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ABSTRACT
To be in a long-lived conÐguration, the density in a Ñuid disk should be constant along streamlines to

prevent compressional (PdV ) work from being done cyclically around every orbit. In a pure Kepler
potential, Ñow along aligned elliptical streamlines of constant eccentricity will satisfy this condition. For
most density proÐles, di†erential precession driven by the pressure gradient will destroy the alignment ;
however, in the razor-thin approximation there is a family of simple equilibria in which the precession
frequency is the same at all radii. These disks may therefore be long-lived at signiÐcant eccentricities.
The density can be made axisymmetric as r ] 0 while maintaining the precession rate by relaxing the
requirement of constancy along streamlines in an arbitrarily small transition region near the center. In
the limit of small eccentricity, the models can be seen as acoustically perturbed axisymmetric disks, and
the precession rate is shown to agree with linear theory. The perturbation is a traveling wave similar to
an ocean wave, with the Ñuid rising and falling epicyclically in the gravitational Ðeld of the central mass.
The expected emission-line proÐles from the eccentric disks are shown to be strongly asymmetric in
general and, in extreme cases, prone to misinterpretation as single narrow lines with signiÐcant velocity
o†sets.
Key words : galaxies : kinematics and dynamics È galaxies : nuclei È galaxies : structure È

novae, cataclysmic variables È stars : formation

1. INTRODUCTION

Accretion disks, protostellar disks, and galactic disks are
almost always assumed to be axisymmetric or nearly so.
This assumption is not without justiÐcation. Disks support
a rich spectrum of stable and unstable modes that can effi-
ciently redistribute angular momentum while viscous, col-
lisional, and radiative processes dissipate energy.
Circularization is then a naturally expected result. Nonethe-
less, disks of Ðnite eccentricity may play an important role
in certain astrophysical systems and, indeed, appear to be
required by observed phenomena on scales from AU to
parsecs.

Two examples illustrate this need particularly well. At the
stellar scale, eccentric disks are well established as the
source of the superhump phenomenon in short-period
cataclysmic variables. The period of these transient lumi-
nosity variations di†ers by a few percent from the binary
orbital period, and the di†erence is readily explained by a
precession of the disk (Vogt 1982 ; Osaki 1985). The eccen-
tricity is ““ pumped ÏÏ by the binary tidal Ðeld ; numerical and
analytic studies (Whitehurst 1988 ; Lubow 1991) indicate
that the eccentricity can be excited at the 3:1 Lindblad
resonance (but see Heemskerk 1994 and Stehle 1999 for
dissenting views). While the eccentricity may vary between
outbursts, the repeatability of superhump light curves
within an outburst (Patterson 1998) indicates that the
eccentricity is not washed away on short timescales by dif-
ferential precession. Instead, the disk needs to precess
coherently for at least several orbital periods. The primary
driver for this precession is most likely the gravity of the
secondary star, but the diskÏs own pressure gradient may
also be a signiÐcant inÑuence (Murray 2000).

At the parsec scale, the best-studied eccentric disk candi-
date is the ““ double nucleus ÏÏ of M31 (Lauer et al. 1993 ;
Tremaine 1995 ; Kormendy & Bender 1999). This disk is
stellar rather than gaseous and is essentially isolated in the
Keplerian potential of the central black hole, since neither

the bulge nor the main disk has signiÐcant inÑuence at this
scale. Assuming the disk is not a transient, its structure must
be such that its own self-gravity is able to drive a coherent
precession. This condition imposes a characteristic non-
monotonic radial eccentricity proÐle on the disk (Statler
1999 ; Salow & Statler 2001), which is reproduced by
dynamical simulations (Bacon et al. 2001). However,
whether the eccentricity can be self-excited or must be
tidally driven remains at issue (Bacon et al. 2001 ; Tremaine
2001), and the dynamical stability of such conÐgurations is
undetermined.

This paper takes up a question complementary to both of
the above examples, namely, whether isolated Keplerian
Ñuid disks can exist in long-lived eccentric equilibria. I will
not address directly issues of hydrodynamic stability, which
are extremely complexÈeven in axisymmetric systemsÈ
and far beyond the simple arguments presented here. But
some necessary constraints on disk structure can be gleaned
without a lengthy stability analysis. A slowly evolving disk
should have a density that is approximately constant
around streamlines. Were this not the case, PdV work
would be done cyclically, most likely irreversibly, around
every orbit, dissipating the eccentric motions. In addition,
the density and pressure must be such that perturbed
streamlines can precess coherently. In the approximation of
a razor-thin two-dimensional disk with a polytropic equa-
tion of state and negligible mass, these minimal criteria for
astrophysical realism are sufficient to deÐne a remarkably
simple family of eccentric disk models.

The arguments of the paper are laid out as follows : ° 2
presents the basic properties of the models. Simple scaling
arguments are used in ° 2.1 to derive the radial density
proÐle for an assumed equation of state. Section 2.2 calcu-
lates the pressure-driven precession and demonstrates that
in the frame that rotates at the precession frequency the
motion of Ñuid elements is Keplerian to Ðrst order in the
pressure. In ° 2.3 the slightly sticky question of the inner
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boundary condition is considered. It is shown how the
central eccentricity can be taken smoothly to zero by alter-
ing the density proÐle in an arbitrarily small transition
region. The structure of the models in the low-eccentricity
limit is shown in ° 3 to correspond to that of axisymmetric
disks perturbed by an m\ 1 traveling wave. The expected
emission-line proÐles from unresolved disks are computed
in ° 4. Finally, ° 5 discusses the connection with other work
on eccentric disks, describes the possible instabilities that
could a†ect the models, and reiterates the main results.

2. DISK MODELS

2.1. Scaling Arguments and Radial ProÐle
The disks of this paper are assumed to be planar and

razor-thin, with zero thickness perpendicular to the plane.
The Ñuid has zero viscosity and is characterized by a surface
density, &, and a two-dimensional pressure, %, related by a
two-dimensional analogue of a polytropic equation of state,

% \ K&1`(1@n) , (1)

in which n is the polytropic index. Sound waves travel at a
speed

c\
CAn ] 1

n
B %

&
D1@2

, (2)

and a Ñuid element feels a force1 [+%/& in the presence of
a pressure gradient. The force can also be written as the
negative gradient of the enthalpy H, where

H \ K(n ] 1)&1@n . (3)

The gravity of the disk is ignored.
A disk of noninteracting particles (or pressure-free Ñuid

elements) on aligned Kepler orbits has a surface density
given by

&(a, E)\ k(a)
2na

(1[ e2)1@2
1 [ e2[ ae@(e] cos E)

(4)

(Statler 1999). In equation (4), a is the semimajor axis and E
is the eccentric anomaly. The arbitrary function k(a) gives
the mass per unit interval of a, and the eccentricity proÐle is
described by e(a) and its Ðrst derivative, e@(a). Equation (4) is
valid only if the orbits do not cross, which requires
o e] ae@ o \ 1, but e is not assumed to be small. (A more
general version of this formula for unaligned orbits is given
in Appendix A.)

Clearly if e@\ 0, then &\ &(a), and the density is con-
stant around each orbit. This happens because the speed at
each point around the orbit is inversely proportional to the
local separation between neighboring orbits, and so com-
peting terms in the equation of continuity cancel. Now,
treating the pressure as a perturbation, the equation of state
(1) implies that the pressure is stratiÐed on the unperturbed
orbits. The perturbing force on each Ñuid element is there-
fore perpendicular to the orbit and does no work. Its
primary e†ect is to drive a precession at a rate which)

p
,

must be constant at all radii for the disk to be long-lived at
Ðnite eccentricity. This requirement is sufficient to deter-
mine the radial density proÐle of the disk, as follows : The
small dimensionless parameter in the problem is v\)

p
/u,

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
1 Throughout this paper ““ force ÏÏ refers to force per unit mass.

where u is the Keplerian mean motion. Since the latter
scales as a~3@2, implies vD a3@2. To leading)

p
\ const

order, v must be proportional to the ratio of the perturbing
force [+%/& to the Keplerian force where isGM

c
/r2, M

cthe central mass. These quantities should each be thought of
as averaged over the unperturbed orbit ; since e\ const,
these averages are proportional to [(d%/da)/& and

respectively. The required scaling for v then impliesGM
c
/a2,

that (d%/da)/&D a~1@ 2, which can be written as

K
A
1 ] 1

n
B
&~1`(1@n)d&\ [

A a
a
*

B~1@2
da , (5)

where is an arbitrary constant. Integrating this equationa
*and deÐning gives the densitya14 [K(n] 1)/2(n [ 1)]2a

*proÐle

&(a) \ &0[1[ (a/a1)1@2]n , (6)

where the surface density is equal to at the center and&0falls to zero at a \ a1.In the limit n ] O the equation of state (1) becomes iso-
thermal and one obtains the density law

&\ &0 exp [[(a/h)1@2] , (7)

where h is a constant scale length. However, this disk is
inÐnite in extent, requiring v to become arbitrarily large
since it must scale as a3@2. I therefore exclude the isothermal
case as unphysical.

2.2. Precession Rate and Surface Density
Fluid elements in the disk move along perturbed Kepler

orbits. Ordinarily one would expect, in addition to the
secular precession, cyclic variations in the orbital elements
that would distort the pure ellipses and necessitate a Ðrst-
order correction to the surface density. In this case,
however, one can show that the correction is zero.

Using equations (2), (3), and (6), the enthalpy can be
written as

H \ nc02[1 [ (a/a1)1@2] , (8)

where is the sound speed at a \ 0. The radial and tangen-c0tial components, and of the perturbing force are there-R1 T1 ,
fore given by

(R1 , T1 ) \ [ dH
da
ALa
Lr

,
1
r

La
Lf
B

\ nc02
2(1[ e2)(aa1)1@2

(1] e cos f,[ e sin f ) , (9)

where f is the true anomaly and a \ r(1] e cos f )/(1 [ e2).
But the Keplerian velocity has components

(v
R
, v

T
) \ (GM

c
)1@2

a1@2(1[ e2)1@2 (e sin f, 1 ] e cos f ) ; (10)

consequently, in the frame that rotates at speed the)
pCoriolis term will identically cancel the pressure[2)

p
zü ] v

gradient if

)
p
\ [ nc02

4[GM
c
a1(1[ e2)]1@2 . (11)

In this case, the disk is globally in geostrophic balance, and
the only force term surviving in the Euler equation is the
Kepler term (The centrifugal term is second[GM

c
/r2. )

p
2r

order.) Thus in the rotating frame the Ñuid elements follow
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exact Kepler ellipses, and the surface density is given by
equation (6) with no Ðrst-order correction.

It is easy to see intuitively why this result holds. Since the
density is constant around each orbit, the perturbing force
is proportional to the pressure gradient, which is inversely
proportional to the separation between isobars. But the
isobars are the orbits, whose separation is inversely pro-
portional to the orbital speed when e\ const. Thus the
perturbing force is both proportional to the velocity in mag-
nitude and perpendicular to it in direction, just as the
Coriolis force is. The two forces can cancel on all orbits for
the same because of the a1@2 dependence of the enthalpy.)

pOne can verify that equation (11) agrees with the precess-
ion rate obtained from standard perturbation theory by
using equation (9) in the formula for the instantaneous drift
rate of the argument of pericenter,

-5 \ 1
e
Ca(1[ e2)

GM
c

D1@2A[R1 cos f] T1 sin f
2 ] e cos f
1 ] e cos f

B

(12)

(Burns 1976 ; Murray & Dermott 1999), and averaging
around the orbit. Equation (11) may also be written in the
form

)
p
\ [ n

4(1 [ e2)1@2
Ac0
v1

B2
u1 , (13)

where and are the Keplerian speed and mean motionv1 u1at the disk edge. This shows that the expansion parameter v
is basically a3@2 times the square of the ratio of the central
sound speed to the edge Keplerian speed. Note also that the
precession is retrograde and is faster for larger eccentric-
ities.

Figure 1a shows a density contour plot for a disk with
n \ 3 and e\ 0.5, illustrating the stratiÐcation of the
density on orbits. Figure 1b compares the radial density
proÐles for selected values of the index, n. The total mass of
the disk is

M \ 24n
!(n ] 1)
!(n ] 5)

(1[ e2)1@2&0 a12 , (14)

where !(x) denotes the gamma function. The semimajor
axis enclosing half the mass is given by the solution ofa

h
I
z
(4, n ] 1)\ 12 , (15)

where is the incomplete beta function and z4I
x
(p, q)
Figure 1c shows the variation of with n. For(a

h
/a1)1 @2. a

hn \ 0 the density is constant and as na
h
\ 2~1@2a1 ;

increases the disks become increasingly centrally concen-
trated.

2.3. Behavior at the Center
The behavior of the models near their centers presents a

problem. It is not realistic to expect e to remain Ðnite as
a ] 0, since there are no strongly eccentric central masses in
astrophysical systems. One could imagine carving out an
inner hole from the disk to avoid the center, but this expe-
dient would remove the pressure gradient needed to syn-
chronize the precession of the innermost material with that
of the rest of the disk. Instead, the eccentricity needs to go
smoothly to zero at the centerÈor at small Ðnite radiiÈ
while maintaining the precession rate. I show here how this
transition may be e†ected by allowing the density to deviate

from that in equation (6) over a small interval of a in the
approximation where the density and eccentricity changes
are both small (in a sense deÐned below). Formally this
assumption limits the treatment to eccentricities but[0.3,
it seems reasonable that a similar approach can be taken for
larger e.

Readers more interested in the results than in the techni-
cal details are invited to skip down to the last paragraph of
this section.

At leading order, the changes to the precession frequency
from the altered density and eccentricity proÐles can be
considered separately and summed. I begin with the former,
replacing the surface density & by &[1 ] d(a)], where d is
the fractional density increase. The equation of state gives

+%
&

\
A+%

&
B
d/0

] d
n
A+%

&
B
d/0

] K(1] n~1)&d/01@n +d ,

(16)

where, from equations (3) and (8), K \ [n/(n ] 1)]c02&0~1@n.
The Ðrst term on the right-hand side is responsible for the
precession given in equation (11). Because d is constant on
orbits, the second term simply contributes an additional d/n
times the same rate. The third term is more difficult. The
radial and tangential components of +d are

Ld
Lr

\ d@
1 ] e cos f

1 [ e2 ,
1
r

Ld
Lf

\ [d@
e sin f
1 [ e2 , (17)

where d@4 dd/da. Using equations (6), (16), and the rela-
tions

cos f \ cos E[ e
1 [ e cos E

, sin f \ (1[ e2)1@2 sin E
1 [ e cos E

, (18)

this results in the force components

(R1 , T1 ) \ c02
C
1 [

A a
a1

B1@2D

]d@
C
[ 1

1 [ e cos E
,

sin E
(1[ e2)1@2(1[ e cos E)

D
. (19)

The instantaneous precession rate can be obtained from
equation (12), written in terms of the eccentric anomaly
using equation (18). Because udt \ (1[ e cos E)dE, the
resulting expression can be time averaged around the orbit
by multiplying by (1[ e cos E) and averaging over E.
(Useful formulae for evaluating the necessary averages are
given in Appendix B.) Adding the contributions of both the
second and third terms in equation (16), the total extra
precession induced by the density enhancement d is found
to be

)
pd\ [ c02

2[GM
c
a1(1[ e2)]1@2

Cd
2

[ d@[(aa1)1@2 [ a]
e

]
G
1 ] 2

(1[ e2)(1[ e)[1[ (1[ e2)1@2]
e2

HD
. (20)

Note that for positive density enhancements that)
pd\ 0

diminish outward.
To calculate the corresponding result for the eccentri-

city gradient, & is replaced by &[1] g(r, f )], where, from



2260 STATLER Vol. 122

FIG. 1.È(a) Surface density contours for the disk with n \ 3 and e\ 0.5. Contours are logarithmically spaced by factors of 2. (b) Surface density as a
function of semimajor axis for models with values of the polytropic index n as indicated. (c) Semimajor axis enclosing half the mass as a function of n.

equation (4),

g(r, f )\ e@r
2e] (1] e2) cos f

(1[ e2)2 . (21)

The equation of state gives, to leading order in g,

+%
&

\
A+%

&
B
e{/0

] g
n
A+%

&
B
e{/0

] K(1] n~1)&
e{/01@n +g .

(22)

As in equation (16), the Ðrst term on the right-hand side
gives the ordinary precession rate (11). However, the second
term does not produce a proportional contribution because
g is not constant around the orbit. Instead, it produces the
force components

(R1 , T1 )\ c02
2
A a
a1

B1@2 e@
1 [ e2

]
C cos E] e
1 [ e cos E

,[ e sin E(cos E] e)
(1[ e2)1@2(1[ e cos E)

D
.

(23)

The third term is algebraically cumbersome because of the
gradient of g(r, f ). By deÐning

g1(a)\ e(e@] ae@@)] 2a
1 ] e2
1 [ e2 e@2 , (24a)

g2(a)\ e@] ae@@] 4aee@2
1 [ e2 , (24b)

g3(a)\ eg1(a)] e@ , (24c)

g4(a)\ e[g2(a)[ e@] , (24d)

the components of +g can be written as

Lg
Lr

\ g1(a)] g2(a) cos E
(1[ e2)(1[ e cos E)

,

1
r

Lg
Lf

\ [ [g3(a)] g4(a) cos E] sin E
(1[ e2)3@2(1[ e cos E)

. (25)

This produces the force components

(R1 , T1 ) \ c02
C
1 [

A a
a1

B1@2D e@
1 [ e2

]
G
[ g1(a) ] g2(a) cos E

1 [ e cos E
,
[g3(a) ] g4(a) cos e] sin E
(1[ e2)1@2(1[ e cos E)

H
.

(26)

Following the same procedure as above, I Ðnd the total
extra precession induced by the eccentricity gradient to be

)
pe{

\ c02
(GM

c
a1)1@2

1
e(1[ e2)3@2

]
C
[ ae@

4
] (aa1)1@2[ a

e2 ;
i/1

4
c
i
(a)g

i
(a)
D

, (27)

where the coefficients are given byc
i

c1(a) \ [e(1[ e2)[1[ (1[ e2)1@2] , (28a)

c2(a) \ (1[ e2)3@2[1[ (1[ e2)1@2] , (28b)

c3(a) \ 1 [ e2
2

[ (1[ e2)3@2 , (28c)

c4(a) \ 1 [ e2
e

C
1 [ e2

2
[ (1[ e2)1@2

D
. (28d)

The inner transition region, where e is varying and d is
nonzero, should join smoothly onto the main body of the
disk, where The requirement that bothe\ e0\ const.
regions precess together is given by

)
p
] )

pd ] )
pe{

\ )
p0 , (29)

where is the main body precession rate, i.e., equation)
p0(11) evaluated at This requirement yields a di†eren-e\ e0.tial equation linking e(a) and d(a) :

2d@
e3 [(aa1)1@2 [ a]Me2] 2(1[ e2)(1[ e)[1[ (1[ e2)1@2]N

\ d ] n
CA1 [ e2

1 [ e02
B1@2 [ 1

D
] 1

e(1[ e2)

]
C
[ae@] 4

(aa1)1@2 [ a
e2 ;

i/1

4
c
i
(a)g

i
(a)
D

. (30)
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Since the point of the exercise is to manipulate e, I let e(a) be
a Ðxed function and use equation (30) to calculate d(a). To
avoid a discontinuity in the gradient of the surface density,
e(a), e@(a), and e@@(a) should all be continuous at Aa \ a0.function with the desired properties is

e(a)\

4
5
6

0
0

e0
C
1 ]

A
1 [

a
a0

BbA
sin

na
2a0

[ 1
BD

for a ¹ a0 ,

e0 for a0\ a ¹ a1 .
(31)

For 0 \ b \ 1, e(a) is linear at small a and joins smoothly
onto ate\ e0 a \ a0.Figure 2a shows proÐles of e and the fractional density
enhancement d in a transition region with radius a0\

and b \ 1/2, for a set of disks with n \ 3 and various0.01a1eccentricities The results are fairly insensitive to thee0.value of n. One sees that the eccentricity can be made to go
continuously to zero at the center by steepening the density
proÐle through most of the transition region. Figure 2b
shows density contours in the transition region for the disk
with While the density is no longer constant alonge0\ 0.3.
streamlines, the variation about the mean is in the worst
case only ^20%. For the needed density enhance-e0Z 0.3,
ment becomes of order unity, which violates the assumption
behind equation (16). The assumption that g(r, f ) is also
small requires that ae@> 1 [ e, a condition that is consis-
tent with, but more stringent than, that for the noncrossing
of orbits. The choice of e(a) in equation (31) begins to violate
this condition for But these conditions aree0Z 0.3.
required only by the Ðrst-order expansion ; a more careful
treatment may be able to Ðnd similar remedies for larger e0.

3. CONNECTION WITH AXISYMMETRIC DISKS

For small e, the structure of the models can also be
understood in terms of the acoustic modes of an axisym-
metric disk. A formalism for dealing with such disturbances

is given by Papaloizou & Savonije (1991) and Heemskerk,
Papaloizou, & Savonije (1992, hereafter HPS). They start
with a perturbation to the surface density of the form

&\ &(r) ] &@(r)ei(mÕ`pt) , (32)

where &(r) refers to the unperturbed disk ; similar forms are
assumed for the other hydrodynamic quantities. They then
merge the linearized Ñuid equations into a single operator
equation :

&@\L(W ) , (33a)

where

L(W ) 4 [ 1
r

d
dr
Cr&

D
AdW

dr
] 2m)p6 W

i2r
BD

]
AdW

dr
] 2m)p6 W

i2r
B 2m)p6 &

i2rD

]mW
p6 r

d
dr
A1
f
B

[ 4m2)2&W
i4r2 , (33b)

i24
2)
r

d(r2))
dr

, (33c)

f4
1
r&

d(r2))
dr

, (33d)

p6 4 p ] m) , (33e)

D4 p6 2[ i2 , (33f )

and ) is the circular frequency (eqs. [9] and [10] in HPS).
In the simple case in which the only gravity is that of the
central mass, W \ c2&@/&, and equation (33a)È(33f ) (rather
than the more complicated eq. [15] in HPS) governs the
modes.

FIG. 2.È(a) Eccentricity, e (thin lines), and fractional density enhancement, d (thick lines), in the small inner region where e goes to zero according to eq.
(31), for models with n \ 3. Successive curves show results for main-body ellipticities 0.2, 0.3, 0.4, and 0.5 (bottom to top). (b) Surface density contourse0\ 0.1,
(solid lines) in the inner region of the model with n \ 3 and Contours are logarithmically spaced by factors of 21@8. The dotted lines showe0\ 0.3.
representative Ñuid streamlines.
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In the axisymmetric limit, the present models have a
surface density given by

&(r)\ &0[1 [ (r/a1)1@2]n (34)

and a sound speed given by

c2(r)\ c02[1[ (r/a1)1@2] . (35)

The pressure gradient reduces ) from its Keplerian value to

)\
AGM

c
r3
B1@2 [ nc02

4(GM
c
a1)1@2

. (36)

The di†erence in surface density between the eccentric and
axisymmetric disks in the limit of small e is

*&\ &0
GC

1 [
A r
a1

B1@2A
1 [ e

2
cos f

BDn

[
C
1 [

A r
a1

B1@2DnH
. (37)

For arbitrary n, *& is a superposition of Fourier harmonics.
I restrict the discussion here to the case n \ 1, so that

*&\ [&0 e
2
A r
a1

B1@2
cos f . (38)

This corresponds to a single m\ 1 term, with

&@ \&0 e
2
A r
a1

B1@2
, (39)

and consequently

W \ c02 e
2
A r
a1

B1@2
. (40)

Direct substitution into equation (33b) shows, after lengthy
algebra, that equation (33a) is satisÐed to leading order in c02when The form of the exponential inp \ c02/[4(GM

c
a1)1@ 2].equation (32) indicates that this value corresponds to a

regression of the pattern and agrees with equation (11) for
n \ 1 and e\ 0. Also, since p is real, the mode is stable.

The reader may have noted that the inner and outer
radial boundary conditions have not played a role in this
discussion. The fact that &@ is real means that the mode has
zero radial wavenumber. Unlike WKB waves, this wave is
completely unwound and propagates only in the tangential
direction. In this respect it is not really a ““ mode ÏÏ in the
sense of being a standing wave in a resonant cavity. Instead,
it is a traveling wave. In fact, since the wave does not com-
press the ÑuidÈeven though the Ñuid itself is not
incompressibleÈit bears a close similarity to an ocean
wave. Like an ocean wave, Ñuid elements move epicyclically
with respect to the mean Ñow, and the restoring force for the
pressure-driven vertical displacement is the gravity of the
central mass. The variation of the sound speed and Ñow
velocity with depth conspire to refract the wave around the
central mass while keeping the wave front straight.

4. LINE PROFILES

Constant-eccentricity Keplerian disks are kinematically
simple. Spatially resolved rotation curves along any line
through the central mass will show velocities proportional
to r~1@2 but will not in general be antisymmetric about the
center. The observed velocities on opposite sides of the

central mass will di†er by a multiplicative factor depending
on both the eccentricity and the viewing geometry. Kine-
matic measurements along several position angles would be
necessary to determine the disk structure and orientation,
but a reasonably accurate estimate of the central mass could
be obtained by averaging the masses derived from each side
of the rotation curve under the naive assumption of circular
motion.

It seems more likely, however, that disks of the sort dis-
cussed here will usually be unresolved. The expected
emission-line proÐles from an unresolved disk can be
straightforwardly calculated. For simplicity, I assume the
emission comes from a recombination line of a species
whose density follows the total density, so that the emiss-
ivity is proportional to &2. The disk is assumed to be opti-
cally thin, with the line of sight in the disk plane, an angle h
from the major axis. A mass dM on a single Kepler orbit in
the disk produces a contribution to the line-of-sight velocity
distribution (LOSVD) given byf (v

l
)

df (v
l
) \ dM

2n(GM
c
/a)1@2

]
(1[ e cos E)3

(cos E[ e) cos h ] (1[ e2)1@2 sin E sin h
. (41)

At each the contribution must be summed over the twov
l
,

values of E given by

sin E1\A[ B(A2] B2[ 1)1@2
A2] B2 ,

cos E1\ B] A(A2 ]B2[ 1)1@2
A2] B2 , (42)

sin E2\A] B(A2] B2[ 1)1@2
A2] B2 ,

cos E2\ B[ A(A2 ]B2[ 1)1@2
A2] B2 , (43)

where

A4 [ (GM
c
/a)1@2

v
l

cos h , (44a)

B4
(GM

c
/a)1@2

v
l

(1[ e2)1@2 sin h ] e . (44b)

These expressions ignore the precession of the disk, which
adds a slow retrograde solid-body component to the rota-
tion ; this e†ect is included in the examples shown below,
but it makes only a tiny di†erence to the results. Assuming
an ideal gas, the equation of state and the density proÐle
imply a one-dimensional thermal velocity dispersion,

pth2 \ nc02
n ] 1

C
1 [

A a
a1

B1@2D
. (45)

The LOSVD at each a is convolved to the thermal disper-
sion, and the results are integrated over the disk. No correc-
tion is made for a transition to e\ 0 at the center.

Line proÐles for various models are shown in Figure 3.
The line shape appears at Ðrst glance very sensitive to the
polytropic index, n. But much of this sensitivity is a simple
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FIG. 3.ÈSimulated line proÐles for unresolved elliptic disks. Relative Ñuxes per unit interval of velocity are shown for velocities in units of (GM
c
/a1)1@ 2.Results for eccentricities of 0.1, 0.4, and 0.7 are shown in the Ðrst, second, and third columns, and for lines of sight along, oblique to, and perpendicular to the

disk major axis in the top, middle, and bottom rows. Dashed, dotted, and solid lines indicate values of the polytropic index, n, (top left). The central sound
speed is 0.2.

scaling ; for the same central mass and limiting radius, disks
of larger n show broader line proÐles simply because they
are more centrally concentrated. One also sees that the lines
can be strongly asymmetric, even for eccentricities as small
as 0.1. When the proÐles are double peaked, the stronger
peak arises from the side of the disk containing the apo-
centers of the orbits, and consequently can appear at either
positive or negative velocity. For eccentricities of 0.5 or

larger, the secondary peak can disappear entirely. Even
though the line centroid remains at zero velocity relative to
the central mass, in the presence of noise the asymmetric
primary peak could easily be mistaken for a single narrow
line with a large velocity o†set. Figure 4 shows a sequence
of line proÐles through a complete precession period for the
n \ 3, e\ 0.7 disk, with noise added. In principle, the slow
time evolution of the line proÐle could be detectable for

FIG. 4.ÈSequence of line proÐles for the n \ 3, e\ 0.7 model, shown (left to right) as the disk precesses through a complete period. Gaussian noise has
been added to simulate observations. The true mean velocity is zero, but continuum misidentiÐcation could lead to spurious measurements of velocity o†sets.
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some types of objects. For a cold protostellar disk, equation
(11) implies a precession period of

T
p
\ 3900 C

A M
c

1 M
_

B1@2A a1
100 AU

B1@2A c0
1 km s~1

B~2
yr ,

(46)

where the factor C4 (4/n)(1[ e2) 1@2 is of order unity. For a
galactic nuclear disk,

T
p
\ 4 ] 107C

A M
c

108 M
_

B1@2A a1
1 pc

B1@2A c0
10 km s~1

B~2
yr .

(47)

O†set or asymmetric emission lines are not uncommon in
active galactic nuclei (AGNs), but are usually qualitatively
di†erent from those shown above. Systematic o†sets, e.g., of
the [O III] line (Whittle 1985), are consistently toward the
blue, and it is the line centroid, rather than the peak, that is
shifted. O†sets of this sort should more naturally arise from
outÑows rather than orbital motion. AGNs showing
double-peaked lines characteristic of unresolved Keplerian
motion may be modeled by axisymmetric relativistic disks
when the blue peak is stronger than the red, the asymmetry
arising from Doppler boosting (Chen, Halpern, & Filip-
penko 1989). However, in a fraction of radio-loud AGNs
with disklike Ha emission, the red peak is stronger than the
blue. Eracleous et al. (1995) appeal to eccentric disks to
model these objects. Their models, like those presented here,
have constant eccentricity, but the line emissivity is taken to
be a function of r rather than a. Eracleous et al. (1995)
consider general relativistic e†ects and estimate that di†er-
ential relativistic precession would ruin the coherence of
elliptic disks in AGNs on timescales as short as decades,
unless they were narrow rings. Bao, Hadrava, & ^stgaard
(1996) show that narrow rings can persist even in a strong
Ðeld, and they calculate the resulting line proÐles. But it
seems plausible that relativistic versions of the models of
this paper could be found in which combined relativistic
and hydrodynamic e†ects could drive a uniform precession,
extending the lives of wide disks.

5. DISCUSSION

I have presented the properties of a particularly simple
family of idealized models for eccentric Keplerian Ñuid
disks, in which the internal pressure gradient drives a coher-
ent precession of the apses of the constant-eccentricity
streamlines. In the frame that rotates with the precession
frequency, the pressure gradient balances the Coriolis force ;
the disks are therefore in global geostrophic balance, and
the Ñuid motion is Keplerian, to Ðrst order in the pressure,
in the rotating frame.

In the limit of small eccentricity, the models can be
viewed as perturbed axisymmetric disks, and their elliptic
distortions interpreted as traveling acoustic waves. These
waves are related to the ““ slow ÏÏ m\ 1 modes examined by
Tremaine (2001) but are not physically the same. The ellip-
tic distortions have radial wavenumber k \ 0, which is
maintained by a continuous refraction of the waves around
the center, and therefore owe their existence to the particu-
lar density proÐle of the disk. The diskÏs self-gravity, which
creates the true standing waves studied by Tremaine, is
ignored in the present case. Including Ðnite disk gravity

may restrict the slow acoustic waves to a limited range of
radii and/or turn them into standing waves with k D 0.

One should keep in mind that these models are highly
idealized and neglect at least two important e†ects present
in real disks. First, Ñuid elements in a three-dimensional
disk experience a varying vertical compression around
every orbit, since the vertical (z) component of the Kepler
force near the disk plane is proportional to z/r3. The frac-
tional magnitude of the variation depends on the eccentric-
ity and not on the disk thickness. Second, shear viscosity is
known to be a controlling factor in true accretion disks and
is likely to a†ect the structure of larger scale disks in galac-
tic nuclei that may not be actively accreting.

Turbulent viscosity can arise from any of a number of
local instabilities, the leading candidate being the magneto-
rotational instability (Balbus & Hawley 1991) when mag-
netic Ðelds are present. Angular momentum is transported
efficiently by magnetic torques, and the instabilityÏs growth
time is of the order of the orbital period. The instability will
therefore a†ect the structure of any disk with even a weak
magnetic Ðeld, as long as the ionization is sufficiently high
that the Ñux is e†ectively frozen in the Ñuid. On the other
hand, the instability may be suppressed in protostellar
(Wardle 1999) or protoplanetary (Reyes-Ruiz 2001) disks of
very low ionization.

A purely hydrodynamical instability unique to non-
axisymmetric disks has been studied by Goodman and col-
laborators (Goodman 1993 ; Ryu & Goodman 1994 ; Ryu,
Goodman, & Vishniac 1996). The ““ eccentric instability ÏÏ is
intimately connected with the inertial oscillations, force-free
epicyclic motions supported by any rotating or shearing
medium. Because the spectrum of the inertial oscillations is
continuous, there is always a mode of the right frequency
available to be parametrically ampliÐed by a periodic dis-

FIG. 5.ÈWhy a circular disk is not the minimum energy conÐguration
for a given angular momentum. A pair of circular rings ( Ðlled circles) is
plotted in the Lindblad diagram for a Kepler potential. The smooth curve
shows the circular orbits. The open circles show the rings displaced so as to
conserve total angular momentum and lower the total energy ( o*E2o \

leaving the outer ring eccentric.o*E1o ),
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turbance, such as a traveling acoustic wave. The instability
is intrinsically three-dimensionalÈthe motions of the
ampliÐed mode are inclined to the disk planeÈand there-
fore would a†ect any Ðnite-thickness analogue of the
present models.

Turbulence may also be associated with vortices, whose
importance in disks is considered by Adams & Watkins
(1995). They point out that, according to KelvinÏs circula-
tion theorem, vorticity should not be spontaneously created
when pressure and density contours coincide and the vis-
cosity is zero. Thus the models, as deÐned here, should not
be unstable to vortex generation. Real disks, however, may
be radiatively heated by their central objects and radiatively
cooled by line or continuum emission. The temperature
could then vary signiÐcantly around streamlines, in which
case vortices could be generated. A careful treatment of the
radiative transfer within the models would be needed to
determine whether this is the case.

It may be tempting to argue that viscous dissipation will
naturally circularize any disk on the grounds that at a Ðxed
angular momentum the circular conÐguration is the state of
lowest energy. However, this latter statement is true only for
single orbits and does not apply to disks in which energy
and angular momentum can be traded between orbits. To
illustrate, consider the toy problem of two circular rings of
equal mass. Figure 5 shows a Lindblad diagram for this
system, with both rings ( Ðlled circles) lying on the locus of
circular orbits (smooth curve) for the Kepler potential. Now
imagine shifting the inner ring to a more tightly bound
circular orbit (lower open circle), lowering its energy by *E1and its angular momentum by *L . Angular momentum can
be conserved by depositing the same *L in the outer ring,
along with some amount of energy Because of the*E2.shape of the circular orbit locus, however, the shifted outer
ring (upper open circle) can move away from the circular

orbits (i.e., can become eccentric) even if o*E2o \ o*E1o .T hus, for any circular disk, there is an eccentric disk with the
same angular momentum and lower energy.

Energy arguments alone are therefore not sufficient to
determine whether eccentric disks can survive in the pres-
ence of shear viscosity. A number of more detailed calcu-
lations have been attempted, but the results are still
ambiguous. An analytic and numerical study of the viscous
evolution of pressure-free eccentric gas disks and streams by
Syer & Clarke (1992) Ðnds that the eccentricity nearly
always increases or remains constant under the inÑuence of
viscous e†ects. This result is corroborated by the purely
analytic work of Lyubarskij, Postnov, & Prokhorov (1994),
who show that evolution at constant e is one of many pos-
sible paths for the disk. Ogilvie (2001) Ðnds, in contrast, that
with gas pressure included, eccentric motions dissipate on a
viscous timescale. In three-dimensional smooth-particle
hydrodynamic simulations (Mastrodemos & Morris 1998),
broad, persistently eccentric disks are found to form sponta-
neously in accreting winds. A more careful analysis of the
simulations would be needed to clarify the detailed struc-
ture of the disks and the role of pressure in maintaining
them. Disks whose radial proÐles are determined by accre-
tion processes may not evolve toward the special proÐles
required by the models in this paper, and consequently may
be unable to synchronize their precession rates and remain
eccentric. But the appearance of long-lived eccentric disks
in simulations for which no special e†ort is made to create
them suggests that Nature may have ways to make similar
disks in abundance.

The author is grateful for helpful insights and suggestions
from Mike Eracleous, Glen Stewart, Joe Shields, Steve
Balbus, and Larry Wilen. This work was supported by NSF
CAREER grant AST 97-03036.

APPENDIX A

SURFACE DENSITY OF AN UNALIGNED KEPLERIAN DISK

Equation (4) can be generalized to an unaligned planar disk in which the eccentricity and longitude of pericenter are given
by functions e(a) and -(a), respectively. The result is

&(a, E)\k(a)
2na

(1[ e2)1@2
1 [ e2 [ a[e@(e] cos E) ] -@e(1[ e2)1@2 sin E]

, (A1)

where the eccentric anomaly, E, is measured from pericenter on each orbit. Alternatively, one might prefer to have the surface
density in terms of a Ðxed polar coordinate system (r,/). In this case,

&(r, /)\ k(a)
2na

(1[ e2)1@2
1 [ e2[ e@[2ae] r cos (/[ -)][ re-@ sin (/[ -)

, (A2)

where a(r,/) can be found efficiently by iteration using the prescription

a
j`1\ (1[ k)a

j
] kr

1 ] re(a
j
) cos [/[ -(a

j
)]

1 [ [e(a
j
)]2 . (A3)

Values of the relaxation factor, k B 0.5, usually give rapid convergence. The above results generalize the formulae of
Borderies, Goldreich, & Tremaine (1986) to arbitrary eccentricity but remain valid only when the criterion for noncrossing of
orbits,

(e] ae@)2] (ae-@)2\ 1 (A4)

(Ogilvie 2001), is satisÐed.
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APPENDIX B

HELPFUL INTEGRALS

The following integrals are useful in evaluating the average precession rates in ° 2.3 :

1
n
P
0

n dE
1 [ e cos E

\ 1
(1[ e2)1@2 , (B1)

1
n
P
0

n cos EdE
1 [ e cos E

\ 1 [ (1[ e2)1@2
e(1[ e2)1@2 , (B2)

1
n
P
0

n cos2 EdE
1 [ e cos E

\ 1 [ (1[ e2)1@2
e2(1[ e2)1@2 , (B3)

1
n
P
0

n sin2 EdE
1 [ e cos E

\ 1 [ (1[ e2)1@2
e2 , (B4)

1
n
P
0

n sin2 E cos EdE
1 [ e cos E

\ 2 [ e2[ 2(1[ e2)1@2
2e3 , (B5)
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1 [ e cos E

\ 2 [ e2[ 2(1[ e2)1@2
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