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ABSTRACT

This Letter discusses waves in a rotating magnetized fluid layer, governed by “shallow-water” magnetohydro-
dynamics. Such waves likely exist in the solar tachocline, and we focus on this application. A dispersion relation
is derived, giving two branches of waves: Alfvand magnetogravity. In general, finite Alfvand magnetogravity
waves can propagate without change of shape. However, if the Coriolis force is absent, as on the equator of the
tachocline, finite magnetogravity waves steepen and develop singularities ina time . Itis shown that increases
monotonically with the ambient magnetic field strength.

Subject headings: MHD — Sun: interior — Sun: magnetic fields — Sun: rotation — waves

1. INTRODUCTION AND BASIC EQUATIONS horizontal wave propagation, we will set parallel to the wave-

. , . ) vectork (Fig. b). This differs from standard practice, where
Gilman (2000) recently introduced “shallow-water” mag- ¢ g parallel to the background magnetic field.

netohydrodynamics (S_MHD) asasir_nple model forunde_rstand- Let H(x, y, t) denote the thickness of the sublayer, and
ing predominantly horizontal flows in the solar tachocline. In "y t) denote the horizontal velocity field within the sub-
this complimentary Letter, we examine analytic solutions t0 |aver. |n addition, leB(x, y, t) denote the horizontal magnetic
SMHD waves in the tachocline. We show that th_ere are two fig|d divided by(4p)"? , wherg is the average (approximately
branches of such waves: Alfweand magnetogravity. Finite  cqnsiant) mass density of the sublayer. In ideal SMHD, the

Alfvén and magnetogravity waves can both propagate without horizontal momentum, horizontal induction, and mass conti-
change of shape in regions of the tachocline where the COI’IO|ISnuity equations are (in order)

force is finite. At the equator, where the Coriolis force is zero,
magnetogravity waves steepen and develop singularities (De .
Sterck 2001). We show that the time required for a singularity du = —u-Vu+B-VB—gVH +fu x 2, 1)
to form increases with the ambient magnetic field strength. B=-u-VB+B-Vu, aH= -V Hu,

The tachocline (Spiegel & Zahn 1992) is a thin layer of the
solar interior, straddling the convection zone and the radiative whereV = %9, + 99, .0, is the reduced gravity, afids the
interior. It is widely believed that a toroidal magnetic field of Coriolis parameter. We have added a Coriolis term to the mo-
atleast 10G permeates this layer (e.g., Moreno-Insertis,Sehu  mentum equation of Gilman (2000), since our coordinate sys-
sler, & Ferriz-Mas 1992). The tachocline naturally divides into tem is fixed on a rotating Sun. The value fofs 2 times the
two sublayers: an inner “radiative” layer and an outer “over- |ocal vertical rotation frequency of the Sun (efg 0 on the
shoot_" layer. By current estimates, the radiative layer is twice equator). In the limit wher® = 0 , equations (1) reduce to the
as thick as the overshoot layer. Both sublayers have stableshallow-water f-plane” equations of geophysical fluid dynam-
subadiabatic temperature gradients, but that of the overshooics (Gill 1982). In addition to equations (1), the boundary con-

layer is much closer to adiabatic. _ dition thatB is tangent to the free upper surface leads to the
Here we are interested in the horizontal propagation of wavesfol|lowing constraint (Gilman 2000):

in either sublayer. We will use ideal SMHD (Gilman 2000) to
describe these waves. In this model, a sublayer is viewed as
an inviscid, incompressible, perfectly conducting fluid, with a
rigid base and a free upper surface. The magnetic field is tan-
gent to the base and to the upper surface. The subadiabatic The reduced gravity approximation that is used in SMHD is
stratification in the sublayer provides some negative buoyancy,common in layer models of atmospheric and oceanographic
which is represented by a reduced gravitational force. The totalflows (e.g., Ripa 1991; Gill 1982). Gilman (2000) argued that
vertical pressure gradient (fluid plus magnetic) is regarded asthe reduced gravity, appropriate to a sublayer of the tachocline
hydrostatic. This implies that the total horizontal pressure gra- is of orderag, wherg is the local solar gravity and is the
dient is determined by the inclination of the free upper surface. fractional difference between an adiabatic temperature gradient

We restrict our attention to regions of the tachocline that and the actual temperature gradient of the sublayer. For the ra-
span less than aboutl@titude and longitude. In such regions, diative layer, we estimate th@t0O1< « < 0.3 , whereas for the
we may view a sublayer as having rectangular (slab) geometry.overshoot layer, we estimate tHff ° < « < 10* . These num-
Therefore, it is reasonable to use a local Cartesiary,(2) bers are based on a “standard model” for the structure of the
coordinate system for analysis, as illustrated in Figure 1. Heresolar interior, calibrated by helioseismic results by Christensen-
Z points vertically upward, against gravity. When discussing Dalsgaard (1998), and were obtained from him through private

communication.

* Advanced Study Program postdoctoral fellow working in part at the High NOte that On-e-layer SMHD Ignores the fact t-hat the taCh-

Altitudo Observatoﬁ’y; dag']s,pla@pucar.edu. ginp 9" ocline has vertical shear in velocity, and possibly magnetic

2 The National Center for Atmospheric Research is supported by the National field. We further ignore mean horizontal shears. This greatly
Science Foundation. simplifies our analysis of neutral waves. We expect that neutral
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Fic. 1.—(@) Sublayer of the solar tachocline with average densitgqui- ’ — Alfvén
librium thicknessH, , and equilibrium magnetic fid8g b) Orientation of the 0 ’ 1 o

x-, y-, andz-axes relative to the wavevectkr . ;
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waves with the same restoring forces exist when shear is pre-
sent, but along with unstable modes (Dikpati & Gilman 2001).  Fic. 2—Dispersion curves for linear SMHD waves, with = V; a) Phase
speed vs. wavenumbeb)(Frequency vs. wavenumber.
2. LINEAR WAVES . _ :
Herec = w/k is the phase velocity of the wavef is zero,

Consider a sublayer of the tachocline that initially has a the Alfven waves all propagate with phase speetl = \,

uniform thicknessH, , a uniform horizontal magnetic fi#8gl , Substituting this phase speed into equation (4) yidids

and is at rest (in the rotating frame). Lletandb denote the .y = %.b = 0. That is, the Alfve waves are flat and trans-
layer thickness and horizontal magnetic field perturbations; thatyerse in the absence of rotation. Their restoring mechanism is
is,h = H—H, andb = B — B, . For now, we assume thatthe magnetic tension. In addition, fifik is zero, the magnetogravity
perturbation fields (including ) are small, so that second-order waves all propagate with phase spéeld= (V2 + VA)¥? . Sub-
terms in equations (1) and (2) can be ignored. The resultingstituting this phase speed into equation (4) yiefdsu =
linearized equations have a complete basis of sinusoidal wavey . = 0; that is, the horizontal velocity and magnetic field
solutions:u, b, hoc €®Y. Herek and w are the constant  perturbations are aligned with the direction of propagation. The
wavenumber and wave frequency, respectively. We have ori-restoring mechanism of a magnetogravity wave involves a com-
ented thex-axis to run parallel to the wavevector  (Fid)l  pination of fluid pressure and magnetic forces.

The dispersion relation for the linear waves is the following: e now estimate typical oscillation periods implied by equa-
tion (3), for both the radiative and overshoot layers of the
tachocline. We assume that both layers have mass denafty

f about 0.2 g cm?® and that both contain a 1G5 horizontal
2 magnetic field. These parameters give an Alfvepeed of
\, = 6 x 10* cm s, for waves propagating parallel (or an-
e T e oy 1 ;cipfareéllel)ftgeB0 .hln afddit;og, vvle0 %onfider disturbances at a
G |2 2 A atitude of 30, wheref = 2.6 x 10™° s,

* 2 K+ & Tk (2 V2 4 VG"Z) * k‘j' (3) The nonmagnetic gravity wave speed, = (g,Hy)"?
changes appreciably between the two layers. To begin with,
Here\, = |X-B,| is the AlfV@ speed associated with the the radiative layer is twice as thick as the overshoot layer, which
component of the unperturbed magnetic field avgd= hasH, = 5 x 10° cm. Moreoveg, i500-1.5x 10° cm'$
(g.H,)"? is the gravity wave speed in an unmagnetized layer. in the radiative layer, where@s is 0.05-5 crfiis the over-
The dependence af on the direction of propagation is con- shoot layer. This means thef  7sx 10°-4x 10° cm'én
tained in\; . the radiative layer, wheredg %x 10°-5x 10* cm'sn

The dispersion relation in equation (3) has a fast)(and the overshoot layer.

slow (w_) branch, as illustrated in Figure 2. We refer to the =~ Our Cartesian model is reasonable only for wavenumbers
fast and slow branches as the “magnetogravity” branch and thegreater than about = 27/0.1R, = 1.3 x 10°  crh where
“Alfvé n” branch, respectively. With zero ambient magnetic R = 0.7 R, is the mean radius of the tachocline. Larger scale
field (, = 0), magnetogravity waves reduce to the well-known Perturbations are affected by the tachocline’s curvature. We
“Poincarewaves” of geophysical fluid dynamics (Gill 1982). may substitute this value dfinto equation (3), along with our
Like Poincafewaves, magnetogravity waves cover phenomena Previous estimates df i, and\; , to obtain “typical” wave
that occur over timescales less thanf . Of course, ‘Alfve Periods (Z/w). In the radiative layer, wheré; >\, , the mag-
waves require a nonzero magnetic field to exist. Furthermore,netogravity waves have periods on the order of 1 hr, whereas
unlike magnetogravity waves, Alfmewaves can account for ~the Alfvén waves have periods on the order of 1 day. In the

w? = k3,2 +

arbitrarily slow dynamics at large spatial scalks{(0 ). overshoot layer, wherg, = \; , both the magnetogravity and
For both branches of linear waves, the perturbation fields Alfvén waves have periods on the order of 1 day. Of course,
are related by the following: Alfvén waves that propagate nearly perpendiculaBjo  have
V4 = 0 and nearly infinite periods.
- c N fc.
ou=oho @MU -RER U=z xu, 3. NONLINEAR WAVES
0
. We now generalize the linear periodic wave solutions to finite
b= — X'Bou_ (4) amplitude. Ball (1960) has carried out a similar analysis of
c nonlinear shallow-water waves without magnetic fields.

We look for solutions to the fully nonlinear SMHD equations
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Fic. 3.—Sample phase-space diagrams for each reginze (#) Family of Alfvén waves 4 <0 ). §) If 0< A < 1, there are no periodic wave solutiorgdsed
curves). (c) Family of magnetogravity wave\(>1 ).

of the formu(§), b(¢), h(¢), wheret = x—ct . Then, equa- The wave form is completely determined by equation (8a) for

tions (1) and (2) become the following: h. Given a solution foih, the velocity and magnetic field per-
turbations are obtained simply from equations (8b).

du . du do . dh We will consider the solutions to equations (8a) and (8b)
Ca X'“@_X'(BOJF b)£+xgr£+fz x U, (58)  geparately fon <0 0<A<1 ,and>1 .IA<0 , so that

|c] <M., the solutions include a set of finite periodic waves
that stem from the Alfue branch of linear waves. K> 1 , so
that |c| > (\W* + V)%, the solutions include a set of finite

c@ =X-u db _ X-(B,+ b) d_u (5b) periodic waves that stem from the magnetogravity branch. If
dé 3 dg 0< A <1, there are no periodic wave solutions, as in linear
theory.
N A periodic wave can be represented as a closed curve
ch — (H, + h)X-u = constant, (5¢) in (h, dh/dX) phase space. Multiplying equation (8a) fyu
(eqg. [8b]), and integrating, we obtain the following equation
. . for a phase-space curve:
hx - B, + (H, + h)X-b = constant. (5d)
For the li f 8§ 2, the t v} (dh)21 A_|®_h?_1+2h 9
or the linear waves of § 2, thecomponents ol ant are ax 1+he A @Ln? €, 9

zero whenh is zero. We impose the same constraints on the

nonlinear waves; that is, we require the constants to be zero _ .

on the right-hand sides of equations (5c) and (5d). Note thatw_heree is a constant related to the amplitude of the wave.

solitons, whose perturbation fields all vanistias +o , satisfy Figure 3 shows phase—space curves for each of th_e three classes

these constraints; however, we have found no soliton solutions.0f A- Figure 3 illustrates that there are no periodic waves
Equations (5a)—(5d) can be rewritten in a form that is more (closed curves) if 0<A <1

convenient for analysis. To begin with, we introduce the fol- _ Figure & shows a family of nonlinear Alfue waves f <
lowing dimensionless quantities: 0). The small ellipse near the origin corresponds to a sinusoidal
wave, consistent with linear theory. For larger amplitude pe-
fc o2 — \/2 riodic waves €losed curves), the height of the peak is generally
X = V_GZ (x—ct), A= VE - (6) greater than the depth of the trough. This asymmetry increases

with the peak height. However, from equation (8a), the structure

of a periodic wave is constrained b
Note that the value oA is determined by the phase speed of f y

the wave. We also scale the perturbation fields as follows: 2
d A dh
#dXhz <j>dx— A_ﬁ — =0, (10)
h—hH, u-ulc, b-biX:By). @) dX (1+hld
Then, in a straightforward manner, we convert equations Wherei denotes integration over a wavelength. That is, the
(5a)—(5d) into the followinglimensionless equations: area under the wave is zero. Figueeilustrates how an Alfve
wave varies withX and amplitude. These plots were obtained
d A dn h from numerical integrations of equation (8a).
d_X{ 1- i+ h)3] d_>} A= 0, (8a) Figure 3 shows a family of nonlinear magnetogravity waves

(A > 1). As before, the small ellipse near the origin corresponds
to a sinusoidal wave, consistent with linear theory. However,
unlike the Alfven waves, the periodic magnetogravity waves
= —u. (8h) (closed curves) are restricted to a maximum height perturbation
of h, = A¥®*— 1. This value ofh, corresponds to a singular
point of equation (8a). Figurebdillustrates how a magneto-

e
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; e mensional equations:
magneto-gravity (b) .
04} A=3 i

a,h+ U, (h)a,h = 0,
1+h/H,
° 1 21
u, = *V, d A
+ GJ:L X X \/GZX4

oo h
b= —X(X : BO) m . (11)
0

02F}
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Herex is a dummy variable and
Fic. 4.—(@) Nonlinear Alfven waves and i) nonlinear magnetogravity

waves. At small amplitudes, the waves are approximately sinusadiadl ( _ d ~
curves), consistent with linear theory is normalized toH, . U.(h) = % [(Ho + h)X - u.]. (12)

_ . _ ) The characteristic spedd, (h) is a monotonically increasing
gravity wave varies wittK and amplitude. Note that the peak (U,) or decreasing{_ ) function &f. Consequently, an infinite

develops a cusp as its amplitude increases toward . Thisgigpe will form on the leading edge of the wave in a finite
singular limit appears to be unphysical, since it suggests anjme 7.

infinite Maxwell stress. We believe that the cusp is an artifact  The value ofr, is given bynin lo,hdU/dh| ™ ;e
of neglecting small length scales in the “shallow-water” ap-

proximation (Gilman 2000). N ' oH. VVPINVZ) + (1 + hiH,)?
We have yet to examine the stability of the nonlinear SMHD 7. = min [ =2 (13)
waves described here. A related issue, which may be resolved 3N (1 + h/Hp)a,h
in future work, is the extent to which arbitrary initial conditions i o )
evolve to these waves. Here “min” denotes the minimum along the leading edge of

the initial waveform. The singularity formation timg diverges
as the magnetogravity wave broadens, i.e.g,&s approaches
zero. Furthermorey, increases with , the magnetic field
4. STEEPENING AT THE EQUATOR strength in the direction of propagation. Rgr= 0 , the right-
hand side of equation (13) reduces to the established nonmag-
H H 1/2, H H
In § 3, we showed that linear SMHD waves have finite Tigilrgil;_lt’mm [2(HH)T/3\a,0 - (e.g., Lighthill 1978, pp.
amplitude generalizations that propagate without change of jnjike magnetogravity waves, finite Alfvewaves do not
shape. We will refer to such waves as “permanent.” However, steepen on the equator of the tachocline, wiere 0 _ De
our analysis assumed nonzetdVe find that, at the equator  sterck (2001) has shown that, in the absence of rotation, there
of the tachocline, where= 0 , the permanent nonlinear wave js an infinite set of permanent nonlinear Alfvavaves with
equations (egs. [5aj-[5d]) have no regular solutions, unless|c| = \.. As in thef = 0 limit of linear theory, these Alfve
h = 0. This suggests that a finite magnetogravity wave, whose waves are flat and transverse: thathis= u-X=b-X = 0
restoring mechanism requires nonzérowill steepen and de-  |n addition,u = +b, where+/— is for waves propagating
velop singularities. This steepening has already been pointedantiparallel/parallel to the-component ofB, . This result is
out by De Sterck (2001), who examined the hyperbolic theory easily verified by setting equal to+ V, in equations (5a)—(5d)
of SMHD for a nonrotating magnetofluid. Here we add a cal- and performing some minor algebra.
culation of the time required for a singularity to develop. In summary, we examined linear and nonlinear SMHD
To begin with, we consider a more general class of nonlinear waves in the tachocline. North and south of the equator, where
waves: the so-called “simple waves” (Lighthill 1978). By def- |f| > 0, both Alfvén and magnetogravity waves can propagate
inition, all components of a simple wave, (b, h ) are deter- without change of shape. In contrast, magnetogravity waves
mined by a single component. For example, the velocity and steepen at the equator. In this sense, we see that the Coriolis
magnetic field perturbations of a simple magnetogravity wave force inhibits steepening. Future work may examine SMHD
are both functions ofi(x, t) . In order to be consistent with waves in models in which the tachocline has horizontal velocity
linear theory, we also require that, on the equator, the horizontalshear, horizontal magnetic shear, and curvature.
components of a simple magnetogravity wave be aligned with

the direction of propagation; that ig,u = y-b =0 . We thank K. MacGregor for his helpful comments. P. A.
One can easily check, using equations (1) itk 0 , that Gilman was supported in part by NASA award W-19752. J. F.

such simple magnetogravity waves satisfy the followiig Boyd was supported at HAO as an undergraduate intern.
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