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ABSTRACT
The fractal structure of star formation on large scales in disk galaxies is studied using the size distribu-

tion function of stellar aggregates in kiloparsec-scale star Ðelds. Archival Hubble Space Telescope images
of 10 galaxies are Gaussian-smoothed to deÐne the aggregates, and a count of these aggregates versus
smoothing scale gives the fractal dimension. Fractal and Poisson models conÐrm the procedure. The
fractal dimension of star formation in all of the galaxies is D2.3. This is the same as the fractal dimen-
sion of interstellar gas in the Milky Way and nearby galaxies, suggesting that star formation is a passive
tracer of gas structure deÐned by self-gravity and turbulence. Dense clusters such as the Pleiades form at
the bottom of the hierarchy of structures, where the protostellar gas is densest. If most stars form in such
clusters, then the fractal arises from the spatial distribution of their positions, giving dispersed star Ðelds
from continuous cluster disruption. Dense clusters should have an upper mass limit that increases with
pressure, from D103 in regions like the solar neighborhood to D106 in starbursts.M
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1. INTRODUCTION

Interstellar gas is observed to have a fractal structure
ranging from subparsec scales to over 10 pc scales in nonÈ
self-gravitating clouds (Crovisier & Dickey 1983 ; Green
1993 ; Vogelaar & Wakker 1994), from parsec to D100 pc
scales in self-gravitating clouds (Dickman, Horvath & Mar-
gulis 1990 ; Scalo 1990 ; Falgarone, Phillips, & Walker 1991 ;
Elmegreen & Falgarone 1996 ; Stutzki et al. 1998), and from
D10 pc scales to D5 kpc scales in large sections of galaxies
for both the stars (Feitzinger & Braunsfurth 1984 ; Feit-
zinger & Galinski 1987 ; Elmegreen & Efremov 1996 ;
Efremov & Elmegreen 1998 ; Elmegreen et al. 2001b) and
the gas et al. 1999 ; Westpfahl et al. 1999 ; Keel(Stanimirovic�
& White 2001 ; Elmegreen, Kim, & Staveley-Smith 2001a).
In many cases, the observed range of scales is probably a
lower limit, because it begins at the scale of resolution of the
instrument and ends at the size of the mapped region.

The observation of fractal structure in the gas suggests
that stars should form in fractal patterns too if their birth-
places uniformly follow the densest regions (e.g., Gomez et
al. 1993 ; Larson 1995 ; Simon 1997 ; Bate, Clarke, &
McCaughrean 1998 ; Nakajima et al. 1998 ; see review in
Elmegreen et al. 2000a). Here we show evidence for such
fractal patterns in the star Ðelds of other galaxies, covering a
range of scales from the resolution limit of D10 pc to giant
spiral arm complexes that are several kiloparsecs in length.
Fractal models that are Ðtted to these observations suggest
that the fractal dimension of star formation is around 2.3,
which is the same as for the interstellar gas.

2. OBSERVATIONS

We studied optical images of 10 galaxies using Hubble
Space Telescope (HST ) archival data. HST gives a relatively
clear view of star Ðelds in other galaxies because the factor-
of-10 improvement in angular resolution over ground-
based images means that distant galaxies can be studied
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with the same spatial resolution as conventional images of
nearby galaxies but with D100 times fewer foreground
stars.

The galaxies are listed in Table 1. HST archival images of
large star-forming regions in these galaxies were convolved
with Gaussian point-spread functions in order to blur them
to varying degrees. The count of the number of optical
clusters versus the smoothing scale was then plotted on a
log-log plot, and the slope was determined. For a fractal
distribution, the slope of such a plot is the fractal dimen-
sion, D (Mandelbrot 1983), provided there is no loss of
counts from blending. The slope was determined for the Ðve
largest star Ðelds in NGC 2207 and for the largest star Ðelds
in eight other galaxies, with two Ðelds in NGC 5457.

An example of this process is illustrated in Figure 1. This
shows six stages in the smoothing of a 5 kpc long star Ðeld
in the southeastern arm of NGC 2207 (see Elmegreen et al.
2000b). We count 75 separate centers for star formation (i.e.,
clusters) in the highest resolution image, and we count 52,
38, 21, 8, and 2 centers in the Ðve other images, respectively,
which were smoothed in successive steps equal to a factor of
2 in scale.

The cluster counts are shown on the left in Figure 2. The
counts for Ðve star Ðelds in NGC 2207 are on the top
left, and the counts for nine star Ðelds in the eight other
galaxies are on the bottom left. The distribution function
for the number, n, of clusters versus scale, S, is
n(S)d log S P S~D d log S for D\ 1.12^ 0.25 in the 14 total
cases. Thus the fractal dimension would be DD 1.12^ 0.25
without blending. However, the complexes overlap and
blend with each other because of their hierarchical struc-
ture. Thus we have to model this counting process with
images of known fractal dimension in order to reconstruct
the dimension of the real star Ðelds.

3. MODELS

Fractal and other models of clusters were made by com-
puter in order to Ðt the slope of the observed n(S) relation,
and to see whether we can tell the di†erence between a
fractal pattern and a completely random pattern, which has
a Poisson distribution. Figure 3 shows sample models
before Gaussian smoothing ; on the left is a Poisson dis-
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TABLE 1

GALAXIES STUDIED

Distance Image Scale
Galaxy Type (Mpc) [pc (WF pixel)~1]

NGC 2207 . . . . . . SAB(rs)bc 35 17
NGC 2366 . . . . . . IB(s)m 2.9 1.4
NGC 3184 . . . . . . SAB(rs)cd 8.7 4.2
NGC 3423 . . . . . . SA(s)cd 10.9 5.2
NGC 4051 . . . . . . SAB(rs)bc 17 8.2
NGC 4303 . . . . . . SAB(rs)bc 15.2 7.3
NGC 4449 . . . . . . Ibm 3 1.4
NGC 5068 . . . . . . SB(s)d 6.7 3.2
NGC 5457 . . . . . . SAB(rs)cd 5.4 2.6
IC 2163 . . . . . . . . . SB(rs)c pec 35 17

tribution of centers, in the middle is a fractal with D\ 1.3,
and on the right is a fractal with D\ 2.3.

The Poisson pattern was made by placing 2048 points on
an (x, y)-plane with random positions x and y distributed
uniformly between values 0 and 1. This is a two-
dimensional array but is equivalent to a three-dimensional
array viewed in projection (i.e., random z-values collapsed
to the same z-value). To simulate what we already know
about clusters, the points were given Ðnite sizes that have
a power-law distribution function comparable to the
observed power law for individual star cluster sizes, namely,
n(R)d log RP R~2.3 d log R (Elmegreen & Salzer 1999 ;
Elmegreen et al. 2001b). In reality, this intrinsic distribution
probably arises from the same fractal structure that we seek
to measure in the distribution of cluster center positions, just
as the size and mass distributions of individual molecular
clouds display a microcosm of the same overall fractal
structure that is seen on much larger scales in the distribu-
tion of interstellar gas (Elmegreen & Falgarone 1996).
However, the conventional picture has individual clouds or
star-forming regions with a power-law size distribution and
a random distribution for the centers of these regions. Here
we seek to disprove this conventional picture by showing
that the center positions are fractal without commenting
directly on the intrinsic size distribution.

The size distribution used for these models is consistent
with the size-luminosity relation for star clusters, L P R2.3
(Elmegreen et al. 2001b), and with the luminosity distribu-
tion function for clusters and H II regions, n(L )dL D L~2 dL
(Kennicutt, Edgar, & Hodge 1989 ; Battinelli, Brandimarti,
& Capuzzo-Dolcetta 1994 ; Elmegreen & Efremov 1997 ;

& Torra 1996 ; Feinstein 1997 ; Oey & ClarkeComero� n
1998 ; McKee & Williams 1997). We have commented pre-
viously how these relations are also consistent with a purely
fractal distribution, the Ðrst giving the fractal dimension in
another way (Pfenniger & Combes 1994 ; Larson 1994 ;
Elmegreen & Falgarone 1996 ; Elmegreen et al. 2001b), and
the second coming from a hierarchical distribution with any
fractal dimension (Fleck 1996 ; Elmegreen & Falgarone
1996).

The model fractal distributions are generated by uni-
formly selecting some random number, in the rangeN1,from 1 to N and then using this for the number of star-
forming regions in the Ðrst, or highest, level in the hierarchy
of structures. The (x, y)-positions of these regions areN1then determined uniformly in the interval of position from 0
to 1 using other random variables. Second, we go to the
position of each of these regions and select otherN1

random numbers, in the interval from 1 toN2,1, N2,2, . . . ,
N. These are the number of level 2 subregions associated
with each previous region in level 1. For each level 2 sub-
region, we Ðnd new random positions, but this time separat-
ed from the level 1 positions by a random number in the
interval from 0 to L \ 1, where L \ 10(log N)@D for fractal
dimension D. For the level 3 positions, we Ðnd the number
of sublevels Ðrst in the same way and then choose new
positions around each, separated by a random number in
the interval from 0 to L 2. With these successively smaller
separations, we make clusters with a fractal dimension
D\ (logN)/(log L ). This process is continued for six levels.

When the selection of fractal positions is Ðnished, we
assign each circle a size randomly distributed according
to the function n(R)d log RP R~2.3 d log R, as discussed
above. This is done by solving for R in the equation

R\ Rmin
M1 [ [1[ (Rmin/Rmax)2.3]mN1@2.3 , (1)

where m is a random number uniformly distributed in the
interval from 0 to 1. An image of these circles is then stored
on a 512 ] 512 grid. The value of the image is set to 1 inside
each circle, and when two or more circles overlap, the value
in the image is the sum of each contribution. This procedure
is consistent with the approximately constant surface
brightness of star complexes that is implied by the
luminosity-size relation given above.

The model images are viewed in Photoshop with di†erent
Gaussian smoothings, stepped by factor-of-2 intervals from
the original image. Thus the smoothing scales are 2, 4, 8, 16,
32, and 64 pixels. The number of separate regions was
counted by eye on each smoothed image.

Figure 2 shows the counts for each image as a function of
smoothing scale. The Poisson maps are steeper than the
fractals on these plots because there is less blending of the
small features on the Poisson maps. This result illustrates
the e†ects of projection mentioned by Mandelbrot (1983)
and modeled with the shadows of crumpled newspapers by
Beech (1992), namely, that the dimension of a projected
fractal is approximately one less than the dimension of the
full object. Figures with low fractal dimension have the
most blending and shallowest slopes. The average slopes for
the Poisson, D\ 2.3, and D\ 1.3 models are [1.72^ 0.04,
[1.17^ 0.06, and [0.75^ 0.09, respectively. The slope of
the models is about equal to the slope of the observation for
D\ 2.3.

4. DISCUSSION

The distribution of star formation sites in a galaxy is a
fractal with about the same dimension as the fractal inter-
stellar gas. This implies that stars form from the gas, tracing
its structure in a passive way. This result is not inconsistent
with the observation that star formation occurs in the
densest parts of the gas. We add to this observation only the
fact that these densest parts are arranged in space on a
fractal network. Presumably this distribution of star forma-
tion sites is the result of turbulence compression (Elmegreen
1993, 1999 ; Rosolowsky et al. 1999 ; Mac Low & Ossenkopf
2000 ; Pichardo et al. 2000).

The fractal distribution of star formation sites is consis-
tent with the observation that the total duration of star
formation in a region is always around 2 crossing times,
regardless of scale (Elmegreen 2000). It takes only D1 cross-
ing time for turbulence to establish the hierarchy of struc-
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FIG. 1.ÈSix levels of Gaussian smoothing of a star-forming patch in the galaxy NGC 2207. The number of pixels in the Gaussian smoothing function is
shown in each panel. The number of objects is plotted as a function of this smoothing length in Fig. 2.

tures from an initially uniform gas, and it takes another
crossing time on any level for all of the smaller scale pro-
cesses, which operate faster, to make their stars.

Dense star clusters form at the bottom of this hierarchy of
gas and star formation structures, where the density is high.

The maximum mass of a dense cluster depends on the local
pressure and density as

M ¹ 6 ] 103
A P
108 K cm~3

B3@2A n
105 cm~3

B~2
. (2)
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FIG. 2.ÈNumber of star-forming concentrations as a function of the smoothing scale for Ðve regions in NGC 2207 (top left), for nine regions in eight
galaxies (bottom left), and for three types of models (right). The dashed line has a slope of [1 on this log-log plot. The observations are best Ðtted by a fractal
with a dimension of 2.3, as shown by the dashed lines on the right.

This comes from the equations PD 0.1GM2/R4 and
n D 3M/(4nkR3) for cloud mass M, radius R, core pressure
P, and mean molecular weight k D 4 ] 10~24 g (Elmegreen
1989 ; Harris & Pudritz 1994). A core pressure of 108 K
cm~3 and an average density of D105 cm~3 are chosen for

normalization because these are observed in the Orion
regions where dense clusters form (Lada, Evans, & Fal-
garone 1997). The pressure comes from the density multi-
plied by the square of the observed velocity dispersion of
D1.5 km s~1. This density of D105 cm~3 corresponds to

FIG. 3.ÈThree models for the spatial distribution of star-forming regions. The sizes of the regions have the observed power-law distribution. These
models are Gaussian-smoothed to varying degrees to make the counts shown on the right in Fig. 2.
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5.9] 103 pc~3, and to a Ðnal star density of D104 starsM
_pc~3 with 50% efficiency. This equation illustrates why the

Galactic or ““ open ÏÏ clusters in our Milky Way disk, which
are born with stellar densities like this, tend to be smaller
than several thousand solar masses. Higher ambient inter-
stellar pressures should lead to higher cloud core pressures
and the formation of more massive clusters with the same
and higher densities.

Most star formation seems to occur in dense clusters,
although many of these may disperse soon after birth

(Kroupa 2001). Even so, the distribution of young stars
should still be fractal in an overall fractal gas, because the
velocity dispersion of each cluster is small compared with
the turbulent velocity dispersion of the larger region around
it. This means that the timescale for the larger scale in the
hierarchy of structures is always shorter than the time for a
dense cluster to expand to this large scale. Because of this,
cluster evaporation and dispersal on the small scale should
not smear out the fractal pattern that is continuously estab-
lished by turbulence and self-gravity on the large scale.
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