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ABSTRACT

This Letter discusses waves in a rotating magnetized fluid layer, governed by “shallow-water” magnetohydro-
dynamics. Such waves likely exist in the solar tachocline, and we focus on this application. A dispersion relation
is derived, giving two branches of waves: Alfve´n and magnetogravity. In general, finite Alfve´n and magnetogravity
waves can propagate without change of shape. However, if the Coriolis force is absent, as on the equator of the
tachocline, finite magnetogravity waves steepen and develop singularities in a time . It is shown that increasest ts s

monotonically with the ambient magnetic field strength.

Subject headings: MHD — Sun: interior — Sun: magnetic fields — Sun: rotation — waves

1. INTRODUCTION AND BASIC EQUATIONS

Gilman (2000) recently introduced “shallow-water” mag-
netohydrodynamics (SMHD) as a simple model for understand-
ing predominantly horizontal flows in the solar tachocline. In
this complimentary Letter, we examine analytic solutions to
SMHD waves in the tachocline. We show that there are two
branches of such waves: Alfve´n and magnetogravity. Finite
Alfvén and magnetogravity waves can both propagate without
change of shape in regions of the tachocline where the Coriolis
force is finite. At the equator, where the Coriolis force is zero,
magnetogravity waves steepen and develop singularities (De
Sterck 2001). We show that the time required for a singularity
to form increases with the ambient magnetic field strength.

The tachocline (Spiegel & Zahn 1992) is a thin layer of the
solar interior, straddling the convection zone and the radiative
interior. It is widely believed that a toroidal magnetic field of
at least 105 G permeates this layer (e.g., Moreno-Insertis, Schu¨s-
sler, & Ferriz-Mas 1992). The tachocline naturally divides into
two sublayers: an inner “radiative” layer and an outer “over-
shoot” layer. By current estimates, the radiative layer is twice
as thick as the overshoot layer. Both sublayers have stable
subadiabatic temperature gradients, but that of the overshoot
layer is much closer to adiabatic.

Here we are interested in the horizontal propagation of waves
in either sublayer. We will use ideal SMHD (Gilman 2000) to
describe these waves. In this model, a sublayer is viewed as
an inviscid, incompressible, perfectly conducting fluid, with a
rigid base and a free upper surface. The magnetic field is tan-
gent to the base and to the upper surface. The subadiabatic
stratification in the sublayer provides some negative buoyancy,
which is represented by a reduced gravitational force. The total
vertical pressure gradient (fluid plus magnetic) is regarded as
hydrostatic. This implies that the total horizontal pressure gra-
dient is determined by the inclination of the free upper surface.

We restrict our attention to regions of the tachocline that
span less than about 10� latitude and longitude. In such regions,
we may view a sublayer as having rectangular (slab) geometry.
Therefore, it is reasonable to use a local Cartesian (x, y, z)
coordinate system for analysis, as illustrated in Figure 1. Here

points vertically upward, against gravity. When discussingẑ
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horizontal wave propagation, we will set parallel to the wave-x̂
vector (Fig. 1b). This differs from standard practice, wherek

is parallel to the background magnetic field.x̂
Let denote the thickness of the sublayer, andH(x, y, t)

denote the horizontal velocity field within the sub-u(x, y, t)
layer. In addition, let denote the horizontal magneticB(x, y, t)
field divided by , wherer is the average (approximately1/2(4pr)
constant) mass density of the sublayer. In ideal SMHD, the
horizontal momentum, horizontal induction, and mass conti-
nuity equations are (in order)

ˆ� u p �u · �u � B · �B � g�H � fu # z,t r (1)
� B p �u · �B � B · �u, � H p �� · Hu,t t

where , is the reduced gravity, andf is theˆ ˆ� { x� � y� gx y r

Coriolis parameter. We have added a Coriolis term to the mo-
mentum equation of Gilman (2000), since our coordinate sys-
tem is fixed on a rotating Sun. The value off is 2 times the
local vertical rotation frequency of the Sun (e.g., on thef p 0
equator). In the limit where , equations (1) reduce to theB p 0
shallow-water “f-plane” equations of geophysical fluid dynam-
ics (Gill 1982). In addition to equations (1), the boundary con-
dition that is tangent to the free upper surface leads to theB
following constraint (Gilman 2000):

� · HB p 0. (2)

The reduced gravity approximation that is used in SMHD is
common in layer models of atmospheric and oceanographic
flows (e.g., Ripa 1991; Gill 1982). Gilman (2000) argued that
the reduced gravity appropriate to a sublayer of the tachoclinegr

is of order , whereg is the local solar gravity anda is theag
fractional difference between an adiabatic temperature gradient
and the actual temperature gradient of the sublayer. For the ra-
diative layer, we estimate that , whereas for the0.01� a � 0.3
overshoot layer, we estimate that . These num-�6 �410 � a � 10
bers are based on a “standard model” for the structure of the
solar interior, calibrated by helioseismic results by Christensen-
Dalsgaard (1998), and were obtained from him through private
communication.

Note that one-layer SMHD ignores the fact that the tach-
ocline has vertical shear in velocity, and possibly magnetic
field. We further ignore mean horizontal shears. This greatly
simplifies our analysis of neutral waves. We expect that neutral
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Fig. 1.—(a) Sublayer of the solar tachocline with average densityr, equi-
librium thickness , and equilibrium magnetic field . (b) Orientation of theH B0 0

x-, y-, andz-axes relative to the wavevector .k

Fig. 2.—Dispersion curves for linear SMHD waves, with . (a) PhaseV p VA G

speed vs. wavenumber. (b) Frequency vs. wavenumber.

waves with the same restoring forces exist when shear is pre-
sent, but along with unstable modes (Dikpati & Gilman 2001).

2. LINEAR WAVES

Consider a sublayer of the tachocline that initially has a
uniform thickness , a uniform horizontal magnetic field ,H B0 0

and is at rest (in the rotating frame). Leth and denote theb
layer thickness and horizontal magnetic field perturbations; that
is, and . For now, we assume that theh { H � H b { B � B0 0

perturbation fields (including ) are small, so that second-orderu
terms in equations (1) and (2) can be ignored. The resulting
linearized equations have a complete basis of sinusoidal wave
solutions: . Herek and q are the constanti(kx�qt)u, b, h ∝ e
wavenumber and wave frequency, respectively. We have ori-
ented thex-axis to run parallel to the wavevector (Fig. 1b).k

The dispersion relation for the linear waves is the following:

2f2 2 2q p k V �� A 2

2 4 2 2 2V f f f VG A2 2 4� k � � k 2 � 4 � k . (3)� ( )4 2 4[ ]2 V V VG G G

Here is the Alfvén speed associated with thex-ˆV { Fx · B FA 0

component of the unperturbed magnetic field andV {G

is the gravity wave speed in an unmagnetized layer.1/2(g H )r 0

The dependence ofq on the direction of propagation is con-
tained in .VA

The dispersion relation in equation (3) has a fast (q�) and
slow (q�) branch, as illustrated in Figure 2. We refer to the
fast and slow branches as the “magnetogravity” branch and the
“Alfvé n” branch, respectively. With zero ambient magnetic
field ( ), magnetogravity waves reduce to the well-knownV p 0A

“Poincaréwaves” of geophysical fluid dynamics (Gill 1982).
Like Poincare´ waves, magnetogravity waves cover phenomena
that occur over timescales less than . Of course, Alfve´n2p/f
waves require a nonzero magnetic field to exist. Furthermore,
unlike magnetogravity waves, Alfve´n waves can account for
arbitrarily slow dynamics at large spatial scales ( ).k r 0

For both branches of linear waves, the perturbation fields
are related by the following:

c fc2 2 2ˆ ˆ ˆ ˆx · u p h, (c � V )u � xV x · u p z # u,A GH ik0

x̂ · B0b p � u. (4)
c

Here is the phase velocity of the wave. If is zero,c { q/k f/k
the Alfvén waves all propagate with phase speed .FcF p VA

Substituting this phase speed into equation (4) yieldsh p
. That is, the Alfvén waves are flat and trans-ˆ ˆx · u p x · b p 0

verse in the absence of rotation. Their restoring mechanism is
magnetic tension. In addition, if is zero, the magnetogravityf/k
waves all propagate with phase speed . Sub-2 2 1/2FcF p (V � V )A G

stituting this phase speed into equation (4) yieldsŷ · u p
; that is, the horizontal velocity and magnetic fieldŷ · b p 0

perturbations are aligned with the direction of propagation. The
restoring mechanism of a magnetogravity wave involves a com-
bination of fluid pressure and magnetic forces.

We now estimate typical oscillation periods implied by equa-
tion (3), for both the radiative and overshoot layers of the
tachocline. We assume that both layers have mass densityr of
about 0.2 g cm�3 and that both contain a 105 G horizontal
magnetic field. These parameters give an Alfve´n speed of

cm s�1, for waves propagating parallel (or an-4V � 6 # 10A

tiparallel) to . In addition, we consider disturbances at aB0

latitude of 30�, where s�1.�6f � 2.6# 10
The nonmagnetic gravity wave speed, ,1/2V { (g H )G r 0

changes appreciably between the two layers. To begin with,
the radiative layer is twice as thick as the overshoot layer, which
has cm. Moreover, is cm s�28 4H � 5 # 10 g 500–1.5# 100 r

in the radiative layer, whereas is 0.05–5 cm s�2 in the over-gr

shoot layer. This means that is cm s�1 in5 6V 7 # 10 –4# 10G

the radiative layer, whereas is cm s�1 in3 4V 5 # 10 –5# 10G

the overshoot layer.
Our Cartesian model is reasonable only for wavenumbers

greater than about cm�1, where�9k p 2p/0.1R p 1.3# 10t

is the mean radius of the tachocline. Larger scaleR � 0.7 Rt ,

perturbations are affected by the tachocline’s curvature. We
may substitute this value ofk into equation (3), along with our
previous estimates off, , and , to obtain “typical” waveV VA G

periods (2p/q). In the radiative layer, where , the mag-V k VG A

netogravity waves have periods on the order of 1 hr, whereas
the Alfvén waves have periods on the order of 1 day. In the
overshoot layer, where , both the magnetogravity andV � VA G

Alfvén waves have periods on the order of 1 day. Of course,
Alfvén waves that propagate nearly perpendicular to haveB0

and nearly infinite periods.V � 0A

3. NONLINEAR WAVES

We now generalize the linear periodic wave solutions to finite
amplitude. Ball (1960) has carried out a similar analysis of
nonlinear shallow-water waves without magnetic fields.

We look for solutions to the fully nonlinear SMHD equations
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Fig. 3.—Sample phase-space diagrams for each regime ofD. (a) Family of Alfvén waves ( ). (b) If , there are no periodic wave solutions (closedD ! 0 0 ! D ! 1
curves). (c) Family of magnetogravity waves ( ).D 1 1

of the form , where . Then, equa-u(y), b(y), h(y) y { x � ct
tions (1) and (2) become the following:

du du db dh
ˆ ˆ ˆ ˆc p x · u � x · (B � b) � xg � fz # u, (5a)0 rdy dy dy dy

db db du
ˆ ˆc p x · u � x · (B � b) , (5b)0dy dy dy

ˆch � (H � h)x · u p constant, (5c)0

ˆ ˆhx · B � (H � h)x · b p constant. (5d)0 0

For the linear waves of § 2, thex-components of and areu b
zero whenh is zero. We impose the same constraints on the
nonlinear waves; that is, we require the constants to be zero
on the right-hand sides of equations (5c) and (5d). Note that
solitons, whose perturbation fields all vanish as , satisfyy r ��
these constraints; however, we have found no soliton solutions.

Equations (5a)–(5d) can be rewritten in a form that is more
convenient for analysis. To begin with, we introduce the fol-
lowing dimensionless quantities:

2 2fc c � VAX { (x � ct), D { . (6)2 2V VG G

Note that the value ofD is determined by the phase speed of
the wave. We also scale the perturbation fields as follows:

ˆh r h/H , u r u/c, b r b/(x · B ). (7)0 0

Then, in a straightforward manner, we convert equations
(5a)–(5d) into the followingdimensionless equations:

d D dh h
1 � � p 0, (8a)[ ]{ }3dX (1 � h) dX D

h D dh
ˆ ˆu p x � y 1 � , b p �u. (8b)[ ]31 � h (1 � h) dX

The wave form is completely determined by equation (8a) for
h. Given a solution forh, the velocity and magnetic field per-
turbations are obtained simply from equations (8b).

We will consider the solutions to equations (8a) and (8b)
separately for , , and . If , so thatD ! 0 0 ! D ! 1 D 1 1 D ! 0

, the solutions include a set of finite periodic wavesFcF ! VA

that stem from the Alfve´n branch of linear waves. If , soD 1 1
that , the solutions include a set of finite2 2 1/2FcF 1 (V � V )A G

periodic waves that stem from the magnetogravity branch. If
, there are no periodic wave solutions, as in linear0 ! D ! 1

theory.
A periodic wave can be represented as a closed curve

in phase space. Multiplying equation (8a) byˆ(h, dh/dX) y · u
(eq. [8b]), and integrating, we obtain the following equation
for a phase-space curve:

2 2 2dh D h 1 � 2h
1 � � � p e, (9)( ) [ ]3 2dX (1 � h) D (1 � h)

where e is a constant related to the amplitude of the wave.
Figure 3 shows phase-space curves for each of the three classes
of D. Figure 3b illustrates that there are no periodic waves
(closed curves) if .0 ! D ! 1

Figure 3a shows a family of nonlinear Alfve´n waves (D !

). The small ellipse near the origin corresponds to a sinusoidal0
wave, consistent with linear theory. For larger amplitude pe-
riodic waves (closed curves), the height of the peak is generally
greater than the depth of the trough. This asymmetry increases
with the peak height. However, from equation (8a), the structure
of a periodic wave is constrained by

2d D dh
dXh p dX D � p 0, (10)( ( [ ]{ }3dX (1 � h) dX

where denotes integration over a wavelength. That is, the(
area under the wave is zero. Figure 4a illustrates how an Alfve´n
wave varies withX and amplitude. These plots were obtained
from numerical integrations of equation (8a).

Figure 3c shows a family of nonlinear magnetogravity waves
( ). As before, the small ellipse near the origin correspondsD 1 1
to a sinusoidal wave, consistent with linear theory. However,
unlike the Alfvén waves, the periodic magnetogravity waves
(closed curves) are restricted to a maximum height perturbation
of . This value of corresponds to a singular1/3h p D � 1 h∗ ∗
point of equation (8a). Figure 4b illustrates how a magneto-
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Fig. 4.—(a) Nonlinear Alfvén waves and (b) nonlinear magnetogravity
waves. At small amplitudes, the waves are approximately sinusoidal (solid
curves), consistent with linear theory.h is normalized to .H0

gravity wave varies withX and amplitude. Note that the peak
develops a cusp as its amplitude increases toward . Thish∗
singular limit appears to be unphysical, since it suggests an
infinite Maxwell stress. We believe that the cusp is an artifact
of neglecting small length scales in the “shallow-water” ap-
proximation (Gilman 2000).

We have yet to examine the stability of the nonlinear SMHD
waves described here. A related issue, which may be resolved
in future work, is the extent to which arbitrary initial conditions
evolve to these waves.

4. STEEPENING AT THE EQUATOR

In § 3, we showed that linear SMHD waves have finite
amplitude generalizations that propagate without change of
shape. We will refer to such waves as “permanent.” However,
our analysis assumed nonzerof. We find that, at the equator
of the tachocline, where , the permanent nonlinear wavef p 0
equations (eqs. [5a]–[5d]) have no regular solutions, unless

. This suggests that a finite magnetogravity wave, whoseh p 0
restoring mechanism requires nonzeroh, will steepen and de-
velop singularities. This steepening has already been pointed
out by De Sterck (2001), who examined the hyperbolic theory
of SMHD for a nonrotating magnetofluid. Here we add a cal-
culation of the time required for a singularity to develop.

To begin with, we consider a more general class of nonlinear
waves: the so-called “simple waves” (Lighthill 1978). By def-
inition, all components of a simple wave ( ) are deter-u, b, h
mined by a single component. For example, the velocity and
magnetic field perturbations of a simple magnetogravity wave
are both functions of . In order to be consistent withh(x, t)
linear theory, we also require that, on the equator, the horizontal
components of a simple magnetogravity wave be aligned with
the direction of propagation; that is, .ˆ ˆy · u p y · b p 0

One can easily check, using equations (1) with , thatf p 0
such simple magnetogravity waves satisfy the followingdi-

mensional equations:

� h � U (h)� h p 0,t � x

1�h/H0 21 V 1Aˆu p �xV dx � ,�� G � 2 4x V x1 G

h
ˆ ˆb p �x(x · B ) . (11)0 H � h0

Herex is a dummy variable and

d
ˆU (h) { [(H � h)x · u ]. (12)� 0 �dh

The characteristic speed is a monotonically increasingU (h)�

( ) or decreasing ( ) function ofh. Consequently, an infiniteU U� �

slope will form on the leading edge of the wave in a finite
time .ts

The value of is given by ; i.e.,�1t min F� h dU/dhFs x

2 2 3�(V /V ) � (1 � h/H )A G 02H0
t p min . (13)s F F3V (1� h/H )� hG 0 x

Here “min” denotes the minimum along the leading edge of
the initial waveform. The singularity formation time divergests

as the magnetogravity wave broadens, i.e., as approaches� hx

zero. Furthermore, increases with , the magnetic fieldt Vs A

strength in the direction of propagation. For , the right-V p 0A

hand side of equation (13) reduces to the established nonmag-
netic result, (e.g., Lighthill 1978, pp.1/2min F2(H H) /3V � hF0 G x

148–151).
Unlike magnetogravity waves, finite Alfve´n waves do not

steepen on the equator of the tachocline, where . Def p 0
Sterck (2001) has shown that, in the absence of rotation, there
is an infinite set of permanent nonlinear Alfve´n waves with

. As in the limit of linear theory, these Alfve´nFcF p V f p 0A

waves are flat and transverse; that is, .ˆ ˆh p u · x p b · x p 0
In addition, , where�/� is for waves propagatingu p �b
antiparallel/parallel to thex-component of . This result isB0

easily verified by settingc equal to�VA in equations (5a)–(5d)
and performing some minor algebra.

In summary, we examined linear and nonlinear SMHD
waves in the tachocline. North and south of the equator, where

, both Alfvén and magnetogravity waves can propagateFfF 1 0
without change of shape. In contrast, magnetogravity waves
steepen at the equator. In this sense, we see that the Coriolis
force inhibits steepening. Future work may examine SMHD
waves in models in which the tachocline has horizontal velocity
shear, horizontal magnetic shear, and curvature.
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