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ABSTRACT
We develop a theory of Einstein rings and demonstrate it using the infrared Einstein ring images of

the quasar host galaxies observed in PG 1115]080, B1608]656, and B1938]666. The shape of an Ein-
stein ring accurately and independently determines the shape of the lens potential and the shape of the
lensed host galaxy. We Ðnd that the host galaxies of PG 1115]080, B1608]656, and B1938]666 have
axis ratios of 0.58 ^ 0.02, 0.69 ^ 0.02, and 0.62^ 0.14, respectively, including the uncertainties in the lens
models. The Einstein rings break the degeneracies in the mass distributions or Hubble constants inferred
from observations of gravitational lenses. In particular, the Einstein ring in PG 1115]080 rules out the
centrally concentrated mass distributions that lead to a high Hubble constant km s~1 Mpc~1)(H0[ 60
given the measured time delays. Deep, detailed observations of Einstein rings will be revolutionary for
constraining mass models and determining the Hubble constant from time-delay measurements.
Subject headings : cosmology : observations È distance scale È gravitational lensing
On-line material : color Ðgures

1. INTRODUCTION

Gravitational lenses are excellent tools for studying the
gravitational potentials of distant galaxies and their
environments. Even the simplest models can measure some
properties of the lens, such as the mass inside the Einstein
ring, with an accuracy far beyond what is possible with any
other astrophysical probe of galaxy mass distributions (see,
e.g., Kochanek 1991). More detailed explorations of the
potentials, particularly determinations of the radial mass
distribution and the interpretation of time delays for esti-
mating the Hubble constant, are limited by the number of
constraints supplied by the data (see, e.g., Impey et al. 1998 ;
Koopmans & Fassnacht 1999 ; Williams & Saha 2000 ;
Keeton et al. 2000 for recent examples). In fact, all well-
explored lenses with time delays currently have unpleas-
antly large degeneracies between the Hubble constant and
the structure of the lensing potential. Most of the problem is
created by the aliasing between the moments of the mass
distribution we need to measure (primarily the monopole)
and higher order moments (quadrupole, octopole, etc.)
when we have constraints at only two or four positions.
Progress requires additional model constraints spread over
a wider range of angles and distances relative to the lens
center.

Many gravitational lenses produced by galaxies now
contain multiple images of extended sources. Radio lenses,
even if selected to be dominated by compact cores, com-
monly show rings and arcs formed from multiple images of
the radio lobes and jets associated with the active galactic
nucleus (AGN) (see, e.g., Hewitt et al. 1988 ; Langston et al.
1989 ; Jauncey et al. 1991 ; Lehar et al. 1993, 1997 ; King et
al. 1997). More importantly, short-infrared observations of
gravitational lenses with the Hubble Space Telescope (HST )
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frequently Ðnd Einstein ring images of the host galaxies of
multiply imaged quasars and radio sources (e.g., King et al.
1998 ; Impey et al. 1998 ; Kochanek et al. 2000 ; Keeton et al.
2000). Since all quasars and radio sources presumably have
host galaxies, we can always Ðnd an Einstein ring image of
the host galaxy given a long enough observation. Moreover,
Ðnding a lensed host galaxy is easier than Ðnding an
unlensed host galaxy, because the lens magniÐcation enor-
mously reduces the contrast between the host and the
central quasar.

The Einstein ring images of the host galaxy should
provide the extra constraints needed to eliminate model
degeneracies. In particular, complete Einstein rings should
almost eliminate the aliasing problem. The Ðrst step toward
using the host galaxies as constraints is to better understand
how Einstein rings constrain lens models. In this paper we
develop a general theory for the shapes of Einstein rings and
demonstrate its utility by using it to model the Einstein ring
images of the quasar host galaxies in PG 1115]080 (Impey
et al. 1998), B1608]656 (Fassnacht et al. 1996), and
B1938]666 (King et al. 1998). In ° 2 we brieÑy review the
theory of gravitational lensing, and then develop a theory of
Einstein rings in ° 3. We apply the models to the three lenses
in ° 4, and summarize our results in ° 5.

2. STANDARD LENS THEORY AND ITS APPLICATION TO

LENS MODELING

In ° 2.1 we present a summary of the basic theory of
lenses as reviewed in more detail by Schneider, Ehlers, &
Falco (1992). In ° 2.2 we review the basic procedures for
Ðtting lenses composed of multiply imaged point sources
and deÐne the lens models we use.

2.1. A Quick Review
We have a source located at u in the source plane, which

is lensed in a thin foreground screen by the two-dimensional
potential /(x). The images of the source are located at solu-
tions of the lens equation

u \ x [ +
x
/(x) , (1)

which will have one, two, or four solutions for standard lens
models. In the multiple-image solutions, one additional
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image is invisible and trapped in the singular core of the
galaxy. If the source is extended, the images are tangentially
stretched into arcs around the center of the lens, merging
into an Einstein ring if the source is large enough. The local
distortion of an image is determined by the inverse magniÐ-
cation tensor,

M~1\(
t
:

1 [ /,
xx

[/,
xy[/,

xy
1 [ /,

yy

)
t
;

(2)

whose determinant, M~1, sets the relative Ñux ratios of
unresolved images. Surface brightness is conserved by
lensing, so a source with surface brightness produces anf

S
(u)

image with surface brightness where the sourcef
I
(x)\ f

S
(u),

and lens coordinates are related by equation (1). Real data
have Ðnite resolution due to the point-spread function
(PSF) B, so the observed image is the convolution f

D
(x) \

rather than the true surface brightness TheB\f
I
(x), f

I
(x).

observed image can be further modiÐed by extinction in the
optical/infrared and Faraday rotation for polarization mea-
surements in the radio.

2.2. Standard Modeling Methods and Problems
The procedures for modeling lenses consisting of unre-

solved point sources are simple to describe and relatively
easy to implement. Given a set of observed image positions

and a lens model predicting image positions thex
i

x
i
(u),

goodness of Ðt is measured with a s2 statistic,

spoint2 \ ;
i

o x
i
[ x

i
(u) o2

p
i
2 , (3)

with (in this case) isotropic positional uncertainties forp
ieach image. The statistic is minimized with respect to the

unobserved source position u and the parameters of the lens
model, where the model parameters may be further con-
strained by the observed properties of the lens (position,
shape, orientation, etc.). The relative image magniÐcations
are also constrained by the relative Ñuxes, but the uncer-
tainties are dominated by systematic errors in the Ñuxes
due to extinction, temporal variations, microlensing, and
substructure, rather than measurement uncertainties.
If the images have parity-signed Ñuxes and the sourcef

ihas Ñux then we model the Ñuxes with another simple s2f
S
,

statistic,

sflux2 \ ;
i

( f
i
[ M

i
f
S
)2

p
i
2 , (4)

where is the magniÐcation at the position of the imageM
iand is the uncertainty in the Ñuxp

i
f
i
.

We Ðt the lenses discussed in ° 4 using models based on
the softened isothermal ellipsoid, whose surface density in
units of the critical surface density is iIE(m2, s) \ (b/2)(s2
] m2)~1@2 for core radius s, ellipsoidal coordinate m2\ x2

and axis ratio The model parameters] y2/q
l
2, q

l
\ 1 [ e

l
.

are the critical radius b, the core radius s, the ellipticity e
l
,

and the position angle of the major axis (see Kassiola &h
lKovner 1993 ; Kormann, Schneider, & Bartelmann 1994 ;

Keeton & Kochanek 1998). We use either the singular iso-
thermal ellipsoid (SIE), in which the core radiusiIE(m2, 0),
s 4 0, or the pseudo-Ja†e model, i(m2)\iIE(m2, 0)

which truncates the mass distribution of the[ iIE(m2, a),
SIE at an outer truncation radius a (see Keeton & Kocha-
nek 1998). This allows us to explore the e†ects of truncating
the mass distribution on the lens geometry. We also allow

the models to be embedded in an external tidal shear Ðeld
characterized by amplitude c and position angle wherehc,the angle is deÐned to point in the direction from which an
object could generate the shear as a tidal Ðeld.

The simplest possible model of a lens has Ðve parameters
(lens position, mass, ellipticity, and orientation). Realistic
models must add an independent external shear (see
Keeton, Kochanek, & Seljak 1997), and additional parame-
ters (two in most simple model families) describing the
radial mass distribution of the lens galaxy, for a total of nine
or more parameters. A two-image lens supplies only Ðve
constraints on these parameters, so the models are woefully
underconstrained. A four-image lens supplies 11 con-
straints, but the three Ñux-ratio constraints are usually
weak constraints because of the wide variety of systematic
problems in interpreting the image Ñuxes (extinction, time
variability, microlensing, local perturbations, etc. ; see Mao
& Schneider 1998). Much of the problem is due to aliasing,
where the quadrupole in particular, but also the higher
angular multipoles, can compensate for large changes in the
monopole structure given the limited sampling provided by
two or four images. The paucity of constraints leads to the
large uncertainties in Hubble constant estimates from time-
delay measurements (see Impey et al. 1998 ; Koopmans &
Fassnacht 1999 ; Williams & Saha 2000 ; Keeton et al. 2000 ;
Zhao & Pronk 2000 ; Witt, Mao, & Keeton 2000 for a wide
variety of examples). The solution is to Ðnd more con-
straints.

3. A SIMPLE QUANTITATIVE THEORY OF EINSTEIN RINGS

Einstein rings are one of the most striking properties of
lenses. Just as they are visually striking, we can easily
measure some of their properties. In ° 3.1 we discuss the
shape of the curve deÐned by the peak surface brightness of
an Einstein ring as a function of azimuth. We need a new
theory because the curve is a pattern that cannot be
modeled using the standard methods for Ðtting multiply
imaged point sources. In ° 3.2 we discuss the locations of the
maxima and minima of the brightness of an Einstein ring.
Finally, in ° 3.3 we describe the statistic we use to Ðt Ein-
stein rings and its relation to observations. Figure 1 illus-
trates how an Einstein ring is formed, and Figures 2 and 3
show the real examples we consider in ° 4.

3.1. T he Ring Curve
We visually trace the ring as the curve formed by the

peak surface brightness of the ring around the lens galaxy.
We Ðnd the curve by locating the peak intensity on radial
spokes in the image plane, x(j) \ x0] j(cos m, sin m),
which are parameterized by j and originate from an arbi-
trary point near the center of the ring (see Fig. 1). Morex0complicated parameterizations are possible but unneces-
sary. For each azimuth m, we determine the position of the
maximum, j(m), and the image Ñux at the maximum. Mathe-
matically, the extrema of the surface brightness of the image

along the spoke are the solutions off
D
(x)

0 \ Lj f
D
(x) \ +

x
f
D
(x) Æ dx

dj
. (5)

The next step is to translate the criterion for the ring loca-
tion into the source plane. For simplicity, we assume that
the image is a surface brightness map such that f

S
(u)\

Using the lens equation (1) and the deÐnitionf
I
(x) \ f

D
(x).
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FIG. 1.ÈIllustration of ring formation by an SIE lens. An ellipsoidal source (left gray scale) is lensed into an Einstein ring (right gray scale). The source
plane is magniÐed by a factor of 2.5 relative to the image plane. The tangential caustic (asteroid on left) and critical line (right) are superposed. The Einstein
ring curve is found by looking for the peak brightness along radial spokes in the image plane. For example, the spoke in the illustration deÐnes point A on the
ring curve. The long line segment on the left is the projection of the spoke onto the source plane. Point A on the image plane corresponds to point A@ on the
source plane, where the projected spoke is tangential to the intensity contours of the source. The ring in the image plane projects into the four-lobed pattern
on the source plane. Intensity maxima along the ring correspond to the center of the source. Intensity minima along the ring occur where the ring crosses the
critical line (e.g., point B). The corresponding points on the source plane (B@) are where the asteroid caustic is tangential to the intensity contours.

of the magniÐcation tensor (eq. [2]), the criterion for the
maximum becomes

0 \ +
u

f
S
(u) Æ M~1 Æ dx

dj
. (6)

Geometrically, we are Ðnding the point at which the tangent
vector of the curve projected onto the source plane
(M~1 Æ dx/dj) is perpendicular to the local gradient of the
surface brightness as illustrated in Figure 1.[+

u
f
S
(u)],

While the structure of the lensed image is complicated, in
many systems it is reasonable to assume that the structure
of the source has some regularity and symmetry. We require
a model for the surface brightness of the source over a very
limited region about its center where almost all galaxies can
be approximated by an ellipsoidal surface brightness
proÐle. We assume that the source has a surface brightness

which is a monotonically decreasing function,f
S
(m2),

of an ellipsoidal coordinate m2\ *u Æ S Æ *u.df
S
/dm2\ 0,

The source is centered at with and itsu0, *u \ u [ u0,shape is described by the two-dimensional shape tensor S.4
A noncircular source is essential to explaining the observed
rings. With these assumptions, the location of the ring

4 An ellipsoid is described by an axis ratio and major-q
s
\ 1 [ e

s
\ 1

axis position angle In the principal axis frame the shape tensor ish
s
. S

Ddiagonal, with components 1 and The shape tensor isq
s
~2. S \ R~1S

D
R

found by rotating the diagonal shape tensor with the rotation matrix R(h
s
),

corresponding to the major-axis P.A. of the source h
s
.

depends only on the shape of the source and not on its
radial structure. The position of the extremum is simply the
solution of

0 \ *u Æ S Æ M~1 Æ dx
dj

. (7)

The ring curve traces a four (or two) lobed cloverleaf
pattern when projected onto the source plane if there are
four (or two) images of the center of the source (see Figure
1). These lobes touch the tangential caustic at their
maximum ellipsoidal radius from the source center, and
these cyclic variations in the ellipsoidal radius produce the
brightness variations seen around the ring (see Fig. 3, ° 3.2).

Two problems a†ect using equation (7) to deÐne the ring
curve. First, this assumes that the image is a surface bright-
ness map. In principal, and the ringf

D
(x) \ B\f

I
(x) D f

I
(x),

location determined from the data can be distorted by the
PSF. In practice, however, we Ðnd that the position of the
ring curve is insensitive to the e†ects of the PSF unless there
is a strong Ñux gradient along the ring. We see this pri-
marily when the ring contains much brighter point sources,
and the problem can be mitigated by Ðtting and subtracting
most of the Ñux from the point sources before measuring the
ring position. Alternatively, we can use deconvolved images.
Monte Carlo experiments with a model for the ring are
necessary to determine where the ring curve is biased from
the true ring curve by the e†ects of the PSF, but the usual
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FIG. 2.ÈCASTLES (Falco et al. 2000) HST /NICMOS H-band images PG 1115]080 (top left), B1608]656 (top right), and B1938]666 (bottom). We
partially subtracted the bright point sources in PG 1115]080 and B1608]656 and completely subtracted the lens galaxies for all three systems to better
show the ring structure.

signature is a ““ ripple ÏÏ in the ring near bright point sources
(as seen between the A1 and A2 images in Fig. 4). Second,
we are assuming that the source is ellipsoidal, although the
model could be generalized for more complicated source
structures. Extinction in the lens galaxy will generally not
be a problem, because enormous extinction gradients are
needed to perturb the observed positions of infrared Ein-
stein rings. We discuss extinction further for the
B1608]656 ring.

We can illustrate the physics governing the shapes of
Einstein rings using the limit of a singular isothermal ellip-
soid (SIE) for the lens. The general analytic solution for the
Einstein ring produced by an ellipsoidal source lensed by a

singular isothermal galaxy in a misaligned external shear
Ðeld is presented in the Appendix. We use coordinates
(x \ r cos h, y \ r sin h) centered on the lens galaxy. The
SIE (see ° 2.2) has a critical radius scale b, ellipticity e

l
\ 1

and its major axis lies along the x-axis. We add an[ q
l
,

external shear Ðeld characterized by amplitude c and orien-
tation The source is an ellipsoid with axis ratiohc. q

s
\ 1

and major-axis angle located at a position[ e
s

h
sfrom the lens center. The tangential(o cos h0, o sin h0)critical line of the model is

rcrit
b

\ 1 ] e
l

2
cos 2h [ c cos 2(h [ hc) , (8)
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FIG. 3.ÈRing brightness proÐles as a function of the spoke position
angle. We show for PG 1115]080 (top), B1608]656log f

D
(r(m), m)

(middle), and B1938]666 (bottom) after suppressing the point sources in
PG 1115]080 and B1608]656. The (labeled) maxima constrain the host
center, and the minima constrain where the critical line crosses the Einstein
ring. The properties of the extrema were determined using parabolic Ðts to
the local extrema of the curves. The two local minima in the proÐle
between the B and D images of B1608]656 are an artifact due to noise,
extinction, or lens galaxy subtraction errors.

FIG. 4.ÈPG 1115]080. The quasar images A1, A2, B, and C are
marked by Ðlled symbols. The light black lines show the ring centroid and
its uncertainties, and the gray triangles mark the Ñux minima in the ring.
The gray dashed line shows the best-Ðt model of the ring, and the heavy
solid line shows the tangential critical line of the best-Ðt model. The model
was not constrained to Ðt the critical line crossings (see text). [See the
electronic edition of the Journal for a color version of this Ðgure.]

when expanded to Ðrst order in the shear and ellipticity. If
we expand the solution for the Einstein ring to Ðrst order in
the shear, lens ellipticity, source ellipticity, and source posi-
tion in a four-image lens), the Einstein ring is(o/b D cD v

llocated at

rE
b

\ 1 ] o
b

cos (h [ h0) [
e
l

6
cos 2h ] c cos 2(h [ h

g
) .

(9)

At this order, the average radius of the Einstein ring is the
same as that of the tangential critical line. The quadrupole
of the ring has a major axis orthogonal to that of the critical
line if the shear and ellipticity are aligned, or c\ 0,e

l
\ 0

but can be misaligned in the general solution because of the
di†erent coefficients for in equations (8) and (9). For ane

lexternal shear, the ellipticity of the ring is the same as that
of the critical line, while for the ellipsoid the ring is much
rounder than the critical line. The ring has a dipole moment
when expanded about the center of the lens, such that the
average ring position is the source position. At this order,
the ring shape appears not to depend on the source shape.

The higher order multipoles of the ring are important, as
can be seen from the very nonellipsoidal shapes of many
observed Einstein rings (see Fig. 2). The even multipoles of
the ring are dominated by the shape of the lens potential,
while the odd multipoles are dominated by the shape of the
source (see eq. [A5]). Their large amplitudes are driven by
the ellipticity of the source, because the ellipticity of the lens
potential is small even if the lens is Ñattened(cD e

l
/3 D 0.1)

while the ellipticity of the source is not(e
l
D 0.5), (e

s
D 0.5).

For example, in a circular lens c\ 0) the ring is(e
l
\ 0,

located at

rE
b

\ 1 ] o
b

]
C(2 [ e

s
) cos (h [ h0) ] e

s
cos (2m0 [ h [ h0)

2 [ e
s
] e

s
cos 2(m0 [ h)

D
, (10)

which has only odd terms in its multipole expansion and
converges slowly for Ñattened sources. The ring shape is a
weak function of the source shape only if the potential is
nearly round and the source is almost centered on the lens.

3.2. Maxima and Minima in the Brightness of the Ring
The other easily measured quantities for an Einstein ring

are the locations of the maxima and minima in the bright-
ness along the ring. Figure 3 shows the brightness proÐles
as a function of the spoke azimuth for the three lenses. The
brightness proÐle is for a spoke at azimuth m andf

I
(r(m), m)

radius r(m) determined from equation (7), and it has an
extremum when For the ellipsoidal model, thereLm f

I
\ 0.

are maxima at the images of the center of the host galaxy
(*u \ 0), and minima when the ring crosses a critical line
and the magniÐcation tensor is singular ( o M~1 o\ 0). In
fact, these are general properties of Einstein rings and do
not depend on our assumption of ellipsoidal symmetry (see
Blandford, Surpi, & Kundic 2000). The extrema at the criti-
cal line crossings are created by having a merging image
pair on the critical line. The two merging images are created
from the same source region and have the same surface
brightness as the source, so the surface brightness of the ring
must be continuous across the critical line. Alternatively,
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the lobed pattern traced by the ring curve on the source
plane (see Fig. 1) touches the tangential caustic at maxima
of the ellipsoidal radius from the source center. The points
at which the lobes touch the caustic on the source plane
correspond to the points at which the ring crosses the criti-
cal line on the image plane, so the ring brightness proÐle
must have a minimum at the crossing point.

We can accurately measure the locations of the maxima,
since they correspond to the center of the host galaxy or the
positions of the quasars. The positions of the minima, the
two or four points at which the Einstein ring crosses the
tangential critical line, are more difficult to measure accu-
rately. First, if the minimum lies between a close pair of
images, such as the one between the bright A1/A2 quasar
images in PG 1115]080 (see Figs. 2 and 3), the wings of the
PSF must be well modeled to measure the position of the
minimum accurately. Second, the high tangential magniÐ-
cations near crossing points reduce the surface brightness
gradients along the ring near the minima. The smaller the
gradient, the harder it is to accurately measure the position
of the Ñux minimum. Third, the minima will be more easily
a†ected by dust in the lens than the sharply peaked
maxima. Clean, high-precision data is needed to accurately
measure the crossing points.

3.3. Modeling Method
The Ðnal statistic for estimating the goodness of Ðt for the

ring model has three terms. The Ðrst term is the Ðt to the
overall ring curve. We measure the ring position and itsj0uncertainty for a series of spokes radiating from a pointpjnear the ring center with separations at the ring comparable
to the resolution of the observations, so that they are sta-
tistically independent. Given a lens model and the source
structure and we solve equation (7) to(u0, h

s
, q

s
\ 1 [ e

s
),

derive the expected position of the ring and addj
m
, (j

oto our Ðt statistic for each spoke. The second[ j
m
)2/pj2term compares the measured position of the ring peaks to

the positions predicted from the position of the host galaxy,
We simply match the predicted and observed peak posi-u0.tions using a statistic similar to equation (3). If we also Ðt

the separately measured quasar positions, we must be
careful not to double-count the constraints. At present, we
have used a larger uncertainty for the position of the ring
peaks than for the positions of the quasars, so that the host
center is constrained to closely match that of the quasar
without overestimating the constraints on the position of
the quasars and host center. Finally, we determine where
the observed ring crosses the model critical line and
compare it to the positions of the Ñux minima and their
uncertainties, again using a statistic similar to equation (3).
Because we use the observed rather than the model ring to
estimate the positions of the critical line crossings, the con-
straint is independent of any assumptions about the surface
brightness proÐle of the source.

We can estimate the measurability of the parameters
from simple considerations regarding the measurement
accuracy. We measure the ring radius at N independent
points measured around the ring with uncertainties of inp

rthe radius of each point. If we measure the multipole
moments of the ring,5 then the uncertainty in the individual

5 The multipole moments for a ring with radius r(h) are c0\
for the monopole and and(2n)~1/02n r(h)dh c

m
\ n~1/02n r(h) cos mhdh

for m[ 0.s
m

\ n~1/02n r(h) sin mhdh

components is The number of independentp2\ 2p
r
2/N.

measurements is set by the resolution of the observations.
For a PSF with full-width at half-maximum (FWHM), the
number of independent measurements is approximately
N ^ 2nb/FWHM ^ 50 for HST observations of a lens with
a critical radius of The radius of the ring can beb \ 1A.0.
determined to an accuracy of wherep

r
^FWHM/(S/N)1@2,

S/N is the signal-to-noise ratio of the ring averaged over the
resolution element. Hence, the multipole moments can be
determined to an accuracy of p/b ^ 0.005(10 FWHM/
b)3@2[10/(S/N)]1@2 for typical HST observations. If we
compare this to the terms appearing in the shape of the
Einstein ring, the accuracy with which the ellipticity and
shear of the lens can be determined from the shape of the
ring is and p(c) ^ 0.005, respectively, for thep(e

l
) ^ 0.02

nominal noise level. The axis ratio of the source can be
determined to an accuracy of from the higherp(e

s
) D 0.05

order terms.

4. EXAMPLES

Our model for Einstein rings works well on synthetic
data generated using an ellipsoidal source. The key ques-
tion, however, is whether it works on real Einstein rings.
Here we illustrate our results for the Einstein ring images of
the host galaxies in the lenses PG 1115]080 (Impey et al.
1998), B1608]656 (Fassnacht et al. 1996), and B1938]666
(King et al. 1997). We use the CfA/Arizona Space Telescope
Lens Survey (CASTLES) H-band images of the lenses (see
Falco et al. 2000), which are shown in Figure 2. Figure 3
shows the brightnesses of the rings as a function of azimuth,
which are used to determine the positions of the extrema.
The maxima correspond to the centers of the host galaxies,
and the minima correspond to the points at which the criti-
cal line crosses the Einstein ring. Our purpose is to illustrate
the Einstein ring Ðtting method ; detailed treatments and
discussions of for the individual systems are deferred toH0later studies.

PG 1115]080 (Weymann et al. 1980) was the second lens
discovered. It consists of four images of a quasarz

s
\ 1.72

lensed by a early-type galaxy in a small groupz
l
\ 0.31

(Tonry 1998 ; Kundic et al. 1997a). Detailed models of the
system to interpret the time-delay measurement (Schechter
et al. 1997 ; see also Barkana 1997) found a degeneracy in
the models between the radial mass proÐle of the lens
galaxy and the value of the Hubble constant (see Keeton &
Kochanek 1997 ; Courbin et al. 1998 ; Impey et al. 1998 ;
Williams & Saha 2000 ; Zhao & Pronk 2000). Impey et al.
(1998) also discovered an Einstein ring formed from the host
galaxy of the quasar, and could show that the shape was
plausibly reproduced by their models.

To extract the ring curve, we Ðrst subtracted most of the
Ñux from the quasar images to minimize the Ñux gradients
along the ring. We subtracted enough of the point sources
to remove the e†ects of the Airy ring of the PSF on the
Einstein ring, while leaving a well-deÐned central peak. We
found by experimentation that we could safely subtract
90%È95% of the point-source Ñux before we began to intro-
duce artifacts created by the di†erences between the model
and true PSFs. Even so, the point sources create an artiÐcial
wiggle in the ring near the brightest quasar images (A1/A2).
The lens galaxy is very well modeled as a nearly circular de
Vaucouleurs proÐle galaxy, and it is fainter than the host
galaxy at the location of the ring, so its subtraction from the
image introduces no problems in determining the location
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of the ring. Figure 4 schematically illustrates the positions
of the four quasars, the location of the Einstein ring, and its
uncertainties.

We Ðt the data using an SIE for the primary lens galaxy
and a singular isothermal sphere for the group to which the
lens belongs, which we already knew would provide a sta-
tistically acceptable Ðt to all properties of the quasar images
except the peculiar A1/A2 Ñux ratio (see Impey et al. 1998).
We forced the images of the center of the host galaxy to be
within 10 mas of the quasar images, which tightly con-
strains the host position without introducing a signiÐcant
double-counting of the quasar position constraints. We
monitored, but did not include, the critical line-crossing
constraints in the Ðts. The Impey et al. (1998) model natu-
rally reproduces the Einstein ring with a Ñattened host
galaxy centered on the(q

s
\ 0.58^ 0.02, h

s
\[17¡ ^ 2¡)

quasar. All subsequent lens models had negligible changes
in the shape and orientation of the source. The Ðt to the ring
is somewhat worse than expected (a s2 per ring point of 1.3),
in part due to residual systematic problems from subtrac-
ting the point sources, such as the ripple in the ring between
the bright A1 and A2 quasar images (see Fig. 4). Figure 4
also shows the locations of the Ñux minima in the ring,
which should correspond to the points at which the critical
line crosses the ring. Three of the four Ñux minima lie where
the model critical line crosses the ring given the uncer-
tainties. The northeast Ñux minimum, however, agreed with
no attempted model.

We examined whether the constraints from the Einstein
ring can break the degeneracy between the mass proÐle and
the Hubble constant in two steps. We Ðrst simulated the
system with synthetic data matching our best Ðt to the
quasars and the Einstein ring using an SIE lens model. We
Ðtted the synthetic data using an ellipsoidal pseudo-Ja†e
model for the lens instead of an SIE. In previous models of
the system, we had found km s~1 Mpc~1 forH0\ 45 ^ 4
the SIE model (the limit at which the pseudo-Ja†e break
radius a ] O ; see ° 2.2), and Mpc~1 forH0\ 65 ^ 5 a ^

where the mass is as centrally concentrated as the lens1A.0,
galaxyÏs light. For the synthetic data, the s2 statistic shows a
signiÐcant rise for when the Einstein ring con-a \ 2A.0
straints are included, with roughly equal contributions from
the position of the ring, the positions of the Ñux maxima,
and the positions of the Ñux minima/critical line crossings.
In the second step we Ðtted the real data using the same
models, but without the constraints on the locations of the
critical line crossings. The monotonic rise in the s2 statistic
as we reduce the break radius a is similar to that found for
the synthetic data, and our 2 p upper bound on the break
radius of the pseudo-Ja†e model is The mass dis-a [ 2A.0.
tribution of the lens galaxy cannot be more centrally con-
centrated than the Einstein ring, and for the Schechter et al.
(1997) time delays it requires a low value of the Hubble
constant, km s~1 Mpc~1. Once a is smaller thanH0\ 60
the ring radius, the s2 does not rise as rapidly as in the
simulations, suggesting that the results are limited by sys-
tematic problems in measuring the ring location. Deeper
images with empirical PSF determinations are needed to
conÐrm and reÐne the result.

B1608]656 (Myers et al. 1995 ; Fassnacht et al. 1996)
consists of four unresolved radio images of a z

s
\ 1.394

radio galaxy created by a lens consisting of two z
l
\ 0.63

galaxies that lie inside an optical and infrared Einstein ring
image of the host galaxy of the AGN. Fassnacht et al. (1999,

2000) have measured all three relative time delays for the
radio images, which were interpreted to determine a Hubble
constant by Koopmans & Fassnacht (1999). We partially
subtracted the point sources (as in PG 1115]080), but with
fewer systematic problems because there is less contrast
between the ring and the point sources in B1608]656. We
subtracted models for the two lens galaxies whose parame-
ters were determined from a Ðt to the image including the
lensed images of the host galaxy. The Ðts to the two lens
galaxies are not as clean as in PG 1115]080. Near the ring,
the lens galaxies are fainter than the host, so residuals from
subtracting the lens galaxies probably are not a major
problem. Extinction, while present (see Blandford et al.
2000), is a limited problem. The ring properties we use for
our models are a†ected only by extinction gradients : the
position of the ring is modiÐed by gradients perpendicular
to the ring, and the positions of Ñux minima are modiÐed by
gradients along the ring. For example, if the width of the
ring is W and we want to measure its position to accuracy
p, the extinction gradient across the ring must be larger
than mag arcsec~1 todE(B [ V )/dx [ 2(0A.1/W )2(p/0A.01)
signiÐcantly modify the observed ring position, while
Blandford et al. (2000) estimated a total lens rest-frame
extinction of only E(B[ V ) ^ 0.15 mag. The most impor-
tant limitation on our determination of the ring properties
is the poor signal-to-noise ratio near image D.

We Ðt the system with two SIE models for the two gal-
axies enclosed by the ring, and an external shear to rep-
resent the local environment or other perturbations. Figure
5 shows the ring and our Ðt. Koopmans & Fassnacht (1999)
added large core radii to their models to avoid creating
seven rather than four images. In our models, we avoid

FIG. 5.ÈB1608]656. The radio images A, B, C and D are aligned with
the infrared point sources and are marked by the Ðlled symbols. The light
black lines show the ring centroid and its uncertainties, and the gray
triangles mark the Ñux minima in the ring. The gray dashed line shows the
best-Ðt model of the ring, and the heavy solid line shows the tangential
critical line of the best-Ðt model. The model was not constrained to Ðt the
critical line crossings (see text). The two Ñux minima in the southwestern
ring quadrant are an artifact of the noise in the proÐle (see Fig. 3). [See the
electronic edition of the Journal for a color version of this Ðgure.]
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producing an unobserved image lying between the two gal-
axies by having a signiÐcantly larger mass ratio between the
two galaxies than in the Koopmans & Fassnacht (1999)
models. In fact, the mass ratio we Ðnd in our Ðts is relatively
close to the observed Ñux ratio of the two galaxies. The
determination of the ringÏs location is not as clean as in PG
1115]080, although the goodness of Ðt is reasonably good
(an average s2 per ring point of 1.3). The overall boxy shape
of the ring is reproduced by a source with an axis ratio of

and a major-axis P.A. ofq
s
\ 0.69^ 0.02 h

s
\ [40¡^ 4¡.

The largest deviations of the model from the data lie on an
east-west axis, where galaxy subtraction errors or dust in
the lens galaxies (Blandford et al. 2000) would most a†ect
our extraction of the ring. The locations of the Ñux minima
are broadly consistent with the model (see Fig. 5), although
the measurement accuracy is poor. In the southwestern
quadrant we found two minima in the ring Ñux, which is an
artifact created by the noisy, Ñat brightness proÐle in that
quadrant (see Fig. 3).

B1938]666 (King et al. 1997) has a two-image system
(A2/B2) and a four-image system (A1/B1/C1/C2) of
compact radio sources (see Fig. 6). The B1, C1, and C2
images are connected by a low surface brightness radio arc.
The lens galaxy is a normal early-type galaxy at z

l
\ 0.88

(Tonry & Kochanek 2000), but the source redshift is
unknown. Surrounding the lens galaxy is an almost per-
fectly circular infrared Einstein ring image of the host
galaxy (King et al. 1998 ; see our Fig. 2).The radio sources
are multiply imaged lobes rather than a central core, so the

FIG. 6.ÈB1938]666. The radio images A1, B1, C1 and C2 form a
four-image system, and the radio images A2 and B2 form a two-image
system ( Ðlled squares). There are two images of the center of the host
galaxy A and B ( Ðlled triangles). There are two points for the C1 and C2
images, corresponding to the observed and model positions for the images.
The light black lines show the ring centroid and its uncertainties, and the
gray triangles mark the Ñux minima in the ring. The gray dashed line
shows the best-Ðt model of the ring, and the heavy solid line shows the
tangential critical line of the best-Ðt model. The model was constrained to
Ðt the critical line crossings (see text), and the alignment of the optical and
radio data was optimized as part of the model. [See the electronic edition of
the Journal for a color version of this Ðgure.]

center of the galaxy is not aligned with the doubly imaged
radio source. We Ðt the six compact components and the
infrared ring, allowing the model to optimize the regis-
tration of the radio and infrared data. The lens is very sym-
metric and the source is very close to the lens center, so we
cannot measure the axis ratio of the source to high preci-
sion. We Ðnd an axis ratio of and a major-q

s
\ 0.62^ 0.14

axis position angle of Since the ring data areh
s
\ 11¡ ^ 11¡.

very clean compared to PG 1115]080 and B1608]656, in
the sense that there are no bright point sources or compli-
cated lenses that must be subtracted before extracting the
ring, we included the Ñux minima as a constraint on the
models. The Ðt to the ring is too good given the formal
errors (for the overall trace we Ðnd a s2 per point of 0.2, a s2
per Ñux peak of 0.3, and a s2 per Ñux minimum of 0.2).
From our experience with PG 1115]080 and B1608]656,
we had settled on a very conservative error model for the
ring properties, which is too pessimistic for B1938]666, for
which it is so much easier to measure the ring properties.
The V L BI component positions were Ðtted less well (a s2
per component coordinate of 4.0), in part because the accu-
racy of the component identiÐcations for the arc images C1
and C2 are probably worse than their formal uncertainties.
The Ðt is illustrated in Figure 6.

5. SUMMARY

Modern observations of gravitational lenses, both in the
radio and with HST , routinely Ðnd extended lensed struc-
tures. In particular, Einstein ring images of the host galaxies
of the lensed sources (AGNs and radio-loud and radio-quiet
quasars) are frequently detected even in short-infrared
images of gravitational lenses. The discovery of these addi-
tional images is critical to expanding the use of lenses to
determine the mass distributions of galaxies and the Hubble
constant, where the models have been limited by the Ðnite
number of constraints supplied by the two or four images of
the active nucleus.

We developed a simple theoretical model for Einstein
rings and demonstrated it using the rings observed in PG
1115]080, B1608]656, and B1938]666. The assumption
of ellipsoidal symmetry for the source works well, and we
can accurately and simultaneously determine the shapes of
the host galaxy and the lens potential. Contrary to popular
belief, the distortions introduced by lensing are not a major
complication to studying the properties of the host galaxy.
In fact, host galaxies and gravitational lensing provide a
virtuous circle. The magniÐcation by the lens enormously
reduces the contrast between the host galaxy and the
central engine over unlensed host galaxies (by factors of
10È103 in surface brightness contrast). This makes it signiÐ-
cantly easier to Ðnd and analyze the host galaxies of high-
redshift quasars. In return, the host galaxy provides
signiÐcant additional constraints on the mass distribution
of the lens. These constraints can break the lens model
degeneracies that have made it difficult to determine the
mass distribution of the lens or the Hubble constant from
time-delay measurements. Since we expect all quasars and
AGNs to have host galaxies, we can obtain these additional
constraints for any system where they are needed.

Our tests of the method worked extraordinarily well even
though the existing observations of the lensed host galaxies
were incidental to observations designed to efficiently Ðnd
and study the lens galaxy (see Falco et al. 2000). The obser-
vations were short and could not a†ord the high overheads
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for obtaining contemporaneous empirical PSFs. There are
now six gravitational lenses with time-delay measurements
(B0218]357, Biggs et al. 1999 ; Q0957]561, Schild &
Thomson 1995, Kundic et al. 1997b, Haarsma et al. 1999 ;
PG 1115]080, Schechter et al. 1997, Barkana 1997 ;
B1600]434, Koopmans et al. 2000, Hjorth et al. 2000 ;
B1608]656, Fassnacht et al. 1999, 2000 ; and PKS
1830[211, Lovell et al. 1998), and lensed images of the host
galaxy have been found in four of the six (Q0957]561,
Bernstein et al. 1997, Keeton et al. 2000 ; PG 1115]080,
Impey et al. 1998 ; B1600]434, Kochanek et al. 1999 ; and
B1608]656, Koopmans & Fassnacht 1999). A dedicated

program of longer observations with empirical PSF data
would be revolutionary and lead to a direct, accurate deter-
mination of the global value of the Hubble constant.
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K. is also supported by NASA Astrophysics Theory
Program grants NAG5-4062 and NAG5-9265.

APPENDIX

AN ANALYTIC MODEL

In this Appendix we derive an analytic solution of equation (7) for the Einstein ring radius as a function of azimuth for
generalized isothermal potentials, in an external shear Ðeld, where is a constant radial scale and we deÐne/\ rr0F(h), r0SF(h)T \ 1 (see Zhao & Pronk 2000 ; Witt et al. 2000). The model includes the SIE as a subcase. After deÐning the radial and
tangential unit vectors, and we Ðnd that the source plane tangent vector iseü

r
\ dx/dj eü h,

t \ M~1 Æ eü
r
\ G Æ eü

r
, (A1)

where

G \(
t
:

1 [ c
c

[c
s[c

s
1 ] c

c

)
t
;

(A2)

deÐnes the external shear. If there is no external shear, G becomes the identity matrix, and The distance of the curvet \ eü
r
.

from the center of the ellipsoidal source is

u [ u0\ rt [ r0F(h)eü
r
[ r0F@(h)eü h[ u0 , (A3)

where F@(h)\ dF/dh. The radius of the Einstein ring relative to the lens is simply

r \ r0 h Æ S Æ t ] u0 Æ S Æ t
t Æ S Æ t

, (A4)

where Note that there is no transformation of the source shape that will eliminate any other variable (the lensh \ Feü
r
] F@eü h.potential, the external shear, or the source position) from the shape of the ring, which means that there are no simple

parameter degeneracies between the potential and the source. If there is no external shear then the solution simpliÐes(t \ eü
r
),

to

r \ r0 F(h)] r0F@(h)
eü h Æ S Æ eü

r
eü
r
Æ S Æ eü

r
] u0 Æ S Æ eü

r
eü
r
Æ S Æ eü

r
] r0F(h) ] u0 Æ eü

r
(A5)

if the source is circular and S \ I. For comparison, the tangential critical radius of the lens is

rcrit\ r0[F(h) ] F@@(h)]
Aeü

r
Æ G Æ eü

r
o G o

B
. (A6)

We have found no general analytic solutions for models with a di†erent radial dependence for the density, but limited analytic
progress can be made for potentials of the form with the source at the origin. The equation for the ring/\ rbr02~bF(h)
location is then a quadratic in W \ (r/r0)2~b,

0 \ W 2t Æ S Æ t [ bW h Æ S Æ t ] (b [ 1)h Æ S Æ h , (A7)

where the deÐnition of h is modiÐed to be The result is of limited use because the source o†sets are importanth \bFeü
r
] F@eü h.in explaining the observed ring shapes. The radial proÐle clearly modiÐes the ring shape, but numerical experiments are

required to determine the ability of the ring shape to discriminate between radial mass proÐles, given the freedom to adjust the
source shape and position, the lens shape, and the external shear.
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