CHIANTI—AN ATOMIC DATABASE FOR EMISSION LINES. IV. EXTENSION TO X-RAY WAVELENGTHS

K. P. Dere

Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC 20375; dere@nrl.navy.mil

E. Landi

Max Planck Institut für Aeronomie, Katlenburg-Lindau, Germany; and Naval Research Laboratory, Washington, DC 20375; enricol@arcetri.astro.it

P. R. YOUNG

Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138; pyoung@cfa.harvard.edu

AND

G. Del Zanna

Centre for Astrophysics, University of Central Lancashire, Preston PR1 2HE, England, UK; and Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, England, UK; g.del-zanna@damtp.cam.ac.uk Received 2000 September 7; accepted 2001 January 29

ABSTRACT

CHIANTI provides a database of atomic energy levels, wavelengths, radiative transition probabilities, and electron excitation data for a large number of ions of astrophysical interest. It also includes a suite of Interactive Data Language programs to calculate optically thin synthetic spectra and to perform spectral analysis and plasma diagnostics. This database allows the calculation of theoretical line emissivities necessary for the analysis of optically thin emission-line spectra. The first version (1.01) of the CHIANTI database was released in 1996 and published by Dere et al. in 1997 as Paper I in this series. The second version, released in 1999 by Landi et al., included continuum emission and data for additional ions. Both versions of the CHIANTI database have been used extensively by the astrophysical and solar communities to analyze emission-line spectra from astrophysical sources. Now the CHIANTI database has been extended to wavelengths shorter than 50 Å by including atomic data for the hydrogen and helium isoelectronic sequences, inner-shell transitions and satellite lines, and several other ions. In addition, some of the ions already present in the database have been updated and extended with new atomic data from published calculations.

Subject headings: atomic data — stars: atmospheres — Sun: atmosphere

1. INTRODUCTION

This paper describes the extension of the CHIANTI database (Dere et al. 1997, Paper I) to the X-ray portion of the electromagnetic spectrum. This release of the database is referred to as version 3.0. The CHIANTI database consists of assessed values of atomic energy levels, weighted oscillator strengths (gf-values), spontaneous radiative decay rates (A-values), and electron collisional excitation rates which are needed to calculate the spectrum of astrophysical plasmas. In addition, a package of Interactive Data Language (IDL) procedures to perform the spectral calculation are also available. In Paper II, Young, Landi, & Thomas (1998) used the CHIANTI database for a detailed comparison with observed EUV solar spectra to assess the diagnostic accuracy of the two data sets. In Paper III, Landi et al. (1999) described the inclusion of many of the minor ions (Na, P, Cl, K, Ti, Cr, Mn, Co, and Zn) in the CHIANTI database as well as several other ions and a routine for the calculation of the continuum.

The extension of the CHIANTI database to X-ray wavelengths primarily involves the incorporation of the hydrogen-like and helium-like isoelectronic sequences and their satellites. The inclusion of the satellites has required a significant modification to the manner in which the spectra have been calculated with CHIANTI. Consequently, a new version of the IDL package, also labeled "version 3.0," has been produced. In addition, data from several other ions are either new to the database or have been updated and these are also described. Tables 1 and 2 show the ions that are included in the database and Tables 3 and 4 show the temperature of maximum ionization fraction for these ions.

In order to check the accuracy of the database, a detailed comparison between the predictions of the CHIANTI database and observed spectra in the 1–50 Å wavelength range has been made. This consisted of first compiling a list of observed spectral lines identified in high-resolution spectra observed primarily in solar flares. This comparison prompted a detailed reassessment of the energy levels of the Fe XVI through Fe xxvi ions responsible for many of the strongest emission lines in this spectral region. With the help of ab initio calculations of the atomic structure of these ions that we performed and a recent compilation of the iron ion energy levels by the NIST group (Shirai et al. 2000), we were able to improve many of the energy level assignments and line identifications for the CHIANTI database. However, this study also suggested that further work is necessary to understand the spectra from the highly ionized iron ions. A summary of this comparison is presented in Table 5 as a complete listing of observed high-resolution spectra in the 1-50 Å wavelength region and the corresponding identification of these lines in the CHIANTI database.¹

¹ The CHIANTI database and associated IDL procedures, now distributed as version 3.0, are freely available at the following addresses on the World Wide Web: http://wwwsolar.nrl.navy.mil/chianti.html, http://www.arcetri.astro.it/science/chianti/chianti.html, and http:// www.damtp.cam.ac.uk/user/astro/chianti/chianti.html.

TABLE 1 Ions Included in the CHIANTI Database

Ion	I	п	ш	IV	v	VI	VII	VIII	IX	x	XI	хп	хш	XIV	XV	XVI	
Н																	
Не		•															
С		٠	0	٠	*	*											
N		0	0	٠	٠	*	*										
O		•	0	0	•	0	*	*									
Ne		•	•	0	0	0	•	0	*	*							
Na			•	0	•	0	0	•	•	*	*						
Mg		٠		٠	0	•	0	0	0	0	*	*					
A1			•		•	•	•	0	0	•	0	*	*				
Si		0	٠	٠	٠	•	•	0	0	0	•	0	*	*			
Р					٠		•	•	٠	0	0	•	٠				
S		٠	*	0	٠	•	•	•	•	0	0	0	٠	0	*	*	
Cl														•			
Ar							•	•	0	•	•	0	0	0	•	0	
K								•	•		•	•	•	0	•	•	
Са									•	•	0	•	•	0	0	0	
Ti											٠	•		•	•	•	
Cr													•	•		•	
Mn															•		
Fe		٠					•	0	•	0	0	•	0	0	•	•	
Со																	
Ni												•	•		0	•	
Zn																	

NOTE.—Ions included in the CHIANTI database. Filled dots: ions in CHIANTI version 2.0 *not* changed in the present update. Open dots: ions in the CHIANTI version 2.0 whose data have been modified/complemented in the present update. Asterisks: new entries for the CHIANTI database.

2. EXCITATION OF X-RAY SATELLITE LINES

In previous versions of CHIANTI, spectral lines were produced by electron collisional excitation of ions followed by the radiative decay of the excited level. An important aspect of the X-ray spectral region is the existence of numerous satellite lines to many of the strong resonance lines. These lines are produced in two ways: by the excitation of inner-shell electrons to levels above the ionization potential or by the dielectronic capture of an incident electron into a similar excited level. In both cases, the excited level either undergoes a radiative decay to a lower energy level of the ion or an autoionizing transition to the next ionization stage. Neither of these two-step processes fit into the framework of earlier versions of CHIANTI. A rigorous treatment would require the simultaneous solution of combined ionization and level populations for all of the ions of a given element. However, such a computationally demanding treatment is not required and an approximate treatment of these processes is used for the version of CHIANTI described in this paper.

Most, if not all, past treatments of satellite lines are based on the two-level approximation where only the ground level is populated and all lines are produced by collision excitation from this level to a higher level which undergoes a rapid radiative transition. The approach used in CHIANTI is to solve the steady-state rate equation for populations of all the levels in a given ion in order to take into account the population of metastable levels above the ground level. Since none of the autoionizing levels that give rise to the satellite lines reach a significant population, it is possible to include these levels separately from those below the ionization potential.

IONS INCLUDED IN THE CHIAINTI DATABASE												
Ion	XVII	XVIII	XIX	xx	XXI	ххп	ххш	XXIV	XXV	XXVI	XXVII	ххүш
Ar	*	*										
К	•											
Ca	•	0	*	*								
Ti	o	0	•	•								
Cr	•	•	•	0	•	•						
Mn	0	•	•	0	0	•	•					
Fe	0	•	•	•	0	0	•	0	*	*		
Со	•		•		•	•	0	٠	•			
Ni	•	•	0	•		•	0	0	•	0	*	*
Zn				•				•	0	•	•	

 TABLE 2

 Ions Included in the CHIANTI Database

NOTE.—Ions included in the CHIANTI database. Filled dots: ions in CHIANTI version 2.0 not changed in the present update. Open dots: ions in CHIANTI version 2.0 whose data have been modified/complemented in the present update. Asterisks: new entries for the CHIANTI database.

 TABLE 3

 Temperature of Maximum Abundance for Ions Included in the CHIANTI Database

Ion	п	ш	IV	v	VI	VII	VIII	IX	х	XI	XII	хш	XIV	XV	XVI
Н															
Не	4.66														
С	4.36	4.85	5.02	5.43	6.00										
N	4.47	4.90	5.16	5.28	5.74	6.19									
0	4.52	4.96	5.22	5.39	5.48	5.90	6.37								
Ne	4.55	4.94	5.23	5.45	5.62	5.71	5.80	6.15	6.64						
Na		4.96	5.20	5.44	5.64	5.78	5.86	5.92	6.30	6.77					
Mg	4.08		5.23	5.43	5.63	5.80	5.90	5.99	6.05	6.45	6.89				
A1		4.56		5.37	5.60	5.77	5.91	6.02	6.10	6.17	6.55	7.00			
Si	4.15	4.46	4.79	5.16	5.54	5.76	5.90	6.03	6.12	6.20	6.28	6.66	7.09		
Ρ				5.11		5.74	5.91	6.04	6.16	6.23	6.30	6.36			
S	4.24	4.67	5.02	5.19	5.28	5.51	5.86	6.00	6.12	6.24	6.31	6.39	6.44	6.86	7.29
Cl													6.47		
Ar						5.50	5.58	5.75	6.08	6.20	6.31	6.41	6.49	6.54	6.62
К							5.70	5.73		6.19	6.31	6.41	6.50	6.58	6.61
Ca								5.79	5.81	5.95	6.25	6.38	6.48	6.56	6.61
Ti										6.01	6.09		6.45	6.56	6.64
Cr												6.20	6.24		6.60
Mn														6.32	
Fe	4.11					5.41	5.57	5.80	5.99	6.07	6.13	6.20	6.27	6.32	6.42
Со															
Ni											6.24	6.29		6.37	6.40
Zn															

NOTE.—Temperature of the maximum ion abundance for the ions included in the CHIANTI database. Ion fractions come from Arnaud & Raymond (1992) for the Fe ions, Landini & Monsignori Fossi (1991) for the minor ions, Arnaud & Rothenflug (1985) for the other ions.

2.1. Inner-Shell Excitation

In the case of satellite lines produced by inner-shell excitations, the treatment is relatively straightforward. The collisional excitation and radiative decay is prescribed by the usual collision strengths and radiative *A*-values as described in Paper I. The only aspect that requires a modification to the standard CHIANTI model ion is the necessity of accounting for autoionizing transitions of the levels above the ionization potential. The rate of these transitions is given by the autoionization rate (a constant). The current model of CHIANTI does not consider transitions between ions. The incorporation of these inter-ion transitions in a proper manner can only be done at the cost of a very significant increase in computational time for little return in enhanced diagnostic capability. Consequently, autoionizing transitions are treated as radiative decays to the ground level of the ion from which they were excited but with no emission of radiation. This treatment allows us to take into account autoionization effect while avoiding the computational complexity of transitions between ions and with negligible effects on the overall ion level populations. The effect of these autoionizing transitions on the ionization balance is already accounted for in current calculations of ionization equilibrium, e.g., Arnaud & Rothenflug (1985).

2.2. Dielectronic Excitation

The collisional excitation rate of lines produced by dielectronic recombination is typically determined by considerations of detailed balance (Gabriel & Paget 1972). The ratio of the collisional rate coefficient for dielectronic excitation C_d to the total autoionization radiative decay rate A_a is

Ion	XVII	хүш	XIX	xx	XXI	XXII	ххш	XXIV	XXV	XXVI	XXVII	ххүш
Ar	6.94	7.46										
К	6.69											
Ca	6.69	6.75	7.16	7.61								
Ti	6.71	6.78	6.82	6.91								
Cr	6.71	6.80	6.87	6.91	6.98	7.05						
Mn	6.68	6.79	6.87	6.92	6.99	7.03	7.12					
Fe	6.60	6.80	6.89	6.96	7.02	7.09	7.15	7.26	7.55	8.00		
Со	6.43		6.79		6.97	7.02	7.09	7.14	7.23			
Ni	6.41	6.47	6.55	6.78		6.98	7.03	7.10	7.16	7.27	7.68	8.00
Zn				6.62				7.09	7.15	7.21	7.29	

 TABLE 4

 Temperature of Maximum Abundance for Ions Included in the CHIANTI Database

NOTE.—Temperature of the maximum ion abundance for the ions included in the CHIANTI database. Ion fractions come from Arnaud & Raymond (1992) for the Fe ions, Landini & Monsignori Fossi (1991) for the minor ions, Arnaud & Rothenflug (1985) for the other ions.

λ _{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs
	1.2540	Ni xxvII	$1s^{2} {}^{1}S_{0} - 1s 5p {}^{1}P_{1}$	1.1e + 03	
	1.2830	Ni xxvII	$1s^2 {}^1S_0 - 1s 4p {}^1P_1$	2.5e + 03	
	1.2934	Ni xxvIII	$1s \ ^{2}S_{1/2} - 3p \ ^{2}P_{3/2}$	1.2e + 03	
	1.3500	Ni xxvII	$1s^2 {}^1S_0 - 1s \; 3p \; {}^1P_1$	7.6e + 03	
•••	1.3520	Ni xxvII	$1s^2 {}^1S_0 - 1s {}^3P_1$	1.3e + 03	
•••	1.3917	Fe xxvi	$1s {}^{2}S_{1/2} - 5p {}^{2}P_{3/2}$	7.5e + 03	
•••	1.3919	Fe xxvi	$1s {}^{2}S_{1/2} - 5p {}^{2}P_{1/2}$	3.8e + 03	
•••	1.4249	Fe XXVI	$1s^{2}S_{1/2} - 4p^{2}P_{3/2}$	1.5e + 04 7.4a + 03	
•••	1.4255	Fe XXVI	$18 S_{1/2} - 4p F_{1/2}$ $1s^2 1s 1s 5p ^3P$	7.40 ± 03	
•••	1.4010	Fe xxv	$1s S_0 - 1s Sp F_1$ $1s^2 1s -1s 5n 1P$	3.50 ± 0.03	
•••	1.4950	Fe xxv	$13^{\circ} S_0^{\circ} 13^{\circ} S_p^{\circ} T_1^{\circ}$ $1s^2 S_2^{\circ} -1s 4n P_1^{\circ}$	$5.7e \pm 04$	
	1.4950	Fe xxv	$15^{2} {}^{1}S_{0} - 15 {}^{4}p {}^{3}P_{1}$	7.8e + 03	
	1.5023	Fe xxvi	$1s {}^{2}S_{1/2} - 3p {}^{2}P_{3/2}$	4.6e + 04	
	1.5035	Fe xxvi	$1s {}^{2}S_{1/2} - 3p {}^{2}P_{1/2}$	2.3e + 04	
	1.5303	Ni xxvIII	$1s {}^{2}S_{1/2}^{1/2} - 2p {}^{2}P_{3/2}^{1/2}$	7.7e+03	
	1.5358	Ni xxvIII	$1s {}^{2}S_{1/2} - 2p {}^{2}P_{1/2}$	3.8e + 03	
	1.5415	Ni xxvII d	$1s \ 2p \ ^{1}P_{1} - 2p \ 2p \ ^{1}D_{2}$	1.1e + 03	
1.567	1.5730	Fe xxv	$1s^2 {}^{1}S_0 - 1s \; 3p \; {}^{1}P_1$	1.7e + 05	19
	1.5750	Fe xxv	$1s^2 {}^1S_0 - 1s \; 3p \; {}^3P_1$	2.6e + 04	
1.587	1.5880	N1 XXVII	$1s^2 {}^{1}S_0 - 1s 2p {}^{1}P_1$	5.2e + 04	19
•••	1.5923	NI XXVII	$1s^2 + S_0 - 1s + 2p + P_2$ $1s^2 + 2s^2 + 1s + 2s + 2s + (1p) + 2p$	1.7e + 0.3	
•••	1.5955	NI XXVI Ni XXVI	$1s^{2} 2s^{2} - 5_{1/2} - 1s^{2} 2s^{2} 2p^{-1} P_{1/2}$ $1s^{2} 1s^{2} - 1s^{2} 2p^{-3} P$	1.2e + 0.3	
•••	1.5905	Ni XXVII	$\frac{18}{1s^2} \frac{3}{2s} \frac{2}{s^2} \frac{1}{s} \frac{2}{2s} \frac{2}{2s} \frac{1}{s} \frac{2}{2s} \frac{2}{2n} \frac{3}{s^2} \frac{3}{2n} \frac{3}{2} \frac{2}{2n} \frac{3}{s^2} \frac{3}{2n} \frac{3}{s^2} \frac{3}{2n} \frac{3}{s^2} \frac{3}{2n} \frac{3}{s^2} \frac{3}{2n} \frac{3}{s^2} \frac{3}{2n} \frac{3}{s^2} $	1.00 ± 04 5.6e ± 03	
•••	1.5977	Ni xxvi d	$13^{2} 2n^{2}P_{2n} = 18^{2} 2n^{(3)} (1)^{-1} \frac{1}{3/2}$ $1s^{2} 2n^{2}P_{2n} = 18^{2} 2n^{(3)} 2n^{2}P_{2n}$	$1.1e \pm 03$	
	1.5984	Ni xxvi d	$1s^{2} 2p^{2} P_{1/2} - 1s^{2} 2p^{(1)} 2p^{2} P_{3/2}$ $1s^{2} 2p^{2} P_{1/2} - 1s^{2} 2p^{(1)} 2p^{2} P_{3/2}$	2.3e + 03	
	1.5996	Ni xxvi	$1s^2 2s^2 S_{1/2} - 1s^2 2s^2 2p (^3P)^2 P_{1/2}$	1.5e + 03	
	1.6009	Ni xxvi d	$1s^2 2p {}^2P_{3/2}^{1/2} - 1s 2p ({}^1P) 2p {}^2D_{5/2}^{1/2}$	3.5e + 03	
	1.6036	Ni xxvII	$1s^2 {}^1S_0 - 1s {}^2S {}^3S_1$	1.0e + 04	
1.778	1.7780	Fe xxvi	$1s {}^{2}S_{1/2} - 2p {}^{2}P_{3/2}$	3.0e + 05	20
•••	1.7795	Fe xxv d	$1s \ 3p \ ^{1}P_{1} - 2p \ 3p \ ^{1}D_{2}$	1.3e + 04	
1.783	1.7833	Fe xxvi	$1s {}^{2}S_{1/2} - 2s {}^{2}S_{1/2}$	1.0e + 04	20
	1.7834	Fe xxvi	$1s {}^{2}S_{1/2} - 2p {}^{2}P_{1/2}$	1.5e + 05	
•••	1.7872	Fe xxv d	$1s 2s {}^{1}S_{0} - 2s 2p {}^{1}P_{1}$	1.9e + 04	
1 702	1.7020	Fe xxv d	$1s 2p P_2 - 2p^2 D_2$ $1s 2p P_2 - 2p^2 D_2$	1.2e + 04	20
1.792	1.7920	Fe xxv d	$15 2p P_1 - 2p D_2 (J)$ $1s 2p ^3P - 2p^2 ^3P$	5.76 ± 04	20
1 8283	1.7720	I C XXV U	$13 2p 1_2 - 2p 1_2$	1.40 + 04	13
1.8309					13
1.8344					13
1.8389					13
1.8424					13
1.8499	1.8500	Fe xxv	$1s^2 {}^1S_0 - 1s \; 2p \; {}^1P_1 (w)$	1.2e + 06	13
•••	1.8517	Fe xxiv d	$1s^2 3d {}^2D_{5/2} - 1s 2p ({}^1P) 3d {}^2F_{7/2}$	1.3e + 04	
•••	1.8525	Fe xxiv d	$1s^2 3p {}^2P_{1/2} - 1s 2p ({}^1P) 3p {}^2D_{3/2}$	1.4e + 04	
1.0550	1.8532	Fe xxiv d	$1s^2 3p {}^2P_{3/2} - 1s 2p ({}^1P) 3p {}^2D_{5/2}$	1.8e + 04	12
1.8552	1.8554	Fe xxv	$1s^2 - 3_0 - 1s - 2p - P_2(x)$ $1s^2 - 2p - 2p - 1s - 2p - (3p) - 2p - 2p$	1.60 + 0.5	13
1.0300	1.8566	Fe XXIV d	$1s 5p r_{3/2} - 1s 2p (r) 5p D_{5/2}$ $1s^2 2p 2P 1s 2p (^1P) 2p ^2S (m)$	0.2e + 03	15
	1.8500	Fe xxiv d	$1s^{2} 2s^{2} S_{1/2} = 1s^{2} 2s^{2} (1)^{2} p^{3} S_{1/2} (m)$ $1s^{2} 2s^{2} S_{1/2} = 1s^{2} 2s^{2} n (^{1}P)^{2} P_{1/2} (t)$	1.20 ± 0.04	
	1.8572	Fe xxiv d	$1s^{2} 2s^{2} S_{1/2} 1s^{2} 2s 2p(1) 1_{1/2}(t)$ $1s^{2} 2s^{2} S_{1/2} -1s^{2} 2s^{2} p(1P) 2P_{1/2}(t)$	1.00 + 04 1.7e + 04	
1.8595	1.8595	Fe xxv	$1s^2 {}^{1}S_0 - 1s {}^{2}p {}^{3}P_1 (v)$	2.1e + 05	13
	1.8604	Fe xxiv	$1s^{2} 2s^{2}S_{1/2} - 1s 2s^{2} 2p (^{3}P) {}^{2}P_{3/2}$	9.4e + 04	-
1.8610	1.8604	Fe xxiv	$1s^2 2s {}^2S_{1/2}^{-1} - 1s 2s 2p ({}^3P) {}^2P_{3/2}^{-1} (q)$	9.4e + 04	13
1.8631	1.8622	Fe xxiv d	$1s^{2} 2p {}^{2}P_{3/2} - 1s 2p ({}^{3}P) 2p {}^{2}P_{3/2} (a)$	2.0e + 04	13
	1.8630	Fe xxiv d	$1s^{2} 2p {}^{2}P_{1/2} - 1s 2p ({}^{1}P) 2p {}^{2}D_{3/2} (k)$	4.9e + 04	
	1.8635	Fe xxiv d	$1s^{2} 2s^{2}S_{1/2} - 1s 2s^{2}p ({}^{3}P) {}^{2}P_{1/2} (r)$	7.9e + 03	
1.0000	1.8637	Fe XXIV	$1s^{2} 2s^{2}S_{1/2} - 1s 2s 2p (^{9}P)^{2}P_{1/2} (r)$	2.6e + 04	10
1.8660	1.8659	Fe XXIV d	$1s^{-} 2p^{-}P_{3/2} - 1s^{-} 2p^{-}P_{2p^{-}} D_{5/2}(j)$ $1s^{2} 2s^{-} 2s^{-} 1s^{-} 2s^{-} 2s^{-} (3D)^{-} 4D$	1.3e + 04	13
1.0000	1.00/0	Fe XXIV	$15 \ 25 \ S_{1/2} - 15 \ 25 \ 2p \ (^{-}P) \ ^{-}P_{5/2}$ $1s^2 \ ^{-}S \ -1s \ 2s \ ^{-}S \ (z)$	1.30 ± 04 2 3e ± 05	13
1,8704	1.8002	Fe xxm d	$2s 2p {}^{3}P_{-1} s 2s 2n^{2} {}^{3}D_{-1}$	$1.1e \pm 0.04$	13
			-r - 1		

TABLE 5 CHIANTI XUV Line List

TABLE 5—Continued

λ _{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs
1 9722	1 8724	Fo yym d	$2_{9} 2_{10} {}^{3}P$ $1_{9} 2_{9} ({}^{4}P) 2_{10} {}^{2} {}^{3}P$	720 ± 02	12
1.0752	1.0724	Fe xxIII d	$2s 2p r_0 - 1s 2s (r) 2p r_1$ $1s^2 2p ^2P 1s 2p (^3P) 2p ^4P (a)$	1.30 ± 0.01	15
	1.8728	Fe XXIV u	$13^{2} 2s^{2} S_{13/2} - 1s^{2} 2p^{(1)} 2p^{-1} \frac{5}{5/2} (e)$ $1s^{2} 2s^{2} S_{13/2} - 1s^{2} 2s^{2} 2p^{(3P)} \frac{4P_{13/2}}{P_{13/2}} (v)$	51e+03	
	1.8730	Fe xxiv	$1s^{2} 2s^{2} S_{1/2} 1s^{2} 2s^{2} p(1) 1_{1/2}(c)$ $1s^{2} 2s^{2} S_{1/2} -1s^{2} 2s^{2} p(^{3}P) ^{4} P_{2/2}(u)$	1.2e + 04	
	1.8731	Fe xxIII d	$2s 2p^{3}P_{1}-1s 2s 2p^{2}{}^{3}D_{2}$	3.0e + 04	
	1.8734	Fe xxIII d	$2s 2p {}^{3}P_{2} - 1s 2s ({}^{4}P) 2p^{2} {}^{3}P_{2}$	9.6e + 03	
1.8754	1.8754	Fe xxIII d	$2s 2p {}^{3}P_{2} - 1s 2s 2p^{2} {}^{3}D_{3}$	4.1e + 04	13
1.8779	1.8771	Fe xxIII d	$2s 2p {}^{1}P_{1} - 1s 2s 2p^{2} {}^{1}D_{2}$	9.1e + 03	13
	1.8786	Fe xxIII d	$2s^2 {}^1S_0 - 1s \; 2s^2 2p \; {}^3P_1$	2.7e + 03	
1.8794	1.8795	Fe xxII d	$2s^2 2p {}^2P_{3/2} - 1s 2s^2 2p^2 {}^2S_{1/2}$	1.1e + 03	13
1.8824	1.8822	Fe xxII d	$2s^2 2p {}^2P_{1/2} - 1s 2s^2 2p^2 {}^2D_{3/2}$	3.4e + 03	13
1.8851	1.8849	Fe xxII d	$2s^2 2p {}^2P_{3/2} - 1s 2s^2 2p^2 {}^2D_{5/2}$	4.5e + 03	13
1.8867	1.8870	Fe xxIII d	$2s 2p {}^{3}P_{2}-1s 2s 2p^{2} {}^{5}P_{3}$	1.8e + 03	13
1.8916	1.8924	Fe xxiv d	$1s^{2} 2p^{2} P_{1/2} - 1s 2s^{2} S_{1/2} (p)$	2.1e + 03	13
1.8942	1.8944	Fe xxi d	$2p^2 {}^{3}P_0 - 1s 2s^2 2p^3 {}^{3}D_1$	2.4e + 03	13
1.8966	1.8965	Fe xxi d	$2p^2 {}^{3}P_1 - 1s 2s^2 2p^3 {}^{3}D_2$	3.2e + 03	13
	1.8969	Fe XXIV d	$1s^{2} 2p^{2} P_{3/2} - 1s^{2} 2s^{2} - S_{1/2} (0)$	2.2e + 03	
1 0051	1.8909	Fe XXI d	$2p^{-1}P_2 - 18 \ 2s^{-2}p^{-1}D_3$ $1s^2 \ 2s^2 \ 2n^3 \ 4S \ 1s \ 2s^2 \ 2n^4 \ 4P$	1.2e + 0.5	12
1.9031	1.9031	Fe xx	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•••	13
1.9075	1.9075	Fe Ka	$13 \ 25 \ 2p \ r_{3/2} - 15 \ 25 \ 2p \ r_{3/2}$	•••	13
1.9300	1.9300	Fe K α_1		•••	13
2.706	2.7054	Ca xix	$1s^{2} S_{2} - 1s 3n P_{2}$	$9.9e \pm 03$	19
3.0185	3.0185	Ca xx	$1s^{2}S_{1/2} - 2p^{2}P_{2/2}$	3.6e + 04	13
3.0239	3.0239	Ca xx	$1s^{2}S_{1/2} - 2p^{2}P_{1/2}$	1.8e + 04	13
3.0485	3.0486	Ca xix d	$\frac{1}{1s} \frac{2p}{2p} \frac{1}{p} \frac{1}{2p^2} \frac{1}{p^2} \frac{1}{2p^2} \frac{1}{p^2} \frac{1}{$	3.8e + 03	13
3.16	3.1502	Ar xvIII	$1s^{2}S_{1/2} - 3p^{2}P_{3/2}$	1.9e + 04	19
	3.1514	Ar xvIII	$1s {}^{2}S_{1/2} - 3p {}^{2}P_{1/2}$	9.6e + 03	
3.1769	3.1772	Ca xix	$1s^{2} {}^{1}S_{0} - 1s 2p {}^{1}P_{1} (w)$	6.9e + 04	13
3.1822	3.1820	Ca xvIII d	$1s^2 3p {}^2P_{1/2}$ -1s 2p (¹ P) 3p ${}^2D_{3/2}$	9.1e + 02	13
	3.1829	Ca xvIII d	$1s^2 3p {}^2P_{3/2} - 1s 2p ({}^1P) 3p {}^2D_{5/2}$	1.4e + 03	
3.1889	3.1891	Ca xix	$1s^{2} {}^{1}S_{0} - 1s 2p {}^{3}P_{2}(x)$	7.9e + 03	13
3.1925	3.1927	Ca xix	$1s^{2} {}^{1}S_{0} - 1s 2p {}^{3}P_{1}(y)$	9.0e + 03	13
3.2003	3.1961	Ca xvIII	$1s^{2} 2s {}^{2}S_{1/2} - 1s 2s 2p ({}^{3}P) {}^{2}P_{3/2} (q)$	2.4e + 03	13
	3.1996	Ar xvii	$1s^2 {}^1S_0 - 1s 4p {}^1P_1$	9.5e + 03	
3.2033	3.2038	Ca xvIII d	$1s^{2} 2p^{2} P_{3/2} - 1s 2p (^{3}P) 2p^{2} P_{3/2} (a)$	7.2e + 02	13
3.2000	3.2064		$1s^{2} 2p^{2}P_{1/2} - 1s^{2}p(P) 2p^{2}D_{3/2}(k)$ $1s^{2} 2p^{2}P_{1/2} - 1s^{2}p(P) 2p^{2}D_{3/2}(k)$	2.5e + 0.3	13
3.2111	3.2102		$\frac{1s^{2} 2p - P_{3/2} - 1s 2p (-P) 2p - D_{5/2} (J)}{1s^{2} 1s 1s 2s 3s (z)}$	3.4e + 03	15
3 371	3 3654		$15 5_0 - 15 25 5_1 (2)$ $1s^2 1S -1s 3n 1P$	1.80 ± 04	10
3 698	3 6958	S XVI	$1s^{2}S_{1} = 5n^{2}P_{1}$	3.00 ± 04 7 4 e ± 03	19
5.070	3.6960	S XVI	$15 \ B_{1/2} \ 5p \ 1 \ 3/2$ $18 \ ^2S_{1/2} - 5p \ ^2P_{1/2}$	3.7e + 03	17
3.733	3.7311	Ar xviii	$1s^{-2}S_{1/2} = 2p^{-2}P_{2/2}$	1.4e + 05	19
	3.7365	Ar xvIII	$1s^{2}S_{1/2} - 2p^{2}P_{1/2}$	6.8e + 04	
	3.7554	Ar xvII d	$1s 2s^{1/2} S_0 - 2s 2p^{1/2} P_1$	4.0e + 03	
	3.7720	Ar xvII d	$1s \ 2p \ {}^{1}P_{1} - 2p \ 2p \ {}^{1}D_{2}$	1.2e + 04	
3.786	3.7843	S xvi	$1s {}^{2}S_{1/2} - 4p {}^{2}P_{3/2}$	1.7e + 04	19
	3.7847	S xvi	$1s {}^{2}S_{1/2} - 4p {}^{2}P_{1/2}$	8.4e + 03	
3.949	3.9488	Ar xvII	$1s^{2} S_{0} - 1s 2p P_{1}$	2.1e + 05	19
3.969	3.9656	Ar xvII	$1s^2 {}^1S_0 - 1s 2p {}^3P_2$	2.0e + 04	19
	3.9691	Ar xvii	$1s^2 {}^1S_0 - 1s 2p {}^3P_1$	2.6e + 04	
	3.9978	S xv	$1s^2 {}^{1}S_0 - 1s 5p {}^{1}P_1$	9.0e + 03	10
4.004	3.9908	S XVI	$1s {}^{2}S_{1/2} - 3p {}^{2}P_{3/2}$	5.1e + 04	19
	3.9919	S XVI	$1s^{-5}S_{1/2} - 3p^{-2}P_{1/2}$ $1s^{2}S_{1/2} - 1s^{-2}S_{1/2} - 3s^{-3}S_{1/2}$	2.60 ± 04	
4 104	3.9939		$18 S_0 = 18 28 S_1$ $1 s^2 18 18 4p 1p$	0.2e + 04	10
4.104	4.0885	S XV	$13 5_0 - 13 4p 1_1$ $1s^2 1S -1s 3n 1P$	2.00 ± 04 6 4 e ± 04	19
4.729	4.7274	S XVI	$15^{\circ} S_{0} 15^{\circ} S_{P} 1_{1}$ $15^{\circ} S_{1/2} - 2p^{\circ} P_{2/2}$	3.7e + 05	19
	4,7328	S XVI	$\frac{1}{15} \frac{2}{5} \frac{1}{12} \frac{2}{7} \frac{2}{7} \frac{3}{2} \frac{3}{2}$	1.8e + 05	17
4.769	4.7611	S xv d	$1s 2s {}^{1}S_{0} - 2s 2p {}^{1}P_{1}$	8.5e + 03	19
	4.7848	S xv d	$1s 2p {}^{1}P_{1} - 2p 2p {}^{1}D_{2}$	2.7e + 04	
4.834	4.8310	Si xiv	$1s {}^{2}S_{1/2} - 5p {}^{2}P_{3/2}$	1.5e + 04	19
	4.8312	Si xiv	$1s {}^{2}S_{1/2}^{}-5p {}^{2}P_{1/2}^{}$	7.6e + 03	
4.948	4.9467	Si xiv	$1s \ ^{2}S_{1/2} - 4p \ ^{2}P_{3/2}$	3.4e + 04	19
	4.9472	Si xiv	$1s \ ^{2}S_{1/2} - 4p \ ^{2}P_{1/2}$	1.7e + 04	
5.039	5.0387	S xv	$1s^{2} {}^{1}S_{0} - 1s \; 2p \; {}^{1}P_{1}(w)$	4.5e + 05	18, 19

TABLE 5—Continued

=

$\lambda_{ m solar} \ ({ m \AA})$	λ (Å)	Ion	Transition	Int	Refs
5.050	5.0484	S xiv d	$1s^2 3p {}^2P_{1/2} - 1s 2p ({}^1P) 3p {}^2D_{3/2}$	4.4e + 03	18
	5.0495	S xiv d	$1s^2 3p {}^2P_{3/2} - 1s 2p ({}^1P) 3p {}^2D_{5/2}$	6.8e + 03	
5.066	5.0631	S xv	$1s^{2} {}^{1}S_{0} - 1s {}^{2}p {}^{3}P_{2}(x)$	2.8e + 04	18, 19
	5.0665	S xv	$1s^{2} {}^{1}S_{0} - 1s \; 2p \; {}^{3}P_{1}(y)$	5.4e + 04	
5.105	5.1015	S xv	$1s^{2} {}^{1}S_{0} - 1s \; 2s \; {}^{3}S_{1}(z)$	1.5e + 05	18, 19
	5.1025	S xiv d	$1s^{2} 2p {}^{2}P_{3/2} - 1s 2p ({}^{1}P) 2p {}^{2}D_{5/2} (j)$	1.0e + 04	
5.220	5.2168	Si xiv	$1s {}^{2}S_{1/2} - 3p {}^{2}P_{3/2}$	1.1e + 05	18, 19
	5.2179	Si xiv	$1s {}^{2}S_{1/2} - 3p {}^{2}P_{1/2}$	5.3e + 04	10
5.228	5.2230	S1 XIII	$1s^2 S_0 - 1s \ 6p P_1$	•••	18
5.238	5 2856	Si ym	$1a^{2}$ 1 s $1a$ 5 m 1 D	1.20 ± 0.4	18 10
5.285	5.2850	Si xili	$15 S_0 - 15 Sp F_1$ $1s^2 1S -1s Ap ^1P$	1.20 ± 04	18, 19
5 682	5 6807	Si xiii	$15^{2} {}^{1}S_{0} - 15 {}^{2}P_{1}$	$8.9e \pm 04$	16 17 18 19
5.816	5.8157	Si xII d	$1s^{2} 2p^{2}P_{1/2} - 1s 2p (^{3}P) 3p^{2}D_{2/2}$	1.4e + 03	10, 17, 10, 19
	5.8163	Si xII d	$1s^2 2p {}^2P_{3/2}^{1/2} - 1s 2p ({}^3P) 3p {}^2D_{5/2}^{3/2}$	2.9e + 03	
6.049	6.0525	Al XIII	$1s {}^{2}S_{1/2} - 3p {}^{2}P_{3/2}$	7.1e + 03	19
	6.0537	Al xm	$1s {}^{2}S_{1/2}^{-}-3p {}^{2}P_{1/2}^{-}$	3.6e + 03	
	6.1720	Si xIII d	$1s \ 3d \ {}^{1}D_{2}-2p \ 3d \ {}^{1}F_{3}$	1.0e + 04	
6.180	6.1804	Si xiv	$1s {}^{2}S_{1/2} - 2p {}^{2}P_{3/2}$	7.8e + 05	17, 18, 19
6.187	6.1858	Si xiv	$1s {}^{2}S_{1/2} - 2p {}^{2}P_{1/2}$	3.9e + 05	17, 18
	6.1993	Si xiii d	$1s \; 3d \; {}^{3}D_{3}-2p \; 3d \; {}^{3}F_{4}$	5.6e + 03	10
6.212	6 2206	C: 1	1-2-16 2-2-1P	1.2- + 0.4	18
0.224	0.2290 6.2446	Si XIII d	$15 25 - 5_0 - 25 2p - P_1$ 1a 2a - 35 - 2a 2p - 3P	1.2e + 04	19
	6 2482	Si xili d	$15 25 3_1 - 25 2p F_2$ $1s 2s {}^3S - 2s 2p {}^3P$	5.20 ± 03	
6.261	0.2402	Si Alli u	$15 25 5_1 - 25 2p 1_1$	5.00 + 05	17, 18
6.266	6.2650	Si xIII d	$1s 2p {}^{1}P_{1} - 2p 2p {}^{1}D_{2}$	3.8e + 04	17, 18, 19
6.319			\mathbf{r} $-\mathbf{r}$ $-\mathbf{r}$ $-\mathbf{r}$ $-\mathbf{r}$ $-\mathbf{r}$		18
6.324					18
6.333					18
6.364					18
6.402					18
6.420					18
6.470					18
0.405	6 5800	Μανπ	$1s^{2}S$ $5n^{2}P$	$0.3a \pm 0.3$	18
0.381	6 5802	ΜσχΠ	$13 S_{1/2} = 5p T_{3/2}$ $18 ^2S_{1/2} = 5p ^2P_{1/2}$	9.50 ± 0.03	10
	6.6350	Al XII	$1s^{2} \frac{1}{2}S_{0} - 1s \frac{3p}{2}P_{1/2}$	4.5e + 03	
6.647	6.6480	Si xIII	$1s^{2} {}^{1}S_{0} - 1s {}^{2}p {}^{1}P_{1}$ (w)	6.1e + 05	16, 17, 18
	6.6539	Si xII d	$1s^2 3d^2 D_{3/2} - 1s 2p (^1P) 3d^2 F_{5/2}$	5.2e + 03	
6.659	6.6554	Si xII d	$1s^2 3d {}^2D_{5/2} - 1s 2p ({}^1P) 3d {}^2F_{7/2}$	8.2e + 03	16
	6.6627	Si xII d	$1s^2 3p {}^2P_{1/2} - 1s 2p ({}^1P) 3p {}^2D_{3/2}$	5.4e + 03	
	6.6638	Si xII d	$1s^2 3p {}^2P_{3/2} - 1s 2p ({}^1P) 3p {}^2D_{5/2}$	7.8e + 03	
6.685	6.6851	Si xIII	$1s^2 {}^1S_0 - 1s 2p {}^3P_2(x)$	3.0e + 03	17, 18
6.688	6.6883	S1 XIII	$1s^2 + S_0 - 1s + 2p + P_1(y)$ $1s^2 + 2p + 2p + 1s + 2p + (3p) + 2p + 2p$	4.4e + 04	17, 18
0.092 6 720	0.0891 6 7190	Si XII d	$1s^{-} sp^{-} P_{3/2} - 1s^{-} 2p^{-} (P) sp^{-} D_{5/2}$ $1s^{2} 2s^{-} 2s^{-} 1s^{-} 2s^{-} 2p^{-} (3p)^{-} 2p^{-} (a)$	8.30 ± 02	10
0.720	6 7200	Si XII	$1s^{2} 2s^{2} S_{1/2} - 1s^{2} 2s^{2} p(1) 1_{3/2} (q)$ $1s^{2} 2s^{2} S_{1/2} - 1s^{2} 2s^{2} p(^{3}P) P_{1/2} (r)$	$21e \pm 03$	10
6.740	6.7377	Mg XII	$1s^{2}S_{1/2} + 1s^{2}S_{2/2} + 1s^{2}S_{1/2} + 1s^{2}S_{1/2$	2.1e + 03 2.1e + 04	16, 17, 18
	6.7382	Mg XII	$1s^{2}S_{1/2} - 4p^{2}P_{1/2}$	1.0e + 04	,,
	6.7404	Si xIII	$1s^{2} {}^{1}S_{0}^{-1}s 2s {}^{3}S_{1}^{-1}(z)$	1.4e + 05	
	6.7432	Si xII d	$1s^2 2p {}^2P_{3/2} - 1s 2p ({}^1P) 2p {}^2D_{5/2}$	8.1e + 03	
	6.8111	Ni xxvı	$1s^2 2s {}^2S_{1/2} - 1s^2 4p {}^2P_{3/2}$	6.6e + 03	
	6.8208	Ni xxvi	$1s^2 \ 2s \ ^2S_{1/2} - 1s^2 \ 4p \ ^2P_{1/2}$	3.5e + 03	
6.950					17, 18
7.102	7.1058	Mg XII	$1s {}^{2}S_{1/2} - 3p {}^{2}P_{3/2}$	6.3e + 04	17, 18
/.105	/.1069	Mg XII	$15 - 5_{1/2} - 5p - F_{1/2}$ $1s^2 - 2s^2 - 5s^2 - 2p$	3.2e + 04	1/, 18
/.1/0	7 1600	FC XXIV	$15 \ 28 \ 5_{1/2} - 15 \ 5p \ r_{1/2} \\ 1s^2 \ 2s \ ^2S \ -1s^2 \ 5n \ ^2D$	1.00 ± 04	10, 17, 18
	7.1090		$15 \ 25 \ 5_{1/2} \ -15 \ 5p \ r_{3/2}$ $15 \ ^2S_{1/2} \ -2n \ ^2P_{1/2}$	5.40+04 51e⊥04	
	7,1763	Al xm	$1s^{-2}S_{1/2} + 2p^{-2}S_{1/2}$ $1s^{-2}S_{1/2} - 2p^{-2}P_{1/2}$	$2.5e \pm 04$	
7.310	7.3100	Mg XI	$1s^{2} \frac{1}{2} \frac{1}{$	4.0e + 03	17. 18
7.368	7.3698	Fe xxiv	$1s^2 2p^2 P_{1/2} - 1s^2 5d^2 D_{3/2}$	1.6e + 04	12
7.377					12
7.387	7.3910	Fe xxiv	$1s^2 2p \ ^2P_{1/2} - 1s^2 \ 5s \ ^2S_{1/2}$	6.5e + 03	12
7.438	7.4381	Fe xxiv	$1s^2 2p {}^2P_{3/2} - 1s^2 5d {}^2D_{5/2}$	1.4e + 03	12
	7.4403	Fe xxiv	$1s^2 2p {}^2P_{3/2} - 1s^2 5d {}^2D_{3/2}$	2.9e + 03	

TABLE 5—Continued

λ _{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs
7,454	7,4620	Fe xxiv	$1s^2 2n {}^2P_{2} = -1s^2 5s {}^2S_{1} =$	1.4e + 04	12
7 473	7 4730	Μσχι	$1s^{2} \frac{1}{3} \sum_{j=1}^{2} \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{3} \sum_{j=1}^{2} \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{3} \sum_{j=1}^{2} \frac{1}{3} \frac{1}{2} \frac{1}{3} \sum_{j=1}^{2} \frac{1}{$	$9.0e \pm 03$	12 17 18
1.175	7.4720	Fe xxm	$2s^2 + 1s - 2s + 5p + 1$	2.00 1 05	12, 17, 10
7.477					12, 16
7.498					12
7.561					12
7.685					16
7.710					17, 18
7.757	7.7570	Al XII	$1s^{2} S_0 - 1s 2p P_1(w)$	3.0e + 04	17, 18
7.774					17, 18
7.808	7.8070	Al XII	$1s^{2} S_0 - 1s 2p S_1(y)$	3.2e + 03	16, 17, 18
7.850	7.8510	Mg xi	$1s^{2} {}^{1}S_{0} - 1s \; 3p \; {}^{1}P_{1}$	2.8e + 04	11, 12, 17, 18
7.872	7.8721	Al XII	$1s^{2} {}^{1}S_{0} - 1s \; 2s \; {}^{3}S_{1}(z)$	1.2e + 04	11, 12, 17, 18
7.902					11, 12
7.919					11, 12
7.936					12
7.952					16
7.987	7.9828	Fe xxiv	$1s^2 2s {}^2S_{1/2} - 1s^2 4p {}^2P_{3/2}$	1.0e + 05	11, 12, 16
7.997	7.9930	Fe xxiv	$1s^2 2s \ ^2S_{1/2} - 1s^2 \ 4p \ ^2P_{1/2}$	5.4e + 04	11, 12, 16
8.069					17, 18
8.091					11, 12
8.141					16
8.153					12, 16, 18
8.159					12, 18
8.168					12
8.204					12
8.232	8.2311	Fe xxiv	$1s^2 2p \ ^2P_{1/2} - 1s^2 \ 4d \ ^2D_{3/2}$	5.2e + 04	11, 12, 16
8.270			, ,		12
8.285	8.2836	Fe xxiv	$1s^2 2p \ ^2P_{1/2} - 1s^2 \ 4s \ ^2S_{1/2}$	2.2e + 04	12
8.304	8.3030	Fe xxIII	$2s^{2} {}^{1}S_{0} - 2s {}^{4}p {}^{1}P_{1}$	1.2e + 05	11, 12, 13, 16
8.316	8.3158	Fe xxiv	$1s^2 2p \ ^2P_{3/2} - 1s^2 \ 4d \ ^2D_{5/2}$	9.3e + 04	11, 12, 13, 16, 17
	8.3193	Fe xxiv	$1s^2 2p \ ^2P_{3/2} - 1s^2 \ 4d \ ^2D_{3/2}$	1.0e + 04	
8.325					14
8.376	8.3729	Fe xxiv	$1s^2 2p \ ^2P_{3/2} - 1s^2 \ 4s \ ^2S_{1/2}$	4.6e + 04	16
8.419	8.4192	Mg XII	$1s {}^{2}S_{1/2} - 2p {}^{2}P_{3/2}$	4.4e + 05	17, 18
8.424	8.4246	Mg XII	$1s {}^{2}S_{1/2} - 2p {}^{2}P_{1/2}$	2.2e + 05	17, 18
8.500	8.4956	Mg xi d	$1s \ 2s \ {}^{1}S_{0} - 2s \ 2p \ {}^{1}P_{1}$	3.8e + 03	18
8.531	8.5290	Fe xxIII	$2s \ 2p \ ^{3}P_{0} - 2s \ 4d \ ^{3}D_{1}$	5.4e + 03	12
8.552	8.5500	Fe xxIII	$2s \ 2p \ ^{3}P_{1} - 2s \ 4d \ ^{3}D_{2}$	1.1e + 04	11, 12, 17, 18
	8.5513	Mg xi d	$1s \ 2p \ {}^{1}P_{1} - 2p \ 2p \ {}^{1}D_{2}$	1.2e + 04	
8.573					11, 12, 16, 17, 18
8.617	8.6140	Fe xxIII	$2s 2p {}^{3}P_{2} - 2s 4d {}^{3}D_{3}$	2.0e + 04	11, 12, 16
	8.6180	Fe xxIII	$2s \ 2p \ ^{3}P_{2} - 2s \ 4d \ ^{3}D_{2}$	3.7e + 03	
8.644					11, 12
8.660					11, 12
8.715					11, 12
8.722					11, 12
8.734					11, 12
8.753		-			12
8.814	8.8140	Fe xxIII	$2s \ 2p \ {}^{1}P_{1} - 2s \ 4d \ {}^{1}D_{2}$	1.3e + 05	11, 12, 16
8.823					14
8.848		_			11, 12, 18
8.906	8.9060	Fe xxIII	$2s \ 2p \ P_1 - 2s \ 4s \ S_0$	5.0e + 04	11, 12
8.919					11, 12, 16
8.933	0.0=				12
8.976	8.9770	Fe XXII	$2s \ 2p^2 \ 2D_{5/2} - 2s \ 2p \ (^{9}P) \ 4d \ ^{2}F_{7/2}$		11, 12, 14, 16, 18
8.993					12
9.007	0.041-	N .T.			11, 12
9.068	9.0613	N1 XXVI	$1s^2 2s 2s_{1/2} - 1s^2 3p 2P_{3/2}$	4.0e + 04	11, 12
9.073	0.40.50	N .T.		• • • •	11, 12, 14, 16, 17, 18
9.114	9.1050	Ni XXVI	$1s^2 2s \ ^2S_{1/2} - 1s^2 \ 3p \ ^2P_{1/2}$	2.1e + 04	11, 12, 16
9.136					11, 12
9.150	0.1.000	N		10	18
9.170	9.1690	Mg XI	$1s^{2} S_{0}^{-1}s 2p P_{1}(w)$	1.9e + 05	12, 14, 16, 17, 18
9.173	0.1707	M 1	$1 - 2 - 2 + 2 - 1 - 2 - (1 - 2 - 1)^2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -$	1.1	18
9.101	9.1/90 0 1011	Max 4	18 Su $D_{3/2}$ -18 $2p$ (1P) Su $F_{5/2}$ 18 $2 3d^2 D$ 18 $2p$ (1P) $2d^2 F$	1.10 + 0.3 1.60 + 0.2	10, 17, 18
	2.1011	IVI g A U	13 Ju $D_{5/2}$ - 18 $2p(r)$ Ju $r_{7/2}$	1.00 + 03	

 $\lambda_{solar} \ (A)$ λ (Å) Ion Transition Int Refs 9.189 9.1927 Mg x d $1s^2 3p {}^2P_{1/2} - 1s 2p ({}^1P) 3p {}^2D_{3/2}$ 8.9e + 0212, 17, 18 9.194 9.1938 Mg x d $1s^2 3p {}^2P_{3/2} - 1s 2p ({}^1P) 3p {}^2D_{5/2}$ 1.4e + 0312, 16, 17, 18 9.202 12 9.215 18 9.224 12 9.233 9.2282 Mg XI $1s^{2} {}^{1}S_{0} - 1s 2p {}^{3}P_{2}(x)$ 2.4e + 0312, 14, 16, 17, 18 $1s^{2} {}^{1}S_{0} - 1s \; 2p \; {}^{3}P_{1}(y)$ 9.2312 Mg xi 2.1e + 049.241 16 9.252 12 9.276 12 9.284 9.2840 Mg x $1s^2 2s {}^2S_{1/2} - 1s 2s 2p ({}^3P) {}^2P_{3/2} (q)$ 8.3e + 0217 9.290 12, 16, 18 9.298 18 9.314 $1s^{2} S_0 - 1s 2s S_1(z)$ 7.1e + 0412, 16, 17, 18 9.3143 Mg XI $1s^2 2p {}^2P_{1/2} - 1s 2p ({}^1P) 2p {}^2D_{3/2} (k)$ 9.319 9.3161 Mg x d 7.50e + 0212, 14, 16, 17, 18 $1s^2 2p {}^2P_{3/2} - 1s 2p ({}^1P) 2p {}^2D_{5/2} (j)$ 9.3206 Mg x d 1.2e + 03Ni xxv $2s^{2} S_{0}^{-2s} 3p P_{1}^{-2s}$ 9.3400 2.0e + 04... 9.361 9.3620 Ne x $1s {}^{2}S_{1/2} - 6p {}^{2}P_{3/2}$ 11, 12, 18 ... 9.383 11, 12 9.391 9.3898 Ni xxvi $1s^2 2p {}^2P_{1/2} - 1s^2 3d {}^2D_{3/2}$ 2.7e + 0411, 12, 16, 17, 18 $2s^{2} {}^{1}S_{0} - 2s {}^{3}P_{1}$ 9.3900 Ni xxv 1.0e + 04 $2p^{2} {}^{1}S_{0} - 2s 4p {}^{1}P_{1}$ 9.416 9.4150 Fe xxIII 3.9e + 0311, 12 $2p^2 {}^{3}P_1 - 2p {}^{4}d {}^{3}D_2$ 9.455 9.4510 Fe xxi 2.5e + 0512 9.476 11, 12 9.4807 $1s {}^{2}S_{1/2} - 5p {}^{2}P_{3/2}$ 11, 12, 14, 16, 17, 18 9.481 Ne x 1.5e + 04 $1s {}^{2}S_{1/2} - 5p {}^{2}P_{1/2}$ 9.4809 Ne x 7.4e + 039.525 9.5353 Ni xxvi $1s^2 2p^2 P_{3/2} - 1s^2 3d^2 D_{5/2}$ 4.8e + 0416 9.542 11, 12 $1s^2 2p {}^2P_{3/2} - 1s^2 3d {}^2D_{3/2}$ 9.548 9.5490 Ni xxvi 5.3e + 0311, 12 $2p^2 {}^3P_2 - 2p 4d {}^3D_1$ 9.5590 9.554 Fe xxi 3.7e + 0316 $1s^2 2p {}^2P_{1/2} - 1s^2 3s {}^2S_{1/2}$ 9.5668 Ni xxvi 1.2e + 04 $2p^{2} D_{2} - 2p 4d^{3}F_{3}$ 9.586 9.5810 Fe xxi 1.6e + 0411, 12, 16 9.632 9.6330 Ni xxv $2s 2p {}^{3}P_{1} - 2s 3d {}^{3}D_{2}$ 2.0e + 0311, 12 9.656 16 9.663 11, 12 9.690 9.6880 Fe xix $2p^4 {}^{3}P_2 - 2p^3 (^{2}D) 5d {}^{3}D_3$ 11, 12 ... $1s {}^{2}S_{1/2} - 4p {}^{2}P_{3/2}$ 9.710 9.7080 Ne x 3.3e + 0411, 12, 17, 18 $1s {}^{2}S_{1/2} - 4p {}^{2}P_{1/2}$ 11, 12, 16, 17, 18 9.711 9.7085 Ne x 1.6e + 04 $1s^2 2p^2 P_{3/2} - 1s^2 3s^2 S_{1/2}$ 9.726 9.7321 Ni xxvi 2.5e + 0412 $2p^4 {}^3P_1 - 2p^3 (^2D) 5d {}^3D_2$ 9.795 9.7990 Fe xix 11, 12 ... $1s^2 2p \ ^2P_{1/2} - 1s^2 \ 4d \ ^2D_{3/2}$ 9.807 9.8090 Cr xxII 1.0e + 0311, 12, 16 $2p^{4} {}^{3}P_{2} - 2p^{3} ({}^{4}S) 5d {}^{3}D_{3}$ 9.847 9.8420 Fe xix 11, 12 ... 9.858 16 9.896 12 9.902 16 9.940 12 9.945 12 9.973 9.9680 Ni xxv $2s 2p {}^{1}P_{1} - 2s 3d {}^{1}D_{2}$ 11, 12 4.1e + 04 $2p^{3} {}^{4}S_{3/2} - 2p^{2} ({}^{3}P) 4d {}^{4}P_{3/2}$ 9.988 9.9910 Fe xx 14 ... 9.998 10.0015 Fe xxv $1s \ 2s \ {}^{3}S_{1} - 1s \ 3p \ {}^{3}P_{2}$ 8.9e + 0311, 12, 16 $1s {}^{2}S_{1/2} - 2p {}^{2}P_{3/2}$ 1.9e + 0410.021 10.0232 Na xi 12, 14 10.0286 Na xi $1s {}^{2}S_{1/2} - 2p {}^{2}P_{1/2}$ 9.3e + 0310.069 16 $2s^2 2p^6 {}^1S_0 - 2s 2p^6 5p {}^3P_1$ 10.134 10.1340 Fe xvII 14, 16 ... $1s {}^{2}S_{1/2} - 3p {}^{2}P_{3/2}$ 10.250 10.2385 Ne x 7.4e + 0416 10.2396 $1s {}^{2}S_{1/2} - 3p {}^{2}P_{1/2}$ Ne x 3.7e + 04 $2s \ 2p^{-1}P_1 - 2s \ 3s^{-1}S_0$ 10.328 10.3220 Ni xxv 2.4e + 0416 10.359 16 10.3690 Fe xxv $1s 2p {}^{3}P_{1}-1s 3s {}^{3}S_{1}$ 1.9e + 03... $2s^2 2p^6 {}^1S_0 - 2s^2 2p^5 ({}^2P_{1/2}) 7d {}^1P_1$ 10.382 10.3860 Fe xvII ... 14 Fe xxv 1s 2p ³P₂-1s 3s ³S₁ 10.502 10.4985 1.6e + 0316 10.5060 Fe xvII $2s^2 \ 2p^6 \ {}^1S_0 - 2s^2 \ 2p^5 \ ({}^2P_{3/2}) \ 7d \ {}^3D_1$... $1s^2 2p {}^2P_{3/2} - 1s^2 3s {}^2S_{1/2}$ 10.530 10.5330 Co xxv 1.1e + 0316 $2s^{2} {}^{1}S_{0} - 2p {}^{2}S_{1} P_{1}$ 10.564 10.5597 Fe xxIII 6.5e + 0317, 18 $2p^4 {}^{3}P_1 - 2p^3 ({}^{2}P) 4d {}^{3}D_2$ 10.5640 Fe xix ... $1s 2p {}^{1}P_{1} - 1s 3s {}^{1}S_{0}$ 10.579 10.5859 6.3e + 0316, 17, 18 Fe xxv

TABLE 5—Continued

6.0e + 05

17, 18

 $1s^2 2s {}^2S_{1/2} - 1s^2 3p {}^2P_{3/2}$

10.620

10.6190

Fe xxiv

TABLE 5—Continued

λ _{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs
10.636	10.6350	Fe xix	$2n^{4} {}^{3}P_{2} - 2n^{3} {}^{(2}D) 4d {}^{3}S_{4}$		14, 17, 18
10.647	10.6440	Fe xix	$2p^{2} + \frac{1}{2} + \frac{2}{2}p^{2} + (D) + \frac{1}{4} + \frac{1}{3}P_{2}$		16
10.654	10.6550	Fe xvII	$2s^2 2p^{6} {}^{1}S_0 - 2s^2 2p^5 ({}^{2}P_{1/2}) 6d {}^{1}P_1$	•••	16, 17
10.662	10.6630	Fe xxiv	$1s^2 2s {}^2S_{1/2} - 1s^2 3p {}^2P_{1/2}$	3.2e + 05	14, 17, 18
10.684	10.6840	Fe xix	$2p^4 {}^3P_2 - 2p^3 (^2D) 4d {}^3F_3$		17, 18
10.718					18
10.738	10.7350	Fe xix	$2p^4 {}^3P_1 - 2p^3 (^2D) 4d {}^3S_1$		18
10.769	10.7643	Ne IX	$1s^2 {}^1S_0 - 1s 5p {}^1P_1$	2.7e + 03	16, 17, 18
	10.7700	Fe xix	$2p^4 \ {}^{3}P_1 - 2p^3 \ ({}^{2}D) \ 4d \ {}^{3}D_2$	•••	
10 770	10.7700	Fe XVII	$2s^2 2p^{3-1}S_0 - 2s^2 2p^{3-1}(^2P_{3/2}) 6d^{-3}D_1$	•••	14 10
10.778					14, 18
10.791	10 8130	Fe viv	$2n^{4} {}^{3}P {}^{2}n^{3} (4S) 4d {}^{3}D$		14 16 17 18
10.818	10.8130	Fe xix	$2p = \frac{1}{2} - 2p$ (3) $4u = D_3$ $2n^4 = \frac{1}{2} - 2n^3 (^2D) + 4d = \frac{1}{2} D_3$	•••	10, 17, 18
10.857	10.0210	I C MA	$2p D_2 \ 2p (D) \ (M \ D_2)$	•••	18
10.933	10.9351	Fe xx ш	$2s 2p {}^{3}P_{1}-2p 3p {}^{3}D_{2}$	4.7e + 0.3	17, 18
	10.9330	Fe xix	$2p^{4} {}^{3}P_{1} - 2p^{3} ({}^{4}S) 4d {}^{3}D_{2}$,
10.980	10.9806	Fe xxm	$2s^2 {}^{1}S_0 - 2s {}^{2}3p {}^{1}P_1$	5.7e + 05	16, 17, 18
10.996	11.0003	Ne IX	$1s^2 {}^1S_0 - 1s 4p {}^1P_1$	6.0e + 03	14, 16, 17, 18
	11.0027	Na x	$2s^2 {}^1S_0 - 1s \; 2p \; {}^1P_1$	6.2e + 03	
11.014	11.0181	Fe xxIII	$2s^2 {}^1S_0 - 2s \; 3p \; {}^3P_1$	2.8e + 05	17, 18
11.026	11.0229	Fe xvII	$2p^{6} {}^{1}S_{0} - 2s \; 2p^{6} \; 4p \; {}^{1}P_{1}$	8.8e + 03	14, 16, 17, 18
	11.0290	Fe xxiv	$1s^2 2p {}^2P_{1/2} - 1s^2 3d {}^2D_{3/2}$	4.0e + 05	10
11.041	11.0229	Fe xvII	$2p^{\circ} {}^{1}S_{0} - 2s {}^{2}p^{\circ} {}^{4}p {}^{5}P_{1}$	1.1e + 03	18
11.132	11.1320	Fe XVII	$2s^2 2p^{0-1}S_0 - 2s^2 2p^{0-1}P_{1/2} > 5d^{-1}P_1$	•••	14, 16, 17, 18
11.14/	11 1700	Eo www.	$1_{a^2} 2_{m} 2_{D} = 1_{a^2} 2_{d} 2_{D}$	$7.1_{0} + 0.5_{0}$	18
11.172	11.1/09	Fe XXIV	$1s^{2} 2p^{2}P_{3/2} - 1s^{2} 3d^{2}D_{5/2}$ $1s^{2} 2p^{2}P_{3/2} - 1s^{2} 3d^{2}D_{3/2}$	7.10 ± 0.03	14, 10, 17, 18
11.109	11.1079	Fe XVII	$2s^2 2n^6 - 2s^2 2n^5 (^2P) 5d$	7.80 + 04	14, 10, 17, 18
11.235	11.2530	Fe xvm	$2n^{5} {}^{2}P = 2n^{4} {}^{(1}S) {}^{4}d {}^{2}D = 2n^{4} {}^{(1}S) {}^{4}d {}^{2}D = 2n^{4} {}^{(1}S) {}^{(1)}d {}^{(2)}D = 2n^{4} {}^{(1)}d {}^{(2)}d {$	•••	14, 10, 17, 10
11.269	11.2606	Fe xxiv	$\frac{1}{1} \sum_{j=1}^{2} \frac{1}{1} \sum_{j=1}^{2} \frac{1}{2} \sum_{j=1}^{2} \frac{1}$	1.8e + 05	14
11.292	11.2984	Fe xxIII	$2s 2p {}^{3}P_{0} - 2s 3d {}^{3}D_{1}$	2.6e + 04	17, 18
11.311			- 0 1		17, 18
11.325	11.3252	Fe xxIII	$2s \ 2p \ ^{3}P_{1} - 2s \ 3d \ ^{3}D_{2}$	4.7e + 04	17, 18
11.334	11.3380	Fe xxIII	$2s \ 2p \ ^{3}P_{1} - 2s \ 3d \ ^{3}D_{1}$	1.9e + 04	14, 16
11.420	11.4200	Fe xvIII	$2p^{5} {}^{2}P_{3/2} - 2p^{4} ({}^{3}P) 4d {}^{2}F_{5/2}$		17, 18
11.429	11.4263	Fe xxiv	$1s^2 2p {}^2P_{3/2} - 1s^2 3s {}^2S_{1/2}$	3.7e + 05	16
11.443	11.4414	Fe xxm	$2s 2p {}^{3}P_{2} - 2s 3d {}^{3}D_{3}$	7.8e + 04	14, 16, 17, 18
11 450	11.441/	Fe XXII	$2s^{2} 2p^{2} P_{1/2} - 2s^{2} 2p^{(3P)} 3p^{2} D_{3/2}$	2.1e + 05	17 10
11.458	11.4580	Fe XVIII	$2p^{2} - P_{3/2} - 2p^{2} (P) 4a^{2} F_{5/2}$		17, 18
11.400	11 5101	Fe хуп	$2s^2 2n {}^2P = -2s 2n ({}^3P) 3n {}^2P = $	$7.6e \pm 0.4$	17, 18
11.423	11.5101	Ге ххш Fe ххш	$2n^{2} {}^{3}P_{2} - 2n {}^{3}d {}^{3}D_{2}$	1.60 + 04	1 17 18
11.027	11.5260	Fe xvm	$2p^{5} {}^{2}P_{2/2} - 2p^{4} ({}^{3}P) 4d {}^{2}D_{5/2}$		1, 17, 10
11.537			$-\mathbf{r} = -\frac{3}{2} - \mathbf{r} = (-) - \frac{3}{2}$		14
11.545	11.5470	Ne IX	$1s^{2} S_{0}^{-1}s 3p P_{1}^{-1}$	1.8e + 04	16, 17, 18
11.580					18
11.594					18
11.640	11.6457	Fe xxIII	$2s 2p {}^{3}P_{1} - 2s 3s {}^{1}S_{0}$	1.3e + 04	18
	11.6690	Fe xxII	$2s^{2} 2p^{2} P_{3/2} - 2s 2p (^{3}P) 3p^{2} P_{3/2}$	2.7e + 04	
11.740	11.7363	Fe xxm	$2s 2p P_1 - 2s 3d D_2$	1.1e + 06	14, 16, 17, 18
11.//1	11./0/3	Fe XXII	$2s^{2} 2p^{2} P_{1/2}^{-2s^{2}} (-S) 3d^{2} D_{3/2}$ $1s^{2} 2s^{2} 2r^{2} 4P_{1/2}^{-2s^{2}} (-S) 3d^{2} D_{3/2}^{-2s^{2}}$	1.1e + 06	14, 16, 17, 18
11.623	11.7955	Fe XXII	$18 \ 28 \ 2p \ P_{3/2} - 28 \ 2p \ (P) \ 3d \ D_{5/2}$ $1s^2 \ 2s \ 2n^2 \ 4P \ 2s \ 2n \ (^3P) \ 3d \ 4D$	9.30 ± 04	
	11.7900	Ге ххи Ге ххи	$13 \ 23 \ 2p \ 1_{1/2} \ 23 \ 2p \ (1) \ 3u \ D_{3/2}$ $1s^2 \ 2s \ 2p^2 \ ^4P_{-1} \ -2s \ 2p \ (^3P) \ 3d \ ^4D_{-1}$	1.20 ± 04 2 4e ± 04	17 18
11.836	11.8320	Ni xx	$\frac{13}{2s} \frac{2s}{2p} \frac{2p}{1} \frac{1}{5/2} \frac{2s}{2s} \frac{2p}{2p} (1) \frac{3u}{2p} \frac{2s}{5/2}$	1.7e + 04	14, 16
11.000	11.8410	Ni xx	$\frac{2s^{2} P^{2}}{2s^{2} 2p^{5} P^{2}} \frac{2p^{2} P^{2}}{2s^{2} P^{2}} \frac{2p^{4} (D)}{2s^{2} P^{2}} \frac{2p^{5} P^{2}}{2s^{2}} 2p^$	9.0e + 03	1,10
11.864	11.8734	Fe xxIII	$2s 2p^{3}P_{2}-2s 3s^{3}S_{1}$	2.3e + 04	17, 18
11.885	11.8852	Fe xxII	$1s^{2} 2s 2p^{2} {}^{4}P_{3/2} - 2s 2p ({}^{3}P) 3d {}^{4}P_{5/2}$	4.9e + 04	16, 18
	11.8971	Fe xxIII	$2p^2 {}^1S_0 - 2p \; 3d' {}^1P_1$	4.1e + 04	-
11.926	11.9208	Fe xxII	$2s^2 2p \ ^2P_{3/2} - 2s^2 \ (^1S) \ 3d \ ^2D_{5/2}$	7.1e + 04	14
11.934	11.9336	Fe xxII	$2s^{2} 2p {}^{2}P_{3/2} - 2s^{2} ({}^{1}S) 3d {}^{2}D_{3/2}$	2.1e + 05	16, 17, 18
11.972	11.9750	Fe xxII	$1s^2 2s 2p^2 {}^4P_{5/2} - 2s 2p ({}^3P) 3d {}^4F_{7/2}$	1.6e + 04	14, 16, 17, 18
•••	12.0097	Fe XXII	$1s^{2} 2s 2p^{2} 2s^{2}_{1/2} - 2s 2p (^{3}P) 3d^{2}P_{3/2}$	1.8e + 04	
•••	12.0578	Fe XXII	$15^{-2} 2s 2p^{-2} D_{3/2} - 2s 2p ({}^{\circ}P) 3d {}^{2}F_{5/2}$ $1s^{2} 2s 2p^{2} 2s - 2s 2p ({}^{\circ}P) 3d {}^{2}F_{5/2}$	0.0e + 04	
•••	12.0704	ге ххн Ге хуч	$1s \ 2s \ 2p \ s_{1/2} - 2s \ 2p \ (^{-}P) \ 3a \ ^{-}D_{3/2}$ $1s^{2} \ 2s \ 2n^{2} \ ^{2}P \ -2s \ 2n \ (^{1}D) \ 3d \ ^{2}D$	1.40 ± 04 2.9 ± 0.4	
•••	12.0770	I V AAH	$10 20 2p 1 3/2^{-20} 2p (1) 5u D_{5/2}$	2.70 + 04	

TABLE 5—Continued

$\lambda_{ m solar} \ ({ m \AA})$	λ (Å)	Ion	Transition	Int	Refs
	12.0912	Fe xxII	$1s^2 2s 2p^2 {}^2D_{5/2} - 2s 2p ({}^3P) 3d {}^2F_{5/2}$	5.2e+04	
	12.0981	Fe xxm	$2p^2 {}^1D_2 - 2p \; 3s \; {}^1P_1$	1.9e + 04	
12.122	12.1227	Fe xvII	$2s^2 2p^6 - 2s^2 2p^5 ({}^2P_{1/2}) 4d$	1.5e + 05	1, 17, 18
12.128	12.1321	Ne x	$1s {}^{2}S_{1/2} - 2p {}^{2}P_{3/2}$	7.4e + 05	14, 17, 18
	12.1375	Ne x	$1s {}^{2}S_{1/2} - 2p {}^{2}P_{1/2}$	3.7e + 05	
12.153	12.1760	Fe xxIII	$2s 2p {}^{1}P_{1} - 2s 3s {}^{1}S_{0}$	6.2e + 05	17, 18
12.199	12.1926	Fe xxII	$1s^{2} 2s 2p^{2} {}^{2}P_{1/2} - 2s 2p ({}^{3}P) 3d {}^{2}P_{3/2}$	2.9e + 04	14, 17, 18
	12.1931	Fe xxII	$1s^2 2s 2p^2 {}^2D_{3/2} - 2s 2p ({}^3P) 3d {}^2D_{5/2}$	1.4e + 05	
	12.2273	Fe XXII	$1s^2 2s 2p^2 {}^2D_{5/2} - 2s 2p ({}^3P) 3d {}^2D_{5/2}$	2.1e + 04	17 10
12.264	12.2639	Fe XVII	$2s^2 2p^3 - 2s^2 2p^3 ({}^2P_{3/2}) 4d$	1.3e + 05	17, 18
12.285	12.2850	Fe XXI	$2p^{2} \circ P_{0} - 2s^{2} 2p 3a \circ D_{1}$ $2r^{2} 3p 2r^{2} 2r 2d 3p$	1.4e + 06	17, 18
12.399	12.3960	re XXI	$2p P_1 - 2s 2p Su D_1$	2.50+05	14, 17, 18
12.408	12 4351	Ni viv	$2n^{6} {}^{1}S - 2n^{5} {}^{3}d {}^{1}P$	$23e \pm 04$	14 17 18
12.42)	12.4551	Fe XXI	$2p^{2} 3P_{0} - 2p^{2} 3u^{2} 1_{1}$ $2n^{2} 3P_{1} - 2s^{2} 2n 3d^{-1}D_{2}$	2.30 ± 04	17, 18
12.400	12.4620	Fe XXI	$2p^{2} + \frac{1}{1} + \frac{2s}{2} + \frac{2p}{2} + \frac{3u}{2} + \frac{2s}{2} + \frac$	1.40 + 04	17, 10
12.501	12.1000			100 01	14, 17, 18
12.522	12.5250	Fe xxi	$2p^2 {}^{3}P_2 - 2s^2 2p 3d {}^{3}F_3$	5.6e + 04	17, 18
12.550			1 2 1 5		17, 18
12.566					17, 18
12.581	12.5855	Fe xxII	$1s^2 2s 2p^2 {}^2P_{3/2} - 2s 2p ({}^3P) 3d {}^2D_{5/2}$	1.3e + 04	14, 17, 18
	12.5880	Fe xxi	$2p^2 {}^{3}P_2 - 2s^2 2p 3d {}^{3}F_2$	2.4e + 04	
12.599					17, 18
12.622	12.6230	Cr xxII	$1s^2 2s {}^2S_{1/2} - 1s^2 3p {}^2P_{3/2}$	8.4e + 03	18
	12.6230	Fe xxi	$2p^{2} {}^{1}S_{0} - 2s^{2} 2p 3d {}^{1}P_{1}$	1.1e + 04	
12.638		-			18
12.654	12.6538	Fe xxIII	$2p^2 {}^{1}D_2 - 2s \; 3p \; {}^{1}P_1$	8.9e + 03	14, 17, 18
12 (02	12.6560	N1 XIX	$2p^{\circ} S_0^{\circ} - 2p^{\circ} 3d S_{D_1}^{\circ}$	8.0e + 0.3	17 10
12.682	12.6/80	Fe XVII	$2s^2 2p^3 - 2s^2 2p^3 ({}^2P_{3/2}) 4s$ $2r^2 1p - 2r^2 2r 2d 1p$	3.6e + 0.3	17, 18
 12 754	12.7550	re XXI	$2p D_2 - 2s 2p 3a D_2$	1.46 ± 04	14 18
12.754					14, 18
12.775					18
12.788	12,7930	Fe xxi	$2n^{2} D_{2} - 2s^{2} 2n 3d^{3}F_{2}$	1.3e + 04	18
12.812	12.8173	Fe xx	$2s^{2} 2p^{3} {}^{4}S_{3/2} - 2s^{2} 2p^{2} ({}^{3}P) 3d {}^{4}P_{3/2}$	5.6e + 05	1, 14, 17, 18
	12.8173	Fe xx	$2s^2 2p^3 {}^{4}S_{3/2} - 2s^2 2p^2 ({}^{3}P) 3d {}^{4}P_{5/2}$	5.2e + 05	
12.829					14, 17, 18
12.847					17, 18
12.888	12.8884	Fe xx	$2s^2 \ 2p^3 \ ^2D_{5/2} - 2s^2 \ 2p^2 \ (^1D) \ 3d \ ^2F_{7/2}$	1.1e + 04	18
12.904					17, 18
12.912		_			14
12.925	12.9251	Fe xx	$2s^2 2p^3 {}^2D_{5/2} - 2s^2 2p^2 ({}^1D) 3d {}^2D_{5/2}$	4.0e + 03	14, 17, 18
12.040	12.9280	Fe XXI	$2p^2 {}^{3}P_0 - 2s^2 2p 3s {}^{3}P_1$	1.0e + 04	10
12.940					14 17 19
12.952					14, 17, 18 14, 17, 18
12.900	12 0706	Fe vv	$2s^2 2n^3 2D = 2s^2 2n^2 (^3P) 3d^2D$	1.4 + 0.4	14, 17, 18
12.905	12.9790	ГСЛА	$25 \ 2p \ D_{3/2} = 25 \ 2p \ (1) \ 5u \ D_{5/2}$	4.40 + 04	17, 18
13.009					18
13.019					14, 17, 18
13.053	13.0431	Fe xx	$2s^2 2p^3 {}^2D_{5/2} - 2s^2 2p^2 ({}^3P) 3d {}^2D_{5/2}$	1.3e + 04	17, 18
	13.0530	Fe xxi	$2p^2 {}^{3}P_1 - 2s^2 2p 3s {}^{3}P_1$	6.0e + 03	,
	13.0553	Fe xx	$2s^{2} 2p^{3} {}^{2}P_{3/2} - 2s^{2} 2p^{2} ({}^{1}D) 3d {}^{2}F_{5/2}$	5.0e + 03	
13.060	13.0553	Fe xx	$2s^2 2p^3 {}^2P_{3/2} - 2s^2 2p^2 ({}^1D) 3d {}^2F_{5/2}$	5.0e + 03	14
13.091	13.0823	Fe xx	$2s^2 2p^3 {}^2D_{5/2} - 2s^2 2p^2 ({}^3P) 3d {}^2F_{7/2}$	2.3e + 04	14, 17, 18
	13.1132	Fe xx	$2s^2 2p^3 {}^2D_{5/2} - 2s^2 2p^2 ({}^3P) 3d {}^4P_{3/2}$	2.2e + 04	
	13.1132	Fe xx	$2s^2 2p^3 {}^2D_{5/2} - 2s^2 2p^2 ({}^3P) 3d {}^4P_{5/2}$	7.6e + 04	
	13.1280	Fe xxi	$2p^2 {}^{3}P_2 - 2s^2 2p 3s {}^{3}P_1$	1.9e + 04	
13.143	13.1371	Fe XXII	$1s^{2} 2s 2p^{2} {}^{2}D_{5/2} - 2s 2 ({}^{1}S) 3p {}^{2}P_{3/2}$	2.9e + 04	14, 17, 18
12 1 (2	13.1500	Fe XXII	$1s^{-2} 2s^{-2} 2p^{-2} D_{3/2} - 2s^{-2} (^{+}S) 3p^{-2} P_{1/2}$	1.2e + 05	14 17 10
13.162	13.1601	ге хх	$2s^{2} 2p^{2} r_{1/2} - 2s^{2} 2p^{2} (^{3}P) 3d^{2}D_{3/2}$	1.1e + 04	14, 17, 18
13.232					14 17 10
13.255	13 2640	Fe viv	$2s^2 2n^4 {}^{3}P_{-} - 2n^3 ({}^{2}P^*) 2d {}^{3}D$	1 0e ⊥ 04	17, 18 14 17 18
13 279	13.2040	1 6 ЛІЛ	$20 2p 1 2 2p (1) 5u D_3$	1.00 -7 04	14 17 18
	13.2920	Cr xxII	$1s^2 2p {}^2P_{3/2} - 1s^2 3d {}^2D_{5/2}$	1.2e + 04	, - , - , - 5
13.308	13.3080	Ni xx	$2s^2 2p^5 {}^2P_{3/2} - 2p^4 ({}^3P) 3s {}^4P_{5/2}$	6.9e + 03	17, 18
			,		-

TABLE 5—Continued

λ _{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs
13.323	13.3190	Fe xvIII	$2s^{2} 2p^{5} {}^{2}P_{3/2} - 2s 2p^{5} ({}^{3}P^{*}) 3p {}^{2}D_{5/2}$	6.6e + 03	14, 17, 18
12 256	13.3190	Fe XVIII	$2s^{2} 2p^{3} {}^{2}P_{3/2} - 2s 2p^{3} ({}^{3}P^{*}) 3p {}^{2}P_{1/2}$ $2s^{2} 2p^{4} {}^{3}P - 2p^{3} ({}^{2}P^{*}) 2d {}^{3}P$	6.5e + 03 1.2e + 04	17 19
15.550	13.3460	FC XIX	$2s^{2} 2p^{5} P_{0} - 2p (P') 3u^{2} P_{1}$ $2s^{2} 2p^{5} P_{0} - 2s^{2} 2p^{5} (^{3}P*) 3p^{2}P$	1.20 ± 04 9.8e ± 03	17, 18
	13.3551	Fe xxii	$1s^{2} 2s 2p^{2} {}^{2}S_{1/2} - 2s^{2} ({}^{1}S) 3p^{2}P_{1/2}$	2.4e + 04	
13.377	13.3740	Fe xvm	$2s^{2} 2p^{5} {}^{2}P_{3/2} - 2s 2p^{5} ({}^{3}P^{*}) 3p {}^{4}P_{5/2}$	1.0e + 04	14, 17, 18
13.404	13.3969	Fe xvm	$2s^2 2p^5 {}^2P_{3/2}^{-2s} - 2s 2p^5 ({}^3P^*) 3p {}^4D_{3/2}^{-2s}$	5.2e + 03	
13.426	13.4250	Fe xix	$2s^2 2p^4 {}^3P_2 - 2p^3 (^2D^*) 3d {}^1F_3$	1.9e + 04	17, 18
13.448	13.4470	Ne IX	$1s^2 {}^1S_0 - 1s 2p {}^1P_1$	1.2e + 05	1, 14, 17, 18
13.464	13.4640	Fe xix	$2s^2 2p^4 {}^{3}P_2 - 2p^3 ({}^{2}D^*) 3d {}^{3}S_1$	5.5e + 04	4 45 40
13.507	13.5040	Fe XIX	$2s^2 2p^* {}^{3}P_2 - 2p^3 ({}^{2}D^*) 3d {}^{3}D_2$ $2s^2 2p^4 3p - 2p^3 ({}^{2}D^*) 2d 3D$	9.7e + 03	1, 17, 18
13.519	13.5210	Fe XXII	$2s^{2}p^{2}F_{2}^{-2}p^{2}(D^{2})su^{2}D_{3}$ $1s^{2}2s^{2}n^{2}{}^{2}P_{2}-2s^{2}({}^{1}S)3n^{2}P_{2}$	2.00 ± 0.03 8 2e ± 0.03	14, 17, 18 1 17 18
15.551	13.5529	Ne IX	$13^{2} 25^{2} 2p^{-1} 3_{3/2} 25^{-2} (-5)^{-5} 5p^{-1} 3_{3/2} 1s^{2} {}^{1}S_{2} -1s^{-1} s^{-1} 2p^{-3} P$.	1.2e + 04	1, 17, 10
	13.5550	Cr xxII	$1s^2 2p^2 P_{3/2} - 1s^2 3s^2 S_{1/2}$	5.8e + 03	
	13.5680	Fe xix	$2s^2 2p^4 {}^3P_2 - 2p^3 ({}^2D^*) 3d {}^3P_2$	8.7e + 04	
13.631					17, 18
13.649	13.6470	Fe xix	$2s^2 2p^4 {}^3P_2 - 2p^3 ({}^2D^*) 3d {}^3F_3$	1.2e + 04	14, 17, 18
13.672	13.6700	Fe xix	$2s^2 2p^4 {}^{3}P_1 - 2p^3 ({}^{2}D^*) 3d {}^{3}D_2$	2.2e + 04	14, 17, 18
13.700	13.698/	Ne IX	$1s^2 {}^{1}S_0 - 1s 2s {}^{3}S_1$	4.3e + 04	1, 14, 17, 18
13.719	13 7360	Fe viv	$2s^2 2n^4 {}^1D - 2n^3 (^2D^*) 3d {}^1F$	$1.7e \pm 0.4$	17, 18
15.750	13.7361	Fe xx	$2s^{2} 2p^{3} 4S_{2} - 2s^{2} 2p^{2} (3P) 3s^{4}P_{2}$	1.7c + 04 9.7c + 04	17, 18
13.778	13.7791	Fe xix	$\frac{2s^2}{2s^2} \frac{2p^4}{2p^4} \frac{1}{2p^2} \frac{2s^2}{2p^3} \frac{2p^3}{2p^4} \frac{2p^3}{3d^3S_1}$	1.0e + 04	1, 17, 18
	13.7790	Ni xix	$2p^{6} S_0 - 2p^5 3s P_1$	7.7e + 03	
13.795	13.7950	Fe xix	$2s^2 2p^4 {}^3P_2 - 2p^3 ({}^4S^*) 3d {}^3D_3$	6.0e + 04	14, 17, 18
13.827	13.8181	Fe xx	$2s^2 2p^3 {}^4S_{3/2} - 2s^2 2p^2 ({}^3P) 3s {}^4P_{3/2}$	5.0e + 04	1, 17, 18
	13.8231	Fe xvII	$2p^{6} {}^{1}S_{0} - 2s \; 2p^{6} \; 3p \; {}^{1}P_{1}$	7.3e + 04	
13.844	12 0010	F		11.04	14, 17, 18
13.891	13.8910	Fe XVII	$2p^{\circ} S_0 - 2s 2p^{\circ} 3p \circ P_1$	1.1e + 04	1, 17, 18
13.934	13 9451	Fe xx	$2s^2 2n^3 4S_{22} - 2s^2 2n^2 (^3P) 3s ^4P_{22}$	$3.9e \pm 0.4$	17, 18
1000 10	13.9540	Fe xvm	$\frac{2s^{2}}{2s^{2}} \frac{2p^{5}}{2p^{5}} \frac{2p^{2}}{2p^{2}} \frac{2p^{2}}{$	2.2e + 04	-,
13.958	13.9540	Fe xvm	$2s^2 2p^5 {}^2P_{3/2} - 2p^4$ (1S) $3d {}^2D_{5/2}$	2.2e + 04	17, 18
13.967	13.9690	Fe xix	$2s^2 2p^4 {}^1D_2 - 2p^3 ({}^2D^*) 3d {}^3F_3$	3.3e + 03	14
14.017	14.0096	Fe xx	$2s^{2} 2p^{3} {}^{2}D_{5/2} - 2s^{2} 2p^{2} ({}^{3}P) 3s {}^{2}P_{3/2}$	2.1e + 04	17, 18
14000	14.0146	Fe xx	$2s^2 2p^3 {}^2D_{3/2} - 2s^2 2p^2 ({}^3P) 3s {}^2P_{1/2}$	1.7e + 04	
14.028	14 0420	Ni viv	$2n^{6}$ 1 S $2n^{5}$ $2a^{3}$ B	1.20 ± 0.01	I, 14 14 17 18
14.041	14.0430	Fe yy	$2p S_0 - 2p 5s F_1$ $2s^2 2n^3 2D_{-1} - 2s^2 2n^2 (^3P) 3s ^4P_{-1}$	1.30 ± 04 2 4e ± 04	14, 17, 18 1 14 17 18
14.070	14.0770	Ni XIX	$2s^{5} 2p^{5} D_{5/2} 2s^{5} 2p^{5} (1) 3s^{5} 1_{5/2} 2p^{6} 1_{S_{0}} 2p^{5} 3s^{3} P_{0}$	7.9e + 03	1, 14, 17, 10
14.124	14.1209	Fe xvm	$2s^{2} 2p^{5} {}^{2}P_{1/2} - 2p^{4} ({}^{1}S) 3d {}^{2}D_{3/2}$	2.2e + 03	17, 18
	14.1359	Fe xvm	$2s^2 2p^5 {}^2P_{3/2} - 2p^4 ({}^1D) 3d {}^2P_{1/2}$	6.2e + 03	
14.152	14.1519	Fe xvm	$2s^2 2p^5 {}^2P_{3/2} - 2p^4 ({}^1D) 3d {}^2D_{3/2}$	1.4e + 04	1, 17, 18
14.208	14.2030	Fe xvm	$2s^2 2p^5 {}^2P_{3/2} - 2p^4 ({}^1D) 3d {}^2D_{5/2}$	4.0e + 05	1, 14, 17, 18
14.000	14.2078	Fe xvm	$2s^2 2p^3 {}^2P_{3/2} - 2p^4 (1D) 3d {}^2P_{3/2}$	2.1e + 05	1 14 17 10
14.262	14.2566	Fe xviii	$2s^{2} 2p^{3} P_{3/2} - 2p^{2} (D) 3a^{2} S_{1/2}$	7.3e + 04	1, 14, 17, 18
14.311	14 3439	Fe xvm	$2s^2 2n^5 {}^2P_{\dots} - 2n^4 ({}^1D) 3d {}^2P_{\dots}$	$2.6e \pm 0.4$	1 17 18
14.360	14.3604	Fe xvm	$\frac{2s^{2}}{2s^{2}} \frac{2p}{2p^{5}} \frac{1}{r_{1/2}} \frac{2p}{2p^{6}} (D) \frac{3u}{2p^{3/2}} \frac{1}{r_{1/2}} \frac{1}{r_{1/2}}$	4.1e + 04	17. 18
14.373	14.3740	Fe xvm	$2s^2 2p^5 {}^2P_{3/2} - 2p^4 ({}^3P) 3d {}^2D_{5/2}$	1.4e + 05	1, 17, 18
14.388			,,-		14
14.422	14.4179	Fe xvm	$2s^{2} 2p^{5} {}^{2}P_{1/2} - 2p^{4} ({}^{1}D) 3d {}^{2}P_{3/2}$	3.2e + 04	14, 17, 18
14.456	14.4530	Fe xvm	$2s^2 2p^5 {}^2P_{3/2} - 2p^4 ({}^3P) 3d {}^2D_{3/2}$	8.8e + 03	1, 17, 18
14 492	14.4682	Fe xvm	$2s^{2} 2p^{3} {}^{2}P_{1/2} - 2p^{4} ({}^{1}D) 3d {}^{2}S_{1/2}$	1.4e + 04	14 17 10
14.482 14.496	14.4850	re xviii	$2s^{-}2p^{-}P_{3/2}-2p^{+}(^{-}P) 3a^{-}F_{5/2}$	2.00 + 04	14, 17, 18
14.535	14,5341	Fe xvm	$2s^2 2n^5 {}^2P_{ava} - 2n^4 ({}^3P) 3d {}^2F_{ava}$	$9.8e \pm 04$	1, 17, 18
14.552	14.5510	Fe xvm	$\frac{-1}{2s^2} \frac{-r}{2p^5} \frac{-1}{2p^2} \frac{-r}{2p^4} \frac{-1}{(3^2)} \frac{-1}{3d} \frac{+1}{4p_{3/2}}$	4.8e + 04	1, 14, 17, 18
14.585	14.5811	Fe xvm	$2s^{2} 2p^{5} {}^{2}P_{3/2}^{-2} - 2p^{4} ({}^{3}P) 3d {}^{4}P_{1/2}^{-3/2}$	2.2e + 04	17, 18
14.611	14.6098	Fe xvm	$2s^2 2p^5 {}^2P_{1/2} - 2p^4 ({}^3P) 3d {}^2P_{3/2}$	7.0e + 03	17, 18
14.669	14.6670	Fe xix	$2s^2 2p^4 {}^{3}P_2 - 2p^3 ({}^{2}D^*) 3s {}^{3}D_3$	6.6e + 03	1, 14, 17, 18
14 702	14.6705	Fe xvm	$2s^2 2p^3 {}^2P_{1/2} - 2p^4 ({}^3P) 3d {}^2D_{3/2}$	7.3e + 03	48 40
14.703					17, 18
14.739 14.747					14, 17, 18 1 14
14.760					14, 17, 18
-					, , – -

TABLE 5—Continued

$\lambda_{ m solar} \ ({ m \AA})$	λ (Å)	Ion	Transition	Int	Refs
14.818	14.8205	O viii	$\frac{1s}{1s} \frac{^{2}S_{1/2} - 5p}{^{2}P_{3/2}} = \frac{2s}{5r} \frac{^{2}P_{3/2}}{^{2}P_{3/2}}$	3.4e + 04	1, 14, 17, 18
14 873	14.8207	Ee xviii	$15 S_{1/2} = 5p F_{1/2}$ $2s^2 2n^5 2P -2n^4 (^3P) 3d ^4D$	1.76 ± 04 $4.2e \pm 03$	14 17 18
14.908	14.0001	I U XVIII	$23 2p 1_{1/2} 2p (1) 3u D_{1/2}$	4.20 + 05	17, 18
14.919					14
14.930					17, 18
14.962					14
14.974	14.9700	Fe xix	$2s^2 2p^4 {}^3P_2 - 2p^3 ({}^4S^*) 3s {}^3S_1$	4.4e + 03	17, 18
15.012	15.0150	Fe xvII	$2p^{6} {}^{1}S_{0} - 2p^{5} {}^{3}d {}^{1}P_{1}$	1.1e + 06	1, 14, 17, 18
15.040					17, 18
15.080					14, 17, 18
15.114					17, 18
15.177	15.1760	O vIII	$1s {}^{2}S_{1/2} - 4p {}^{2}P_{3/2}$	7.6e + 04	1, 14, 17, 18
	15.1765	O viii	$1s {}^{2}S_{1/2} - 4p {}^{2}P_{1/2}$	3.8e + 04	
15.208					1, 17, 18
15.265	15.2621	Fe xvII	$2p^{6} {}^{1}S_{0} - 2p^{5} 3d {}^{3}D_{1}$	2.6e + 05	1, 14, 17, 18
15.279					1, 18
15.289					17
15.374					1, 14, 17, 18
15.410					17, 18
15.432					17, 18
15.454	15.4500	Fe xvII	$2p^{6} {}^{1}S_{0} - 2p^{5} 3d {}^{3}P_{1}$	3.4e + 04	1, 14, 15, 17, 18
15.495					1, 14, 15, 17, 18
15.516		-			14, 15, 17, 18
15.626	15.6250	Fe xvIII	$2s^2 2p^5 {}^2P_{3/2} - 2p^4 ({}^1D) 3s {}^2D_{5/2}$	4.0e + 04	1, 14, 15, 17, 18
15.679					17, 18
15.766	15 0001	F	$2^{2} 2^{5} 2^{2} P = 2^{4} (3P) 2^{4} P$	22.04	1, 14, 15, 17, 18
15.829	15.8281	Fe XVIII	$2s^2 2p^3 {}^2P_{3/2} - 2p^4 ({}^3P) 3s {}^4P_{3/2}$	3.3e + 04	1, 14, 15, 17, 18
15.8/0	16 0050	F	2^{-2} 2^{-5} 2^{-5} 2^{-4} (3^{-5}) 2^{-2}	5 8 - 1 04	1, 14, 15, 17, 18
16.003	16.0055	Fe XVIII	$2s^{2} 2p^{3} P_{3/2}^{-2p} (P) 3s^{2} P_{3/2}$	5.8e + 04	1, 14, 15, 17, 18
	16.0055		$1s - S_{1/2} - 3p - P_{3/2}$ 1a - 2S - 2p - 2p	2.2e + 05	
16.017	10.0007	O viii	18 $S_{1/2}$ - 5 p $F_{1/2}$	1.10+05	17 18
16.074	16 0720	Fe yym	$2s^2 2n^5 2D = 2n^4 (^3D) 2s 4D$	$1.4e \pm 0.5$	1 14 15 17 18
16 108	10.0720	I'C XVIII	$25 \ 2p \ 1 \ _{3/2} - 2p \ (1) \ 55 \ 1 \ _{5/2}$	1.40 + 03	1, 14, 15, 17, 18
16 167	16 1670	Fe yviii	$2s 2n^{6} 2S = -2s 2n^{5} (^{3}P) 3s^{2}P$	$8.9e \pm 0.4$	1, 14, 15, 17, 18
16.238	16.2380	Fe xvii	$2n^{6} {}^{1}S_{2} - 2n^{5} {}^{3}n^{3}P_{2}$	5.8e + 03	1, 14, 13, 17, 18
16.249	10.2000		$-p$ z_0 $-p$ z_p z_2		1, 1, 10
16.274					14, 15, 17, 18
16.312	16.2950	Fe xvIII	$2s 2p^{6} {}^{2}S_{1/2} - 2s 2p^{5} ({}^{3}P) 3s {}^{4}P_{3/2}$	2.4e + 04	14, 15, 17, 18
16.344	16.3360	Fe xvII	$2p^{6} {}^{1}S_{0} - 2p^{5} {}^{3}p {}^{3}D_{2}$	8.3e + 03	1, 14, 15, 17, 18, 20
16.618					17, 18
16.631					15, 18
16.774	16.7760	Fe xvII	$2p^{6} {}^{1}S_{0} - 2p^{5} {}^{3}S {}^{3}P_{1}$	3.7e + 05	1, 14, 15, 17, 18, 20
16.821					17, 18
16.956					14
17.051	17.0510	Fe xvII	$2p^{6} {}^{1}S_{0} - 2p^{5} {}^{3}S {}^{1}P_{1}$	4.4e + 05	1, 14, 15, 17, 18, 20
17.098	17.0960	Fe xvII	$2p^{6} {}^{1}S_{0} - 2p^{5} {}^{3}S {}^{3}P_{2}$	2.5e + 05	1, 15, 17, 18, 20
17.205	17.2010	Fe xvi	$2p^6 \ 3p-2p^5 \ 3s \ 3p$		15, 17, 18
17.318		-			15
17.367	17.3500	Fe xvIII	$2s \ 2p^{6} \ {}^{2}S_{1/2} - 2p^{4} \ ({}^{1}S) \ 3p \ {}^{2}P_{3/2}$	5.2e + 03	15
	17.3700	Cr xvi	$2p^{5} {}^{2}P_{3/2} - 2p^{4} ({}^{1}D) 3d {}^{2}D_{5/2}$		
17.390	17.3960	O VII	$1s^2 {}^1S_0 - 1s 5p {}^1P_1$	2.1e + 03	15, 18
17.499	17.5010	Fe xvi	$2p^{\circ} 3p-2p^{\circ} 3s 3p$		15, 17, 18
17 (00	17.5010	Fe XVI	$2p^{\circ} 3d - 2p^{\circ} 3s 3d$		1 14 15 15 10
17.622	17.6220	Fe XVIII	$2s \ 2p^{\circ} \ ^{2}S_{1/2} - 2p^{\bullet} \ (^{1}D) \ 3p \ ^{2}P_{3/2}$	2.4e + 05	1, 14, 15, 17, 18
17.084	177600	0	$1a^{2} + S = 1a + a + b$	47- 102	15
17.700	17.0040		$15^{-5} \circ_{0} - 15 4p^{-1} P_{1}$	4./e + 0.3	14, 15
17.798	18.0200	re xvIII	$2s 2p^{-5} - 5_{1/2} - 2p^{-} (^{-}D) 3p^{-}D_{3/2}$	0.40 + 0.3	15
	18.0290	Fe XVIII	$2s 2p^{-5} S_{1/2} - 2p^{-} (^{\circ}P) 3p^{-}D_{3/2}$	0.90 + 0.3	15
18 202	18 2020	re xviii Fe vyrii	$2s 2p^{-5} 3_{1/2} - 2p^{-5} (^{\circ}P) 3p^{-5} 3_{3/2}$ $2s 2p^{6} 2s^{-5} 2p^{4} (^{\circ}P) 2p^{-4} D$	4.50 ± 0.04	15
10.202	18 2020	Fe XVIII	$2s 2p s_{1/2} - 2p (-P) sp D_{3/2}$ $2s 2n^6 2S 2n^4 (3p) 2n^2 2p$	1.00 + 04	15
18 360	10.2020	I C AVIII	$23 2p S_{1/2} - 2p (r) 5p r_{3/2}$	1.30 + 04	1
18 401					1
18 400	18 4970	Cr vv	$2n^{6} {}^{1}S_{a} - 2n^{5} ({}^{2}P_{a}) 3d {}^{1}P$		1 15 19
18.565	10.7770	CI AV	$-r \sim_0 -r (1/2) \sim 1/2$	•••	1, 10, 10

TABLE 5—Continued

$\lambda_{ m solar} \ ({ m A})$	λ (Å)	Ion	Transition	Int	Refs
18 627	18 6270	Оул	$1s^{2} S_{1} = 1s 3n P_{1}$	$1.4e \pm 0.4$	1 14 15 17 18
18.627	18.0270	Сахуш	$13 S_0 = 13 S_p T_1$ $1s^2 2s 2S_{max} = 1s^2 3n 2P_{max}$	1.40 ± 04	1, 14, 13, 17, 18
18.733	18.7319	Ca xviii	$1s^{2} 2s^{2} S_{1/2} 1s^{3} 3p^{2} P_{1/2}$ $1s^{2} 2s^{2} S_{1/2} - 1s^{2} 3p^{2} P_{1/2}$	1.0e + 04	15
18.783	18.7860	Ar xvi	$1s^2 2p {}^2P_{2/2} - 1s^2 4s {}^2S_{1/2}$	4.4e + 03	15
18.928	18.9320	O vII d	$1s \ 3d^{-1}D_{2} - 2p \ 3d^{-1}F_{3}$	2.4e + 03	
18.970	18.9671	O viii	$1s {}^{2}S_{1/2} - 2p {}^{2}P_{3/2}$	1.4e + 06	1, 14, 15, 17, 18
	18.9725	O viii	$1s {}^{2}S_{1/2} - 2p {}^{2}P_{1/2}$	7.2e + 05	
19.059	19.0610	O vII d	$1s \; 3d \; {}^{3}D_{3}-2p \; 3d \; {}^{3}F_{4}$	2.3e + 03	17, 18
	19.0640	O vII d	$1s \; 3d \; {}^{3}D_{2}-2p \; 3d \; {}^{3}F_{3}$	1.5e + 03	
	19.0660	O vII d	$1s \; 3d \; {}^{3}D_{1}-2p \; 3d \; {}^{3}F_{2}$	1.1e + 03	
19.260	19.2550	Cr xvi	$2p^{5} {}^{2}P_{3/2} - 2p^{4} ({}^{1}D) 3s {}^{2}D_{5/2}$		1, 15
19.300	19.3060	O VII d	$1s 2s {}^{3}S_{1} - 2s 2p {}^{3}P_{2}$	1.9e + 03	15
10 254	19.3100	O VII d	$1s 2s {}^{2}S_{1} - 2s 2p {}^{3}P_{1}$	1.1e + 0.3	17 10
19.554	19.3012	IN VII N VII	$1s s_{1/2} - 5p r_{3/2}$ 1s 2s 5p 2P	2.30 ± 03	17, 18
10/03	19.3014		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.10 ± 0.03	17 18
19 511	19 5110	Cr XVI	$2n^{5} {}^{2}P_{2n} - 2n^{4} {}^{(1)}D_{2}$	4.30 + 03	17, 18
19.532	19.5380	Cr xvi	$2p^{5} + \frac{2}{3/2} + \frac{2}{2p^{5}} + \frac{2}{3/2} + \frac{2}{2p^{5}} + \frac{2}{3/2} + \frac{2}{2p^{5}} + \frac{2}{3/2} + \frac{2}{2p^{5}} + \frac{2}{3/2} + \frac{2}{3/$		15
19.564	19.5580	Са хуп	$2s^2 {}^{1}S_0 - 2s {}^{2}p {}^{1}P_1$	2.3e + 03	15
19.583	19.5825	Ca xvII	$2s^2 {}^{1}S_0 - 2s {}^{3}P_1$	1.8e + 03	17, 18
19.640	19.6420	Са хуш	$1s^2 2p^2 P_{1/2} - 1s^2 3d^2 D_{3/2}$	1.4e + 04	15
19.715	19.7140	Cr xvi	$2p^{5} {}^{2}P_{3/2} - 2p^{4} ({}^{3}P) 3s {}^{2}P_{1/2}$		15
19.788	19.7892	Ca xvIII	$1s^2 2p {}^2P_{3/2} - 1s^2 3d {}^2D_{5/2}$	2.5e + 04	15
19.808	19.8009	Са хиш	$1s^2 2p \ ^2P_{3/2} - 1s^2 \ 3d \ ^2D_{3/2}$	2.7e + 03	15
	19.8070	Cr xvi	$2p^{5} {}^{2}P_{3/2} - 2p^{4} ({}^{3}P) 3s {}^{4}P_{5/2}$		
	19.8257	N VII	$1s {}^{2}S_{1/2} - 4p {}^{2}P_{3/2}$	5.0e + 03	
	19.8261	N VII	$1s {}^{2}S_{1/2} - 4p {}^{2}P_{1/2}$	2.5e + 03	1.5
19.916	20.0520	Comm	1 - 2 - 2 - 2 - 1 - 2 - 2 - 2 - 2 - 2 -	$(2 + 0)^2$	15
	20.0550		$1s^{-} 2p^{-}P_{1/2} - 1s^{-} 3s^{-}S_{1/2}$	0.2e + 03	15
20.120	20.1219		$2p \ r_{1/2} - 3s \ S_{1/2}$ $1s^2 \ 2n \ ^2P \ -1s^2 \ 3s \ ^2S$	3.30 ± 02	15
20.288	20.2170	Ar xviii	$2p^{2}P_{3/2} = -3s^{2}S_{1/2}$	1.50 ± 04 6.4e ± 02	15
20.318	20.3400	Сахуп	$2s 2p^{-3}P_{1} 2s 3d^{-3}D_{2}$	2.7e + 02	15, 18
20.434	20.4370	Са хуп	$2s 2p {}^{3}P_{2} - 2s 3d {}^{3}D_{3}$	5.0e + 02	15
20.862	20.8610	К хүп	$1s^2 2s {}^2S_{1/2} - 1s^2 3p {}^2P_{3/2}$	4.9e + 02	1, 15, 18
	20.8630	Cr xv	$2p^{6} {}^{1}S_{0} - 2p^{5} ({}^{2}P_{1/2}) 3s^{1}P_{1}$		
20.906	20.9095	N VII	$1s {}^{2}S_{1/2} - 3p {}^{2}P_{3/2}$	1.4e + 04	1, 15
	20.9106	N VII	$1s {}^{2}S_{1/2} - 3p {}^{2}P_{1/2}$	7.3e + 03	
21.153	21.1530	Cr xv	$2p^{6} {}^{1}S_{0} - 2p^{5} ({}^{2}P_{3/2}) 3s {}^{3}P_{1}$		1, 15
21.202	21.1980	Ca xvII	$2s 2p {}^{1}P_{1} - 2s 3d {}^{1}D_{2}$	5.9e + 03	1, 15
•••	21.3830	Fe XXIV	$1s^2 3s^2 S_{1/2} - 1s^2 5p^2 P_{3/2}$ $1s^2 2s^2 S_{1/2} - 1s^2 5r^2 P_{3/2}$	3.2e + 03	
	21.3830	Fe XXIV	$1s^{-} 3s^{-} S_{1/2}^{-} 1s^{-} 3p^{-} P_{1/2}$	1.7e + 03	1 15
21.447	21.4500		$2p \ r_{1/2} - 2s \ 3u \ D_{3/2}$ $1s^2 \ 1s \ -1s \ 2n \ 1P$	2.96 ± 0.03	1, 13 1 14 15 18
21.005	21.0020		$13 B_0 = 13 \ 2p T_1$ $1s^2 1S_2 = 1s \ 2p 3P$.	5.10 ± 04	1, 14, 15, 18
21.850	21.8200	Fe xxiv	$1s^2 3p^2 P_{1/2} - 1s^2 5d^2 D_{2/2}$	1.7e + 03	1, 1 1, 15
22.025	22.0200	К хүп	$1s^2 2p {}^2P_{1/2} - 1s^2 3d {}^2D_{3/2}$	3.5e + 02	15
	22.0595	Si xiv	$2s {}^{2}S_{1/2} - 5p {}^{2}P_{3/2}$	4.8e + 02	
22.100	22.1012	О ип	$1s^2 {}^1S_0 - 1s 2s {}^3S_1$	3.5e + 04	1, 15, 18
	22.1140	Ca xvII	$2s \ 2p \ ^{1}P_{1} - 2s \ 3s \ ^{1}S_{0}$	3.7e + 03	
	22.1980	Fe xxiv	$1s^2 \ 3p \ ^2P_{3/2} - 1s^2 \ 5s \ ^2S_{1/2}$	2.9e + 03	
22.722	22.7250	Ca xv	$2p^2 {}^{3}P_0 - 2p \; 3d \; {}^{3}D_1$	2.3e + 03	1, 15
22.778	22.8210	Ca xv	$2p^2$ ${}^{3}P_2 - 2p$ $3d$ ${}^{3}D_1$	5.5e + 02	15
•••	23.0050	S XIV	$1s^2 2s^2 S_{1/2} - 1s^2 4p^2 P_{3/2}$	7.4e + 03	
•••	23.0150	S XIV	$1s^2 2s^2 S_{1/2} - 1s^2 4p^2 P_{1/2}$ $1s^2 2s^2 S_{1/2} - 1s^2 2p^2 P_{1/2}$	3.9e + 0.3	
•••	23.5400		$1s \ 2s \ S_{1/2} - 1s \ 5p \ P_{3/2}$ $1s^2 \ 2s \ 2s \ -1s^2 \ 3n \ ^2P$	3.20 ± 04	
24.09	23.3700		$2n^{3} 4S_{2,2} - 2n^{2} (^{3}P) 3d^{4}P_{2,2}$	1.00 + 04	1
24.13	2	Cu AIV	${P}$ $S_{3/2}$ 2_{P} (1) S_{u} 1 $5/2$	•••	1
	24.2000	S xiv	$1s^2 2p {}^2P_{1/2} - 1s^2 4d {}^2D_{2/2}$	3.8e + 03	*
	24.2850	S XIV	$1s^2 2p {}^2P_{3/2} - 1s^2 4d {}^2D_{5/2}$	6.9e + 03	
24.38					1
	24.4180	S xiv	$1s^2 2p {}^2P_{1/2} - 1s^2 4s {}^2S_{1/2}$	1.6e + 03	
	24.5080	S XIV	$1s^2 2p {}^2P_{3/2} - 1s^2 4s {}^2S_{1/2}$	3.2e + 03	
24.53	24.5199	Si xIII	$1s 2s {}^{3}S_{1} - 1s 5p {}^{3}P_{1}$	3.2e + 02	1
24.68	24.6955	Si XIV	$2p {}^{2}P_{1/2} - 4d {}^{2}D_{3/2}$	5.2e + 02	1
	24.6987	S1 XIV	$2s {}^{2}S_{1/2} - 4p {}^{2}P_{3/2}$	9.8e + 02	

TABLE 5—Continued

λ _{solar} (Å)	λ (Å)	Ion	Transition	Int	Refs
24.78	24.7792	N VII	$1s {}^{2}S_{1/2} - 2p {}^{2}P_{3/2}$	9.0e + 04	1
	24.7846	N VII	$1s^{2}S_{1/2}^{1/2} - 2p^{2}P_{1/2}^{3/2}$	4.5e + 04	
24.86	24.8540	Ar xvi	$1s^2 2p^2 P_{1/2} - 1s^2 3d^2 D_{3/2}$	2.4e + 04	1
	24.9910	Ar xvi	$1s^2 2p {}^2P_{3/2}^{-1} - 1s^2 3d {}^2D_{5/2}^{-1}$	4.2e + 04	
	25.0130	Ar xvi	$1s^2 2p {}^2P_{3/2} - 1s^2 3d {}^2D_{3/2}$	4.6e + 03	
	25.5160	Ar xvi	$1s^2 2p {}^2P_{1/2} - 1s^2 3s {}^2S_{1/2}$	9.9e + 03	
	25.6840	Ar xvi	$1s^2 2p {}^2P_{3/2}^{-1} - 1s^2 3s {}^2S_{1/2}^{-1}$	2.0e + 04	
26.03	26.0000	Са хш	$2p^4 {}^{3}P_2 - 2p^3 (^{2}D) 3d {}^{3}P_2$		1
	26.0330	Са хш	$2p^4 {}^3P_2 - 2p^3 (^2D) 3d {}^3D_3$		
26.22	26.2190	Са хш	$2p^4 {}^3P_1 - 2p^3 (^2D) 3d {}^3D_2$		1
26.36	26.3572	С и	$1s {}^{2}S_{1/2} - 5p {}^{2}P_{3/2}$	3.6e + 03	1
	26.3574	С и	$1s {}^{2}S_{1/2} - 5p {}^{2}P_{1/2}$	1.8e + 03	
26.59					1
26.64					1
26.71	26.7190	Ca xiii	$2p^4 \ ^3P_2 - 2p^3 \ (^4S) \ 3d \ ^3D_3$		1
27.01	26.9896	С и	$1s \ ^{2}S_{1/2} - 4p \ ^{2}P_{3/2}$	7.7e + 03	1
	26.9901	С и	$1s \ ^{2}S_{1/2} - 4p \ ^{2}P_{1/2}$	3.8e + 03	
27.15					1
•••	27.4100	Ar xv	$2s \ 2p \ ^{1}P_{1} - 2s \ 3d \ ^{1}D_{2}$	5.3e + 03	
•••	27.4700	Ar xiv	$2p \ ^{2}P_{1/2} - 2s^{2} \ 3d \ ^{2}D_{3/2}$	2.7e + 03	
•••	27.5304	S xv	$1s \ 2s \ {}^{3}S_{1} - 1s \ 3p \ {}^{3}P_{2}$	3.7e + 03	
27.56	27.5598	S xv	$1s \ 2s \ {}^{3}S_{1} - 1s \ 3p \ {}^{3}P_{1}$	1.4e + 03	1
27.60	27.6080	Ca xii	$2p^{5} {}^{2}P_{1/2} - 2p^{4} ({}^{1}S) 3d {}^{2}D_{3/2}$	•••	1
27.65	27.6420	Ar xiv	$2p \ ^{2}P_{3/2} - 2s^{2} \ 3d \ ^{2}D_{3/2}$	5.4e + 02	1
27.98	27.9730	Ca xii	$2p^{5} {}^{2}P_{3/2} - 2p^{4} ({}^{1}S) 3d {}^{2}D_{5/2}$		1
28.13	28.1310	Ca xii	$2p^{5} {}^{2}P_{1/2} - 2p^{4} ({}^{1}D) 3d {}^{2}D_{3/2}$	•••	1
28.40	28.3860	Ar xv	$2s \ 2p \ ^{1}P_{1} - 2s \ 3s \ ^{1}S_{0}$	3.4e + 03	1
28.46	28.4652	С и	$1s \ ^{2}S_{1/2} - 3p \ ^{2}P_{3/2}$	2.2e + 04	1
	28.4663	С и	$1s \ ^{2}S_{1/2} - 3p \ ^{2}P_{1/2}$	1.1e + 04	
28.56					1
28.78	28.7870	N VI	$1s^2 {}^1S_0 - 1s \; 2p \; {}^1P_1$	3.7e + 03	1
28.91	28.9084	Si xIII	$1s \ 2p \ ^{1}P_{1} - 1s \ 4d \ ^{1}D_{2}$	3.5e + 02	1
	28.9382	S xv	$1s \ 2p \ ^{3}P_{1} - 1s \ 3s \ ^{3}S_{1}$	3.6e + 02	
29.07	29.0840	N VI	$1s^{2} {}^{1}S_{0} - 1s \; 2p \; {}^{3}P_{1}$	2.6e + 02	1
29.53	29.5343	N VI	$1s^{2} S_{0} - 1s 2s S_{1}$	1.7e + 03	1
	29.5438	S xv	$1s \ 2p \ ^{1}P_{1} - 1s \ 3s \ ^{1}S_{0}$	2.3e + 03	
29.65	29.5740	Si XII	$1s^2 2p {}^2P_{1/2} - 1s^2 5s {}^2S_{1/2}$	7.4e + 02	
	29.6450	Si XII	$1s^2 2p {}^2P_{3/2} - 1s^2 5s {}^2S_{1/2}$	4.4e + 02	1
29.99					1
30.09					1
30.45	30.4270	S XIV	$1s^2 2s {}^2S_{1/2} - 1s^2 3p {}^2P_{3/2}$	4.2e + 04	1
	30.4690	S XIV	$1s^2 \ 2s \ ^2S_{1/2} - 1s^2 \ 3p \ ^2P_{1/2}$	2.2e + 04	
30.56		_			1
•••	30.7260	Fe xxiv	$1s^2 3s {}^2S_{1/2} - 1s^2 4p {}^2P_{3/2}$	7.4e + 03	
•••	30.8780	Fe xxiv	$1s^2 3s {}^2S_{1/2} - 1s^2 4p {}^2P_{1/2}$	4.0e + 03	
31.01	31.0120	Si XII	$1s^2 2s \ 2S_{1/2} - 1s^2 4p \ 2P_{3/2}$	5.2e + 03	1
	31.0230	Si XII	$1s^2 2s \ ^2S_{1/2} - 1s^2 4p \ ^2P_{1/2}$	2.7e + 03	
	31.6160	Fe xxiv	$1s^2 3p {}^2P_{1/2} - 1s^2 4d {}^2D_{3/2}$	4.4e + 03	
31.74	31.7460	Fe xxIII	$2s \ 3s \ {}^{3}S_{1} - 2s \ 4p \ {}^{1}P_{1}$	6.9e + 02	1
31.77					1
31.83		-			1
31.94	31.9590	Fe xxiv	$1s^2 3p {}^2P_{3/2} - 1s^2 4d {}^2D_{5/2}$	7.9e + 03	1
32.01	32.0100	Fe xxiv	$1s^2 3p {}^2P_{3/2} - 1s^2 4d {}^2D_{3/2}$	8.7e + 02	1
32.19	32.1910	S XIII	$2s^2 {}^1S_0 - 2s {}^3p {}^5P_1$	1.0e + 03	1
32.24	32.2420	S XIII	$2s^2 \cdot s_0 - 2s \cdot 3p \cdot P_1$	1.9e + 03	1
32.29	22 42 42	F	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1
32.41	32.4040	Fe XXIV	$1s^{2} 3p^{2} P_{1/2} - 1s^{2} 4s^{2} S_{1/2}$	3.8e + 03	1
	32.4160	S XIV	$1s^{2} 2p^{2} P_{1/2} - 1s^{2} 3d^{2} D_{3/2}$	2.8e + 04	
32.50	32.4890	Fe xxIII	$2s \ 3s \ {}^{1}S_{0} - 2s \ 4p \ {}^{1}P_{1}$	4.5e + 03	1
32.55	32.5600	S XIV	$1s^{2} 2p {}^{2}P_{3/2} - 1s^{2} 3d {}^{2}D_{5/2}$	4.9e + 04	1
	32.5750	S XIV	$1s^{2} 2p {}^{2}P_{3/2} - 1s^{2} 3d {}^{2}D_{3/2}$	5.5e + 03	
32.66	32.6520	Fe XVI	$3p P_{3/2} - 7d D_{5/2}$		1
	32.8190	Fe XXIV	$1s^{2} 3p {}^{2}P_{3/2} - 1s^{2} 4s {}^{2}S_{1/2}$	8.1e + 03	
32.97	32.9730	S1 XII	$1s^{2} 2p {}^{2}P_{3/2} - 1s^{2} 4d {}^{2}D_{5/2}$	4.9e + 03	1
33.22	33.2220	S1 XII	$1s^{2} 2p P_{1/2} - 1s^{2} 4s S_{1/2}$	1.1e + 03	1

TABLE 5—Continued

$\lambda_{ m solar} \ ({ m \AA})$	λ (Å)	Ion	Transition	Int	Refs
33 30	33 3023	Si xiv	$2n^2 P_{1,2} - 3d^2 D_{2,2}$	$14e \pm 03$	1
55.50	33 3081	Si xiv	$2p 1_{1/2} 3u D_{3/2}$ $2s {}^2S_{+-} - 3n {}^2P_{-+}$	$2.2e \pm 03$	1
	33.3130	Si xii	$1s^2 2p {}^2P_{249} - 1s^2 4s {}^2S_{449}$	2.2e + 03	
33.38	33.3810	S XIV	$1s^2 2p {}^2P_{1/2} - 1s^2 3s {}^2S_{1/2}$	1.2e + 04	1
	33.4340	Fe xxIII	$2s \ 3p^{-1}P_1 - 2s \ 4d^{-1}D_2$	9.1e + 03	-
33.50	33.5069	Si xiv	$2p^{2}P_{3/2}-3s^{2}S_{1/2}$	3.5e + 03	1
33.54	33.5490	S XIV	$1s^2 2p^{\frac{3}{2}}P_{\frac{3}{2}} - 1s^2 3s^2 S_{\frac{1}{2}}$	2.5e + 04	1
33.73	33.7342	С и	$1s {}^{2}S_{1/2} - 2p {}^{2}P_{3/2}$	1.4e + 05	1
	33.7396	С и	$1s {}^{2}S_{1/2} - 2p {}^{2}P_{1/2}$	6.8e + 04	
33.96	33.9510	S хш	$2s 2p^{3}P_{2}-2s 3d^{3}D_{3}$	4.0e + 02	1
34.86	34.8570	Fe xvi	$3p {}^{2}P_{1/2} - 6d {}^{2}D_{3/2}$		1
34.99	34.9730	CV	$1s^2 {}^{1}S_0^{-1}s 3p {}^{1}P_1$	4.9e + 02	1
35.10	35.0950	Рхш	$1s^2 2s {}^2S_{1/2} - 1s^2 3p {}^2P_{3/2}$	3.9e + 02	1
	35.1060	Fe xvi	$3p {}^{2}P_{3/2} - 6d {}^{2}D_{5/2}$		
35.21			-,,-		1
35.36	35.3680	Fe xvi	$3d {}^{2}D_{5/2} - 8f {}^{2}F_{7/2}$		1
	35.3530	Si xi	$2s 2p {}^{3}P_{0}-2s 4d {}^{3}D_{1}$		
	35.3830	Si xi	$2s \ 2p \ ^{3}P_{1} - 2s \ 4d \ ^{3}D_{2}$		
35.46	35.4460	Si xi	$2s \ 2p \ ^{3}P_{2}-2s \ 4d \ ^{3}D_{3}$		1
35.57					1
35.67	35.6670	S хш	$2s \ 2p \ {}^{1}P_{1} - 2s \ 3d \ {}^{1}D_{2}$	4.1e + 03	1
35.73	35.7100	Fe xvi	$3p \ ^{2}P_{1/2}$ -6s $^{2}S_{1/2}$		1
35.80					1
36.01	36.0100	Fe xvi	$3p \ ^{2}P_{3/2} - 6s \ ^{2}S_{1/2}$		1
36.12					1
36.40	36.3980	S XII	$2s^2 2p \ ^2P_{1/2} - 2s^2 \ 3d \ ^2D_{3/2}$	1.5e + 03	1
	36.4333	Si xiii	$1s \ 2s \ {}^{3}S_{1} - 1s \ 3p \ {}^{3}P_{2}$	5.1e + 03	
36.52					1
36.56	36.5640	S хп	$2s^2 2p {}^2P_{3/2} - 2s^2 3d {}^2D_{5/2}$	7.0e + 02	1
	36.5730	S хп	$2s^2 2p \ ^2P_{3/2} - 2s^2 \ 3d \ ^2D_{3/2}$	3.0e + 02	
36.75	36.7490	Fe xvi	$3s {}^{2}S_{1/2} - 5p {}^{2}P_{3/2}$	2.9e + 03	1
36.80	36.8030	Fe xvi	$3s {}^{2}S_{1/2} - 5p {}^{2}P_{1/2}$	1.6e + 03	1
36.89					1
37.35					1
37.42					1
37.60	37.5980	S хш	$2s 2p P_1 - 2s 3s S_0$	2.6e + 03	1
37.71	37.7060	Рхш	$1s^2 2p \ ^2P_{3/2} - 1s^2 \ 3d \ ^2D_{5/2}$	5.1e + 02	1
	37.7150	S XII	$2s \ 2p^2 \ 2D_{3/2} - 2s \ 2p \ ({}^{3}P^{*}) \ 3d \ {}^{2}F_{5/2}$	3.7e + 02	
	39.4147	S1 XIII	$1s 2p P_1 - 1s 3s S_0$	3.1e + 03	
39.66	39.6680	Mg X	$1s^2 2s 2s_{1/2} - 1s^2 5p 2P_{3/2}$	2.9e + 02	1
39.75	20.0270	F	2^{2} 2^{2} 5^{12} 5^{2}	27. 102	1
39.83	39.8270	Fe XVI	$3p {}^{2}P_{1/2} - 5d {}^{2}D_{3/2}$	2.7e + 03	1
39.89					1
39.94	40 1 5 20	E. mr	$2 - \frac{2}{2} - \frac{5}{2} + \frac{2}{2} - \frac{5}{2} - - $	4.9- 1.02	1
40.14	40.1550	Fe XVI	$3p - P_{3/2} - 5a - D_{5/2}$	4.80 ± 0.03	1
40.19	40.1990	C V	$5a D_{3/2} - 61 F_{5/2}$ $1a^2 \frac{1}{2}S - 1a 2m \frac{1}{2}B$	2 22 + 02	1
40.27	40.2080		$1s S_0 - 1s \ 2p P_1$ $1s^2 1s 1s \ 2p ^3P$	3.2e + 03	1
40.72	40.7507	C V	$13 5_0 - 13 \ 2p 1_1$	2.40 + 02	1
40.80	40.0110	Si yu	$1s^2 2s^2 S = 1s^2 3n^2 P$	3.0a + 0.1	1
40.91	40.9110	Si xu	$15 \ 25 \ 5_{1/2} - 15 \ 5p \ 1_{3/2}$ $1s^2 \ 2s \ 2S \ -1s^2 \ 3p \ 2P$	5.00 ± 04	17
41.01	40.9910	SI XII	$13 \ 23 \ 5_{1/2} \ 13 \ 5p \ 1_{1/2}$	1.50 + 04	1, 7
41.01					7
41 22					1
41.47	41.4721	CΥ	$1s^{2} {}^{1}S_{2} - 1s {}^{2}s {}^{3}S_{2}$	$1.9e \pm 03$	1.7
41.94	41,9320	Fe xvi	$3n^2P_{10} = 5s^2S_{11}$	3.0e + 03	1.7
42.27	42.3040	Fe xvi	$3p^{2}P_{3/2}-5s^{2}S_{1/2}$	6.2e + 03	1
42.55	42.5430	S x	$2p^{3} {}^{4}S_{3/2}^{3/2} - 2p^{2} ({}^{3}P) 3d {}^{4}P_{5/2}$		1.7
42.61			· 5/2 · · · · · · · · · 5/2		1
43.31	43.3149	Ne x	$2s {}^{2}S_{1/2} - 5p {}^{2}P_{3/2}$	4.6e + 02	1.7
43.65			1/2 1 - 3/2		1
43.76	43.7630	Si xi	$2s^{2} S_{0} - 2s 3p P_{1}$	1.0e + 03	1, 7
43.80			0 * <u>1</u>		1
44.02	44.0190	Si xII	$1s^2 2p {}^2P_{1/2} - 1s^2 3d {}^2D_{3/2}$	1.9e + 04	1
44.17	44.1650	Si xII	$1s^2 2p {}^2P_{3/2}^{-1} - 1s^2 3d {}^2D_{5/2}^{-3/2}$	3.4e + 04	1, 7
	44.1780	Si xII	$1s^2 2p {}^2P_{3/2} - 1s^2 3d {}^2D_{3/2}$	3.8e + 03	
44.20	44.1780	Si xII	$1s^2 2p {}^2P_{3/2}^{-1} - 1s^2 3d {}^2D_{3/2}^{-1}$	3.8e + 03	1

TABLE 5-Continued

$\lambda_{\rm solar}$	λ				
(Å)	(Å)	Ion	Transition	Int	Refs
44.36					1
44.55					7
44.86					7
45.06					1, 7
45.51	45.5210	Si хп	$1s^2 2p {}^2P_{1/2} - 1s^2 3s {}^2S_{1/2}$	8.4e + 03	1, 7
45.68	45.6910	Si хп	$1s^2 2p {}^2P_{3/2}^{-1} - 1s^2 3s {}^2S_{1/2}^{-1}$	1.7e + 04	1, 7
45.73					1
45.76					1
46.00					7
46.18					1
46.33	46.2980	Si xi	$2s \ 2p \ ^{3}P_{1} - 2s \ 3d \ ^{3}D_{2}$	1.3e + 02	1, 7
	46.3140	Al XII	$1s \ 2p \ ^{1}P_{1} - 1s \ 3s \ ^{1}S_{0}$	1.5e + 02	
46.40	46.3990	Si xi	$2s 2p {}^{3}P_{2} - 2s 3d {}^{3}D_{3}$	3.6e + 02	1
46.66	46.6610	Fe xvi	$3d {}^{2}D_{3/2} - 5f {}^{2}F_{5/2}$	2.6e + 03	1
46.72	46.7180	Fe xvi	$3d {}^{2}D_{5/2} - 5f {}^{2}F_{7/2}$	3.6e + 03	1, 7
47.33	47.3100	Mg x	$1s^2 2p {}^2P_{3/2} - 1s^2 4d {}^2D_{5/2}$	7.7e + 02	1, 7
47.60					7
47.67	47.6630	Ni xvII	$3s \ 3p \ ^1P_1 - 3s \ 4d \ ^1D_2$	•••	1
47.79	47.7720	Ni xvi	$3s^2 3p {}^2P_{3/2} - 3s^2 4d {}^2D_{5/2}$	•••	1
47.85	47.8790	Mg x	$1s^2 2p {}^2P_{3/2} - 1s^2 4s {}^2S_{1/2}$	3.4e + 02	7
48.25					1
48.29	48.2970	Al XI	$1s^2 \ 2s \ ^2S_{1/2} - 1s^2 \ 3p \ ^2P_{3/2}$	9.5e + 02	1
48.33	48.3380	Al XI	$1s^2 \ 2s \ ^2S_{1/2} - 1s^2 \ 3p \ ^2P_{1/2}$	4.8e + 02	1
48.51	48.5010	Ne x	$2p \ ^{2}P_{1/2} - 4d \ ^{2}D_{3/2}$	5.0e + 02	7
	48.5048	Ne x	$2s \ ^2S_{1/2} - 4p \ ^2P_{3/2}$	9.4e + 02	
	48.5113	Ne x	$2p \ ^{2}P_{1/2} - 4s \ ^{2}S_{1/2}$	4.2e + 02	
	48.5156	Ne x	$2s \ ^{2}S_{1/2} - 4p \ ^{2}P_{1/2}$	4.7e + 02	
48.97	48.9530	Fe xvi	$3d {}^{2}D_{5/2} - 5p {}^{2}P_{3/2}$	5.1e + 02	1
	48.9790	Fe xvi	$3d \ ^{2}D_{3/2} - 5p \ ^{2}P_{1/2}$	3.0e + 02	
49.18					1
49.22	49.2220	Si xi	$2s \ 2p \ ^1P_1 - 2s \ 3d \ ^1D_2$	1.9e + 03	1, 7
49.31					1
49.49					1
49.64					1
49.71					1
49.76					1
49.81					1
49.88					1

References.—(1) Acton et al. 1985; (7) Widing & Sandlin 1968; (11) Fawcett et al. 1987; (12) the list of Fawcett et al. 1987 revised by Phillips et al. 1999; (13) Feldman, Doschek, & Kreplin 1980; (14) McKenzie et al. 1980; (15) McKenzie & Landecker 1982; (16) McKenzie et al. 1985; (17) Phillips et al. 1982; (18) Phillips et al. 1999; (19) Doschek 1972; (20) Pike et al. 1996.

given by

$$\frac{C_d}{A_a} = \frac{h^3}{2(2\pi m k T)^{3/2}} \frac{g_u}{g_l} \exp(-\Delta E/kT) , \qquad (1)$$

where h is the Planck constant, m the electron mass, k the Boltzmann constant, T the temperature in kelvins, g_u the statistical weight of the upper level, g_l the statistical weight of the lower level, ΔE the difference in energy of the two levels. For electron collisional excitation of an ion, the collisional rate coefficient C is related to the Maxwellianaveraged collision strength $\Upsilon(T)$ by

$$C = \left(\frac{2\pi}{k}\right)^{1/2} \frac{\hbar^2}{m^{3/2}} T^{1/2} \frac{\Upsilon(T)}{g_l} \exp\left(-\Delta E/kT\right).$$
(2)

By comparing equations (1) and (2), one can derive a Maxwellian-averaged collision strength Υ_d for the excitation of autoionizing states

$$\Upsilon_d = \frac{g_u h A_a}{2kT} \,. \tag{3}$$

CHIANTI has employed the scaling laws of Burgess & Tully (1992) which suggest how the collision strength should scale with energy or temperature for four kinds of transitions. Equation (3) has led us to adopt a new type of transition where the collision strength scales with the inverse of the temperature and we have used this to scale the dielectronic excitation rates.

For implementation within CHIANTI, we assume that dielectronic excitation of levels above the ionization potential proceeds independently from the direct excitation of levels below the ionization potential. This is accomplished by employing different model ions for the two kinds of transitions. As an example, for the calculation of line intensities from helium-like Fe xxv, we calculate the steady-state level populations of the Fe xxv ion as described in Paper I. The rate at which these levels are populated is proportional to the relative population of the Fe xxv, we calculate the steadystate level populations of Fe xxiv but use the dielectronic excitation rates as the only means of populating the upper levels. The rate at which these levels are populated is proportional to the relative population of the Fe xxv ion. For the direct excitation of the Fe xxıv levels, including the levels produced by inner shell excitation, we use the Fe xxıv ion including all the direct excitation rates and the rate is proportional to the relative population of the Fe xxıv ion.

In practice, two sets of files are used to calculate those line intensities due to direct excitation and those due to dielectronic excitation. In the case of C V, the lines due to direct excitation use the CHIANTI standard set of three ASCII files with the prefix "c_5." For those lines created by dielectronic excitation, the three files have the prefix "c_4d."

3. NEW ATOMIC DATA IN THE CHIANTI DATABASE

3.1. The Hydrogen Isoelectronic Sequence

3.1.1. C vi, Ne x, Si xiv, Ca xx, Fe xxvi

For the hydrogen isoelectronic sequence, the 25 finestructure levels of the 1s, 2l, 3l, 4l, and 5l configurations have been included. Observed energies are taken from the National Institute of Science and Technology (NIST) Atomic Spectra Database (Fuhr et al. 1999).² For oscillator strengths of allowed lines, the hydrogenic values of Wiese, Smith, & Glennon (1966) have been used. Radiative transition probabilities (A-values) have been calculated from the hydrogenic oscillator strengths and the observed energy level separations. For $Z \leq 26$, no significant differences with respect to the relativistic calculations of Pal'chikov (1998) are found. The magnetic dipole and two photon decay rates from the first excited level $2s {}^{2}S_{1/2}$ are taken from Parpia & Johnson (1972).

In a series of papers, Aggarwal & Kingston have performed R-matrix calculations of collisions strengths of the hydrogenic ions for transitions among the 15 LS nl levels with n = 1-5. The collision strengths for C vI are from Aggarwal & Kingston (1991a), for Ne x from Aggarwal & Kingston (1991b), for Si XIV from Aggarwal & Kingston (1992a), for Ca xx from Aggarwal & Kingston (1992b), and for Fe xxvI from Aggarwal & Kingston (1993). To distribute the collision strengths among the fine-structure levels of the LS states, we have scaled the collision strengths following the rules for the distribution of oscillator strengths under LS coupling.

As discussed in the next section, collision strengths for other ions in the hydrogen isoelectronic sequence were obtained by interpolation among the various calculated values of Aggarwal & Kingston. In the interpolation process, significant inconsistencies were found for the Ne x 1s-3p, 1s-3d, 2s-3p and 2s-3d excitations and for the Ca xx 1s-3s excitations. When interpolating the data for the necessary ions, these inconsistent rates were excluded. However, problems appear to remain for Ne x and Ca xx. The most serious discrepancies lie with the Ne x 1s-3p and 1s-3d transitions. The high temperature limit for the allowed 1s-3pcollision strength derived from the oscillator strength does not appear to be consistent with the lower temperature collision strengths of Aggarwal & Kingston and is more consistent with the values of the 1s-3d collision strengths. This suggests that these collision strengths would benefit from a new calculation. We have examined the possible effect of these inconsistencies on the Ne x line intensities.

On the assumption that these collision strengths have become mislabeled, we have exchanged the 1s-3p and 1s-3dcollision strengths and prepared revised spline fits to the scaled collision strengths. The effect of this is to increase the Ne x 1s-3p line by a factor of about 1.4 and decrease the Ne x 1s-2p lines by a factor of about 0.9. In addition, the summed intensities of the Ne x 2l-3l' transitions near 65.6 Å are reduced by a factor of about 0.4. In version 3 of the CHIANTI database, the original collision strengths of Aggarwal & Kingston are distributed but files containing the revised spline fits are available from the authors. No other calculations are available to check or replace these collision strength values.

3.1.2. N VII, O VIII, Na XI, Mg XII, Al XIII, S XVI, Ar XVIII, Ni XXVIII

For these hydrogenic ions, the model includes 25 finestructure levels. The sources of the energy levels and radiative data are as above. For collision strengths, we have interpolated and extrapolated the Maxwellian-averaged collision strengths of Aggarwal & Kingston. We have found that scaling the collision strengths as $Z^2\Upsilon$ versus $T/\Delta E$, where Z is the nuclear charge, Υ the Maxwellian-averaged collision strength, T the temperature and ΔE the energy level difference, provides a slowing varying function that can be accurately interpolated and extrapolated in the case of Ni xxvIII. These interpolations indicate that the various calculations are internally consistent at about the 10%-20% level but that there are significant differences between various Aggarwal & Kingston calculations for some transitions of some ions as discussed in the previous section.

3.2. The Helium Isoelectronic Sequence

3.2.1. C v, N vi, O vii, Ne ix, Mg xi, Si xii, S xv, Ca xix, Fe xxv, Ni xxvii

For the helium isoelectronic sequence, the 49 finestructure levels of the 1*snl* configurations, n = 1-5 and l = s, p, d, f, g are included. Observed energies are taken from the NIST Database (Fuhr et al. 1999), with the exception of Fe xxv, whose observed energy levels come from Shirai et al. (2000). Energies of the 2s2p ³P levels are from Chen, Cheng, & Johnson (1993). Oscillator strengths for allowed transitions are obtained from Zhang & Sampson (1987) and A-values derived from the oscillator strengths. For other allowed transitions, hydrogenic oscillator strengths (Wiese et al. 1966) have been used and the A-value derived by using the appropriate wavelength. Intercombination and forbidden decay rates from the n = 2 level have been taken from Lin, Johnson, & Dalgarno (1977) and the two photon decay rate from the $1s2s^1S$ level has been taken from Drake (1986).

Zhang & Sampson (1987) have calculated electron collision strengths among all of the $1s^2$, 1s2s and 1s2p finestructure levels. Sampson, Goett, & Clark (1983) provide calculations of collision strengths between the $1s^2$ ground level and the 1snl, n = 2-5, excited levels using a hydrogenic approximation. We have used these latter calculations for excitation of the n = 3, 4, 5 levels.

3.2.2. Na x

The treatment of the Na x ion is identical to that of the other ions of the helium isoelectronic sequences, with the following exceptions. Energies of the 2s2p ³P levels have been taken from Curdt et al. (2000) and the collisional data

² Available at: http://physics.nist.gov/PhysRefData/contents.html.

have been interpolated along the isoelectronic sequence using the other available He-like ions from C v to S xv.

3.2.3. Helium-like Dielectronic Satellites of Hydrogen-like Lines: С v, N vi, O vii, Ne ix, Mg xi, Al xii, Si xiii, S xv, Ar xvii, Ca xix, Ni xxvii

The model atom for describing the lines produced by dielectronic recombination consists of 95 fine-structure levels including 49 bound levels (1snl, n = 1-5) and 46 levels above the ionization potential. The energy levels and radiative rates for the 49 bound levels are the same as described above. The excitation rates for these levels are set to zero and they are populated only by cascades from levels above the ionization potential excited by dielectronic recombination. Their energy levels, radiative rates and autoionizing rates are from recent updates (Safronova & Johnson 1998) of the earlier work of Vainshtein & Safronova (1978) and Vainshtein & Safronova (1980). The effective collision strengths to these levels are derived from the total autoionizing rates following equation (3).

3.2.4. Helium-like Dielectronic Satellites of Hydrogen-like Lines: Fe xxv

The model atom describing the lines produced by dielectronic recombination consists of 167 levels, including 49 bound levels and 118 levels above the ionization potential. The energy levels and radiative rates for the bound levels are the same as described above. The excitation rates for these levels are set to zero and the bound levels are populated only by cascades from levels above the ionization potential excited by dielectronic recombination. For the levels above the ionization potential, we use the atomic data of Safronova (Kato et al. 1997) which includes transitions of the type $1snl-2l^nnl^n$ where n = 2-5. Aside from the more extensive atomic model, this ion is treated in the same manner as the others in this sequence.

3.3. Lithium Isoelectronic Sequence

3.3.1. O vi, Ne viii, Mg x, Al xi, Si xii, Ar xvi, and Ni xxvi

As presented in Paper I, these ions are described by an atomic model that includes the $1s^2nl$ levels where n = 2-5. In addition, the configurations $1s2s2p,1s2s^2$ and $1s2p^2$ are now included. Energy levels, radiative decay probabilities and collisions strengths for these levels are from Goett & Sampson (1983). Since Goett & Sampson (1983) do not provide radiative transition probabilities for the metastable 1s2s2p ${}^4P_{5/2}$, a new set of A-values has been calculated using SSTRUCT (Eissner, Jones, & Nussbaumer 1974) with a 23 configuration model to provide such values. Autoionizing rates for these levels are from Vainshtein & Safronova (1978) and Vainshtein & Safronova (1980).

3.3.2. S xIV, Ca XVIII, Fe XXIV

The atomic data for these ions are the same as for the lithium-like ions described above except that the autoionizing rates are from Kato et al. (1997)

3.3.3. Lithium-like Dielectronic Satellites of Helium-like Lines: O VI, Ne VIII, Mg X, Al XI, Si XII, Ar XVI, and Ni XXVI

The model atom describing the lines produced by dielectronic recombination consists of 78 levels, including 24 bound levels $(1s^2nl, n = 1-5)$ and 54 levels above the ionization potential. The energy levels and radiative rates for the 24 bound levels are the same as described above. The excitation rates for these levels are set to zero and they are populated only by cascades from levels excited by dielectronic recombination. The levels above the ionization potential have $n \leq 3$. Their energy levels, radiative rates and autoionizing rates are from recent updates (Safronova & Johnson 1998) of the earlier work of Vainshtein & Safronova (1978) and Vainshtein & Safronova (1980). The effective collision strengths to these levels are derived from the total autoionizing rates following equation (3).

3.3.4. Lithium-like Dielectronic Satellites of Helium-like Lines: S XIV, Ca XVIII, Fe XXIV

The model atom describing the lines produced by dielectronic recombination consists of 35 bound levels $(1s^2nl, n = 1-6)$ and 220 (for S XIV), 249 (for Ca XVIII), and 251 (for Fe XXIV) levels above the ionization potential. The energy levels and radiative rates for the 24 bound levels are the same as described above. The excitation rates for these levels are set to zero and they are populated only by cascades from levels excited by dielectronic recombination. For the levels above the ionization potential, we use the atomic data of Safronova in Kato et al. (1997).

3.4. Other Satellites to Helium-like Fe xxv: Fe xxI, Fe xXII, Fe xXIII

Kato et al. (1997) provide the necessary atomic data to calculate the intensities of dielectronic satellite lines of Fe xxv produced by Fe xxi, Fe xxii, and Fe xxiii. These ions have also been developed in a manner identical to that described for Fe xxiv above.

3.5. Beryllium Isoelectronic Sequence: Mg IX

The distorted wave electron excitation data of Zhang & Sampson (1992) for the transitions between the n = 2 levels have been replaced by the close-coupling data of Keenan et al. (1986). The use of the Keenan et al. (1986) collision data is found to increase the populations of the $2p^{2} \, {}^{1}D_{2}$ and ${}^{1}S_{0}$ levels by over 100%. This is particularly significant for the line found at 749.55 Å which arises through a decay of the ${}^{1}D_{2}$ level. The 706.06/749.55 line ratio has been used to determine electron temperatures from solar spectroscopic data (Wilhelm, Marsch, & Dwivedi 1998) and the revised CHIANTI model gives temperatures significantly higher than the version 2 model.

3.6. The Carbon Isoelectronic Sequence

For the ions N II, O III, Ne v, Na vI, and Mg vII, the transition probabilities for the ${}^{3}P_{1}{}^{-1}D_{2}$ and ${}^{3}P_{2}{}^{-1}D_{2}$ transitions within the ground configuration have been updated with the data from Storey & Zeippen (2000).

3.6.1. Fe xxi

CHIANTI version 1.0 and 2.0 included 36 fine-structure energy levels of the $2s^22p^2$, $2s2p^3$, $2p^4$, $2s^22p3s$, and $2s^22p3d$ configurations. Data for the $2s^22pnl$ (n = 4, 5 and l = 0, 2) configurations have been added so that the atomic model now includes a total of 68 fine-structure energy levels. Observed energies are taken mostly from Bromage et al. (1977), and a few remaining energies come from Shirai et al. (2000) and Kelly (1987). In a few cases, the level identifications from Bromage et al. (1977) have been corrected to match the level ordering given by theoretical calculations. Radiative and collisional transition rates come from Phillips et al. (1996). They provide A-values and oscillator strengths for all of the most important transitions from the ground configuration to the n = 4, 5 levels. Collision strengths are calculated using the distorted wave approximation for three values of the incident electron energy.

3.7. Oxygen Isoelectronic Sequence

Transition probabilities for the ground ${}^{3}P_{1}{}^{-1}D_{2}$ and ${}^{3}P_{2}{}^{-1}D_{2}$ transitions have been updated with the data from Storey & Zeippen (2000) for the ions Ne III, Na IV, and Mg v. In addition, for Ne III, the ${}^{3}P_{1}{}^{-1}S_{0}$ and ${}^{1}D_{2}{}^{-1}S_{0}$ ground configuration transitions have been updated with the laboratory measurements of Daw et al. (2000), while updates to all other Ne III ground transition A-values are from Galavís, Mendoza, & Zeippen (1997).

3.8. Neon Isoelectronic Sequence

3.8.1. Ar IX, Ca XI, Ni XIX

The CHIANTI version 1.0 atomic model for Ar IX, Ca XI, and Ni XIX, described in Dere et al. (1997), was limited to 36 out of the 89 levels for which Zhang et al. (1987) provide collisional data. The reason for this was the fact that Zhang et al. 1987 do not provide radiative data for most of the $2s^22p^54l$ and $2s2p^6nl$ levels.

In the present work the SSTRUCT package (Eissner et al. 1974) has been used to generate the needed radiative transition probabilities. The atomic model adopted in the calculation closely resembles that of Zhang et al. (1987), and the results are in good agreement with the Zhang et al. (1987) values for the transitions already included in CHIANTI version 1.0.

As a result, the atomic model adopted for Ar IX, Ca XI, and Ni XIX now includes 89 levels from the $2s^22p^5nl$ and $2s2p^6nl$ configurations, with $n \le 4$. Experimental energy levels come from a variety of sources. Ar IX energies come from the NIST database, version 2.0. The NIST database provides energies also for Ca xI, but additional energy levels are taken from the works of Crance (1973), Fawcett, Bromage, & Hayes (1979), and Kastner, Behring, & Cohen (1975). Ni XIX energy levels come from NIST database, version 2.0, with the exception of the $2p^53s$ 3P_0 level, whose energy has been taken from Feldman et al. (2000). Wavelengths for transitions involving levels having no experimental energy have been calculated using the Zhang et al. (1987) theoretical energies for the 36 levels included in the CHIANTI version 1 model and the SSTRUCT values for the remaining levels.

Collisional data are taken from Zhang et al. (1987) and are described in Dere et al. (1997).

3.8.2. Fe xvII

The Fe xvII atomic model has been extended to include data for the n = 4 configurations, for a total of 89 energy levels. Experimental energies have been taken from Shirai et al. (2000) and theoretical values come from Zhang & Sampson 1989. Radiative transition probabilities and oscillator strengths have been calculated using the SSTRUCT package (Eissner et al. 1974) including all the configurations adopted in the CHIANTI version 3.0 atomic model. Zhang & Sampson (1989) provide collision strengths for transitions between the ground level and the n = 4 configurations calculated for six values of the incident electron energy using a relativistic distorted wave approximation.

3.9. Magnesium Isoelectronic Sequence

The metastable $3s3p \ ^3P_2$ level gives rise to forbidden transitions to the $3s^2 \ ^1S_0$ ground level and to the $3s3p \ ^3P_1$ level. However, in CHIANTI versions 1 and 2, the $^3P_1 - ^3P_2$ transition was not reported and its A-value was mistakenly assigned to the transition to the ground level, in all the ions of the sequence with the exception of Si III and Fe xv.

In the present version this problem has been corrected. The ${}^{3}P_{1}-{}^{3}P_{2}$ A-value has been taken from the NIST database and the ${}^{1}S_{0}-{}^{3}P_{2}$ A-value has been calculated using the SSTRUCT package (Eissner et al. 1974) since no value was found in the literature. As the rest of Mg-like radiative data have been taken from Christensen et al. (1986), the atomic model adopted in the SSTRUCT calculation is identical to that of Christensen et al. (1986) for consistency.

3.10. Aluminum Isoelectronic Sequence 3.10.1. Si II

5.10.1. 5111

Radiative data from Nahar (1998) and Nussbaumer (1977) replace some of the previous data described in Dere et al. (1997). Nahar (1998) gives oscillator strengths for the allowed transitions between the 15 levels of the CHIANTI model, while Nussbaumer (1977) gives data for the forbidden ground transition and the intercombination $3s^{2}P-3p^{4}P$ transitions.

3.10.2. Siv

Tayal (2000) has provided new electron collision data for transitions between the 52 levels of the $3s^2 3p$, $3s 3p^2$, $3p^3$, $3s^2 3d$, 3s 3p 3d, $3s^2 4l (l = s, p, d, f)$ and 3s 3p 4s configurations. Maxwellian-averaged collision strengths are tabulated for ten temperatures between 10^4 K and 4×10^5 K. For seven transitions it was necessary to omit one or two of the upsilons in order to provide a good fit to the data. This was necessary because the five-point spline employed in the fitting procedure was inadequate to fit the data. The omitted upsilons were always at the extremes of the temperature range.

A complete set of oscillator strengths and A-values for transitions between the 52 levels are provided in Tayal (1999). The A-value for the ground transition was taken from Johnson, Kingston, & Dufton (1986). No radiative data was found in the literature for the metastable level 3s 3p 3d $^4F_{9/2}$ and so SSTRUCT was run with a model of the ion consisting of the configurations listed above to generate A-values to depopulate this level.

Experimental energies are available for all 52 levels and were taken from the on-line NIST database.

3.10.3. Fe xiv

New atomic data for Fe XIV are presented in Storey, Mason, & Young (2000). These authors calculated Maxwellian-averaged collision strengths (Y) with the *R*matrix method for all transitions between the 40 levels of the $3s^2 3p$, $3s 3p^2$, $3s^2 3d$, $3p^3$, and 3s 3p 3d configurations, at temperatures $5.0 \le \log T \le 10.0$. Only those transitions that involve the two ground configuration levels and the metastable $3s 3p 3d {}^{4}F_{9/2}$ level have been fitted for the CHIANTI database as the remaining transitions have a negligible effect on the Fe XIV level populations for typical astrophysical electron densities of $N_e \leq 10^{14}$ cm⁻³. For many of the transitions the variation of Υ with T was too complex to be fitted with the five-point spline that is the basis of the Burgess & Tully (1992) method and so in these cases a restricted range of temperatures had to be considered. The range over which the fits are most accurate is $5.4 \leq \log T \leq 7.0$. Comparisons of Υ 's derived from the spline fits with the original data generally give excellent agreement in this temperature range, with maximum differences of 5% in a few exceptional cases. For the vast majority of data the spline fits reproduce the original data to within 1%. Consequently, the CHIANTI predicted emissivities should only be used when considering temperatures within the range $5.4 \leq \log T \leq 7.0$.

Energy levels for all but the 3s 3p 3d ${}^{4}F_{3/2}$ level have experimental values which have been taken from Churilov & Levashov (1993) and Redfors & Litzén (1989) and are given in Table 3 of Storey et al. (2000). For the ${}^{4}F_{3/2}$ level the energy value calculated by Storey et al. (2000) is used.

The transition probabilities in the CHIANTI.WGFA file are from Table 4 of Storey et al. (2000). The oscillator strengths are from the same calculation but were not published. The oscillator strengths in the CHIANTI .UPSDAT and .SPLUPS files are from Storey et al.'s "Basis 1" model, which was used for the collisional calculation and so are more appropriate for the CHIANTI fitting procedures.

There are significant differences between this new Fe XIV model and the previous CHIANTI model. The consequences for interpreting solar extreme ultraviolet spectra are discussed thoroughly in Storey et al. (2000) where the discrepancies between theory and observation noted by Young et al. (1998) are found to be resolved.

3.11. Silicon Isoelectronic Sequence

3.11.1. S ш

Tayal & Gupta (1999) have presented new *R*-matrix calculations for S III with Maxwellian-averaged collision strengths (upsilons) calculated for all transitions between the five levels in the $3s^2 3p^2$ ground configuration to the 49 levels of the $3s^2 3p^2$, $3s 3p^3$, $3s^2 3p 3d$, and $3s^2 3p 4l$ (l = s, p, d) configurations. Upsilons were tabulated for eight temperatures between 5×10^3 K and 1×10^5 K. For the transitions up to the $3s^2 3p 4d$ configuration, the three lowest temperature points are unreliable (S. Tayal, 2000, private communication) and so only the five highest temperature points (2–10 $\times 10^4$ K) were fitted for these transitions.

Laboratory values for all of the S III model level energies were presented by Johansson et al. (1992). Oscillator strengths and A-values for all of the allowed transitions were calculated by Tayal (1997), while A-values for transitions amongst the ground configuration levels are tabulated in Huang (1985). Upon solving the level balance equations, the $3s^2$ 3p 3d 3F_4 level was found to have significant population over the 10^8-10^{12} cm⁻³ range of electron densities on account of there being no allowed transitions to depopulate it. SSTRUCT was thus run with a model of the ion containing the six configurations listed above. Electric quadrupole, magnetic dipole and magnetic quadrupole Avalues were computed for decays from the 3F_4 level, and the six strongest transitions were included.

3.11.2. Fe хш

Gupta & Tayal (1998) provide Maxwellian-averaged collision strengths for transitions between the ground levels and the $3s^3p^3$ and $3s^23p3d$ configurations. These data are calculated using the *R*-matrix approach and a target representation improved from the earlier *R*-matrix calculations by Tayal (1995). These collision strengths replace those of Fawcett & Mason (1989) used in previous versions of CHIANTI. It is important to note that no data is reported by Gupta & Tayal (1998) for the metastable $3s^3p^3$ 5S_2 level, so the earlier collision strengths by Fawcett & Mason (1989) are used for transitions involving this level.

The other Fe XIII data are unchanged from version 1.0.

3.12. Sulphur Isoelectronic Sequence: Fe XI

Collisional data from Gupta & Tayal (1999) for transitions among the ground levels and between the ground and the first excited configuration have replaced the distorted wave calculations by Bhatia & Doschek (1996). Gupta & Tayal (1999) provide Maxwellian-averaged collision strengths calculated using the *R*-matrix method.

Gupta & Tayal (1999) compare their collision strengths with the values reported by Bhatia & Doschek (1996) at 8, 16 and 24 Rydberg, finding that most of the collisional data agree within 20%; in some cases, however, larger differences occur, probably due to electron correlation effects which are treated in a more complete way by Gupta & Tayal (1999).

The other Fe xI data have not been changed.

3.13. Chlorine Isoelectronic Sequence: Fe x

The Fe x model of version 2 (Landi et al. 1999, § 10.1; see also Dere et al. 1997, § 4.18) has been extended to include transitions involving levels in the n = 4 and n = 5 complexes. Collision strengths for transitions from the two levels of the $3s^2 3p^5$ ground configuration up to the $3s^2 3p^4$ $4l \ (l = s, p, d), 3s^2 3p^5 5l \ (l = s, p), 3s 3p^5 4l \ (l = s, p), and 3s 3p^5 5s$ configurations were taken from Malinovsky, Dubau, & Sahal-Brechot (1980).

For the $3s^2 3p^5-3s^2 3p^4$ 4s transitions, Malinovsky et al. (1980) gave collision strengths at four different values of the incoming electron energy; for all other transitions the collision strengths were only given for one value of the incoming electron energy. In assessing the 3p-4s transitions, it was often difficult to fit the four data points on account of sharp changes between consecutive points. This would seem to be due to the fact that Malinovsky et al. (1980) used the distorted wave approximation for the two lowest energy points, and a semiclassical formula due to Burgess (1964) for the two highest energy points. Note that this semiclassical formula was also used to compute the collision strengths for all of the remaining transitions.

Theoretical energy values are given by Malinovsky et al. (1980) for all of the additional levels. For 20 of these levels, observed values were available from the NIST database. No A-values were given by Malinovsky et al., and so these were calculated using SSTRUCT (Eissner et al. 1974; see also Dere et al. 1997, § 3). The new Fe x model now consists of 172 levels and predicts the intensities of some 3959 lines.

Note that Malinovsky et al. include various atomic processes that are beyond the scope of the CHIANTI database in their Fe x model, including dielectronic recombination from Fe x to Fe IX, dielectronic recombination and radiative recombination from Fe XI to Fe x, and cascading from levels $3s^2 3p^4 np (n > 5)$. These processes are found to have a significant effect on ratios of 3p-4s to 3p-3d transitions.

3.14. Calcium Isoelectronic Sequence: Fe VIII

The CHIANTI version 1 model for Fe VIII described by Dere et al. (1997) was very limited. For example, it did not include the $3p^53d^2$ configuration and, for this reason, CHIANTI version 1 was not able to predict several Fe VIII lines with wavelengths shorter than 170 Å. This configuration also contains many metastable levels which affect the level population calculations.

The present version of the database includes an extended Fe vIII atomic model composed of the $3p^63d$ ground configuration, the $3p^53d^2$, $3p^64l$ (l = 0, 1, 2, 3) and $3p^53d4s$ configurations, plus the $3p^6nf$ (n = 5, 6, 7) already included in the version 1 model, for a total of 83 fine-structure levels. The data for the n = 5, 6, 7 levels are the same as in version 1 (Czyzak & Krueger 1966), while the radiative and collisional transition probabilities for all the other configurations come from the calculation of Griffin, Pindzola, & Badnell (2000). Experimental energy levels come from the NIST version 2 database.

However, Griffin et al. (2000) did not calculate radiative data for transitions involving the levels with J = 9/2 and 11/2, and it has been necessary to run the SSTRUCT code (Eissner et al. 1974) to obtain A-values for these levels. This calculation has been carried out using an extensive Fe vIII atomic model including all the relevant configurations and levels as described by Griffin et al. (2000). Radiative data have been corrected in order to take into account the differences between experimental and theoretical energy levels.

4. CONTINUUM RADIATION

New IDL procedures to calculate the free-free and freebound continuum are supplied with the latest release of the CHIANTI. For the free-free continuum, we use the Gaunt factors of Sutherland (1998). We would point out that the units for Sutherland's equation (15) should be given as ergs $cm^{-3} s^{-1} str^{-1} Hz^{-1}$. For the free-bound (radiative recombination) continuum, we follow the treatment of Rybicki & Lightman (1979), except that actual energy levels are used and the Gaunt factor has been set to unity. Recombination to all levels in the CHIANTI data base are included. A procedure for calculating the two photon continuum will be released in the near future.

5. SPECTRAL LINE IDENTIFICATIONS

The iron ions Fe xvi to Fe xxvi provide a large number of observed lines in the X-ray wavelength range as well as most of the strongest ones. Due to their special importance, a careful assessment has been made of the available experimental energy levels of Fe xvI to Fe xxVI. Ab initio atomic structure calculations have been performed for each of these ions using the SSTRUCT package (Eissner et al. 1974) in order to provide an additional check on the observed energy levels available in the literature. Although the energy levels calculated by this package are not reliable for line identification purposes, the results have helped greatly to identify levels and to correct a few inconsistencies between CHIANTI energies and those found in the literature. These inconsistencies were identified by comparing the SSTRUCT-CHIANTI theoretical energies with the experimental values for all the levels with the same total angular momentum quantum number J in each configuration. In some cases 'inversions' have been found. For example, in Fe XXI the energies of the levels $2s^2 2p5d {}^1D_2$ and $2s^2 2p5d {}^3P_2$ have been exchanged. This has been done because the SSTRUCT energies for these two levels were different by large amounts from the experimental values, while all the energies of all the other levels having the same value of Jand belonging to the same configuration showed a fairly good agreement. This agreement was also obtained with the energies of these two levels, if they were exchanged. SSTRUCT is also able to calculate the percentage of the contribution of each true LS component to the eigenfunction of each final ion level, so that it is possible to check the composition of each energy level of the CHIANTI model. In the cases where "inversions" were found, the composition of each of the two (LS-labeled) inverted levels included a large component due to the (LS-labeled) other, so that a clear assignment of LS labeling to each of the two levels is not possible. This can lead to considerable confusion in the assignment of level identification. As a rule, the agreement between observed and theoretical energies and the total angular momentum quantum number J has been taken as the criteria for assigning the experimental energies found in the literature to CHIANTI levels. Any change made to the experimental energies from the original source has been clearly labelled in the comments of the CHIANTI energy level .ELVLC files.

As a result of this assessment, the energies recently reported in Shirai et al. (2000) have been adopted for all the ions iron ions, Fe XVI through Fe XXVI, and gaps have been filled with energies from the NIST database version 2.0 (Fuhr et al. 1999) and from Kelly (1987).

Further, the experimental energy level values for ions of the boron, carbon and nitrogen isoelectronic sequences have been revised to better match solar observations. A comparison between CHIANTI wavelengths and SUMER (500–1600 Å) observations (Feldman et al. 1997; Curdt et al. 1997; Dwivedi, Curdt, & Wilhelm 1999) has shown that the CHIANTI wavelengths, based on the version 1 NIST energies, are sometimes different from the solar values with discrepancies of up to 0.5 Å. Using a semiempirical technique, Edlén extrapolated the energies of the n = 2 levels for the boron-like ions (Edlén 1983), the carbon-like ions (Edlén 1985) and the nitrogen-like ions (Edlén 1984). The wavelengths derived from Edlén's energy levels proved to be in better agreement with the SUMER observations and they were adopted for these sequences.

Also, for all of the n = 2 levels of Fe xx we have used energy levels from Edlén (1984) and for some of the n = 2levels of Fe xxII we have used the values of Edlén (1983).

This assessment has demonstrated that much work is still required in order to fully understand the spectra of highly ionized iron. The available experimental energies and theoretical transition probabilities are not sufficient to reproduce the observed X-ray emission-line spectra with the desired degree of fidelity. For example, in the case of Fe XIX, Fe XX, and Fe XXII, the CHIANTI models predict a number of relatively strong spectral lines. However, these lines have apparently not been observed since they lack assignments of experimental energy levels. On the other hand, the same CHIANTI models predict a number of fairly weak lines that have apparently been observed as indicated by the assignment of experimental energy levels. We would expect that

 TABLE 6

 Observed Lines Not Included in CHIANTI

$\lambda_{ m solar} \ ({ m \AA})$	Ion	Transition
1.9051	Fe xx	$1s^2 2s^2 2p^3 {}^4S_{3/2} - 1s 2s^2 2p^4 {}^4P_{5/2}$
1.9075	Fe xx	$1s^2 2s^2 2p^3 {}^2P_{3/2} - 1s 2s^2 2p^4 {}^2P_{3/2}$
5.223	Si xiii	$1s^2 {}^1S_0 - 1s 6p {}^1P_1$
7.472	Fe xxIII	$2s^2$ $^1S_0 - 2s$ $5p$ 1P_1
8.977	Fe XXII No v	$2s 2p^{2} D_{5/2} - 2s 2p (^{3}P) 4d^{2}F_{7/2}$ $1s^{2}S 6p^{2}P$
9.688	Fe xix	$2n^{4} {}^{3}P_{2} - 2n^{3} ({}^{2}D) 5d {}^{3}D_{2}$
9.799	Fe xix	$2p^4 \ ^3P_1 - 2p^3 \ (^2D) \ 5d \ ^3D_2$
9.842	Fe xix	$2p^4 \ ^3P_2 - 2p^3 \ (^4S) \ 5d \ ^3D_3^2$
9.991	Fe xx	$2p^{3} {}^{4}S_{3/2} - 2p^{2} ({}^{3}P) 4d {}^{4}P_{3/2}$
10.134	Fe xvII	$2s^2 2p^6 {}^{1}S_0 - 2s 2p^6 5p {}^{3}P_1$
10.386	Fe xvii	$2s^2 2p^6 {}^{1}S_0 - 2s^2 2p^5 ({}^{2}P_{1/2}) 7d {}^{1}P_1$
10.506	Fe XVII Fe XIX	$2s^{-}2p^{-}S_{0}-2s^{-}2p^{-}(^{-}P_{3/2})/a^{-}D_{1}$ $2n^{4} {}^{3}P_{-}-2n^{3}(^{2}P) Ad {}^{3}D$
10.580	Fe XIX	$2p^{4} {}^{3}P_{1} - 2p^{3} (2P) 4d {}^{3}P_{2}$
10.617	Fe xix	$2p^4 \ {}^3P_0 - 2p^3 \ (^2P) \ 4d \ {}^3D_1$
10.635	Fe xix	$2p^4 \ ^3P_2 - 2p^3 \ (^2D) \ 4d \ ^3S_1$
10.644	Fe xix	$2p^4 {}^{3}P_2 - 2p^3 (^2D) 4d {}^{3}P_2$
10.655	Fe xvii	$2s^2 2p^6 {}^{1}S_0 - 2s^2 2p^5 ({}^{2}P_{1/2}) 6d {}^{1}P_1$
10.684	Fe XIX	$2p^{+} {}^{5}P_{2} - 2p^{5} ({}^{2}D) 4d {}^{5}F_{3}$
10.755	Fe XIX	$2p = P_1 - 2p = (D) 4d = S_1$ $2n^4 = 3P_1 - 2n^3 (^2D) 4d = 3D_2$
10.770	Fe xvii	$\frac{2p}{2s^2} \frac{1}{2p^6} \frac{1}{150} \frac{2p}{2p^5} \frac{1}{2p^5} \frac{2p^5}{2p^5} \frac{2p^5}{2p^3} \frac{2p^5}{2p^5} \frac{2p^5}{2p^3} \frac{2p^5}{2p^5} $
10.813	Fe xix	$2p^{4} {}^{3}P_{2} - 2p^{3} ({}^{4}S) 4d {}^{3}D_{3}$
10.824	Fe xix	$2p^4 \ ^1D_2 - 2p^3 \ (^2D) \ 4d \ ^1D_2$
10.933	Fe xix	$2p^4 {}^{3}P_1 - 2p^3 ({}^{4}S) 4d {}^{3}D_2$
11.132	Fe xvii	$2s^2 2p^6 {}^{1}S_0 - 2s^2 2p^5 ({}^{2}P_{1/2}) 5d {}^{1}P_1$
11.253	Fe XVII	$2s^{5} 2p^{5} S_{0} - 2s^{5} 2p^{5} ({}^{2}P_{3/2}) 5a^{5}D_{1}$ $2n^{5} 2P - 2n^{4} ({}^{1}S) 4d^{2}D$
11.420	Fe xviii	$2p I_{1/2} - 2p (S) + u D_{3/2}$ $2p^{5} P_{2/2} - 2p^{4} (^{3}P) 4d^{2}F_{5/2}$
11.458	Fe xviii	$2p^{5-2}P_{3/2} - 2p^{4} (^{3}P) 4d {}^{4}F_{5/2}$
11.526	Fe xvIII	$2p^{5} {}^{2}P_{3/2}^{3/2} - 2p^{4} ({}^{3}P) 4d {}^{2}D_{5/2}^{3/2}$
17.201	Fe xvi	$2p^{6} 3p^{2} P_{3/2} - 2p^{5} 3s 3p^{2} D_{5/2}$
17.370	Cr xvi	$2p^{5} {}^{2}P_{3/2} - 2p^{4} ({}^{1}D) 3d {}^{2}D_{5/2}$
17.501	Fe XVI Cr XV	$2p^{\circ} 3p^{\circ} P_{3/2} - 2p^{\circ} 3s^{\circ} 3p^{\circ} P_{5/2}$ $2p^{\circ} {}^{1}S_{-} 2p^{\circ} {}^{(2}P_{-}) 3d^{-1}P_{-}$
19.255	Cr XVI	$2p^{5} 2p^{2} (1_{1/2}) 3u^{2} 1_{1}$ $2p^{5} 2P_{3/2} - 2p^{4} (^{1}D) 3s^{2}D_{5/2}$
19.511	Cr xvi	$2p^{5} {}^{2}P_{3/2} - 2p^{4} ({}^{1}D) 3s {}^{2}D_{3/2}$
19.538	Cr xvi	$2p^{5} {}^{2}P_{3/2} - 2p^{4} ({}^{3}P) 3s {}^{2}P_{3/2}$
19.714	Cr xvi	$2p^{5} {}^{2}P_{3/2} - 2p^{4} ({}^{3}P) 3s {}^{2}P_{1/2}$
19.807	Cr xvi	$2p^{5} {}^{2}P_{3/2} - 2p^{4} ({}^{3}P) 3s {}^{4}P_{5/2}$
20.803	Cr XV	$2p^{-5}S_0 - 2p^{-5}(^{-}P_{1/2}) 3S^{-}P_1$ $2p^{6-1}S_0 - 2p^{5}(^{2}P_0) 3s^{-3}P_1$
24.110	Ca xiv	$2p^{3} + S_{2/2} - 2p^{2} ({}^{3}P) + 3d^{4}P_{5/2}$
26.000	Ca xIII	$2p^4 \ {}^3P_2 - 2p^3 \ (^2D) \ 3d \ {}^3P_2$
26.033	Ca xIII	$2p^4 \ ^3P_2 - 2p^3 \ (^2D) \ 3d \ ^3D_3$
26.219	Ca xIII	$2p^4 {}^{3}P_1 - 2p^3 ({}^{2}D) 3d {}^{3}D_2$
26.719	Са хш	$2p^4 {}^{3}P_2 - 2p^3 ({}^{4}S) 3d {}^{3}D_3$
27.608	Ca XII	$2p^{5} {}^{2}P_{1/2} - 2p^{4} ({}^{1}S) 3d {}^{2}D_{3/2}$ $2p^{5} {}^{2}P - 2p^{4} ({}^{1}S) 3d {}^{2}D$
27.973	Са хи	$2p F_{3/2} - 2p (S) 5u D_{5/2}$ $2n^{5} 2P = -2n^4 (D) 3d 2D = -2n^4$
32.652	Fe xvi	$\frac{2p}{3p} \frac{1}{2} \frac{1}{2} \frac{2p}{2} (D) \frac{3u}{2} \frac{D}{3/2}$
34.857	Fe xvi	$3p^{2}P_{1/2}^{-6d^{2}D_{3/2}^{-5/2}}$
35.106	Fe xvi	$3p \ ^{2}P_{3/2} - 6d \ ^{2}D_{5/2}$
35.368	Fe xvi	$3d^{2}D_{5/2}-8f^{2}F_{7/2}$
35.353	S1 XI	$2s 2p {}^{3}P_{0} - 2s 4d {}^{3}D_{1}$
35.383	SI XI Si XI	$2s 2p r_1 - 2s 4a D_2$ $2s 2p ^3P_2 - 2s 4d ^3D_2$
35.710	Fe xvi	$3p {}^{2}P_{1/2} - 6s {}^{2}S_{1/2}$
36.010	Fe xvi	$3p {}^{2}P_{3/2}^{1/2} - 6s {}^{2}S_{1/2}^{1/2}$
40.199	Fe xvi	$3d^{2}D_{3/2}-6f^{2}F_{5/2}$
42.543	S x	$2p^{3} {}^{4}S_{3/2} - 2p^{2} ({}^{3}P) 3d {}^{4}P_{5/2}$
47.663	N1 XVII Ni xxx	$3s 3p P_1 - 3s 4d D_2$ $3s^2 3p P_2 - 2s^2 4d P_2$
41.112	INI XVI	$5s \ 5p \ r_{3/2} - 5s \ 4a \ r_{5/2}$

the strong lines, as predicted by CHIANTI, would be the lines associated with observed energy levels, to the contrary of what is often the case.

The importance of reliable spectral line identifications for the interpretation of high spectral resolution observations has also motivated the work of Phillips et al. (1999). They compared synthetic spectra of the MEKAL (Kaastra, Mewe, & Nieuwenhuijzen 1996) code with solar flare spectra between 5 and 20 Å observed with the high spectral resolution Flat Crystal Spectrometer (FCS) on the Solar Maximum Mission. They adjusted the wavelengths of the MEKAL spectral lines to match the FCS observations and noted the inability of the code to reproduce observed spectral line intensities in a number of cases. This work further confirms the need for continued improvements in atomic data, particularly for the Fe L-shell lines, to understand spectral observations at these important wavelengths.

6. COMPARISON WITH OBSERVED SPECTRA 1-50 Å

The CHIANTI database has been compared with observed spectra in the 1-50 Å wavelength range in order to test for correctness and completeness. We have compiled a list of observed lines from high-resolution solar spectra for this comparison, in a manner similar to Paper I. This compiled list includes observations from Acton et al. (1985, 1), Widing & Sandlin (1968, 7), Fawcett et al. (1987, 11), the revised list of Fawcett (Fawcett et al. 1987, 12) by Phillips et al. (1999), Feldman et al. (1980, 13), McKenzie et al. (1980, 14), McKenzie & Landecker (1982, 15), McKenzie et al. (1985, 16), Phillips et al. (1982, 17), Phillips et al. (1999, 18), Doschek (1972, 19), and Pike et al. (1996, 20). The numbers between 1 and 20 refer to the reference key provided in the last column of Table 5. Aside from the spectra of Widing & Sandlin (1968), all of the spectra were observed during solar flares. We have developed a composite of these spectra by combining all of the observations within a narrow wavelength interval $\Delta \lambda$ which is specified by $\Delta \lambda / \lambda = 2000$. Because of the relatively low resolution of the X-ray spectra compiled by Doschek, (1972, 19), we have not included all of these observed wavelengths.

The results of this analysis are presented in Table 5. The first column of Table 5 contains the average of the observed wavelengths of a single spectral line. The last column of Table 5 provides a key to the reference to the observations of these spectral lines. The next three columns contain the identification of the spectral line in the CHIANTI database. The second column provides the wavelength in the CHIANTI database. A blank first column indicates multiple strong lines that can be associated with the observed wavelength listed previously in the table. An ellipsis in the first column indicates a strong spectral line that is expected on the basis of the CHIANTI computed spectra that has not apparently been observed. The third and fourth column of Table 5 indicate the ion and the transition, respectively. For lines of the helium isoelectronic sequence, we have also included the notation of Gabriel (1972). Also, we would note that the helium-like level notation of NIST, used here, is somewhat different from that of other authors, such as Feldman et al. (1980). The fifth column provides the intensity of the line calculated by the CHIANTI database for a solar flare. The calculations of the line intensities assume the solar elemental abundances of Allen (1973), the ionization equilibria of Arnaud & Raymond (1992) for iron ions, Arnaud & Rothenflug (1985) for the other abundant ions

and Landini & Monsignori Fossi (1991) for the minor ions. As with Paper I, the differential emission measure of a solar flare between 3×10^4 and 2×10^7 K is taken from Dere & Cook (1979) and has been enhanced and extrapolated to 10^8 K in order to reproduce the lines at the shortest wavelengths. The line intensities are expressed in ergs per square centimeter per second per steradian. The intensity values should only be used as a guide to the identification and the amount of blending and should be used in a relative sense. The CHIANTI database predicts many more lines than are listed in Table 5, but we have not included lines below a threshold value suggested by the intensities of the lines that have been observed. Some identifications should be considered simply coincidental if the predicted intensity is low.

In Table 5 there are a number of spectral lines that have been identified and observed in solar spectra that are not included in the CHIANTI database. These are also included in Table 6 to provide a list of lines missing from the CHIANTI database. This list can be used to assess both completeness of the database and to suggest candidates for new atomic data calculations. Aside from the lines of Cr xv, all of these lines belong to ions that are included in the database but do not extend to high enough principle quantum numbers to include the necessary line. For lowresolution spectra, the missing lines could cause difficulties in fitting observed spectra. However, in the case of highresolution spectra, usually more intense lines of the same ion are observed and reproduced by CHIANTI so that there is little loss in diagnostic capability by not including these lines.

From this comparison, it is clear that the great majority of lines observed in the X-ray spectrum of solar flares between 1 and 50 Å are included in the CHIANTI database. Consequently, we believe that CHIANTI can be used as a comprehensive diagnostic tool for collisional emission-line spectra above and below 50 Å. Nevertheless, this analysis has shown that there are still many gaps in the atomic data needed for computing X-ray spectra. The assignment of energy levels based on observed spectral line wavelengths are still needed for a large number of levels in a variety of ions. Also, calculations of collision strengths are typically only available for the lowest energy levels and these calculations need to be extended.

7. SUMMARY

The CHIANTI database has been expanded in order to interpret astrophysical spectra in the 1–50 Å wavelength region. This has primarily been accomplished by the inclusion of hydrogen-like and helium-like ions and the addition of inner-shell and dielectronic excitation of X-ray satellite lines. The atomic data for a number of other ions as been revised and updated. A detailed comparison with observed spectra has been performed to ensure the accuracy of the CHIANTI database. We believe that the new CHIANTI database will prove to be a useful tool in the interpretation of astrophysical spectra. This is of special importance at the is time because of the recent launches of the Chandra and XMM observatories which will obtain a wealth of highresolution X-ray spectra of astrophysical sources.

We would like to acknowledge helpful discussions with H. E. Mason, P. J. Storey, and W. Eissner. The work of K. P. D. and E. L. was supported by NASA's Applied Information Systems Research Program and by a grant from the Chandra Emission Line Project. The CHIANTI team has benefited from a travel grant from NATO. G. D. Z. was supported by the University of Central Lancashire and PPARC. We are grateful to our colleagues who have provided their data to us. These include A. K. Bhatia, T. Kato, U. I. Safronova, T. Shirai, S. Tayal, W. L. Wiese, and H. L. Zhang.

REFERENCES

- . 1991b, J. Phys. B, 44, 517
 . 1992a, Phys. Scr., 46, 193
 . 1992b, J. Phys. B, 25, 751
 . 1993, ApJS, 85, 187
 Allen, C. W. 1973, Astrophysical Quantities (3d ed.; London: Athlone), 31
 Arnaud, M., & Raymond, J. 1992, ApJ, 398, 394
 Arnaud, M., & Rothenflug R. 1985, A&AS, 60, 425
 Bhatia, A. K., & Doschek, G. A. 1996, At. Data Nucl. Data Tables, 183, 1906 1996
- Bromage, G. E., Cowan, R. D., Fawcett, B. C., Gordon, H., Hobby, M. G.,

- Peacock, N. J., & Ridgeley, A. 1977, Culham Lab. Tech. Rep., 170 Burgess A. 1964, Culham Conf. At. Collisions (AERE reprint), 63 Burgess A., & Tully J. A. 1992, A&A, 254, 436 Chen, M. H., Cheng, K. T., & Johnson, W. R. 1993, Phys. Rev. A, 47, 3692 Christensen, R. B., Norcross, D. W., & Pradhan, A. K. 1986, Phys. Rev. A, 34.4704
- Churilov, S. S., & Levashov, V. E. 1993, Phys. Scr. 48, 425 Crance, M. 1973, At. Data, 5, 185
- Curdt, W., Feldman, U., Laming, J. M., Wilhelm, K., Schühle, U., & Lemaire, P. 1997, A&AS, 126, 281
- Curdt, W., Landi, E., Wilhelm, K., & Feldman, U. 2000, Phys. Rev. A, 62, 22502
- Czyzak, S. J., & Krueger, T. K. 1966, ApJ, 144, 381 Daw, A., Parkinson, W. H., Smith, P. L., & Calamai, A. G. 2000, ApJ, 533, L179
- Dere K. P., & Cook, J. W. 1979, ApJ, 229, 772
- Dere, K. P., Landi, E., Mason, H. E., Monsignori Fossi, B. C., & Young, P. R. 1997, A&AS, 125, 149 (Paper I)
- Doschek, G. A. 1972, Space Sci. Rev., 13, 765 Drake, G. W. F. 1986, Phys. Rev. A, 34, 2871
- Dwivedi, B. N., Curdt, W., & Wilhelm, K. 1999, ApJ, 517, 516

- Eissner, W., Jones, M., & Nussbaumer, H. 1974, Comput. Phys. Commun., 8.270
- Fawcett, B. C., & Mason, H. E. 1989, At. Data Nucl. Data Tables, 43, 245 Fawcett, B. C., Bromage, G. E., & Hayes, R. W. 1979, MNRAS, 186, 113
- Fawcett, B. C., Jordan, C., Lemen, J. R., & Phillips, K. J. H. 1987, MNRAS, 225.1013
- ²⁴²³, 1013
 Feldman, U., Doschek, G. A., & Kreplin, R. W. 1980, ApJ, 238, 365
 Feldman, U., Behring, W. E., Curdt, W., Schühle, U., Wilhelm, K., Lemaire, P., & Moran, T. M. 1997, ApJS, 113, 195
 Feldman, U., Curdt, W., Landi, E., & Wilhelm, K. 2000, ApJ, 544, 508
 Fuhr, J. R., et al. 1999, NIST Atomic Spectra Database, version 2.0
 Gabriel, A. H. 1972, MNRAS, 160, 99
 Gabriel, A. H. 2022, J. Dhur, D. 5, 572

- Gabriel, A. H., & Paget, T. M. 1972, J. Phys. B, 5, 673 Galavis, M., Mendoza, C., & Zeippen, C. J. 1997, A&AS, 123, 159 Griffin, D. C., Pindzola, M. S., & Badnell, N. R. 2000, A&AS, 142, 317 Goett, S. J., & Sampson, D. H. 1983, At. Data Nucl. Data Tables, 29, 53
- Gupta, G. P., & Tayal, S. S. 1998, ApJ, 506, 464
- Lippo, ApJ, 510, 1078 Huang, K.-N. 1985, At. Data Nucl. Data Tables, 32, 503
- Johansson, L., Magnusson, C. E., Joelsson, I., & Zetterberg, P. O. 1992, Phys. Scr., 46, 221
- Johnson, C. T., Kingston, A. E., & Dufton, P. L. 1986, MNRAS, 220, 155
- Kaastra, J. S., Mewe, R., & Nieuwenhuijzen, H. 1996, in UV and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas, ed. K. Yama-shita & T. Watanabe (Tokyo: Universal Acad. Press), 411____
- Kastner, S. O., Behring, W. E., & Cohen, L. 1975, ApJ, 199, 777
 Kato, T., Safronova, U. I., Shlyaptseva, A. S., Cornille, M., & Dubau, J. 1997, At. Data Nucl. Data Tables, 67, 225.
- Keenan, F. P., Berrington, K. A., Burke, P. G., Dufton, P. L., & Kingston, A. E. 1986, Phys. Scr. 34, 216
- Kelly, R. L. 1987, J. Phys. Chem. Ref. Data, 16, Suppl. 1

- Landi, E., Landini, M., Dere, K. P., Young, P. R., & Mason, H. E. 1999,

- A&AS, 135, 339 Landini, M., & Monsignori Fossi, B. C. 1991, A&AS, 91, 183 Lin, C. D., Johnson, W. R., & Dalgarno, A. 1997, Phys. Rev. A, 15, 154 Malinovsky, M., Dubau, J., & Sahal-Brechot, S. 1980, ApJ, 235, 665 McKenzie, D. L., & Landecker, P. B. 1982, ApJ, 254, 309 McKenzie, D. L., Landecker, P. B., Feldman, U., & Doschek, G. A. 1985, ApJ, 289, 849
- ApJ, 289, 849 McKenzie, D. L., Landecker, P. B., Broussard, R. M., Rugge, H. R., Young, R. M., Feldman, U., & Doschek, G.A. 1980, ApJ, 241, 409 Nahar, S. N. 1998, At. Data Nucl. Data Tables, 68, 183 Nussbaumer, H. 1977, A&A 58, 291 Pal'chikov, V. G. 1998, Phys. Scr., 57, 581 Parpia, F. A., & Johnson, W. R. 1972, Phys. Rev. A, 26, 1142 Philling, K. J. H. Bhatia, A. K. Mascon, H. E. & Zarro, D. M. 1996, ApJ

- 400, 549
 Phillips, K. J. H., et al. 1982, ApJ, 256, 774
 Phillips, K. J. H., Mewe, R., Harra-Murnion, L. K., Kaastra, J. S., Beiers-dorfer, P., Brown, G. V., & Liedahl, D. A. 1999, A&AS, 138, 381
 Pike, C. D., et al. 1996, ApJ, 464, 487
 Redfors, A., & Litzén, U. 1989, J. Opt. Soc. Am. B, 6, 8, 1447
 Rybicki, G. B., & Lightman, A. P. 1979, Radiative Processes in Astrophysics (New York: Wiley)
 Safronova, U. I., & Johnson, W. R. 1998, Phys. Scr., 58, 116
 Sampson, D. H. Goett, S. L. & Clark, R. F. H. 1983, At Data Nucl. Data
- Sampson, D. H., Goett, S. J., & Clark, R. E. H. 1983, At. Data Nucl. Data Tables, 29, 467

- Shirai, T., Sugar, J., Musgrove, A., & Wiese, W. L. 2000, J. Phys. Chem. Shirai, T., Sugar, J., Musgrove, A., & Miese, M. 2. 2007, Ref. Data, Monogr. 8 Storey, P. J., & Zeippen, C. J. 2000, MNRAS, 312, 813 Storey, P. J., Mason, H. E., & Young, P. R. 2000, A&AS, 141, 285 Sutherland, R. S. 1998, MNRAS, 300, 321 Tayal, S. S. 1995, ApJ, 446, 895 — . 1997, At. Data Nucl. Data Tables, 67, 331 — . 1999, J. Phys. B, 32, 5311 — . 2000, ApJ, 530, 1091 Tayal, S. S. & Gupta, G. P. 1999, ApJ, 526, 544

- Tayal, S. S., & Gupta, G. P. 1999, ApJ, 526, 544 Vainshtein, L. A., & Safronova, U. I. 1978, At. Data Nucl. Data Tables, 21, 49

- 49
 ------. 1980, At. Data Nucl. Data Tables, 25, 311
 Widing K. G., & Sandlin G. D. 1968, ApJ, 152, 545
 Wiese, W. L., Smith, M. W., & Glennon, B. M. 1966, Atomic Transition Probabilities, Volume 1, Hydrogen Through Neon, NSRDS-NBS 4 (Washington, DC: GPO)
 Wilhelm K., et al. 1998, ApJ, 500, 1023
 Voung P. L. and E. & Thomas, P. L. 1998, A&A 329, 291

- . 1992, At. Data Nucl. Data Tables, 52, 143
- Zhang, H. L., Sampson, D. H., Clark, R. E. H., & Mann, J. B. 1987, At. Data Nucl. Data Tables, 37, 17