsar system 0045[7319.

The model gives a determination of the orientation of the outer orbit in the triple system SS Lac, and although not
overconstrained by data currently available, may be challenged by data that should be available in a few decades. However, in
this system, the quadrupole distortions of the stars are sufficiently insigniÐcant that only the third-body terms are being tested
here.

A potentially signiÐcant statistical e†ect is predicted on the basis of the combination of tidal friction with Kozai cycles. We
have argued that if the outer orbit in a triple is moderately highly inclined to the inner, then the inner orbit is likely to be
shrunk to a limiting value of only 2 or 3 days, supposing that it ““ started ÏÏ at a longer period. This limiting period will depend
on the outer orbital period and also on the rotation rate of the stars, among other parameters. Roughly, it is dictated by the
fact that for substantial Kozai cycles, we need from equations (12)È(15). This would give a longer limiting period forCZZ,
systems with a longer than b Per. On some models of triple star formation, inclinations larger than 60¡ are as likely as not,Poutand so we might expect a signiÐcant deÐcit of orbits above some value in triples, relative to those in binaries. A. A. Tokovinin
(1998, private communication) has noted that in his multiple-star catalog (Tokovinin 1997), the distribution of periods among
spectroscopic binaries that are in triples tends to drop o† above 5 days, whereas among those that are not in triples, it
continues to rise.

We have not yet been able to incorporate in the model a satisfactory approximation for what we believe is a very important
further perturbation to binary orbits : the e†ects of ML and AML, such as is likely to be experienced by cool stars with active
dynamos in their outer convection zones. If a star is subject to spherically symmetric ML, the mass lost carries o† orbital
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angular momentum as well as spin angular momentum: the amount of the latter may be enhanced if there is magnetic linkage
between the star and the wind out to some substantial radius. However, ML is unlikely to be very sphericallyAlfve� n
symmetric. Also, some of the wind may well be accreted by the companion star, and furthermore, during the accretion process
there is often found to be further mass loss (ML) and presumably angular momentum loss (AML), in the form of bipolar jets
from the inner portion of the accretion disc. A variety of possible models for the ML/AML process can be thought of, but the
physical process that they attempt to model may be too dependent on the details of how the gas actually travels from one star,
either to the other or to inÐnity, to admit even at Ðrst order a simple yet credible formulation. We hope to attempt this in the
future.

An example in which this may well be important is the young and active binary BY Dra (K1Ve] K1Ve; 6 days, e\ 0.5 ;
Vogt & Fekel 1979). One of the two components shows rotational modulation with a period of 4 days. This is too slow for
pseudosynchronism, which at such high eccentricity implies a rotation period of 2 days. A possible answer is that the
component is in a state of transient equilibrium between magnetic braking, which would tend to slow it down, and pseudo-
synchronization, which would tend to speed it up. It is by no means improbable that these two timescales are comparable in
this system.

Both the concepts of tidal distortion and of tidal friction will, we hope, be testable with some three-dimensional numerical
modeling of stellar interiors that is currently being developed : the DJEHUTY project. This project aims at applying existing
and well-tested three-dimensional hydrodynamic and thermodynamic (but non-self-gravitating) grid-based algorithms to the
self-gravitating situation of stellar interiors, using massively parallel hardware. Although the resolution currently aimed for, of
D108 cells, would not be enough to resolve the surface layers of tidally distorted stars, it may well be adequate to resolve the
interiors, and so determine whether dissipation in convective cores may be an e†ective agent of tidal friction, as we suggest
here.

This work was performed under the auspices of the US Department of Energy by the University of California, Lawrence
Livermore National Laboratory, under contract W-7405-Eng-48.

APPENDIX

EFFECTS OF PERTURBATIVE PROCESSES

The analysis that gives (1) the extra forces due to the Ðve perturbative processes listed at the beginning of ° 1, and (2) their
e†ect on the orthogonal triad e, q, h is largely taken from EKH98, except for the third-body perturbation that was described
in KEM98 and GR, which is well known. However, EKH98 contains a mistake of a factor of 2 in the part of the gravitational
potential that is due to the distortion of the stars by their mutual gravitational interaction. We are grateful to R. Mardling
(2000, private communication) for pointing this out. We list here the equations of EKH98 that have to be changed :
equations (36), (38), (75), (76), and (97). In each of these, the last term on the right, i.e., the term that does not involve ), should
be divided by 2. This has no e†ect on the overall analysis in that paper. Equation (12) of the present paper, based on
equation (97) of EKH98, contains the correction.

Equations (10) and (11) of the present paper are obtained from equations (88)È(96) of EKH98. In EKH98, expressions were
given for the rate of change of the Euler angles giving the orientation of the e, q, h frame relative to an inertial frame. In fact,
the X, Y , and Z terms given here are what emerge more directly from the analysis ; although not given explicitly in EKH98,
they can be recovered from the formulae for rates of change of Euler angles given there.

The timescale for tidal friction that we use in this paper has been redeÐned to be twice the value that was used in EKH98.t
FA novel result of EKH98 was a determination, exact to the order that we work to here, of the velocity Ðeld in a rotating star

that, in the frame that rotates with the star, su†ers a time-dependent tidal perturbation due to the presence of the other star.
Time dependence can arise because the orbit is elliptical and/or not in corotation with the star. We summarize the result here.

In the equilibrium-tide model, we approximate that the density (as well as the pressure) is constant on equipotential
surfaces of the instantaneous gravitational Ðeld of the companion. This means that
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where a(r) is a dimensionless function that gives the ellipticity of an equipotential as a function of distance from the center. The
angle h is measured from the direction of d(t), the separation of the two stellar centers. RadauÏs equation

a@@[ 6a
r2 ] 8nr3o(r)

m(r)
Aa@

r
] a

r2
B

\ 0 , (A2)

gives a(r), apart from a multiplicative factor that gives at the surface wherea \ a1 r \R1,
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The term Q is related to the classical apsidal motion constant k2 :
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Let
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F(r, h)4 r2P2(cos h) \ 32 (k Æ r)2[ 12 r2 , (A5)

where k 4 d/d. Since d is time-varying, both a and k depend on t, the former because a P 1/d3 (eq. [A3]). Then, with o as a
function of only and viewed as a function of r and t, we obtainr
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where
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The functions F and G are obviously orthogonal harmonic functions of degree 2.
Now consider the velocity Ðeld given by
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and we can see that equation (A1) is satisÐed to Ðrst order, provided that
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The lower limit in the integral comes from the boundary condition that the outer surface (o \ 0) is a surface that moves with
the Ñuid, so that the velocity must be Ðnite there, despite the vanishing density. The function b(r) is determined unam-
biguously by the structure of the star, via equation (A3) determining a(r), and is well behaved (b ] 1) for polytropic (0 \ n \ 5)
surfaces as o ] 0, despite the apparent singularity there.

Using suffix notation,
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The rate-of-strain tensor is now seen to be
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We square this and average it over an equipotential (which at this level of approximation can be taken to be spherical), to
obtain
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Now,
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and so the rate of dissipation of mechanical energy is

E0 \ [ 1
2
P

owlt
ij
2 dV

\ [ 9a12
d2
C
2
ALd

Lt
B2]

ALd
Lt
B2D P

0

M1
wl
A
b2] 2

3
rbb@ ] 7

30
r2b@2

B
dm . (A15)

The parameters w(r) and l(r) are the mean velocity and mean free path of turbulent eddies. The b-dependent weight factor in
parentheses in equation (A15) is what we call c(r), and its average over the turbulent convective region of the star is the ofc1equation (9). The factor in square brackets in equation (A15) leads to a functional form of the tidal friction force, since it
depends on the (variable) separation d, which is the same as the result usually obtained by arguing that the tidal bulge lags the
line-of-centers by some small Ðxed amount. Averaged over a Keplerian orbit, it gives V and W (eqs. [5] and [6]), and those
parts of the terms X, Y , and Z in equations (10)È(12) that arise from tidal friction. The details are given in EKH98.
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Although a common approximation for a(r) is a P r3, and it is commonly argued from this that, in e†ect, b P r4 and cP r8,
none of these approximations is at all reliable. EKH98 integrated two polytropic models and two MS stellar models. In the
n \ 3 polytrope, it was found (EKH98, Fig. 1) that a and b decrease by a factor of about 10, from the surface right to the
center. At the surface, b is unity, and c therefore somewhat larger (D4). In the central one-third by radius, roughly the region
of convection in an upper MS star, We therefore feel that an estimate of a mean cD 0.01 is reasonable for MS0.01[ c[ 0.03.
stars that are typically slightly more centrally condensed than an n \ 3 polytrope.

The approximation a P r3 is appropriate to the outer layers of a star, in which the density is low compared to the mean
density : in this case, equation (A2) gives m@\ 0, i.e., o \ 0. It is easy to integrate equation (A10) by parts in this case, and the
central value of b turns out to be just the ratio of mean density to central density. On the other hand, a \ const gives b \ 1
throughout. The truth lies somewhere in between, with a D const near the center and a D r3 in the outer layers.
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