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ABSTRACT

This paper describes the generation of Gaussian random fields with multiple levels of resolution. We
present the theory of adaptive mesh refinement of Gaussian random fields followed by the implementa-
tion and testing of a computer code package performing this refinement called “GRAFIC2.” This
package is available to the computational cosmology community at http://arcturus.mit.edu/grafic/ or by

e-mail from the author.
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1. INTRODUCTION

Advances in computational algorithms combined with
the steady advance of computer technology have made it
possible to simulate regions of the universe with unprece-
dented dynamic range (Bertschinger 1998). Realistic simula-
tions of galaxy formation require spatial resolution better
than 1 kpc and mass resolution better than 10° M in
volumes at least 100 Mpc across containing more than 107
M. Cosmologists have made significant progress toward
these requirements. In simulations of dark matter halos,
Fukushige & Makino (1997) and Ghigna et al. (2000) have
achieved more than 4 orders of magnitude in spatial
resolution, while the Virgo Consortium has performed
simulations with 10° particles (Colberg et al. 2000). Recent-
ly, Abel, Bryan, & Norman (2000) have performed a simula-
tion of the formation of the first subgalactic molecular
clouds using adaptive mesh refinement with a spatial
dynamic range of 262,144 and a mass dynamic range more
than 101°,

The possibility to resolve numerically such vast dynamic
ranges of length and mass begs the question of what are the
appropriate initial conditions for such simulations. Hierar-
chical structure formation models like the cold dark matter
(CDM) family of models have increasing amounts of power
at smaller scales. This power should be present in the initial
conditions. For simulations of spatially constant resolution,
this is straightforward to achieve using existing community
codes (Bertschinger 1995). However, workers increas-
ingly are using multiscale methods in which the best resolu-
tion is concentrated in only a small fraction of the
simulation volume. How should multiscale simulations be
initialized ?

Many workers currently initialize multiscale models fol-
lowing the approach of Katz et al. (1994). First, a Gaussian
random field of density fluctuations (and the corresponding
irrotational velocity field) is sampled on a Cartesian lattice
of fixed spacing Ax. Then, Ax is decreased by an integer
factor r > 1, and a new Gaussian random field is sampled
with r* times as many points, such that the low-frequency
Fourier components (up to the Nyquist frequency n/Ax in
each dimension) agree exactly with those sampled on the
lower resolution grid.

This method has two drawbacks. First, it is limited by the
size of the largest fast Fourier transform (FFT) that can be

performed, since the Gaussian noise is sampled on a
uniform lattice in Fourier space. This represents a severe
limitation for adaptive mesh refinement codes which are
able to achieve much higher dynamic range. Second, the
uniform high-frequency sampling on the fine grid is incon-
sistent with the actual sampling of the mass used in the
evolutionary calculations. Multiscale simulations have grid
cells, hence particle masses, of more than one size. The
gravitational field produced by a distribution of unequal
particle masses differs from that produced with constant
resolution. In the linear regime, the velocity and displace-
ment should be proportional to the gravitational field. With
the method of Katz et al. (1994), they are not. We are chal-
lenged to develop a method for sampling multiscale Gauss-
ian random fields consistent with the multiresolution
sampling of mass.

A satisfactory method should satisfy several requirements
in addition to correctly accounting for variable mass
resolution. First, each refined field should preserve exactly
the discretized long-wavelength amplitude and phase so as
to truly refine the lower resolution sample. Second, high-
frequency power should be added in such a way that the
multiscale fields correctly sample the power spectrum over
the whole range of wavelengths sampled. Because multi-
scale fields are not sampled on a uniform lattice, it is not the
power spectrum but rather the spatial two-point correlation
function that should be exactly sampled. Finally, a practical
method should have a memory requirement and computa-
tional cost independent of the level of refinement so that it is
not limited by the size of the largest FFT that can be per-
formed.

This paper presents the analytic theory and practical
implementation of multiscale Gaussian random field sam-
pling methods that meet these requirements. Our algo-
rithms are the equivalent of adaptive mesh refinement
applied to Gaussian random fields. The mathematical
properties of such fields are simple enough so that an exact
algorithm may be developed. Practical implementation
requires certain approximations to be made but they can be
evaluated and the errors controlled.

The essential idea enabling this development is that
Gaussian random fields can be sampled in real space rather
than Fourier space (hereafter k-space). Adaptive mesh
refinement can then be performed in real space conceptually



2 BERTSCHINGER

just as it is done in the nonlinear evolution code used by
Abel et al. (2000).

How can the long-range correlations of Gaussian
random fields be properly accounted for in real space? In an
elegant paper, Salmon (1996) pointed out that any Gaussian
random field (perhaps subject to regularity conditions such
as having a continuous power spectrum) sampled on a
lattice can be written as the convolution of white noise with
a function that we will call the transfer function. Salmon
recognized the advantages of multiresolution initial condi-
tions and developed a tree algorithm to perform the convol-
utions. Tree algorithms have the advantage that they work
for any mesh—regular, hierarchical, or unstructured.

Next, Pen (1997) pointed out that FFTs may be used to
perform the convolutions in such a way that the two-point
correlations of the sampled fields are exact, in contrast with
the usual k-space methods which produce exact power
spectra but not two-point correlations. The key is that the
transfer functions may be evaluated in real space accurately
at large separation free from distortions caused by the dis-
cretization of k-space. Pen also pointed out that this
method allows the mean density in the box to differ from
the cosmic average and that the method could be extended
to hierarchical grids.

This paper builds upon the work of Salmon (1996) and
Pen (1997) as well as the author’s earlier COSMICS
package (Bertschinger 1995), which included a module
called “GRAFIC” (Gaussian Random Field Initial
Conditions). GRAFIC implemented the standard k-space
sampling method for generating Gaussian random fields on
periodic rectangular lattices. This paper presents the theory
and computational methods for a new package for gener-
ating multiscale Gaussian random fields for cosmological
initial conditions called “ GRAFIC2.” This paper contains
the fine print for the owner’s manual to GRAFIC2, as it
were.

This paper is organized as follows. Section 2 reviews the
mathematical method for generating Gaussian random
fields through convolution of white noise including adapt-
ive mesh refinement. Section 2.4 presents methods for the
all-important computation of transfer functions. Section 3
presents important details of implementation. Exact sam-
pling requires careful consideration of both the short-
wavelength components added when a field is refined (§ 3.1)
as well as the long-wavelength components interpolated
from the lower resolution grid (§ 3.2). As we show, the long-
wavelength components must be convolved with the appro-
priate anti-aliasing filter. Truncation of this filter to a
subvolume (a step required to avoid intractably large
convolutions) introduces errors that we analyze and reduce
to the few percent level in § 3.4.

The method is extended to hierarchical grids in § 4.
Section 5 presents additional tricks with Gaussian random
fields made possible by the white noise convolution method.
Section 6 summarizes results and describes the public dis-
tribution of the computer codes developed herein for multi-
scale Gaussian random fields.

2. MATHEMATICAL METHOD

The starting point is the continuous Fourier representa-
tion of the density fluctuation field:

o(x) = Jd3ke"" *T(k)é(k) , 1)
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where &(x) is Gaussian white noise with power spectrum
CElky)E(ky)> = 03(ky + k) - @

Here (k) is the Dirac delta function and we are assuming
that space is Euclidean. The function T'(k) is the transfer
function relative to white noise, and it is related simply to
the power spectrum of 6(x):

T(k) = [P()]"> . )

Note that (k) and T(k) both have units of [length]/? and
that T(k) is an ordinary function while £(k) is a stochastic
field (a distribution).

The next step is to recognize that equation (1) can be
written as a convolution (Salmon 1996):

o(x) = (& * T)(x) = Jd"’X’f(X’)T(Ix —-x0), 4

where
d3k ik - x
T<|x|)=J(2n)3e" T, )
and
CExp)E(x2)) = (2m)*03(x, — x5) . (6)

The spatial two-point correlation function of (x) is simply
2r)3(T = T)(x).

Thus, we may construct an arbitrary Gaussian random
field by the convolution of white noise with a convolution
kernel determined by the power spectrum. The white noise
process is formally divergent; from equation (6), &(x) is
drawn from a Gaussian distribution with infinite variance.
This strange behavior arises because &(x) diverges due to
unbounded short-wavelength contributions. The divergence
of 4(x) may be cut off by the transfer function, although the
standard cold dark matter spectrum still leads to a logarith-
mic divergence of the dark matter density fluctuations at
small scales. In practice the integral is cut off at high wave-
number by discretizing space with a finite cell size.

The standard method for generating Gaussian random
fields relies on discretizing equation (1) with a Cartesian
mesh in a finite parallelpiped with periodic boundary condi-
tions. The spatial dynamic range is then limited by the size
of the largest FFT that can be performed. The Fourier
domain is used because the random variables at different
points are statistically independent aside from the condition
E(—k) = &*(k) required to enforce reality of d(x). In the
spatial domain, d(x) has long-range correlations that are
difficult to sample unless one first goes to Fourier space.

The velocity field (or displacement field, in the case of
dark matter particles) obeys similar equations; only the
transfer function T'(k) is modified.

The convolution method described in this paper evalu-
ates the density and velocity fields using equation (4) instead
of equation (1). It relies on the fact that white noise is uncor-
related in the spatial domain as well as the Fourier domain,
hence there is no difficulty in sampling &(x). Once we have
such a sample, it is unnecessary to use a single enormous
FFT to evaluate the convolution equation (4). Tree algo-
rithms may be used (Salmon 1996) or multiple FFTs with
appropriate boundary conditions (Pen 1997). The algo-
rithm we develop extends the ideas of Pen.
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2.1. Discrete Convolution Method without Refinement

The heart of our method lies in the discretization of equa-
tions (1)+6) and their application to density fields with spa-
tially variable resolution. The density field is represented on
a hierarchy of nested Cartesian grids so that FFT methods
can be used to perform the convolutions.

Before describing convolution with spatially variable
resolution, we first describe the discrete convolution
method for a single grid of M points per dimension. For
simplicity of presentation we assume here a cube of length L
with periodic boundary conditions, although the code that
implements the convolution is generalized to allow any
parallelpiped. The grid positions are x(m) = (L/M)m, where
m is an integer triplet with components m; € [0, M). Equa-
tion (1) becomes

8(m) =)’ exp (lZﬁn K-* m)T(k)f(k) 7

where k = kL/(2x) is the dimensionless wavenumber; it is
an integer or half-integer triplet with components x; €
[—M/2, M/2). The dimensionless transfer function and
spectral noise appearing in equation (7) are given by

T(k) = [(2n/L)*P(k)]'*

) = M~ Y, exp (— B m)é(m) .®

where &(m) is white noise with variance M3:
(Em,)E(my)y = Moy (my, m,)

1, m =m, ;
_ 3 ’ 1 2
_M{O, m, #m,. ©)

The subscript K denotes the Kronecker delta.
The discrete convolution algorithm proceeds through the
following steps.

1. Sample &(m) by generating independent, zero-mean
normal deviates with variance M* at each spatial grid point.

2. Use the FFT algorithm to evaluate the second line of
equation (8).

3. Multiply (k) by the discrete transfer function T'(k).

4. Use the FFT algorithm to evaluate equation (7).

The result is a discrete approximation to equation (1).

So far, this method is identical to the usual one for gener-
ating Gaussian random fields (Bertschinger 1995) except
that an extra FFT is introduced by sampling &(m) in real
space instead of Fourier space. This requires more compu-
tation but is crucial when we extend the method to a multi-
scale hierarchy, which we do next.

2.2. Mesh Refinement

Suppose that we have two-level grid hierarchy as shown
in Figure 1. Now the spatial grid point positions in the
refined volume are given by two integer triplets, m for the
coarse grid and » for the subgrid:

x(m, n) =x, + <Jf—4><m + % n) . (10

The subgrid is refined by an integer factor r > 1, with
n; € [0, ). An offset x, = —(r — 1)L/(2rM)(1, 1, 1) is applied
to center the refinement. As a result of mesh refinement,
each coarse grid cell is split up into r3 subcells.
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FiG. 1.—Example of mesh refinement with two levels. The coarse grid
has size M = 9, the subvolume has size M = 3, and the refinement factor is
r=4.

Suppose that we already have a sample of white noise on
the coarse grid, &y(m). Convolution by the appropriate
transfer function using equations (7) and (8) then gives the
density field d(m). To refine the sampling, we generate a
mesh-refined white-noise sample £(mm, n) and convolve it
with a higher resolution transfer function.

The refined white-noise sample &(m, n) should retain the
same low-frequency structure as the coarse-grid sample
£,(m). We ensure this by choosing &(m, n) to be a sample of
Gaussian white noise subject to the linear constraint

. &m, m) =r3o(m) . 1)

The constraint is easy to apply using the Hoffman-Ribak
algorithm (Hoffman & Ribak 1991). One simply generates
an unconstrained white noise sample &,(m, n) with variance
(rM)* and then applies a linear correction to enforce equa-
tion (11):

&m, n) = &,(m, n) + Eo(m) — &, (m)
where

Em)=7r72% & (m, n). (12)

The sample so generated is Gaussian white noise satisfying
the constraint equation (11) and having the desired covari-
ance

&(my, ny)é(my, ny)) = (rM)35K(m1: m,)og(ny, ny) . (13)

Equation (12) has a simple interpretation. Mesh refine-
ment takes place by splitting each coarse cell (labeled by m)
into r® subcells. The coarse-grid white noise value &, is first
spread to each of the subcells, then a high-frequency correc-
tion &; — &, is added.

2.3. Subgrid Convolution

Our method requires performing several convolutions
over the subgrid. In this subsection we describe the method
for a generic high-resolution convolution, which is first
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expressed in Fourier space as follows:
8(m, n) = exp [ik - x(m, n)]T(k)(k) . (14
k

The sum is taken over the extended Fourier space of size
(rM)3. This Fourier space extends to wavenumbers r times
greater than that of equation (7). We can write the wavevec-
tor using two integer (or half-integer) triplets, x and b:

2n
k= <f)(” + Mb) , (15)

where x;, € [—M/2, M/2) and b, e [—(r — 1)/2, (r — 1)/2].
The set of all x for a given b is called a Brillouin zone. The
coarse grid corresponds to the fundamental Brillouin zone,
b = (0, 0, 0). Mesh refinement extends the coverage of wave-
number space by increasing the number of Brillouin zones
to r3, where r is the refinement factor.

The major technical challenge of our algorithm is to
perform the convolution of equation (14) without storing or
summing over the entire Fourier space. This is possible
when d(m, n) is required over only a subgrid in the spatial
domain. The first step is to note that equation (14) is equiva-
lent to

dm,n)= Y &m',n)T(m —m',n—n'), (16)

m’',n’'

where

f(ms n) = ; CXp Lik - x(ma ”)]é(k) »
T(m, n) = (rM)~3 )" exp [ik * x(m, )]T(k) . (17
k

Now, mesh refinement is performed only over the subgrid
of size (rM,)*, where M, < M, so it is not necessary to evalu-
ate &m, n) and T(m, n) for all (M) high-resolution grid
points. We set &(m, n) = £y(m) outside of the subgrid
volume. Consequently, T(m, n) needs to be evaluated at
high resolution only to distances of +rM, grid points in
each dimension in order that all contributions to d(m, n)
be included. We will describe how the transfer functions
T(m, n) are computed in the next subsection.

The function &(m, n) must also be evaluated on the
subgrid. Because this is a sample of white noise, we simply
draw independent real Gaussian random numbers with
zero mean and variance (rM)? at each grid point. Subtrac-
ting a mean over coarse grid cells (eq. [12]) or imposing any
other desired linear constraints (using the Hoffman-Ribak
method) is easily accomplished.

Before proceeding further, let us note that there is
another way that we might generate an “exact” subgrid
sample, namely to evaluate both &(m, n) and T(m, n) on the
full grid of size (rM)* and perform the convolution on this
grid. Although this may appear to be the correct sampling
method, in fact it is not, given that outside of the subvolume
the fields are stored at the lower resolution of a M3 grid. To
see this, consider the relation between gravity and density,
V - g oc — 4. Inside the subvolume, g receives a tidal contri-
bution from the source ¢ outside the subvolume. The
Gaussian random fields are being prepared as initial condi-
tions for a simulation code that computes gravity using
only the low-resolution density field outside the subvolume.
If the initial conditions code were to compute gravity using
the high-resolution density field everywhere, then the
gravity field of the initial conditions would be inconsistent
with the gravity field of the simulation code, leading to time
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integration errors. The mesh refinement should be per-
formed in a way that is consistent with the Poisson equa-
tion.

The gravity field can be written as a convolution over the
density field. Outside of the subvolume, only the low-
resolution density field should be used. This same argument
applies to any field that is computed as a convolution over
all space, including the density field itself (eq. [16]). Thus,
the correct sampling method sets &(m, n) = £ (m) outside of
the subgrid volume. Note that this means that the two-
point correlation function of 6 (or any field) will receive
contributions of different resolution from the various sub-
grids. As a result, unless the subgrid is extended to the entire
volume, the power spectrum of the density field will not
exactly match the input power spectrum P(k). However, for
realistic power spectra, the difference between the exact and
sampled power spectra are small because high-frequency
contributions outside the subvolume oscillate rapidly and
cancel in the convolution over the transfer function.

Once we have &(m, n) and T(m, n) on the subgrid, the
next step is to Fourier transform them. For simplicity in
presentation, let us suppose that the subgrid is cubic with
N, = (2rM_)?, where M, is the number of coarse grid points
that are refined in each dimension. The result is

EW) =~ X exp (—iK (),
TW) =Y exp (—ik' - x)T(x), (13)

where the sums are taken over the fine grid points in the
subvolume, which has been doubled to the accommodate
periodic boundary conditions required by Fourier convolu-
tion. Primes are placed on the wavevectors and on the
transformed quantities to distinguish them from the orig-
inal quantities &(k) and T(k). Note that the sampling of
k-space is different in equations (17) and (18) because the
length of the spatial grid has changed from L to (2M,/M)L.
Also, T'(k') is in general not spherically symmetric even if
T (k) is spherical.

The final step is to perform the convolution by multipli-
cation in the subgrid k-space followed by Fourier trans-
formation back to real space:

8(x) = kz exp (ik' - x)T'(K)E (K . (19)

The reader may verify that equations (18) and (19) give
results identical to equations (14) and (16), when &(x) is zero
outside of the subvolume. (The contribution to ¢ coming
from ¢ # 0 outside the subvolume is given by the original,
low-resolution sample before mesh refinement, as discussed
in § 3.) Thus, we have achieved the equivalent of convolu-
tion on a grid of size (rM)? by using a (typically smaller) grid
of size (2rM,)*. Note well that T’ is not the same as T,
because it is based on spatially truncating T(m, n) and
making it periodic on a grid of size (2M/M)L instead of L.

So far the method looks straightforward. However, some
practical complications arise which will discuss later, in the
computation of the transfer functions in real space (§ 2.4)
and in the split of our random fields into long- and short-
wavelength parts on the coarse and fine grids, respectively
§3.2).

Finally, we note that we will perform the convolution of
equation (14) using a grid of size 2rM, in each dimension in
the standard way using FFTs without requiring periodic
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boundary conditions for the subgrid of size rM,. We calcu-
late the transfer functions in the first octant of size (rM,)?
and then reflect them periodically to the other octants using
reflection symmetry (odd along the direction of the dis-
placement, otherwise even). In order to achieve isolated
boundary conditions, the white noise field is filled in one
octant and set to zero in the other octants. If we desire to
have periodic boundary conditions (e.g., for testing), we can
set M, = M/2 and fill the full refinement grid of size (2rM)?
with white noise.

2.4. Computation of Transfer Functions

The convolution method requires calculating the transfer
functions T(x) for density, velocity, etc., on a high-
resolution grid x(m, n) of extent +rM, grid points in each
dimension. The transfer function is given in the continuous
case by equations (3) and (5) and in the discrete case by the
first line of equation (8) and the second line of equation (17).
Our challenge is to compute the transfer functions on the
subgrid without performing a FFT of size (rM)3, under the
assumption that the problem is too large to fit in the avail-
able computer memory. Also, we wish to avoid a naive
summation of the second line of equation (17), which would
require O(r®M32 M?3) operations. In practice, r will be a
modest-size integer (from 2 to 8, say), while M, will be much
larger, of order M/r.

We present three solutions to this challenge. The first two
are based, respectively, on three-dimensional discrete
Fourier transforms, while the third is based on a spherical
transform.

2.4.1. Exact Method

The first method is equivalent to the second line of equa-
tion (17) and is therefore exact in the sense of yielding the
same transfer functions as if we had used full resolution on a
grid of size (rM)®. Note that Pen (1997) would call this
method approximate because, after the FFT to the spatial
domain, the results differ from the exact spatial transfer
function of equation (5). We will say more about this in §
2.4.3, but note simply that the discretization of k-space
required for the FFT makes it impossible for the transfer
function to be exact in both real space and k-space. The
transfer function of this subsection is exact in k-space and is
equivalent to the usual k-space sampling method.

We rewrite the second line of equation (17) as

T(m, n) =), &C"M* mT(x, n), (20

where

Tk, n)=rM) 3 g‘ exp [i(%)(w + Mb) - n:|T(k) .

(1)

The Fourier space is split into Brillouin zones according to
equation (15). Beware that the symbol T has three different
uses here which are distinguished by its arguments: it is
either the transfer function in real space T'(m, n), the transfer
function in Fourier space T(k), or else the mixed Fourier/
real case T'(k, n).

Equation (20) is a simple FFT of size M. This is the same
size as is used for generating the coarse grid initial condi-
tions, so it is tractable. However, we save the results only at

MULTISCALE GAUSSIAN RANDOM FIELDS 5

those coarse grid points m that lie in the refinement sub-
volume, discarding the rest. By performing some unneces-
sary computation, the FFT reduces the number of
operations required to compute this sum for all » from
O(M? M3)to O(r*M? log M), a substantial savings.
Equation (21) is also a FFT, in this case of size r3.
However, we cannot evaluate both equations (20) and (21)
using FFTs without storing T(x, n) for all (rM)? points. In
order to reduce the storage to a tractable amount (no more
than the larger of M3 and 8r°M?), we must perform an
outer loop over n to evaluate T(m, n). For each n, we must
compute T(x, n) for all x, requiring direct summation in
equation (21). The operations count for all n is then
O(r°M?), which dominates over the O(r>M? log M) for
equation (20). The operations count for equation (21) can be
reduced by a factor of up to 6 by using symmetries when
T(k) is spherically or azimuthally symmetric. Nonetheless, if
we use this method, computation of the transfer functions is
generally the most costly part of the whole method.

2.4.2. Minimal k-Space Sampling Method

If the transfer function falls off rapidly with distance in
real space, there is another way to evaluate T(m, n) that is
much faster. It is based on noting that the Fourier sum is an
approximation to the Fourier integral, and another approx-
imation is given by simply changing the discretization in
k-space. In equation (17), the step size in k-space is 2n/L,
where L is the full size of the simulation volume. If we
increase this step size to (M/2M,)2n/L, the transfer function
T (k) will be evaluated with exactly the sampling needed for
T'(k') in equation (19). In this case we do not even need to
transform T'(k) to the spatial domain, truncate and period-
ize on the subgrid to give T(m, n), and then transform back
to get T'(k'). We simply replace T’ with T in Fourier space.
This is exactly equivalent to decreasing the k-space
resolution in equation (17) to the minimum needed to
sample T'(rn, n) on the subgrid.

This method is extremely fast but its speed comes with a
cost. Low wavenumbers are sampled poorly compared with
equations (20) and (21), and the transfer functions are trun-
cated in a cube of size (2M /M)L instead of L. The decreased
k-space sampling leads to significant real-space errors for
distances comparable to the size of the box. This may be
tolerable for the density but is unacceptable for the velocity
transfer function. In § 3.2 we will introduce anti-aliasing
filters for the coarse grid for which the minimal k-space
sampling method is well-suited. In § 4 we will revisit the use
of the minimally sampled transfer function for the density
field.

2.4.3. Spherical Transform Method

Another fast method can be used when T'(k) is spherically
symmetric, as it is for the density and the radial component
of displacement. In this case we approximate the second line
of equation (17) as a continuous Fourier integral,

d’k
(Ak)*

L \3 (sin kr )
- <2mM) J o T(4mk* dk

L \’2zn * ikr
= <2nrM> — fmf OOkT(k)e dr . (22)

T(x) ~ (rM)~3 e* " *T(k)
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Aside from units, this is essentially the same as equation (5).
The last integral in equation (22) can be performed by trun-
cating the Fourier integral at the Nyquist frequency of the
subgrid, ky, = nrM/L and then using a one-dimensional
FFT. The method is much faster than equations (20) and
(21).

The Fourier integral of equation (22) can be evaluated
accurately, yielding an essentially exact transfer function in
real space. This approach was advocated by Pen (1997).
However, this is not necessarily the best approach for
cosmological simulations with periodic boundary condi-
tions. In order to achieve periodic boundary conditions,
such simulations compute the gravitational fields with
k-space discretized at low frequencies as in the second line
of equation (17). In this case it would be inconsistent to use
equation (22) on the top-level grid with periodic boundary
conditions—the displacement field would not be pro-
portional, in the linear regime, to the gravity field computed
by the Poisson solver of the evolution code. However, the
spherical method is satisfactory for refinements without
periodic boundary conditions.

2.4.4. Anisotropic Transfer Functions

In order to use equation (22), the transfer function must
be spherically symmetric. This seems natural for the density
field given that the power spectrum P(k) is isotropic.
However, the standard FFT-based method for computing
samples of the density field violates spherical symmetry
through the Cartesian discretization of k-space. As we
noted above, periodic boundary conditions are inconsistent
with spherical symmetry on the largest scales. Moreover,
the displacement transfer function is multiplied by a factor
ik/k?, which breaks spherical symmetry for each Cartesian
component.

To examine the first concern, namely the nonisotropic
discretization in Fourier space, we examine the transfer
function computed using the exact method of § 2.4.1. Figure
2 shows the result for the flat ACDM model (Q, = 0.65,
h=0.65, 65 = 1.0) with a r = 4 refinement of a M, = 32
subgrid of a M = 256 grid. The coarse grid spacing is 1
Mpc. In effect, the transfer function has been computed at
10242 resolution on a grid of spacing 0.25 Mpc but is shown
only within a central region 64 Mpc across (2M, x 1 Mpc).

There is a slight banding visible along the x- and y-axes
in Figure 2. The amplitude of this banding ranges from a
relative size of about 20% at small r to more than a factor of
2 at the edges (where the transfer function is very small);
however, it is much smaller away from the coordinate axes.
This anisotropic structure arises because, although T'(k) is
spherically symmetric, the Fourier integration is not carried
out over all k but rather only within a cube of size 2nrM/L.
The Fourier space is periodic (because the real space is
discrete), which breaks the spherical symmetry of T(x). In
this case it is the anisotropy at large k that produces the
anisotropy in real space.

This anisotropy is present in the initial conditions gener-
ated with the with the COSMICS package (Bertschinger
1995). The author’s rationale for allowing it was that it is
preferable to retain all the power present in the initial
density fluctuation field. Including all power in the Fourier
cube gives the best possible resolution at small scales while
producing a modest anisotropy along the coordinate axes.
However, the effects of the anisotropy are unclear and
should be more carefully evaluated. In § 3.1, we will show
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F1G. 2—Slice through the center of the density transfer function in real
space (“square root of the correlation function”). The exact method of
§ 2.4.1 has been used with an unfiltered power spectrum. The cosmological
model is flat ACDM, and the box is 64 Mpc across. False colors are scaled
to the logarithm of the transfer function, which shows 6 orders of magni-
tude. Anisotropy of the discrete Fourier transform leads to anisotropic
features that are barely visible along horizontal and vertical axes through
the center. [ See the electronic edition of the Journal for a color version of this

figure.]

how the density transfer function can be made isotropic by
filtering. To determine whether the anisotropy of unfiltered
initial conditions causes any significant errors, full nonlin-
ear numerical simulations should be performed with and
without filtering. That test is beyond the scope of this paper.

Additional considerations arise when calculating the
transfer function for the linear velocity or displacement
fields. (The linear velocity and displacement are proportion-
al to each other.) The displacement field y(x) is related to
the density fluctuation field by V - ¢y = —d(x) in real space
or T,(k) = (ik/k*)T(k) in k-space. Each component of the
displacement field is anisotropic. This presents no difficulty
for the discrete methods of §§ 2.4.1-2.4.2. There is one sub-
tlety of implementation, however: in Fourier space, the dis-
placement field must vanish on the Brillouin zone
boundaries. That is, the component of T, along e, must
vanish on the surfaces k, = +ky, and similarly for the
other components. This is required because each com-
ponent of T, is both odd and periodic.

If the density transfer function is filtered so as to be spher-
ical in real space, then the displacement field is radial in real
space and we can obtain the radial component simply by
applying Gauss’s law:

T,r) = — rlz L Teydr . 23)

The radial integral can be performed from a tabulation of
the spherical density transfer function in real space, T(r), by
integrating a cubic spline or other interpolating function.
The Cartesian components of displacement follow simply
from T, = T)(r)e,.
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In summary, we will use the spherical method in the case
of spherical transfer functions, otherwise we will use one of
the discrete methods. If the transfer function is sufficiently
localized in real space so that the Fourier space may be
coarsely sampled, the minimal k-space sampling method
may be used. In all cases we will compare against the exact
method to test the accuracy of our approximations.

3. IMPLEMENTATION

In this section we present our implementation of the two-
level adaptive mesh refinement method described in § 2, and
we discuss the split of our fields into long- and short-
wavelength parts on the coarse and fine grids, respectively.

The high-resolution density field is the superposition of
two parts:

8(m, n) = do(m, n) + 8,(m, n) , (24)
where
S0 =Com) x T, 6, =[(m, n)— 51(’”)] *T . (25)

The convolution operator * is defined by equation (16), with
the transfer function T'(m, n) defined on a high-resolution
grid. The net density field is the superposition arising from
the coarse-grid white noise sample &y(m) and its high-
frequency correction &,(m, n) — &,(m) as in equation (12).
Basically, we split the density field (and similarly the dis-
placement and velocity fields) into long-wavelength and
short-wavelength parts. In this section we first describe the
computation of the short-wavelength part J,, followed by
the long-wavelength part 9,,.

3.1. Short-Wavelength Components

The high-frequency part of the density field, 6, =
(&, — &))=+T, is straightforward to calculate using the
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methods of §§ 2.3 and 2.4. Let us first consider the transfer
functions for the density and displacement fields, which we
show in Figure 3. In order to eliminate the anisotropy
appearing in Figure 2, we have applied a spherical Hanning
filter, multiplying T(k) by cos (nk/2ky,) for k < ky, and
zeroing it for k > ky,, where ky, = nrM/L. This filter has
removed the anisotropic structure and has also smoothed
the density field near x = 0. We have used the spherical
method of § 2.4.3. The exact method gives results that are
visually almost indistinguishable, with maximum differ-
ences of order 1% because the Hanning filter does not com-
pletely eliminate the anisotropy of the discrete Fourier
transform. (The Hanning filter is optional; see the dis-
cussion following Fig. 2.)

Each Cartesian component of the displacement transfer
function displays a characteristic dipole pattern because of
the projection from radial motion: y, = (x/r)¥/(r). A density
enhancement at the origin is accompanied by radial infall
(with , changing sign across the origin). Note that the
displacement transfer function falls off much less rapidly
with distance than the density transfer function, illustrating
the well-known fact that the linear velocity field has much
more large-scale coherence than the density field. The linear
displacement, velocity, and gravity fields are all proportion-
al to each other, so one may also interpret T, as the transfer
function for the gravitational field.

The next step in computing the subgrid contribution to
the initial conditions is to generate an appropriate sample
of Gaussian noise. Figure 4 shows two samples of white
noise for the high-resolution subgrid. The left sample is pure
white noise &,(m, n), which is the correct noise sample if we
wish to generate a Gaussian random field with periodic
boundary conditions on a grid of size 64 Mpc (the full width
that is shown). The right sample is nonzero only in a region

F1G. 3.—Slice through the center of the transfer functions in real space for the density field (left) and one component of the displacement field (right). The
model parameters are the same as in Fig. 2 except that a spherical Hanning filter (cosine in Fourier space) has been applied to reduce the anisotropy that was
seen in Fig. 2. False colors show the logarithm of the transfer function, with 6 orders of magnitude shown for the density and 3 orders of magnitude for the
displacement. (The absolute value of the displacement is shown; it is negative in the right half of the image.) When convolved with white noise, these transfer
functions give the density fluctuation and x-displacement fields in linear theory at redshift z = 0. [See the electronic edition of the Journal for a color version of

this figure.]
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F1G. 4—Slices through a sample of Gaussian noise in a cube of size 64 Mpc. Left: Pure white noise &,(m, n). Right: Zero-padding is used for isolated
boundary conditions, and the means have been subtracted over cells of size 1 Mpc so that we show &,(m, n) — &,(m). False colors are scaled to linear values
ranging from +2 standard deviations of £,. The zero level is light green. Because of the predominance of high-frequency power, the filtering applied to the
right-hand image is not apparent, but the two samples differ in the upper left quadrant. [See the electronic edition of the Journal for a color version of this

figure.]

32 Mpc across, as is appropriate for isolated boundary con-
ditions in a subgrid, and the means over coarse grid cells
have been subtracted, i.e., we plot &,(m, n) — &,(m). This is
the appropriate noise sample for computing the short-
wavelength density field 6, .

Figure 5 shows the result of convolving the two noise
samples of Figure 4 with the density transfer function of
Figure 3. The left-hand panel gives &, «T, while the right-
hand panel gives the desired short-wavelength field 8, (m, n).
The two fields differ in the upper left quadrant because of

Fic. 5—High-resolution density fluctuation field obtained by convolving white noise (Fig. 4) with the ACDM density transfer function (Fig. 3, left panel).
False colors are scaled to linear values ranging from + 2 standard deviations for the left panel. The left and right panels correspond to the same panels of Fig.
4. The two density fields are strikingly different because long wavelengths have been suppressed in the right image by subtraction of coarse-cell means in Fig.
4. The long-wavelength components will be restored to the right image by addition of the coarse grid sample. [See the electronic edition of the Journal for a

color version of this figure.]
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the subtraction of coarse-cell means from the white noise
field used to generate the left image. Although the effect of
this subtraction is barely evident in Figure 4, it dominates
the comparison of the two panels in Figure 5 because con-
volution by the transfer function acts as a low-pass filter.
The left panel of Figure 5 gives a complete sample of §(x) on
a periodic grid of size 64 Mpc, while the right panel shows
only the short-wavelength components coming from mesh
refinement.

Careful examination of the right panel of Figure 5 shows
that the finite width of the transfer function has caused a
little smearing at the boundaries, which are matched
periodically to the opposite side of the box by the Fourier
convolution. (A few pixels along the right and bottom edges
of the left panel differ from green.) However, these edge
effects do not represent errors in the short-wavelength
density field. Instead, they illustrate the fact that outside of
the refined region, the gravity field should include tidal con-
tributions from the short-wavelength fluctuations inside the
refinement volume. For the purpose of computing 6,(m, n)
within the subvolume, we simply discard everything outside
the upper left quadrant.

As a test of our transfer function methods, we calculated
0.(m, n) using the exact transfer function instead of the
spherical one. The rms difference between the fields so com-
puted was 0.0014 standard deviations, a negligible differ-
ence. As a test of the whole procedure, we computed the
power spectrum of the left panel of Figure 5 and checked
that it agrees within cosmic variance with the input ACDM
power spectrum.

We also compared the displacement field computed using
the exact transfer with that computed using the spherical
one. The rms difference was 0.0062 standard deviations, still
negligible. Then we compared the divergence of the dis-
placement field (computed in Fourier space as ik + y) with
the density field, expecting them to agree perfectly. Inter-
estingly, this is not the case for the exact (or spherical) trans-
fer functions. When the transfer functions are truncated in
real space and made periodic on a grid of size 2M,/M)L,
Tyk') # ik’ - T, (k') despite the fact that on the full refined
grid Ty(k) = ik - T (k). The prime on the transfer functions
indicates a different Fourier space, as discussed after equa-
tion (18). The only way to test —V + y = 6 for the exact
transfer function is to perform a FFT on the full refined grid
of (rM)® = 10243 grid points. In § 3.3 we will perform an
equivalent test with an end-to-end test of the entire method
using a 10243 grid.

3.2. Long-Wavelength Components

Now we consider d,(m, n), the contribution to the density
field from the coarse grid. As we see from equation (25), in
principle we can compute 0, by spreading the original
coarse-grid white noise sample &,(m) to the r* subgrid
points for each coarse grid point (i.e., all *M? points) and
then convolving with the high-resolution transfer function
as in equation (16):

Oolm, m) = Y Eo(m')T(m —m', n — ) . (26)
However, this method is impractical, because the contribu-
tions to 0, coming from large distances are not negligible
because of the long range of the transfer functions
(especially for the velocity transfer function). For the short-
wavelength field 6,(m, n) this causes no problems because
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the noise field &, is nonzero only within the subvolume.
Here, however, the noise field &, (m) is nonzero over the
entire simulation volume. Including all relevant contribu-
tions in the convolution as written would require working
with the transfer function on the full grid of size (rM)3,
which is exactly what we are trying to avoid.

A practical solution is to rewrite equation (26) as a con-
volution of the coarse-grid density field with a short-ranged
filter:

So(m, m) =Y So(m)\W(m —m',n—n'). (27)

m',n’

One can easily check that this is exactly equivalent to equa-
tion (26) provided that

W(m, n) = (rM)"3 ; exp [ik * x(m, n)] % , (28)

where k, = (2n/L)x is the projection of k into the funda-
mental Brillouin zone (eq. [15]).

An exact evaluation of equation (27) still requires using a
full (rM)* grid. However, we will see that W(x) falls off
sufficiently rapidly with distance that contributions to
0o(m, n) coming from large distances are negligible. (This
will not be true for the velocity field, but we will develop a
variation to handle that case later.) Thus, we may truncate
W (x) at the boundary of the refinement region and perform
the convolution of equation (27) using a (2rM,)* grid just as
we did for the short-wavelength field. The errors of this
procedure will be quantified below.

Equation (27) has a simple interpretation. The coarse-
grid density field d,(m) is spread to the fine grid by repli-
cating the coarse-grid values to each of the r* grid points
within a single coarse grid cell. The result is an artifact
called aliasing. In real space this artifact is manifested by
having constant values within pixels larger than the spatial
resolution. In k-space the effect is to replicate low-frequency
power in the fundamental Brillouin zone to higher fre-
quencies. Thus, the wrong transfer function is used if one
simply sets 0,(m, n) to é,(m). Equation (28) defines an anti-
aliasing filter which corrects the transfer function from the
coarse grid (with wavevectors k, in the fundamental Bril-
louin zone) to the full k-space. It smooths the sharp edges
that arise from spreading d,(m) to the fine grid. The anti-
aliasing filter removes the artifacts caused by replication of
the fundamental Brillouin zone.

The anti-aliasing filter is manifestly nonspherical, so we
cannot use the spherical transform method of § 2.4.3 to
evaluate it. However, W(m, n) is sharply peaked. This is
obvious from the fact that its Fourier transform is constant
over the fundamental Brillouin zone; the Fourier transform
of a constant is a delta function. Thus, we expect W(m, n) to
be peaked on the scale of a few coarse grid spacings. As a
result, the minimal k-space sampling method of § 2.4.2
should suffice (with a variation for the velocity field).

The division by T(k,) in equation (28) requires that we
compute the coarse-grid density field J,(m) without a
Hanning filter; otherwise T(k,) would be zero in the corners
of each Brillouin zone. Simply put, if we want to correctly
sample the density field at high resolution, we should not
cut out long-wavelength power by filtering. However, we
will apply a spherical Hanning filter at the shortest wave-
length to remove the anisotropic structure that was appar-
ent in Figure 2.
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At the corners of each Brillouin zone k, = 0 but k #0
(aside from the fundamental mode for the whole box). At
these wavevectors, d,(m) has no power and so no error is
made by setting T'(k)/T(k,) — 0. In the case of the displace-
ment field, each component of T,(k,) vanishes along an
entire face of the Brillouin zone, as explained in the para-
graph before equation (23). We also set to zero these contri-
butions to the Fourier series in equation (28).

Figure 6 shows the density anti-aliasing filter computed
with a spherical Hanning filter applied to T(k). The minimal
k-space method gives good agreement with the much slower
exact calculation. Along the axes at the edges of the volume
the errors are up to a factor of 2, but W is very small and
oscillates, making these errors unimportant. The banding is
due to the sign oscillations of W. They have a characteristic
scale equal to the coarse grid spacing, and they arise
because of the discontinuity of T'(k)/T(k,) at Brillouin zone
boundaries in equation (28). Such oscillations are character-
istic of anti-aliasing filters. The filter falls off sufficiently
rapidly with distance from the center that we can expect
accurate results by truncating it outside the region shown.

Figure 7 shows the corresponding result for the displace-
ment (or velocity or gravity) field filter. (Recall that the
displacement, velocity, and gravity are proportional to one
another in linear theory.) Now the errors of the minimal
k-space sampling method are significant. They arise because
the minimal sampling method forces W(m, n) to be periodic
on the scale of the box shown in the figure (twice the subgrid
size), while with the exact method the scale of periodicity is
larger by a factor M/2M, (or 4 in this case). In other words,
the filter does not fall off very rapidly with distance, so
truncating it and making it periodic in the box of size 2rM|
introduces noticeable errors. However, because the filter is
still sharply peaked and oscillatory with small amplitude, it
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is possible that these errors are negligible. We will quantify
the errorsin § 3.3.

The procedure is now similar to that of § 3.1. Once we
have the anti-aliasing filters, the next step is to obtain
samples of the coarse-grid fields d,(m) and ,(m) that we
wish to refine. We do this using the convolution method of §
2.1. For testing purposes, we construct a coarse-grid sample
of white noise, ¢,(m) which exactly equals the long-
wavelength parts of the noise shown in the left panel of
Figure 4. This was achieved by modifying GRAFIC
(Bertschinger 1995) to sample a white noise field &(m) in the
spatial domain. Fourier transformation to £(k) then allows
the calculation of density (and similarly displacement) by
equation (7). As a result, we have chosen our coarse grid
sample so that & (m) = &,(m) within the refinement subgrid.
This choice is made so that later we can see directly how
long- and short-wavelength components of the noise con-
tribute to the final density field.

Figure 8 shows the white noise sample adopted for the
coarse grid. The right panel is obtained by averaging the left
panel of Figure 4 over 4° subgrid mesh points (1 Mpc?
volume). Figure 4 shows only a single thin slice of width
0.25 Mpc, while Figure 8 shows coarse cells of thickness 1
Mpc, so one should not expect the two figures to appear
similar. The left panel of Figure 8 shows a full slice of size
256 Mpc, obtained by filling out the rest of the volume with
white noise.

This white noise sample on the coarse grid was convolved
with the transfer function using GRAFIC to give the coarse
density field d,(m) that we wish to refine. The results are
shown in Figure 9. The right panel shows a 64 Mpc sub-
volume including the 32 Mpc refinement region. The
obvious pixelization is the result of mesh refinement: the
coarse grid density field has been spread to the fine grid.

F16. 6.—Anti-aliasing filter W(m, n) for the density. The left panel shows the filter computed using the exact method of § 2.4.1, while the right panel uses
the minimal k-space sampling method of § 2.4.2. False colors are scaled to the logarithm of absolute value of the filter, which shows 6 orders of magnitude.
The banded appearance is caused by low-amplitude oscillations. The oscillations act to smooth the sharp edges of the coarse grid fields when they are refined
to the subgrid. The difference between the two filters is negligible away from the edges. [See the electronic edition of the Journal for a color version of this

figure.]



No. 1, 2001

L

MULTISCALE GAUSSIAN RANDOM FIELDS 11

FiG. 7.—Anti-aliasing filters for the x-component of displacement (or velocity or gravity), computed with the exact (left) and minimal k-space sampling
(right) methods. False colors are scaled to the logarithm of absolute value of the filter spanning 4 orders of magnitude. Because the displacement is sensitive to
longer wavelengths than the density, the differences between the two computational methods here is more pronounced than for the density filter of Fig. 6.

[See the electronic edition of the Journal for a color version of this figure.]

This pixelization causes power from wavelengths longer
than the coarse grid spacing to be aliased to higher fre-
quencies. If uncorrected, this aliasing would introduce spu-
rious features into the power spectrum. Thus, the coarse
grid sample must be convolved with an anti-aliasing filter as
described above.

Special care is needed with the boundary conditions for
the anti-aliasing convolution of equation (27). The top grid

density field d,(m) fills the subgrid shown in the right panel
of Figure 9 without periodic boundary conditions. The anti-
aliasing filter (Fig. 6) has finite extent; therefore, FFT-based
convolution of the two will lead to spurious contributions
to 0, at the subvolume edges coming from J, on the
opposite side of the box. To avoid this, we surround the
subvolume (which occupies one octant of the convolution
volume) with a buffer region of width one-half of the sub-

Fic. 8.—Slices through the white noise sample &, (i) for the coarse grid. Left: Full cube of size 256 Mpc. Right: Magnification of the upper left corner by a
factor of 4 to show the region that will be refined. Aliasing (sharp pixel boundaries) is now evident. False colors are scaled to linear values ranging from +2
standard deviations. [ See the electronic edition of the Journal for a color version of this figure.]
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F1G. 9.—Slices through the coarse grid density field d,(m) resulting from convolution of Fig. 8 with the density transfer function sampled on the coarse
grid. Left: Full cube of size 256 Mpc, with periodic boundary conditions. Right: Magnification of the upper left corner by a factor of 4 to show a square of size
64 Mpc. This panel shows the 32 Mpc region that we wish to refine to include the correct small-scale power. The magnified pixels represents an aliasing
artifact. False colors are scaled as in Fig. 5. Random numbers were chosen so that the right panel corresponds to the coarsely sampled long-wavelength
components of the left panel of Fig. 5. [See the electronic edition of the Journal for a color version of this figure.]

volume in each dimension. The correct density values from Figure 11 shows the density field 5,(m, n) and the corre-
the top grid are placed in this buffer. Because our sub- sponding velocity field after convolution with the anti-
volume is not centered but rather is placed in the corner of aliasing filter W. The minimal k-space filter has been used
the cube of size 2rM, we wrap half of the buffer to the other here; there would be almost no discernible difference if the
side of this cube. The results are shown in Figure 10. exact filter was used instead. The pixelated images of Figure

FiG. 10.—Slices through the density (left) and velocity (x-component, right) fields on the coarse grid after a buffer region of width 16 Mpc has been placed
around the 32 Mpc subvolume in the upper left. In the upper left 48 Mpc area, the left panel matches the right panel of Fig. 9. The bottom and right quartiles
are filled with values from the top and left of the subvolume which were then wrapped periodically. This is clearer for the velocity field because of its larger
coherence length. The buffer regions and periodic boundary conditions are needed because of the FFT-based method for convolution with anti-aliasing
filters. [See the electronic edition of the Journal for a color version of this figure.]
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F1G. 11.—Long-wavelength density and velocity fields after convolution by the anti-aliasing filter. Each panel is the convolution of the corresponding
panel of Fig. 10 by the appropriate anti-aliasing filter (Fig. 6 for the density, Fig. 7 for the velocity). The anti-aliasing filters have eliminated the pixelization
artifacts present in Fig. 10. Convolution across the discontinuity at the boundary of the buffer region causes some errors, but these are small within the
desired refinement region (the upper left quadrant in these images). [ See the electronic edition of the Journal for a color version of this figure.]

10 have now been smoothed appropriately for the transfer
function. Smoothing over pixelization artifacts is the
purpose behind anti-aliasing filters, whether they be applied
in image processing or cosmology.

The convolution method used here is not exact. Quan-
tifying its errors requires evaluating equation (26) or (27)
using a full convolution of size (rM)*. We do this in the next

subsection, where we test all stages of the mesh refinement
method.

3.3. Testing the Refined Fields

Having computed separately the sh