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ABSTRACT
This paper describes the generation of Gaussian random Ðelds with multiple levels of resolution. We

present the theory of adaptive mesh reÐnement of Gaussian random Ðelds followed by the implementa-
tion and testing of a computer code package performing this reÐnement called ““ GRAFIC2.ÏÏ This
package is available to the computational cosmology community at http ://arcturus.mit.edu/graÐc/ or by
e-mail from the author.
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1. INTRODUCTION

Advances in computational algorithms combined with
the steady advance of computer technology have made it
possible to simulate regions of the universe with unprece-
dented dynamic range (Bertschinger 1998). Realistic simula-
tions of galaxy formation require spatial resolution better
than 1 kpc and mass resolution better than in106 M

_volumes at least 100 Mpc across containing more than 1017
Cosmologists have made signiÐcant progress towardM

_
.

these requirements. In simulations of dark matter halos,
Fukushige & Makino (1997) and Ghigna et al. (2000) have
achieved more than 4 orders of magnitude in spatial
resolution, while the Virgo Consortium has performed
simulations with 109 particles (Colberg et al. 2000). Recent-
ly, Abel, Bryan, & Norman (2000) have performed a simula-
tion of the formation of the Ðrst subgalactic molecular
clouds using adaptive mesh reÐnement with a spatial
dynamic range of 262,144 and a mass dynamic range more
than 1016.

The possibility to resolve numerically such vast dynamic
ranges of length and mass begs the question of what are the
appropriate initial conditions for such simulations. Hierar-
chical structure formation models like the cold dark matter
(CDM) family of models have increasing amounts of power
at smaller scales. This power should be present in the initial
conditions. For simulations of spatially constant resolution,
this is straightforward to achieve using existing community
codes (Bertschinger 1995). However, workers increas-
ingly are using multiscale methods in which the best resolu-
tion is concentrated in only a small fraction of the
simulation volume. How should multiscale simulations be
initialized?

Many workers currently initialize multiscale models fol-
lowing the approach of Katz et al. (1994). First, a Gaussian
random Ðeld of density Ñuctuations (and the corresponding
irrotational velocity Ðeld) is sampled on a Cartesian lattice
of Ðxed spacing *x. Then, *x is decreased by an integer
factor r [ 1, and a new Gaussian random Ðeld is sampled
with r3 times as many points, such that the low-frequency
Fourier components (up to the Nyquist frequency n/*x in
each dimension) agree exactly with those sampled on the
lower resolution grid.

This method has two drawbacks. First, it is limited by the
size of the largest fast Fourier transform (FFT) that can be

performed, since the Gaussian noise is sampled on a
uniform lattice in Fourier space. This represents a severe
limitation for adaptive mesh reÐnement codes which are
able to achieve much higher dynamic range. Second, the
uniform high-frequency sampling on the Ðne grid is incon-
sistent with the actual sampling of the mass used in the
evolutionary calculations. Multiscale simulations have grid
cells, hence particle masses, of more than one size. The
gravitational Ðeld produced by a distribution of unequal
particle masses di†ers from that produced with constant
resolution. In the linear regime, the velocity and displace-
ment should be proportional to the gravitational Ðeld. With
the method of Katz et al. (1994), they are not. We are chal-
lenged to develop a method for sampling multiscale Gauss-
ian random Ðelds consistent with the multiresolution
sampling of mass.

A satisfactory method should satisfy several requirements
in addition to correctly accounting for variable mass
resolution. First, each reÐned Ðeld should preserve exactly
the discretized long-wavelength amplitude and phase so as
to truly reÐne the lower resolution sample. Second, high-
frequency power should be added in such a way that the
multiscale Ðelds correctly sample the power spectrum over
the whole range of wavelengths sampled. Because multi-
scale Ðelds are not sampled on a uniform lattice, it is not the
power spectrum but rather the spatial two-point correlation
function that should be exactly sampled. Finally, a practical
method should have a memory requirement and computa-
tional cost independent of the level of reÐnement so that it is
not limited by the size of the largest FFT that can be per-
formed.

This paper presents the analytic theory and practical
implementation of multiscale Gaussian random Ðeld sam-
pling methods that meet these requirements. Our algo-
rithms are the equivalent of adaptive mesh reÐnement
applied to Gaussian random Ðelds. The mathematical
properties of such Ðelds are simple enough so that an exact
algorithm may be developed. Practical implementation
requires certain approximations to be made but they can be
evaluated and the errors controlled.

The essential idea enabling this development is that
Gaussian random Ðelds can be sampled in real space rather
than Fourier space (hereafter k-space). Adaptive mesh
reÐnement can then be performed in real space conceptually

1



2 BERTSCHINGER Vol. 137

just as it is done in the nonlinear evolution code used by
Abel et al. (2000).

How can the long-range correlations of Gaussian
random Ðelds be properly accounted for in real space? In an
elegant paper, Salmon (1996) pointed out that any Gaussian
random Ðeld (perhaps subject to regularity conditions such
as having a continuous power spectrum) sampled on a
lattice can be written as the convolution of white noise with
a function that we will call the transfer function. Salmon
recognized the advantages of multiresolution initial condi-
tions and developed a tree algorithm to perform the convol-
utions. Tree algorithms have the advantage that they work
for any meshÈregular, hierarchical, or unstructured.

Next, Pen (1997) pointed out that FFTs may be used to
perform the convolutions in such a way that the two-point
correlations of the sampled Ðelds are exact, in contrast with
the usual k-space methods which produce exact power
spectra but not two-point correlations. The key is that the
transfer functions may be evaluated in real space accurately
at large separation free from distortions caused by the dis-
cretization of k-space. Pen also pointed out that this
method allows the mean density in the box to di†er from
the cosmic average and that the method could be extended
to hierarchical grids.

This paper builds upon the work of Salmon (1996) and
Pen (1997) as well as the authorÏs earlier COSMICS
package (Bertschinger 1995), which included a module
called ““ GRAFIC ÏÏ (Gaussian Random Field Initial
Conditions). GRAFIC implemented the standard k-space
sampling method for generating Gaussian random Ðelds on
periodic rectangular lattices. This paper presents the theory
and computational methods for a new package for gener-
ating multiscale Gaussian random Ðelds for cosmological
initial conditions called ““ GRAFIC2.ÏÏ This paper contains
the Ðne print for the ownerÏs manual to GRAFIC2, as it
were.

This paper is organized as follows. Section 2 reviews the
mathematical method for generating Gaussian random
Ðelds through convolution of white noise including adapt-
ive mesh reÐnement. Section 2.4 presents methods for the
all-important computation of transfer functions. Section 3
presents important details of implementation. Exact sam-
pling requires careful consideration of both the short-
wavelength components added when a Ðeld is reÐned (° 3.1)
as well as the long-wavelength components interpolated
from the lower resolution grid (° 3.2). As we show, the long-
wavelength components must be convolved with the appro-
priate anti-aliasing Ðlter. Truncation of this Ðlter to a
subvolume (a step required to avoid intractably large
convolutions) introduces errors that we analyze and reduce
to the few percent level in ° 3.4.

The method is extended to hierarchical grids in ° 4.
Section 5 presents additional tricks with Gaussian random
Ðelds made possible by the white noise convolution method.
Section 6 summarizes results and describes the public dis-
tribution of the computer codes developed herein for multi-
scale Gaussian random Ðelds.

2. MATHEMATICAL METHOD

The starting point is the continuous Fourier representa-
tion of the density Ñuctuation Ðeld :

d(x)\
P

d3keik Õ xT (k)m(k) , (1)

where m(x) is Gaussian white noise with power spectrum

Sm(k1)m(k2)T \ dD3(k1] k2) . (2)

Here is the Dirac delta function and we are assumingdD(k)
that space is Euclidean. The function T (k) is the transfer
function relative to white noise, and it is related simply to
the power spectrum of d(x) :

T (k) \ [P(k)]1@2 . (3)

Note that m(k) and T (k) both have units of [length]3@2 and
that T (k) is an ordinary function while m(k) is a stochastic
Ðeld (a distribution).

The next step is to recognize that equation (1) can be
written as a convolution (Salmon 1996) :

d(x) \ (m \ T )(x) \
P

d3x@m(x@)T ( o x [ x@ o ) , (4)

where

T ( o x o ) \
P d3k

(2n)3 eik Õ xT (k) , (5)

and

Sm(x1)m(x2)T \ (2n)3dD3(x1[ x2) . (6)

The spatial two-point correlation function of d(x) is simply
(2n)3(T \ T )(x).

Thus, we may construct an arbitrary Gaussian random
Ðeld by the convolution of white noise with a convolution
kernel determined by the power spectrum. The white noise
process is formally divergent ; from equation (6), m(x) is
drawn from a Gaussian distribution with inÐnite variance.
This strange behavior arises because m(x) diverges due to
unbounded short-wavelength contributions. The divergence
of d(x) may be cut o† by the transfer function, although the
standard cold dark matter spectrum still leads to a logarith-
mic divergence of the dark matter density Ñuctuations at
small scales. In practice the integral is cut o† at high wave-
number by discretizing space with a Ðnite cell size.

The standard method for generating Gaussian random
Ðelds relies on discretizing equation (1) with a Cartesian
mesh in a Ðnite parallelpiped with periodic boundary condi-
tions. The spatial dynamic range is then limited by the size
of the largest FFT that can be performed. The Fourier
domain is used because the random variables at di†erent
points are statistically independent aside from the condition
m([k) \ m*(k) required to enforce reality of d(x). In the
spatial domain, d(x) has long-range correlations that are
difficult to sample unless one Ðrst goes to Fourier space.

The velocity Ðeld (or displacement Ðeld, in the case of
dark matter particles) obeys similar equations ; only the
transfer function T (k) is modiÐed.

The convolution method described in this paper evalu-
ates the density and velocity Ðelds using equation (4) instead
of equation (1). It relies on the fact that white noise is uncor-
related in the spatial domain as well as the Fourier domain,
hence there is no difficulty in sampling m(x). Once we have
such a sample, it is unnecessary to use a single enormous
FFT to evaluate the convolution equation (4). Tree algo-
rithms may be used (Salmon 1996) or multiple FFTs with
appropriate boundary conditions (Pen 1997). The algo-
rithm we develop extends the ideas of Pen.
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2.1. Discrete Convolution Method without ReÐnement
The heart of our method lies in the discretization of equa-

tions (1)È(6) and their application to density Ðelds with spa-
tially variable resolution. The density Ðeld is represented on
a hierarchy of nested Cartesian grids so that FFT methods
can be used to perform the convolutions.

Before describing convolution with spatially variable
resolution, we Ðrst describe the discrete convolution
method for a single grid of M points per dimension. For
simplicity of presentation we assume here a cube of length L
with periodic boundary conditions, although the code that
implements the convolution is generalized to allow any
parallelpiped. The grid positions are x(m)\ (L /M)m, where
m is an integer triplet with components Equa-m

i
½ [0, M).

tion (1) becomes

d(m)\ ;
i

exp
Ai2n

M
j Æ m

B
T (k)m(k) (7)

where j \ kL /(2n) is the dimensionless wavenumber ; it is
an integer or half-integer triplet with components i

i
½

[[M/2, M/2). The dimensionless transfer function and
spectral noise appearing in equation (7) are given by

T (k)4 [(2n/L )3P(k)]1@2 ,

m(k)\ M~3 ;
m

exp
A
[ i2n

M
j Æ m

B
m(m) , (8)

where m(m) is white noise with variance M3 :

Sm(m1)m(m2)T \ M3dK(m1, m2)

\ M34
5
6
0
0

1 , m1\ m2 ;
0 , m1D m2 .

(9)

The subscript K denotes the Kronecker delta.
The discrete convolution algorithm proceeds through the

following steps.

1. Sample m(m) by generating independent, zero-mean
normal deviates with variance M3 at each spatial grid point.

2. Use the FFT algorithm to evaluate the second line of
equation (8).

3. Multiply m(k) by the discrete transfer function T (k).
4. Use the FFT algorithm to evaluate equation (7).

The result is a discrete approximation to equation (1).
So far, this method is identical to the usual one for gener-

ating Gaussian random Ðelds (Bertschinger 1995) except
that an extra FFT is introduced by sampling m(m) in real
space instead of Fourier space. This requires more compu-
tation but is crucial when we extend the method to a multi-
scale hierarchy, which we do next.

2.2. Mesh ReÐnement
Suppose that we have two-level grid hierarchy as shown

in Figure 1. Now the spatial grid point positions in the
reÐned volume are given by two integer triplets, m for the
coarse grid and n for the subgrid :

x(m, n)\ x
o
]
A L
M
BA

m ] 1
r

n
B

. (10)

The subgrid is reÐned by an integer factor r [ 1, with
An o†set 1, 1) is appliedn

i
½ [0, r). x

o
\ [(r[ 1)L /(2rM)(1,

to center the reÐnement. As a result of mesh reÐnement,
each coarse grid cell is split up into r3 subcells.

FIG. 1.ÈExample of mesh reÐnement with two levels. The coarse grid
has size M \ 9, the subvolume has size and the reÐnement factor isM

s
\ 3,

r \ 4.

Suppose that we already have a sample of white noise on
the coarse grid, Convolution by the appropriatem0(m).
transfer function using equations (7) and (8) then gives the
density Ðeld d(m). To reÐne the sampling, we generate a
mesh-reÐned white-noise sample m(m, n) and convolve it
with a higher resolution transfer function.

The reÐned white-noise sample m(m, n) should retain the
same low-frequency structure as the coarse-grid sample

We ensure this by choosing m(m, n) to be a sample ofm0(m).
Gaussian white noise subject to the linear constraint

;
n

m(m, n) \ r3m0(m) . (11)

The constraint is easy to apply using the Ho†man-Ribak
algorithm (Ho†man & Ribak 1991). One simply generates
an unconstrained white noise sample n) with variancem1(m,
(rM)3 and then applies a linear correction to enforce equa-
tion (11) :

m(m, n) \ m1(m, n) ] m0(m) [ m6 1(m)

where

m6 1(m) 4 r~3 ;
n

m1(m, n) . (12)

The sample so generated is Gaussian white noise satisfying
the constraint equation (11) and having the desired covari-
ance

Sm(m1, n1)m(m2, n2)T \ (rM)3dK(m1, m2)dK(n1, n2) . (13)

Equation (12) has a simple interpretation. Mesh reÐne-
ment takes place by splitting each coarse cell (labeled by m)
into r3 subcells. The coarse-grid white noise value is Ðrstm0spread to each of the subcells, then a high-frequency correc-
tion is added.m1[ m6 1

2.3. Subgrid Convolution
Our method requires performing several convolutions

over the subgrid. In this subsection we describe the method
for a generic high-resolution convolution, which is Ðrst
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expressed in Fourier space as follows :

d(m, n)\ ;
k

exp [ik Æ x(m, n)]T (k)m(k) . (14)

The sum is taken over the extended Fourier space of size
(rM)3. This Fourier space extends to wavenumbers r times
greater than that of equation (7). We can write the wavevec-
tor using two integer (or half-integer) triplets, j and b :

k \
A2n

L
B
(j ] Mb) , (15)

where andi
i
½ [[M/2, M/2) b

i
½ [[(r [ 1)/2, (r[ 1)/2].

The set of all j for a given b is called a Brillouin zone. The
coarse grid corresponds to the fundamental Brillouin zone,
b \ (0, 0, 0). Mesh reÐnement extends the coverage of wave-
number space by increasing the number of Brillouin zones
to r3, where r is the reÐnement factor.

The major technical challenge of our algorithm is to
perform the convolution of equation (14) without storing or
summing over the entire Fourier space. This is possible
when d(m, n) is required over only a subgrid in the spatial
domain. The Ðrst step is to note that equation (14) is equiva-
lent to

d(m, n)\ ;
m@,n@

m(m@, n@)T (m [ m@, n [ n@) , (16)

where

m(m, n)\ ;
k

exp [ik Æ x(m, n)]m(k) ,

T (m, n)\ (rM)~3 ;
k

exp [ik Æ x(m, n)]T (k) . (17)

Now, mesh reÐnement is performed only over the subgrid
of size where so it is not necessary to evalu-(rMs)3, Ms\ M,
ate m(m, n) and T (m, n) for all (rM)3 high-resolution grid
points. We set m(m, n) outside of the subgrid\ m0(m)
volume. Consequently, T (m, n) needs to be evaluated at
high resolution only to distances of grid points in^rM

seach dimension in order that all contributions to d(m, n)
be included. We will describe how the transfer functions
T (m, n) are computed in the next subsection.

The function m(m, n) must also be evaluated on the
subgrid. Because this is a sample of white noise, we simply
draw independent real Gaussian random numbers with
zero mean and variance (rM)3 at each grid point. Subtrac-
ting a mean over coarse grid cells (eq. [12]) or imposing any
other desired linear constraints (using the Ho†man-Ribak
method) is easily accomplished.

Before proceeding further, let us note that there is
another way that we might generate an ““ exact ÏÏ subgrid
sample, namely to evaluate both m(m, n) and T (m, n) on the
full grid of size (rM)3 and perform the convolution on this
grid. Although this may appear to be the correct sampling
method, in fact it is not, given that outside of the subvolume
the Ðelds are stored at the lower resolution of a M3 grid. To
see this, consider the relation between gravity and density,
$ Æ g P [d. Inside the subvolume, g receives a tidal contri-
bution from the source d outside the subvolume. The
Gaussian random Ðelds are being prepared as initial condi-
tions for a simulation code that computes gravity using
only the low-resolution density Ðeld outside the subvolume.
If the initial conditions code were to compute gravity using
the high-resolution density Ðeld everywhere, then the
gravity Ðeld of the initial conditions would be inconsistent
with the gravity Ðeld of the simulation code, leading to time

integration errors. The mesh reÐnement should be per-
formed in a way that is consistent with the Poisson equa-
tion.

The gravity Ðeld can be written as a convolution over the
density Ðeld. Outside of the subvolume, only the low-
resolution density Ðeld should be used. This same argument
applies to any Ðeld that is computed as a convolution over
all space, including the density Ðeld itself (eq. [16]). Thus,
the correct sampling method sets m(m, n) outside of\ m0(m)
the subgrid volume. Note that this means that the two-
point correlation function of d (or any Ðeld) will receive
contributions of di†erent resolution from the various sub-
grids. As a result, unless the subgrid is extended to the entire
volume, the power spectrum of the density Ðeld will not
exactly match the input power spectrum P(k). However, for
realistic power spectra, the di†erence between the exact and
sampled power spectra are small because high-frequency
contributions outside the subvolume oscillate rapidly and
cancel in the convolution over the transfer function.

Once we have m(m, n) and T (m, n) on the subgrid, the
next step is to Fourier transform them. For simplicity in
presentation, let us suppose that the subgrid is cubic with

where is the number of coarse grid pointsNs \ (2rMs)3, M
sthat are reÐned in each dimension. The result is

m@(k@) \ 1
Ns

;
x

exp ([ik@ Æ x)m(x) ,

T @(k@) \;
x

exp ([ik@ Æ x)T (x) , (18)

where the sums are taken over the Ðne grid points in the
subvolume, which has been doubled to the accommodate
periodic boundary conditions required by Fourier convolu-
tion. Primes are placed on the wavevectors and on the
transformed quantities to distinguish them from the orig-
inal quantities m(k) and T (k). Note that the sampling of
k-space is di†erent in equations (17) and (18) because the
length of the spatial grid has changed from L to (2M

s
/M)L .

Also, T @(k@) is in general not spherically symmetric even if
T (k) is spherical.

The Ðnal step is to perform the convolution by multipli-
cation in the subgrid k-space followed by Fourier trans-
formation back to real space :

d(x) \;
k @

exp (ik@ Æ x)T @(k@)m@(k@) . (19)

The reader may verify that equations (18) and (19) give
results identical to equations (14) and (16), when m(x) is zero
outside of the subvolume. (The contribution to d coming
from outside the subvolume is given by the original,m D 0
low-resolution sample before mesh reÐnement, as discussed
in ° 3.) Thus, we have achieved the equivalent of convolu-
tion on a grid of size (rM)3 by using a (typically smaller) grid
of size Note well that T @ is not the same as T ,(2rM

s
)3.

because it is based on spatially truncating T (m, n) and
making it periodic on a grid of size instead of L .(2M

s
/M)L

So far the method looks straightforward. However, some
practical complications arise which will discuss later, in the
computation of the transfer functions in real space (° 2.4)
and in the split of our random Ðelds into long- and short-
wavelength parts on the coarse and Ðne grids, respectively
(° 3.2).

Finally, we note that we will perform the convolution of
equation (14) using a grid of size in each dimension in2rM

sthe standard way using FFTs without requiring periodic
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boundary conditions for the subgrid of size We calcu-rM
s
.

late the transfer functions in the Ðrst octant of size (rM
s
)3

and then reÑect them periodically to the other octants using
reÑection symmetry (odd along the direction of the dis-
placement, otherwise even). In order to achieve isolated
boundary conditions, the white noise Ðeld is Ðlled in one
octant and set to zero in the other octants. If we desire to
have periodic boundary conditions (e.g., for testing), we can
set and Ðll the full reÐnement grid of sizeM

s
\M/2 (2rM

s
)3

with white noise.

2.4. Computation of Transfer Functions
The convolution method requires calculating the transfer

functions T (x) for density, velocity, etc., on a high-
resolution grid x(m, n) of extent grid points in each^rM

sdimension. The transfer function is given in the continuous
case by equations (3) and (5) and in the discrete case by the
Ðrst line of equation (8) and the second line of equation (17).
Our challenge is to compute the transfer functions on the
subgrid without performing a FFT of size (rM)3, under the
assumption that the problem is too large to Ðt in the avail-
able computer memory. Also, we wish to avoid a naive
summation of the second line of equation (17), which would
require operations. In practice, r will be aO(r6M

s
3M3)

modest-size integer (from 2 to 8, say), while will be muchM
slarger, of order M/r.

We present three solutions to this challenge. The Ðrst two
are based, respectively, on three-dimensional discrete
Fourier transforms, while the third is based on a spherical
transform.

2.4.1. Exact Method

The Ðrst method is equivalent to the second line of equa-
tion (17) and is therefore exact in the sense of yielding the
same transfer functions as if we had used full resolution on a
grid of size (rM)3. Note that Pen (1997) would call this
method approximate because, after the FFT to the spatial
domain, the results di†er from the exact spatial transfer
function of equation (5). We will say more about this in °
2.4.3, but note simply that the discretization of k-space
required for the FFT makes it impossible for the transfer
function to be exact in both real space and k-space. The
transfer function of this subsection is exact in k-space and is
equivalent to the usual k-space sampling method.

We rewrite the second line of equation (17) as

T (m, n)\ ;
i

ei(2n@M)i Õ mT (j, n) , (20)

where

T (j, n)\ (rM)~3 ;
b

exp
C
i
A 2n
rM
B
(j ] Mb) Æ n

D
T (k) .

(21)

The Fourier space is split into Brillouin zones according to
equation (15). Beware that the symbol T has three di†erent
uses here which are distinguished by its arguments : it is
either the transfer function in real space T (m, n), the transfer
function in Fourier space T (k), or else the mixed Fourier/
real case T (j, n).

Equation (20) is a simple FFT of size M3. This is the same
size as is used for generating the coarse grid initial condi-
tions, so it is tractable. However, we save the results only at

those coarse grid points m that lie in the reÐnement sub-
volume, discarding the rest. By performing some unneces-
sary computation, the FFT reduces the number of
operations required to compute this sum for all n from

to O(r3M3 log M), a substantial savings.O(M
s
3M3)

Equation (21) is also a FFT, in this case of size r3.
However, we cannot evaluate both equations (20) and (21)
using FFTs without storing T (j, n) for all (rM)3 points. In
order to reduce the storage to a tractable amount (no more
than the larger of M3 and we must perform an8r3M

s
3),

outer loop over n to evaluate T (m, n). For each n, we must
compute T (j, n) for all j, requiring direct summation in
equation (21). The operations count for all n is then
O(r6M3), which dominates over the O(r3M3 log M) for
equation (20). The operations count for equation (21) can be
reduced by a factor of up to 6 by using symmetries when
T (k) is spherically or azimuthally symmetric. Nonetheless, if
we use this method, computation of the transfer functions is
generally the most costly part of the whole method.

2.4.2. Minimal k-Space Sampling Method

If the transfer function falls o† rapidly with distance in
real space, there is another way to evaluate T (m, n) that is
much faster. It is based on noting that the Fourier sum is an
approximation to the Fourier integral, and another approx-
imation is given by simply changing the discretization in
k-space. In equation (17), the step size in k-space is 2n/L ,
where L is the full size of the simulation volume. If we
increase this step size to the transfer function(M/2M

s
)2n/L ,

T (k) will be evaluated with exactly the sampling needed for
T @(k@) in equation (19). In this case we do not even need to
transform T (k) to the spatial domain, truncate and period-
ize on the subgrid to give T (m, n), and then transform back
to get T @(k@). We simply replace T @ with T in Fourier space.
This is exactly equivalent to decreasing the k-space
resolution in equation (17) to the minimum needed to
sample T (m, n) on the subgrid.

This method is extremely fast but its speed comes with a
cost. Low wavenumbers are sampled poorly compared with
equations (20) and (21), and the transfer functions are trun-
cated in a cube of size instead of L . The decreased(2M

s
/M)L

k-space sampling leads to signiÐcant real-space errors for
distances comparable to the size of the box. This may be
tolerable for the density but is unacceptable for the velocity
transfer function. In ° 3.2 we will introduce anti-aliasing
Ðlters for the coarse grid for which the minimal k-space
sampling method is well-suited. In ° 4 we will revisit the use
of the minimally sampled transfer function for the density
Ðeld.

2.4.3. Spherical Transform Method

Another fast method can be used when T (k) is spherically
symmetric, as it is for the density and the radial component
of displacement. In this case we approximate the second line
of equation (17) as a continuous Fourier integral,

T (x) B (rM)~3
P d3k

(*k)3 eik Õ xT (k)

\
A L
2nrM

B3P sin kr
kr

T (k)4nk2 dk

\
A L
2nrM

B3 2n
r

Im
P
~=

=
kT (k)eikr dr . (22)
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Aside from units, this is essentially the same as equation (5).
The last integral in equation (22) can be performed by trun-
cating the Fourier integral at the Nyquist frequency of the
subgrid, and then using a one-dimensionalkNy\ nrM/L
FFT. The method is much faster than equations (20) and
(21).

The Fourier integral of equation (22) can be evaluated
accurately, yielding an essentially exact transfer function in
real space. This approach was advocated by Pen (1997).
However, this is not necessarily the best approach for
cosmological simulations with periodic boundary condi-
tions. In order to achieve periodic boundary conditions,
such simulations compute the gravitational Ðelds with
k-space discretized at low frequencies as in the second line
of equation (17). In this case it would be inconsistent to use
equation (22) on the top-level grid with periodic boundary
conditionsÈthe displacement Ðeld would not be pro-
portional, in the linear regime, to the gravity Ðeld computed
by the Poisson solver of the evolution code. However, the
spherical method is satisfactory for reÐnements without
periodic boundary conditions.

2.4.4. Anisotropic Transfer Functions

In order to use equation (22), the transfer function must
be spherically symmetric. This seems natural for the density
Ðeld given that the power spectrum P(k) is isotropic.
However, the standard FFT-based method for computing
samples of the density Ðeld violates spherical symmetry
through the Cartesian discretization of k-space. As we
noted above, periodic boundary conditions are inconsistent
with spherical symmetry on the largest scales. Moreover,
the displacement transfer function is multiplied by a factor
ik/k2, which breaks spherical symmetry for each Cartesian
component.

To examine the Ðrst concern, namely the nonisotropic
discretization in Fourier space, we examine the transfer
function computed using the exact method of ° 2.4.1. Figure
2 shows the result for the Ñat "CDM model ()" \ 0.65,
h \ 0.65, with a r \ 4 reÐnement of ap8\ 1.0) Ms \ 32
subgrid of a M \ 256 grid. The coarse grid spacing is 1
Mpc. In e†ect, the transfer function has been computed at
10243 resolution on a grid of spacing 0.25 Mpc but is shown
only within a central region 64 Mpc across Mpc).(2Ms ] 1

There is a slight banding visible along the x- and y-axes
in Figure 2. The amplitude of this banding ranges from a
relative size of about 20% at small r to more than a factor of
2 at the edges (where the transfer function is very small) ;
however, it is much smaller away from the coordinate axes.
This anisotropic structure arises because, although T (k) is
spherically symmetric, the Fourier integration is not carried
out over all k but rather only within a cube of size 2nrM/L .
The Fourier space is periodic (because the real space is
discrete), which breaks the spherical symmetry of T (x). In
this case it is the anisotropy at large k that produces the
anisotropy in real space.

This anisotropy is present in the initial conditions gener-
ated with the with the COSMICS package (Bertschinger
1995). The authorÏs rationale for allowing it was that it is
preferable to retain all the power present in the initial
density Ñuctuation Ðeld. Including all power in the Fourier
cube gives the best possible resolution at small scales while
producing a modest anisotropy along the coordinate axes.
However, the e†ects of the anisotropy are unclear and
should be more carefully evaluated. In ° 3.1, we will show

FIG. 2.ÈSlice through the center of the density transfer function in real
space (““ square root of the correlation function ÏÏ). The exact method of
° 2.4.1 has been used with an unÐltered power spectrum. The cosmological
model is Ñat "CDM, and the box is 64 Mpc across. False colors are scaled
to the logarithm of the transfer function, which shows 6 orders of magni-
tude. Anisotropy of the discrete Fourier transform leads to anisotropic
features that are barely visible along horizontal and vertical axes through
the center. [See the electronic edition of the Journal for a color version of this
Ðgure.]

how the density transfer function can be made isotropic by
Ðltering. To determine whether the anisotropy of unÐltered
initial conditions causes any signiÐcant errors, full nonlin-
ear numerical simulations should be performed with and
without Ðltering. That test is beyond the scope of this paper.

Additional considerations arise when calculating the
transfer function for the linear velocity or displacement
Ðelds. (The linear velocity and displacement are proportion-
al to each other.) The displacement Ðeld w(x) is related to
the density Ñuctuation Ðeld by $ Æ w\ [d(x) in real space
or in k-space. Each component of theTt(k) \ (ik/k2)T (k)
displacement Ðeld is anisotropic. This presents no difficulty
for the discrete methods of °° 2.4.1È2.4.2. There is one sub-
tlety of implementation, however : in Fourier space, the dis-
placement Ðeld must vanish on the Brillouin zone
boundaries. That is, the component of along mustTt e

xvanish on the surfaces and similarly for thek
x
\ ^kNyother components. This is required because each com-

ponent of is both odd and periodic.TtIf the density transfer function is Ðltered so as to be spher-
ical in real space, then the displacement Ðeld is radial in real
space and we can obtain the radial component simply by
applying GaussÏs law:

Tt(r) \ [ 1
r2
P
0

r
T (r@)r@2 dr@ . (23)

The radial integral can be performed from a tabulation of
the spherical density transfer function in real space, T (r), by
integrating a cubic spline or other interpolating function.
The Cartesian components of displacement follow simply
from Tt\ Tt(r)er.
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In summary, we will use the spherical method in the case
of spherical transfer functions, otherwise we will use one of
the discrete methods. If the transfer function is sufficiently
localized in real space so that the Fourier space may be
coarsely sampled, the minimal k-space sampling method
may be used. In all cases we will compare against the exact
method to test the accuracy of our approximations.

3. IMPLEMENTATION

In this section we present our implementation of the two-
level adaptive mesh reÐnement method described in ° 2, and
we discuss the split of our Ðelds into long- and short-
wavelength parts on the coarse and Ðne grids, respectively.

The high-resolution density Ðeld is the superposition of
two parts :

d(m, n)\ d8 0(m, n)] d1(m, n) , (24)

where

d8 0\ m0(m) \ T , d1\ [m1(m, n)[ m6 1(m)] \T . (25)

The convolution operator \ is deÐned by equation (16), with
the transfer function T (m, n) deÐned on a high-resolution
grid. The net density Ðeld is the superposition arising from
the coarse-grid white noise sample and its high-m0(m)
frequency correction as in equation (12).m1(m, n) [ m6 1(m)
Basically, we split the density Ðeld (and similarly the dis-
placement and velocity Ðelds) into long-wavelength and
short-wavelength parts. In this section we Ðrst describe the
computation of the short-wavelength part followed byd1,the long-wavelength part d8 0.

3.1. Short-Wavelength Components
The high-frequency part of the density Ðeld, d1\

is straightforward to calculate using the(m1[ m6 1)\T ,

methods of °° 2.3 and 2.4. Let us Ðrst consider the transfer
functions for the density and displacement Ðelds, which we
show in Figure 3. In order to eliminate the anisotropy
appearing in Figure 2, we have applied a spherical Hanning
Ðlter, multiplying T (k) by for andcos (nk/2kNy) k \ kNyzeroing it for where This Ðlter hask [ kNy, kNy\ nrM/L .
removed the anisotropic structure and has also smoothed
the density Ðeld near x \ 0. We have used the spherical
method of ° 2.4.3. The exact method gives results that are
visually almost indistinguishable, with maximum di†er-
ences of order 1% because the Hanning Ðlter does not com-
pletely eliminate the anisotropy of the discrete Fourier
transform. (The Hanning Ðlter is optional ; see the dis-
cussion following Fig. 2.)

Each Cartesian component of the displacement transfer
function displays a characteristic dipole pattern because of
the projection from radial motion : A densityt

x
\ (x/r)t(r).

enhancement at the origin is accompanied by radial infall
(with changing sign across the origin). Note that thet

xdisplacement transfer function falls o† much less rapidly
with distance than the density transfer function, illustrating
the well-known fact that the linear velocity Ðeld has much
more large-scale coherence than the density Ðeld. The linear
displacement, velocity, and gravity Ðelds are all proportion-
al to each other, so one may also interpret as the transferTtfunction for the gravitational Ðeld.

The next step in computing the subgrid contribution to
the initial conditions is to generate an appropriate sample
of Gaussian noise. Figure 4 shows two samples of white
noise for the high-resolution subgrid. The left sample is pure
white noise n), which is the correct noise sample if wem1(m,
wish to generate a Gaussian random Ðeld with periodic
boundary conditions on a grid of size 64 Mpc (the full width
that is shown). The right sample is nonzero only in a region

FIG. 3.ÈSlice through the center of the transfer functions in real space for the density Ðeld (left) and one component of the displacement Ðeld (right). The
model parameters are the same as in Fig. 2 except that a spherical Hanning Ðlter (cosine in Fourier space) has been applied to reduce the anisotropy that was
seen in Fig. 2. False colors show the logarithm of the transfer function, with 6 orders of magnitude shown for the density and 3 orders of magnitude for the
displacement. (The absolute value of the displacement is shown; it is negative in the right half of the image.) When convolved with white noise, these transfer
functions give the density Ñuctuation and x-displacement Ðelds in linear theory at redshift z\ 0. [See the electronic edition of the Journal for a color version of
this Ðgure.]
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FIG. 4.ÈSlices through a sample of Gaussian noise in a cube of size 64 Mpc. L eft : Pure white noise n). Right : Zero-padding is used for isolatedm1(m,
boundary conditions, and the means have been subtracted over cells of size 1 Mpc so that we show False colors are scaled to linear valuesm1(m, n) [ m6 1(m).
ranging from ^2 standard deviations of The zero level is light green. Because of the predominance of high-frequency power, the Ðltering applied to them1.right-hand image is not apparent, but the two samples di†er in the upper left quadrant. [See the electronic edition of the Journal for a color version of this
Ðgure.]

32 Mpc across, as is appropriate for isolated boundary con-
ditions in a subgrid, and the means over coarse grid cells
have been subtracted, i.e., we plot This ism1(m, n) [ m6 1(m).
the appropriate noise sample for computing the short-
wavelength density Ðeld d1.

Figure 5 shows the result of convolving the two noise
samples of Figure 4 with the density transfer function of
Figure 3. The left-hand panel gives while the right-m1 \T ,
hand panel gives the desired short-wavelength Ðeld n).d1(m,
The two Ðelds di†er in the upper left quadrant because of

FIG. 5.ÈHigh-resolution density Ñuctuation Ðeld obtained by convolving white noise (Fig. 4) with the "CDM density transfer function (Fig. 3, left panel).
False colors are scaled to linear values ranging from ^2 standard deviations for the left panel. The left and right panels correspond to the same panels of Fig.
4. The two density Ðelds are strikingly di†erent because long wavelengths have been suppressed in the right image by subtraction of coarse-cell means in Fig.
4. The long-wavelength components will be restored to the right image by addition of the coarse grid sample. [See the electronic edition of the Journal for a
color version of this Ðgure.]
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the subtraction of coarse-cell means from the white noise
Ðeld used to generate the left image. Although the e†ect of
this subtraction is barely evident in Figure 4, it dominates
the comparison of the two panels in Figure 5 because con-
volution by the transfer function acts as a low-pass Ðlter.
The left panel of Figure 5 gives a complete sample of d(x) on
a periodic grid of size 64 Mpc, while the right panel shows
only the short-wavelength components coming from mesh
reÐnement.

Careful examination of the right panel of Figure 5 shows
that the Ðnite width of the transfer function has caused a
little smearing at the boundaries, which are matched
periodically to the opposite side of the box by the Fourier
convolution. (A few pixels along the right and bottom edges
of the left panel di†er from green.) However, these edge
e†ects do not represent errors in the short-wavelength
density Ðeld. Instead, they illustrate the fact that outside of
the reÐned region, the gravity Ðeld should include tidal con-
tributions from the short-wavelength Ñuctuations inside the
reÐnement volume. For the purpose of computing n)d1(m,
within the subvolume, we simply discard everything outside
the upper left quadrant.

As a test of our transfer function methods, we calculated
n) using the exact transfer function instead of thed1(m,

spherical one. The rms di†erence between the Ðelds so com-
puted was 0.0014 standard deviations, a negligible di†er-
ence. As a test of the whole procedure, we computed the
power spectrum of the left panel of Figure 5 and checked
that it agrees within cosmic variance with the input "CDM
power spectrum.

We also compared the displacement Ðeld computed using
the exact transfer with that computed using the spherical
one. The rms di†erence was 0.0062 standard deviations, still
negligible. Then we compared the divergence of the dis-
placement Ðeld (computed in Fourier space as ik Æ w) with
the density Ðeld, expecting them to agree perfectly. Inter-
estingly, this is not the case for the exact (or spherical) trans-
fer functions. When the transfer functions are truncated in
real space and made periodic on a grid of size (2M

s
/M)L ,

despite the fact that on the full reÐnedT d@ (k@)D ik@ Æ Tt@ (k@)
grid The prime on the transfer functionsTd(k)\ ik Æ Tt(k).
indicates a di†erent Fourier space, as discussed after equa-
tion (18). The only way to test [$ Æ w\ d for the exact
transfer function is to perform a FFT on the full reÐned grid
of (rM)3\ 10243 grid points. In ° 3.3 we will perform an
equivalent test with an end-to-end test of the entire method
using a 10243 grid.

3.2. L ong-Wavelength Components
Now we consider the contribution to the densityd8 0(m, n),

Ðeld from the coarse grid. As we see from equation (25), in
principle we can compute by spreading the originald8 0coarse-grid white noise sample to the r3 subgridm0(m)
points for each coarse grid point (i.e., all r3M3 points) and
then convolving with the high-resolution transfer function
as in equation (16) :

d8 0(m, n)\ ;
m@,n@

m0(m@)T (m [ m@, n [ n@) . (26)

However, this method is impractical, because the contribu-
tions to coming from large distances are not negligibled8 0because of the long range of the transfer functions
(especially for the velocity transfer function). For the short-
wavelength Ðeld n) this causes no problems becaused1(m,

the noise Ðeld is nonzero only within the subvolume.m1Here, however, the noise Ðeld is nonzero over them0(m)
entire simulation volume. Including all relevant contribu-
tions in the convolution as written would require working
with the transfer function on the full grid of size (rM)3,
which is exactly what we are trying to avoid.

A practical solution is to rewrite equation (26) as a con-
volution of the coarse-grid density Ðeld with a short-ranged
Ðlter :

d8 0(m, n) \ ;
m@,n @

d0(m@)W (m [ m@, n [ n@) . (27)

One can easily check that this is exactly equivalent to equa-
tion (26) provided that

W (m, n) \ (rM)~3 ;
k

exp [ik Æ x(m, n)]
T (k)
T (k0)

, (28)

where is the projection of k into the funda-k0\ (2n/L )j
mental Brillouin zone (eq. [15]).

An exact evaluation of equation (27) still requires using a
full (rM)3 grid. However, we will see that W (x) falls o†
sufficiently rapidly with distance that contributions to

coming from large distances are negligible. (Thisd8 0(m, n)
will not be true for the velocity Ðeld, but we will develop a
variation to handle that case later.) Thus, we may truncate
W (x) at the boundary of the reÐnement region and perform
the convolution of equation (27) using a grid just as(2rM

s
)3

we did for the short-wavelength Ðeld. The errors of this
procedure will be quantiÐed below.

Equation (27) has a simple interpretation. The coarse-
grid density Ðeld is spread to the Ðne grid by repli-d0(m)
cating the coarse-grid values to each of the r3 grid points
within a single coarse grid cell. The result is an artifact
called aliasing. In real space this artifact is manifested by
having constant values within pixels larger than the spatial
resolution. In k-space the e†ect is to replicate low-frequency
power in the fundamental Brillouin zone to higher fre-
quencies. Thus, the wrong transfer function is used if one
simply sets to Equation (28) deÐnes an anti-d8 0(m, n) d0(m).
aliasing Ðlter which corrects the transfer function from the
coarse grid (with wavevectors in the fundamental Bril-k0louin zone) to the full k-space. It smooths the sharp edges
that arise from spreading to the Ðne grid. The anti-d0(m)
aliasing Ðlter removes the artifacts caused by replication of
the fundamental Brillouin zone.

The anti-aliasing Ðlter is manifestly nonspherical, so we
cannot use the spherical transform method of ° 2.4.3 to
evaluate it. However, W (m, n) is sharply peaked. This is
obvious from the fact that its Fourier transform is constant
over the fundamental Brillouin zone ; the Fourier transform
of a constant is a delta function. Thus, we expect W (m, n) to
be peaked on the scale of a few coarse grid spacings. As a
result, the minimal k-space sampling method of ° 2.4.2
should suffice (with a variation for the velocity Ðeld).

The division by in equation (28) requires that weT (k0)compute the coarse-grid density Ðeld without ad0(m)
Hanning Ðlter ; otherwise would be zero in the cornersT (k0)of each Brillouin zone. Simply put, if we want to correctly
sample the density Ðeld at high resolution, we should not
cut out long-wavelength power by Ðltering. However, we
will apply a spherical Hanning Ðlter at the shortest wave-
length to remove the anisotropic structure that was appar-
ent in Figure 2.
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At the corners of each Brillouin zone butk0\ 0 k D 0
(aside from the fundamental mode for the whole box). At
these wavevectors, has no power and so no error isd0(m)
made by setting In the case of the displace-T (k)/T (k0)] 0.
ment Ðeld, each component of vanishes along anTt(k 0)entire face of the Brillouin zone, as explained in the para-
graph before equation (23). We also set to zero these contri-
butions to the Fourier series in equation (28).

Figure 6 shows the density anti-aliasing Ðlter computed
with a spherical Hanning Ðlter applied to T (k). The minimal
k-space method gives good agreement with the much slower
exact calculation. Along the axes at the edges of the volume
the errors are up to a factor of 2, but W is very small and
oscillates, making these errors unimportant. The banding is
due to the sign oscillations of W . They have a characteristic
scale equal to the coarse grid spacing, and they arise
because of the discontinuity of at Brillouin zoneT (k)/T (k0)boundaries in equation (28). Such oscillations are character-
istic of anti-aliasing Ðlters. The Ðlter falls o† sufficiently
rapidly with distance from the center that we can expect
accurate results by truncating it outside the region shown.

Figure 7 shows the corresponding result for the displace-
ment (or velocity or gravity) Ðeld Ðlter. (Recall that the
displacement, velocity, and gravity are proportional to one
another in linear theory.) Now the errors of the minimal
k-space sampling method are signiÐcant. They arise because
the minimal sampling method forces W (m, n) to be periodic
on the scale of the box shown in the Ðgure (twice the subgrid
size), while with the exact method the scale of periodicity is
larger by a factor (or 4 in this case). In other words,M/2M

sthe Ðlter does not fall o† very rapidly with distance, so
truncating it and making it periodic in the box of size 2rM

sintroduces noticeable errors. However, because the Ðlter is
still sharply peaked and oscillatory with small amplitude, it

is possible that these errors are negligible. We will quantify
the errors in ° 3.3.

The procedure is now similar to that of ° 3.1. Once we
have the anti-aliasing Ðlters, the next step is to obtain
samples of the coarse-grid Ðelds and that wed0(m) w0(m)
wish to reÐne. We do this using the convolution method of °
2.1. For testing purposes, we construct a coarse-grid sample
of white noise, which exactly equals the long-m0(m)
wavelength parts of the noise shown in the left panel of
Figure 4. This was achieved by modifying GRAFIC
(Bertschinger 1995) to sample a white noise Ðeld m(m) in the
spatial domain. Fourier transformation to m(k) then allows
the calculation of density (and similarly displacement) by
equation (7). As a result, we have chosen our coarse grid
sample so that within the reÐnement subgrid.m0(m) \ m6 1(m)
This choice is made so that later we can see directly how
long- and short-wavelength components of the noise con-
tribute to the Ðnal density Ðeld.

Figure 8 shows the white noise sample adopted for the
coarse grid. The right panel is obtained by averaging the left
panel of Figure 4 over 43 subgrid mesh points (1 Mpc3
volume). Figure 4 shows only a single thin slice of width
0.25 Mpc, while Figure 8 shows coarse cells of thickness 1
Mpc, so one should not expect the two Ðgures to appear
similar. The left panel of Figure 8 shows a full slice of size
256 Mpc, obtained by Ðlling out the rest of the volume with
white noise.

This white noise sample on the coarse grid was convolved
with the transfer function using GRAFIC to give the coarse
density Ðeld that we wish to reÐne. The results ared0(m)
shown in Figure 9. The right panel shows a 64 Mpc sub-
volume including the 32 Mpc reÐnement region. The
obvious pixelization is the result of mesh reÐnement : the
coarse grid density Ðeld has been spread to the Ðne grid.

FIG. 6.ÈAnti-aliasing Ðlter W (m, n) for the density. The left panel shows the Ðlter computed using the exact method of ° 2.4.1, while the right panel uses
the minimal k-space sampling method of ° 2.4.2. False colors are scaled to the logarithm of absolute value of the Ðlter, which shows 6 orders of magnitude.
The banded appearance is caused by low-amplitude oscillations. The oscillations act to smooth the sharp edges of the coarse grid Ðelds when they are reÐned
to the subgrid. The di†erence between the two Ðlters is negligible away from the edges. [See the electronic edition of the Journal for a color version of this
Ðgure.]
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FIG. 7.ÈAnti-aliasing Ðlters for the x-component of displacement (or velocity or gravity), computed with the exact (left) and minimal k-space sampling
(right) methods. False colors are scaled to the logarithm of absolute value of the Ðlter spanning 4 orders of magnitude. Because the displacement is sensitive to
longer wavelengths than the density, the di†erences between the two computational methods here is more pronounced than for the density Ðlter of Fig. 6.
[See the electronic edition of the Journal for a color version of this Ðgure.]

This pixelization causes power from wavelengths longer
than the coarse grid spacing to be aliased to higher fre-
quencies. If uncorrected, this aliasing would introduce spu-
rious features into the power spectrum. Thus, the coarse
grid sample must be convolved with an anti-aliasing Ðlter as
described above.

Special care is needed with the boundary conditions for
the anti-aliasing convolution of equation (27). The top grid

density Ðeld Ðlls the subgrid shown in the right paneld0(m)
of Figure 9 without periodic boundary conditions. The anti-
aliasing Ðlter (Fig. 6) has Ðnite extent ; therefore, FFT-based
convolution of the two will lead to spurious contributions
to at the subvolume edges coming from on thed8 0 d0opposite side of the box. To avoid this, we surround the
subvolume (which occupies one octant of the convolution
volume) with a bu†er region of width one-half of the sub-

FIG. 8.ÈSlices through the white noise sample for the coarse grid. L eft : Full cube of size 256 Mpc. Right : MagniÐcation of the upper left corner by am0(m)
factor of 4 to show the region that will be reÐned. Aliasing (sharp pixel boundaries) is now evident. False colors are scaled to linear values ranging from ^2
standard deviations. [See the electronic edition of the Journal for a color version of this Ðgure.]
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FIG. 9.ÈSlices through the coarse grid density Ðeld resulting from convolution of Fig. 8 with the density transfer function sampled on the coarsed0(m)
grid. L eft : Full cube of size 256 Mpc, with periodic boundary conditions. Right : MagniÐcation of the upper left corner by a factor of 4 to show a square of size
64 Mpc. This panel shows the 32 Mpc region that we wish to reÐne to include the correct small-scale power. The magniÐed pixels represents an aliasing
artifact. False colors are scaled as in Fig. 5. Random numbers were chosen so that the right panel corresponds to the coarsely sampled long-wavelength
components of the left panel of Fig. 5. [See the electronic edition of the Journal for a color version of this Ðgure.]

volume in each dimension. The correct density values from
the top grid are placed in this bu†er. Because our sub-
volume is not centered but rather is placed in the corner of
the cube of size we wrap half of the bu†er to the other2rM

s
,

side of this cube. The results are shown in Figure 10.

Figure 11 shows the density Ðeld and the corre-d8 0(m, n)
sponding velocity Ðeld after convolution with the anti-
aliasing Ðlter W . The minimal k-space Ðlter has been used
here ; there would be almost no discernible di†erence if the
exact Ðlter was used instead. The pixelated images of Figure

FIG. 10.ÈSlices through the density (left) and velocity (x-component, right) Ðelds on the coarse grid after a bu†er region of width 16 Mpc has been placed
around the 32 Mpc subvolume in the upper left. In the upper left 48 Mpc area, the left panel matches the right panel of Fig. 9. The bottom and right quartiles
are Ðlled with values from the top and left of the subvolume which were then wrapped periodically. This is clearer for the velocity Ðeld because of its larger
coherence length. The bu†er regions and periodic boundary conditions are needed because of the FFT-based method for convolution with anti-aliasing
Ðlters. [See the electronic edition of the Journal for a color version of this Ðgure.]
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FIG. 11.ÈLong-wavelength density and velocity Ðelds after convolution by the anti-aliasing Ðlter. Each panel is the convolution of the corresponding
panel of Fig. 10 by the appropriate anti-aliasing Ðlter (Fig. 6 for the density, Fig. 7 for the velocity). The anti-aliasing Ðlters have eliminated the pixelization
artifacts present in Fig. 10. Convolution across the discontinuity at the boundary of the bu†er region causes some errors, but these are small within the
desired reÐnement region (the upper left quadrant in these images). [See the electronic edition of the Journal for a color version of this Ðgure.]

10 have now been smoothed appropriately for the transfer
function. Smoothing over pixelization artifacts is the
purpose behind anti-aliasing Ðlters, whether they be applied
in image processing or cosmology.

The convolution method used here is not exact. Quan-
tifying its errors requires evaluating equation (26) or (27)
using a full convolution of size (rM)3. We do this in the next

subsection, where we test all stages of the mesh reÐnement
method.

3.3. Testing the ReÐned Fields
Having computed separately the short- and long-

wavelength contributions to the density and velocity (or
displacement) Ðelds, we combine them in Figure 12 using

FIG. 12.ÈSlices through the 2-level linear density (left) and velocity (x-component, right) Ðelds in a region 64 Mpc across extracted from the 256 Mpc
realization. False colors are scaled to linear values ranging from ^2 standard deviations of the high-resolution Ðelds. The reÐnement subgrid is the upper left
quadrant in each case. Outside of this region the coarse (top) grid values are shown to illustrate how mesh reÐnement increases the resolution. The density
Ðgure may be compared directly with the right-hand panel of Fig. 9. [See the electronic edition of the Journal for a color version of this Ðgure.]
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equation (24) to give the complete multiscale Ðelds. The
fourfold increase in resolution can be seen by comparing the
subvolume with the rest of the Ðeld. The e†ects of higher
resolution are much more pronounced for the density than
they are for the velocity because of the density ÐeldÏs steeper
dependence on wavenumber.

A test of the entire mesh reÐnement procedure can be
made by generating the density and velocity Ðelds at full
10243 resolution over the whole 256 Mpc box. This was
done by modifying the authorÏs GRAFIC code
(Bertschinger 1995) to replace its random numbers in
k-space with an input white noise Ðeld in real space. The
noise Ðeld was constructed to match the upper left quadrant
of the left panel of Figure 4 in a high-resolution region 32
Mpc across and to match the left panel of Figure 8 every-
where else, with noise values made uniform in 1 Mpc cells
(43 grid cells of the 10243 grid). Thus, the white noise Ðeld
was sampled as in Figure 1. In order to have sufficient
computer memory, GRAFIC was run on the Origin 2000
supercomputer at the National Computational Science Alli-
ance.

The results of this full-resolution calculation are shown in
Figure 13. The high-resolution Ðelds are smooth outside of
the reÐnement volume simply because they have been con-
volved with a high-resolution transfer function ; by contrast,
Figure 12 shows only the sampling of a low-resolution mesh
outside of the subvolume. These resolution di†erences are
not important here. Rather, it is the comparison in the high-
resolution subvolume that is important. Evidently, the
density Ðeld is accurately reproduced by the multiscale
algorithm, while there are some visible errors in the velocity
Ðeld.

To quantify these errors, in Figure 14 we show residuals
obtained by subtracting the ““ exact ÏÏ maps from the multi-
scale maps for the 32 Mpc reÐnement subvolume. A priori
we expect three main sources of error :

1. The use of the spherical method for fast computation
of the short-wavelength transfer functions ;

2. The use of the minimal k-space sampling method for
fast computation of the long-wavelength anti-aliasing
Ðlters ; and

3. Truncation of the anti-aliasing Ðlter to perform the
convolution over a subvolume instead of the entire top grid.

All three e†ects are visible in Figure 14. The rows and
columns that are not labeled use the exact Ðlters but are still
subject to the third error, truncation of W (x).

Scaled to the standard deviation of the high-resolution
density Ðeld, the rms errors of density in the subvolume
shown in Figure 14 are 0.04% (upper left), 0.09% (upper
right), 0.06% (lower left), and 0.10% (lower right). Thus, the
major source of error for adaptive reÐnement of the density
Ðeld is the use of a spherical transfer function for the short-
wavelength components. The magnitude of the error is
insigniÐcant for the accuracy of cosmological simulations.
For the velocity Ðeld, on the other hand, the corresponding
rms errors are 3.2% (top row) and 7.0% (bottom row).
Clearly, the anti-aliasing Ðlter step is causing problems for
the long-wavelength velocity Ðeld.

3.4. Solving the Anti-aliasing Problems for the Velocity Field
The long-range coherence of the velocity (or gravity) Ðeld

has been seen to cause difficulties for the evaluation of the
long-wavelength components by anti-aliasing the coarse-
grid sample. This subsection presents a solution.

Several attempts were made to reduce the anti-aliasing
errors while continuing to use a minimal k-space sampling
algorithm.

None of the attempts succeeded until we split the long-
wavelength velocity Ðeld from the top grid into parts due
separately to the mass inside and outside the reÐnement
subvolume. The motivation for this was the idea that the
latter part (the tidal Ðeld within the subvolume caused by
mass outside it) might be smooth enough to require
minimal interpolation to the subgrid. For convenience, the
tidal split was done by setting outside or insidem0(m) \ 0
the subvolume instead of setting the coherenced0(m) \ 0 ;

FIG. 13.ÈDensity (left) and velocity (right) Ðelds computed using a full 10243 grid with random numbers chosen to match the multiscale calculation. This
Ðgure gives the ““ exact ÏÏ results against which to compare Fig. 12. [See the electronic edition of the Journal for a color version of this Ðgure.]
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FIG. 14.ÈErrors in the mesh-reÐned density and velocity Ðelds obtained by subtracting the upper left quadrants of Figs. 12 and 13. False colors are scaled
to ^0.005 standard deviations for the density errors and ^0.2 standard deviations for the velocity errors. Each map is a mosaic of four panels showing the
errors resulting from the two major approximations used in the multiscale computation. The right columns, labeled ““ Approx. T(x),ÏÏ show the e†ect of the
spherical transform method for computing the transfer functions. The lower rows, labeled ““ Approx. W(x),ÏÏ show the e†ect of the minimal k-space sampling
method for computing the anti-aliasing Ðlters. The upper left quadrants show the errors when exact (and computationally expensive) transfer and
anti-aliasing Ðlters are used, while the lower right quadrants show the errors in Fig. 12. There are residual errors even with exact T (x) and W (x) because of the
spatial truncation of W . [See the electronic edition of the Journal for a color version of this Ðgure.]

length of the density Ðeld is so small that very little di†er-
ence is made either way. Linearity of the velocity Ðeld
ensures that when we add together the two parts either way
we get the complete long-range velocity Ðeld.

Figure 15 shows the decomposition of the velocity Ðeld
into the ““ outer ÏÏ and ““ inner ÏÏ parts. They were computed
by zeroing the white noise Ðeld in the appropriate regions
and rerunning GRAFIC. The same boundary conditions

FIG. 15.ÈSplit of the coarse-grid velocity Ðeld into parts due to Ñuctuations outside (left, ““ outer part ÏÏ) and inside (right, ““ inner part ÏÏ) of the reÐnement
subvolume. The two maps together add to give the velocity map of Fig. 10. This decomposition is the key to reducing the anti-aliasing velocity Ðeld errors, as
described in the text. [See the electronic edition of the Journal for a color version of this Ðgure.]
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FIG. 16.ÈVelocity Ðeld errors under di†erent approximations for evaluation of the inner and outer parts shown in Fig. 15. The false colors are scaled to
p/10, where p is the standard deviation. The upper left (exact/exact) and lower middle (minimal/minimal) maps are the same as the two rightmost maps in Fig.
14, where they were imaged with a color stretch only half as large (p/5). Root mean square errors for each map (as a percentage of the rms one-dimensional
velocity) are 3.2, 6.8, 2.7 (top row, left to right) and 3.6, 7.0, 3.2 (bottom row). The bottom right map gives the errors for the best fast method. As in Fig. 14, there
are errors even in the ““ exact ÏÏ case because of the truncation of the anti-aliasing Ðlter. [See the electronic edition of the Journal for a color version of this Ðgure.]

are used as in Figure 10. The character of the two parts is
strikingly di†erent within the reÐnement subvolume (the
upper left quadrant). The outer part is smooth, as expected.
The inner part has a smaller coherence length and it is
well-localized over the upper left quadrant. This spatial
localization and coherence suggest that the truncated
minimal k-space Ðlter will be much more accurate for the
inner part than for the complete velocity Ðeld. For the outer
part, on the other hand, we know that the discontinuities at
the boundary of the bu†er regions will cause appreciable
errors if convolved with the same Ðlter. The smoothness of
the tidal Ðeld inside the subvolume suggests that we use a
much simpler and more localized Ðlter.

Several di†erent Ðlters were tried for the outer (tidal) part
of the velocity Ðeld. The results for three are shown in
Figure 16. The best simple Ðlter was found to be sharp
k-space Ðltering, which sets W (k)\ 0 everywhere except the
fundamental Brillouin zone, where W (k)\ 1 (before the
Hanning Ðlter applied at the Ðne mesh scale). This Ðlter
completely eliminates the aliasing error by eliminating the
replication of the fundamental Brillouin zone in k-space. It
is also much more localized than the exact Ðlter, so that
spurious e†ects from the bu†er truncation in the left panel
of Figure 15 are not convolved into the subvolume. The
price one pays is that it has the wrong shape at small dis-
tances compared with the exact Ðlter, leading to a new
source of errors in the rightmost columns of Figure 16.
However, these errors are smaller than the error made with
the exact Ðlter due to the bu†er truncation (top left panel).

A comparison of the top and bottom rows of Figure 16
shows that the Ðltering of the inner part of the velocity Ðeld
is a minor source of error. It is the tidal Ðeld (the outer part)
that requires delicate handling. Using a sharp k-space Ðlter

for the outer part and minimal k-space Ðlter for the inner
part, our Ðnal errors are 3.2% rms, the same as if we had
used the computationally expensive exact Ðlter throughout.
These errors are probably small enough to be unimportant
in cosmological simulations. They could be further reduced,
at the expense of an increase in computer time and memory,
by increasing the size of the bu†er region for the top grid.

4. MULTIPLE REFINEMENT LEVELS

The ability to reÐne an existing mesh opens the possi-
bility of recursive reÐnement to multiple levels, o†ering a
kind of telescopic zoom into cosmic structures. Before this
digital zoom lens can work, however, there are some imple-
mentation issues to face. The issues addressed in ° 3.3 must
be considered anew in light of recursive reÐnement.

To see the issues arising in recursive reÐnement, consider
a three-level reÐnement with reÐnement factors andr1 r2.By analogy with equations (10) and (12), we write the grid
coordinates and noise Ðelds as

x(m, n, o) \ x
o
]
A L
M
BA

m ] 1
r1

n ] 1
r1 r2

o
B

, (29)

m(m, n, o) \ m2(m, n, o) ] m1(m, n)

[m6 2(m, n) ] m0(m) [ m6 1(m) , (30)

where is obtained by averaging over o. At each level ofm6 2 m6 2the hierarchy there is a di†erent grid (labeled by m, n, and o,
respectively). The variances of the white noise samples are
related by Var (m2) \ r22 Var (m1) \ r12 r22 Var (m0).The main idea of recursive reÐnement is that, once we
have reÐned to level n (where n \ 0 is the periodic top grid
before any reÐnement), the Ðelds computed at that level
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serve as top-grid Ðelds to be reÐned to level n ] 1. Equa-
tions (24), (25), and (27) showed how that reÐnement works
for n \ 0 by applying an anti-aliasing Ðlter to the level-0
Ðelds. For n \ 1 we get

d(m, n, o)\ d(m, n) \ W ] [m2(m, n, o)[ m6 2(m, n)] \ T .

(31)

The procedure for reÐnement to an arbitrary level is now
clear. First we sample the Ðelds at the preceding level and
spread them to the new Ðne grid. Then we convolve with the
appropriate anti-aliasing Ðlter. Next we sample short-
wavelength noise on the new Ðne grid and subtract the
coarse-cell means so that the noise is zero at every higher
level of the hierarchy. This noise is then convolved with the
transfer function and added to the long-wavelength Ðeld to
give the high-resolution Ðeld. This procedure is the same for
all levels of the hierarchy. However, there are some issues to
consider involving the transfer functions and anti-aliasing
Ðlters. We discuss these next.

4.1. Short-Wavelength Components
As was the case for two-level reÐnement, exact sampling

requires that we compute the upper-level sample without
any Ðltering. That is, we should eliminate the Hanning Ðlter
from both the anti-aliasing Ðlter W and the transfer func-
tion T before computing all reÐnements except the last one
at the highest degree of reÐnement. Otherwise we would
lose power present in the intermediate reÐnement levels.

Eliminating the Hanning Ðlter is straightforward for the
anti-aliasing Ðlters used in ° 3. The minimal k-space and
sharp k-space Ðlters are equally easy to compute with or
without a Hanning Ðlter. However, the transfer functions
are an altogether di†erent matter. In ° 3.1 we used spherical
transfer functions after concluding in ° 2.4.2 that the coarse
k-space sampling of the minimal method would give signiÐ-
cant errors for the short-wavelength Ðelds.

Unfortunately, the unÐltered density transfer function is
anisotropic, as was shown in Figure 2. It also has a higher
peak value than the Ðltered transfer function in Figure 3.
Computing the exact transfer function is unacceptably
costly, with the operations count scaling as the sixth power
of the total reÐnement factor (i.e., the product of the individ-
ual reÐnement factors for each level). Thus, we are forced to
reconsider the spherical and minimal sampling methods for
the transfer functions.

The unÐltered density is nonspherical because k-space is
sampled in a cube instead of a sphere. Besides creating
anisotropy, this sampling increases the small-scale power.
As an alternative, we might use the spherical method of
equation (22) with a Hanning Ðlter but with a maximum
spatial frequency (i.e., the cuto† for the Hanning Ðlter)
larger than the Nyquist frequency n/*x for grid spacing *x.
This is easily done by increasing the Nyquist frequency by a
factor f[ 1 to include the high-frequency waves in the Bril-
louin zone corners with o k o[ n/*x. For f\ 1.838 and the
power spectrum parameters used before, this method repro-
duces the correct peak value of the density transfer function.
However, the spherical method cannot reproduce the
anisotropy evident in Figure 2, which is important on small
scales. (For multilevel reÐnement, exact sampling requires
that we use the anisotropic transfer functions at all but the
Ðnest reÐnement. The reÐnement process itself magniÐes
cubical pixels. This anisotropy is canceled by summing over

the contributions from di†erent levels of the hierarchy only
if we use anisotropic Ðlters.) On the other hand, the velocity
transfer function is an integral over the density transfer
function and therefore is much smoother. Errors at small r
due to the neglect of anisotropy are much less important for
the velocity Ðeld. Thus, we might approximate the correct,
anisotropic transfer function for the radial velocity by the
spherical one.

Based on these considerations, we reconsider both the
spherical and minimal k-space sampling methods for
approximating the unÐltered transfer functions. Figure 17
shows the residuals from the exact, anisotropic transfer
functions. Comparison with Figure 14 shows that removal
of the Hanning Ðlter adds no signiÐcant errors provided
that the minimal method is used for the density and the
spherical method is used for the velocity. The spherical
method works poorly for the density Ðeld because it
neglects the small-scale anisotropy. The minimal method
works poorly for the velocity Ðeld because it assumes peri-
odicity on a scale twice the subgrid extent.

The minimal sampling method works better than
expected for the density transfer function. The reason for its
success is that for CDM-like power spectra the transfer
function is dominated by large spatial frequencies for which
the coarse sampling of Fourier space introduces little error
in the discrete Fourier transform. For the velocity transfer
function, long-wavelength contributions dominate and the
small-scale errors of the spherical method cause little harm.

4.2. L ong-Wavelength Components
The next issue to consider is the treatment of tidal Ðelds

from coarser levels of the grid hierarchy during the anti-
aliasing step. As we found in ° 3.4, contributions from Ñuc-
tuations inside the subvolume can be Ðltered using the

FIG. 17.ÈErrors of the short-wavelength density (left) and velocity
(right) Ðelds computed without a Hanning Ðlter, using spherical and
minimal k-space Ðlters as described in the text. The density errors have
been scaled to p/200 and the velocity errors to p/10. The minimal method
is accurate at small spatial scales (density), while the spherical method is
accurate at large scales (velocity). [See the electronic edition of the Journal
for a color version of this Ðgure.]
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minimal k-space sampling method, but contributions from
tides generated outside the subvolume must be convolved
with a sharp k-space Ðlter. This requires a clear separation
of ““ inner ÏÏ and ““ outer.ÏÏ Care is needed in the case of a
multilevel hierarchy.

Consider, for example, reÐnement of the 256 Mpc top
grid shown in Figure 9 in two stages to produce the fourfold
reÐnement of the 32 Mpc level-2 subvolume in Figure 12.
The level-1 subvolume may have any size between 64 and
128 Mpc. (Each reÐnement must be over a subvolume no
more than half the size of the upper-level volume in order to
accommodate the bu†er region used in the anti-aliasing
step.) When computing the long-wavelength velocity contri-
butions for the level-2 grid, the level-1 Ðelds must be com-
puted with a tidal volume of 32 Mpc and not the size of the
level-1 subvolume. Moreover, the same is true of the level-0
Ðelds. Correct treatment of the tidal Ðelds requires that all
upper levels be sampled with m \ 0 inside (or outside) the
Ðnal high-resolution subvolume.

This requirement implies that a chain of reÐnements must
be performed for every level of the hierarchy. Computing a
level-1 reÐnement requires only one application of convolu-
tion plus small-scale noise. Computing a level-2 reÐnement
requires two applications : one to get the level-1 samples
with the correct tidal volume and a second to get the level-2
results. Thus, computing all three levels (0, 1, and 2) requires
three runs of the periodic grid routine in a box of size 256
Mpc (with no tides, with tides for the level-1 subvolume,
and with tides for the level-2 subvolume) plus three runs of
the reÐnement algorithm.

The process of successive reÐnement is illustrated in
Figure 18 for the computation of the level-2 velocity Ðeld.
The top row is the same as Figure 15 except that the bu†er
has been unwrapped to surround the volume. However,

FIG. 18.ÈTidal Ðelds in a volume 64 Mpc across from level 0 (top) and
after reÐnement to level 1 (bottom). This Ðgure shows the successive reÐne-
ment of the tidal Ðelds needed for computation of the level-2 velocity Ðeld.
The anti-aliasing has been performed without a Hanning Ðlter in order to
preserve exact sampling of the power spectrum. [See the electronic edition
of the Journal for a color version of this Ðgure.]

instead of being prepared for a r \ 4 reÐnement, these top-
level Ðelds are prepared here for a r \ 2 reÐnement. They
are convolved with the appropriate anti-aliasing Ðlters and
short-wavelength noise is added to give level 1, shown in the
lower row. The level-1 tidal Ðelds are resolved better and do
not su†er from aliasing at the resolution shown (0.5 Mpc
grid spacing). These Ðelds provide the input to a Ðnal r \ 2
reÐnement to produce the level-2 Ðelds.

Comparing the resulting level-2 Ðelds with Figure 13, we
Ðnd that the magnitude of the errors depends on the size of
the level-1 grid. For the case shown in Figure 18, with a 64
Mpc grid, the rms density and velocity errors are 0.02% and
3.9%, respectively. When the level-1 grid size is increased to
its maximum value of 128 Mpc, these errors drop to
0.0094% and 3.3%, respectively. These compare with the
errors for a single r \ 4 reÐnement, 0.10% and 3.2%,
respectively.

The density errors have decreased with two r \ 2 reÐne-
ments compared with one r \ 4 reÐnement mainly because
the minimal k-space sampling of the anti-aliasing Ðlter is
coarser (hence less accurate) for r \ 4. For the velocity Ðeld
the errors are dominated not by the coarse sampling errors
in W (x) but rather in the errors due to its truncation. In
other words, it is the discontinuities at the edge of the bu†er
region (shown in Fig. 15) that cause problems. However,
when the top grid is reÐned by r \ 2 in a subvolume of half
its size, the doubling used for the convolution has a fortu-
nate side e†ect : the bu†er region Ðlls out the volume so that
the entire top grid is included. In this special case, which
applies to our 128 Mpc level-1 grid, there are no errors from
periodic boundary conditions and the minimal k-space Ðlter
is exact. The errors arise almost exclusively from the second
level of reÐnement. Thus, the two-level reÐnement in this
case has the same velocity Ðeld errors as a single r \ 4
reÐnement.

5. MORE TRICKS WITH CONVOLUTION OF WHITE NOISE

The convolution method presented in this paper lends
itself to a variety of tricks that can be done with sampling of
Gaussian random noise. These need not always involve
adaptive mesh reÐnement and convolution with isolated
boundary conditions. For example, in Figure 13 we
achieved multiscale initial conditions using a single high-
resolution grid but with the white noise sampled more Ðnely
within a subvolume. This procedure has the advantage of
allowing multiscale Ðelds to be computed free from aliasing
errors. Although it is limited by computer memory con-
straints, this method is the preferred choice for producing
multiscale Ðelds when computer memory is not a limitation.

Our white noise sampling and convolution methods o†er
another way to change the dynamic range of a simulation
while retaining the sampling of a Ðxed set of cosmic struc-
tures. Instead of reÐning to small scales, one may change the
large scale structure in the simulation by expanding or
shrinking the top grid size. This o†ers a simple and useful
way, for example, to add or subtract long waves in order to
examine their e†ect on small scale structure. This brief
section presents the method for expanding or shrinking a
simulation.

One way to implement this idea, which we will not
explore further, is to take an existing small-scale simulation
to provide the high-resolution Ðeld n) as in equationd1(m,
(24). The small volume, originally with periodic boundary
conditions, is then embedded with isolated boundary condi-
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tions in a new top grid Ðeld The white noise sampled0(m).
used to generate the existing small-scale simulation is taken
to be n), and a new sample is created for the top grid.m1(m,
This procedure is the same as that described in ° 3 except
that there the top grid sample was given and the subgrid
sample was added. Here it is the other way around. The
implementation proceeds as in ° 3. It is straightforward and
need not be elaborated.

An alternative method is to change the size of an existing
grid while retaining a Ðxed grid spacing without reÐnement.
This method is easy to implement because no aliasing
occurs if the grid is not reÐned. Moreover, periodic bound-
ary conditions are used for all convolutions. We simply
change the scale of periodicity. This can be achieved using a
modiÐed version of the GRAFIC code (Bertschinger 1995)
called ““ GRAFIC1,ÏÏ which is being distributed along with
the mesh-reÐnement version GRAFIC2.

The procedure is as follows. First, identify a volume
(perhaps a subvolume of an existing simulation) whose size
is to be changed. GRAFIC1 should be run so as to output
the white noise Ðeld m(m) used in constructing the initial
conditions. Note that the spatial mean noise level vanishesm6
so that the mean density matches that of the background
cosmological model. This is a consequence of periodic
boundary conditions.

The white noise Ðeld is now expanded with the addition
of new white noise if one wishes to expand the box. If one
wishes to shrink the box instead, then some of the noise Ðeld
is excised. The amplitude of the white noise must be
changed according to equation (9). For example, if the grid
size is doubled in each dimension, the existing sample must
be multiplied by 23@2 and the added noise must have the
same variance. These manipulations are easy to perform in
real space. The absence of any correlations for the white
noise makes the treatment of boundary conditions very
simple. Note that must vanish on the Ðnal grid because ofm6
periodic boundary conditions. However, if the volume has

been expanded by a factor f [ 1, the mean value within the
original volume can be changed by adding a constant, e.g., a
normal deviate with variance f.

Finally, the new white noise Ðeld is now given as input to
a second run of GRAFIC1, which calculates the density and
velocity Ðelds using exact transfer functions.

This procedure is illustrated in Figure 19. One sees that
the structures in the left original volume are reproduced in
the new sample but that they are modiÐed at the edges by
the requirement of periodic boundary conditions. This
a†ects the structure to within a distance of a few coherence
lengths. The hot dark matter model (with and)

m
\ 1

h \ 0.5) was chosen for this test so that the coherence length
would be interestingly large. One also sees that the initial
conditions codes do not require the volume to be a cube nor
the axis lengths to be powers of 2. GRAFIC1 and
GRAFIC2 allow for arbitrary parallelpipeds as long as
there is at least one factor of 2 in each axis length.

6. CONCLUSIONS AND CODE DISTRIBUTION

We have presented an algorithm for adaptive mesh
reÐnement of Gaussian random Ðelds. The algorithm pro-
vides appropriate initial conditions for multiscale cosmo-
logical simulations. Aside from small numerical errors, the
density and velocity Ðelds at each reÐnement level are exact
samples of Gaussian random Ðelds with the correct corre-
lation functions including all contributions from tides gen-
erated at lower resolution reÐnement levels. An arbitrary
number of reÐnement levels is allowed in principle, enabling
cosmological simulations to be performed which have the
correct sampling of Ñuctuations over arbitrarily large
dynamic ranges of length and mass.

Two convolutions are performed per reÐnement level for
each Ðeld component. These convolutions are performed
using FFTs with the grid doubled in each dimension. Thus,
the computer memory and time requirements for adaptive
mesh reÐnement are signiÐcantly greater than for sampling

FIG. 19.ÈSlices of the density Ðeld from a realization of the hot dark matter model. L eft : A cube of size 512 Mpc. Right : A parallelepiped of dimensions
384 ] 256 ] 400 Mpc has been extracted to create a new volume with periodic boundary conditions and with the same structures as the sample on the left.
[See the electronic edition of the Journal for a color version of this Ðgure].
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of Gaussian random Ðelds with a single grid. One advan-
tage of the reÐnement algorithm is that the dynamic range
in mass is not limited by the size of the largest FFT that can
Ðt into memory. Also, it automatically provides the correct
initial conditions for multiscale simulations such as that of
Abel et al. (2000).

Adaptive mesh reÐnement of Gaussian random Ðelds is
more complicated than reÐnement of, for instance, the Ñuid
variables in a hydrodynamics solver. The reason for this is
that Gaussian random Ðelds have long-range correlations.
Correct reÐnement within a subvolume cannot be done
independently of the lower resolution Ðelds outside that
subvolume. When the resolution is increased by decreasing
the pixel size, a given sample su†ers from aliasing. Correct
sampling requires convolution by an anti-aliasing Ðlter.
Short-wavelength contributions are then provided by con-
volution of white noise with the appropriate transfer func-
tion.

Due mainly to imperfect anti-aliasing, numerical errors
prevent one from achieving perfect sampling of multiscale
initial conditions. However, with careful analysis of the
source of errorsÈprimarily from tides generated outside the
subvolumeÈwe have reduced these errors to an acceptable
level. In testing with a realistic cosmological model, the rms
errors for a fourfold reÐnement were 0.1% or smaller for the
density and 3% for the velocity. We showed that the most
accurate results are achieved by reÐnement factors of 2, with
each successive subvolume occupying one-eighth the
volume (half the linear extent) of the parent mesh. For a
single reÐnement level, the anti-aliasing errors vanish in this
case.

Further testing is advised before the code is run to more
than four reÐnement levels or a total reÐnement greater
than 16. Also, some of the same numerical issues (e.g.,
reÐnement of tidal Ðelds) identiÐed here may arise in the
gravity solvers used by nonlinear evolution codes. Careful
testing of both the initial conditions and the nonlinear
simulations codes is advised before workers apply them to
dynamic ranges in mass exceeding 1011. Unfortunately, it is
very difficult to provide exact standards for comparison
with grid hierarchies of such large dynamic range.

The algorithm described in this paper has been imple-
mented in FORTRAN-77 and released in a publicly avail-
able code package.1 The package has three main codes :

1. LINGERS is an accurate linear general relativity
solver that calculates transfer functions at a range of red-
shifts.

1 The package can be downloaded at http ://arcturus.mit.edu/graÐc/.

2. GRAFIC1 computes single-grid Gaussian random
Ðeld samples with periodic boundary conditions.

3. GRAFIC2 reÐnes Gaussian random Ðelds starting
with those produced by GRAFIC1. It may be run repeat-
edly to recursively reÐne Gaussian random Ðelds to arbi-
trary reÐnement levels.

LINGERS is a modiÐcation of the ““ linger–syn ÏÏ code
from the COSMICS package (Bertschinger 1995 ; Ma &
Bertschinger 1995). It produces output at a range of times
enabling accurate interpolation to the starting redshift of
the nonlinear cosmological simulation. CMBFAST (Seljak
& Zaldarriaga 1996) could be used instead, although the
treatments of normalization and units are di†erent for the
two codes.

GRAFIC1 is a modiÐcation of the GRAFIC code from
COSMICS that incorporates exact transfer functions for
both CDM and baryons at arbitrary redshift from
LINGERS and uses white noise sampled in real space as the
starting point for Gaussian random Ðelds. As demonstrated
in ° 5, sampling of white noise enables one to change the size
of the computational volume, or to embed a given realiza-
tion into a larger volume with di†erent resolution, simply
by modifying the noise Ðle. GRAFIC1 and GRAFIC2 also
have optional half-mesh cell o†sets for the CDM or baryon
grids.

GRAFIC2 is the multiscale adaptive mesh reÐnement
code. It requires substantial computing resources for large
grids, mainly because of the need to double the extent of
each dimension. Thus, suppose that one has a 2563 top grid
and wishes to double the resolution in one-eighth of the
volume. Computing the 2563 sample with GRAFIC1
requires 64 MB of memory. ReÐning it with GRAFIC2
requires 1.02 GB of memory and 3.5 GB of scratch disk.
The cpu time is also much larger but is still far less than the
time required for the nonlinear evolution. Fortunately,
these computing resources are now available on desktop
machines. Much larger grids are possible with parallel
supercomputers.
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