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ABSTRACT
We examine the roles the presence of hyperons in the cores of neutron stars may play in determining

global properties of these stars. The study is based on estimates that hyperons appear in neutron star
matter at about twice the nuclear saturation density, and emphasis is placed on e†ects that can be attrib-
uted to the general multispecies composition of the matter, hence being only weakly dependent on the
speciÐc modeling of strong interactions. Our analysis indicates that hyperon formation not only softens
the equation of state but also severely constrains its values at high densities. Correspondingly, the valid
range for the maximum neutron star mass is limited to about 1.5È1.8 which is a much narrowerM

_
,

range than available when hyperon formation is ignored. E†ects concerning neutron star radii and rota-
tional evolution are suggested, and we demonstrate that the e†ect of hyperons on the equation of state
allows a reconciliation of observed pulsar glitches with a low neutron star maximum mass. We discuss
the e†ects hyperons may have on neutron star cooling rates, including recent results that indicate that
hyperons may also couple to a superÑuid state in high-density matter. We compare nuclear matter to
matter with hyperons and show that once hyperons accumulate in neutron star matter, they reduce the
likelihood of a meson condensate but increase the susceptibility to baryon deconÐnement, which could
result in a mixed baryon-quark matter phase.
Subject headings : elementary particles È equation of state È stars : evolution È stars : neutron

1. INTRODUCTION

The existence of stable matter at supernuclear densities is
unique to neutron stars. Unlike all other physical systems in
nature, where the baryonic component appears in the form
of atomic nuclei, matter in the cores of neutron stars is
expected to be a homogeneous mixture of hadrons and
leptons. As a result the macroscopic features of neutron
stars, including some observable quantities, have the poten-
tial to illuminate the physics of supernuclear densities. In
this sense, neutron stars serve as cosmological laboratories
for hadronic physics. A speciÐc feature of supernuclear den-
sities is the possibility for new hadronic degrees of freedom
to appear, in addition to neutrons and protons. One such
possible degree of freedom is the formation of hyperonsÈ
strange baryonsÈwhich is the main subject of the present
work. Other possible degrees of freedom include meson
condensation and a deconÐned quark phase.

While hyperons are unstable under terrestrial conditions
and decay into nucleons through the weak interaction, the
equilibrium conditions in neutron stars can make the
reverse process, i.e., the conversion of nucleons into hyper-
ons, energetically favorable. The appearance of hyperons in
neutron stars was Ðrst suggested by Ambartsumyan &
Saakyan (1960) and has since been examined in many
works. Earlier calculations include the works of Pandhari-
pande (1971b), Bethe & Johnson (1974), and Moszkowski
(1974), which were performed by describing the nuclear
force in theory. In recent years, studies of high-Schro� dinger
density matter with hyperons have been performed mainly
in the framework of Ðeld theoretical models (Glendenning
1985 ; Weber & Weigel 1989 ; Knorren, Prakash, & Ellis
1995 ; Scha†ner & Mishustin 1996 ; Huber et al. 1998). For a
review, see Glendenning (1996) and Prakash et al. (1997). It

was also recently demonstrated that good agreement with
these models can be attained with an e†ective potential
model (Balberg & Gal 1997).

These recent works share a wide consensus that hyperons
should appear in neutron star (cold, beta-equilibrated,
neutrino-free) matter at a density of about twice the nuclear
saturation density. This consensus is attributed to the fact
that all these more modern works base their estimates of
hyperon-nucleon and hyperon-hyperon interactions on the
experimental constraints inferred from hypernuclei. The
fundamental qualitative result from hypernuclei experi-
ments is that hyperon-related interactions are similar in
character and in order of magnitude to nucleon-nucleon
interactions. In a broader sense, this result indicates that in
high-density matter, the di†erences between hyperons and
nucleons will be less signiÐcant than for free particles.

The aim of the present work is to examine what roles the
presence of hyperons in the cores of neutron stars may play
in determining the global properties of these stars.

We place special emphasis on e†ects that can be attrib-
uted to the multispecies composition of the matter while
being only weakly dependent on the details of the model
used to describe the underlying strong interactions.

We begin our survey in ° 2 with a brief summary of the
equilibrium conditions that determine the formation and
abundance of hyperon species in neutron star cores. A
review of the widely accepted results regarding hyperon for-
mation in neutron stars is given in ° 3. We devote ° 4 to an
examination of the e†ect of hyperon formation on the equa-
tion of state of dense matter and the corresponding e†ects
on the starÏs global properties : maximum mass, mass-radius
correlations, rotation limits, and crustal sizes. In ° 5 we
discuss neutron star cooling rates, where hyperons might
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play a decisive role. A discussion of the e†ects of hyperons
on phase transitions which may occur in high density
matter is given in ° 6. Conclusions and discussion are
o†ered in ° 7.

2. EQUILIBRIUM CONDITIONS FOR HYPERON FORMATION

NEUTRON STARS

In the following discussion we assume that the cores of
neutron stars are composed of a mixture of baryons and
leptons in full beta equilibrium (thus ignoring possible
meson condensation and a deconÐned quark phaseÈthese
issues will be picked up again in ° 6). The procedure for
solving the equilibrium composition of such matter has
been describes in many works (see, e.g., Glendenning 1996
and Prakash et al. 1997 and references therein) and in
essence requires chemical equilibrium of all weak processes
of the type

B1] B2 ] l] l6
l

; B2] l] B1] l
l

, (1)

where and are baryons, l is a lepton (electron orB1 B2muon), and l is its corresponding neutrino(l6 )
(antineutrino). Charge conservation is implied in all pro-
cesses, determining the legitimate combinations of baryons
that may couple together in such reactions.

Imposing all the conditions for chemical equilibrium
yields the ground state composition of beta-equilibrated
high-density matter. The equilibrium composition of such
matter at any given baryon density, is described by theo
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Evolved neutron stars can be assumed to be transparent
to neutrinos on any relevant timescale so that neutrinos are
absent and All equilibrium conditions maykl\ kl6 \ 0.
then be summarized by a single generic equation :
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The temperature range of evolved neutron stars is typi-
cally much lower than the relevant chemical potentials of
baryons and leptons at supernuclear densities. Neutron star
matter is thus commonly approximated as having zero tem-
perature, so that the equilibrium composition and other
thermodynamic properties depend on density alone.
Solving the equilibrium compositions for a given equation
of state (EOS) at various baryon densities yields the energy
density and pressure that enable the calculation of global
neutron star properties.

3. HYPERON FORMATION IN NEUTRON STARS

In this section we review the principal results of recent
studies regarding hyperon formation in neutron stars. The
masses, along with the strangeness and isospin, of nucleons
and hyperons are given in Table 1. The electric charge and
isospin combine in determining the exact conditions for
each hyperon species to appear in the matter. Since nuclear

TABLE 1

QUANTUM NUMBERS OF THE BARYONS

IN THE SPIN OCTET : MASS12(in MeV c~2), STRANGENESS,
AND ISOSPIN PROJECTION

Species Mass S I3
p . . . . . . . . . 938.3 0 12
n . . . . . . . . . 939.6 0 [ 12" . . . . . . . . . 1115.6 [1 0
&` . . . . . . . 1189.4 [1 1
&0 . . . . . . . . 1192.5 [1 0
&~ . . . . . . . 1197.3 [1 [ 1
$0 . . . . . . . . 1314.9 [2 12$~ . . . . . . . 1321.3 [2 [ 12

matter has an excess of positive charge and negative isospin,
negative charge and positive isospin are favorable along
with a lower mass for hyperon formation, and it is generally
a combination of the three that determines the baryon
density at which each hyperon species appears. A quantitat-
ive examination requires, of course, modeling of high-
density interactions. We begin with a brief discussion of the
current experimental and theoretical basis used in recent
studies that have examined hyperon formation in neutron
stars.

3.1. Experimental and T heoretical Background
The properties of high-density matter chieÑy depend on

the nature of the strong interactions. Quantitative analyses
of the composition and physical state of neutron star matter
are currently complicated by the large uncertainties regard-
ing strong interactions, both in terms of the difficulties in
their theoretical description and from the limited relevant
experimental data. Nonetheless, progress in both experi-
ment and theory have provided the basis for several recent
studies of the composition of high-density matter and in
particular suggests it will include various hyperon species.

Experimental data from nuclei set some constraints on
various physical quantities of nuclear matter at the nuclear
saturation density, fm~3. Important quantitieso0\ 0.16
are the bulk binding energy, the symmetry energy of non-
symmetric matter (i.e., di†erent numbers of neutrons and
protons), the nucleon e†ective mass in a nuclear medium,
and a reasonable constraint on the compression modulus of
symmetric nuclear matter. However, at present, little can be
deduced regarding properties of matter at higher densities.
Heavy ion collisions have been able to provide some infor-
mation regarding higher density nuclear matter, but the
extrapolation of these experiments to neutron star matter is
questionable since they deal with hot nonequilibrated
matter.

Relevant data for hyperon-nucleon and hyperon-hyperon
interactions is scarcer and relies mainly on hypernuclei
experiments (for a review of hypernuclei experiments, see
Chrien & Dover 1989 and Gibson & Hungerford 1995). In
these experiments a single hyperon is formed in a nucleus,
and its binding energy is deduced from the energetics of the
reaction [typically meson scattering such as X(K~, n~)X].

There exists a large body of data for single "-hypernuclei,
which clearly shows bound states of a " hyperon in a
nuclear medium. Millener, Dover, & Gal (1988) used the
nuclear mass dependence of " levels in hypernuclei to
derive the density dependence of the binding energy of a "
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hyperon in nuclear matter. In particular, they estimate the
potential depth of a " hyperon in nuclear matter at density

to be about [28 MeV, which is about one-third of theo0equivalent value for a nucleon in symmetric nuclear matter.
The data from &-hypernuclei are more problematic (see
below). A few emulsion events that have been attributed to
$-hypernuclei seem to suggest an attractive $ potential in a
nuclear medium, somewhat weaker than the "-nuclear
matter potential.

A few measured events have been attributed to the forma-
tion of double " hypernuclei, where two "Ïs have been
captured in a single nucleus. The decay of these hypernuclei
suggests an attractive "-" interaction potential of 4È5 MeV
(Bodmer & Usmani 1987), somewhat less than the corre-
sponding nucleon-nucleon value of 6È7 MeV. This value of
the "-" interaction is often used as the baseline for
assuming a common hyperon-hyperon potential, corre-
sponding to a well depth for a single hyperon in isospin-
symmetric hyperon matter of [40 MeV. While this value
should be taken with a large uncertainty, the typical results
regarding hyperon formation in neutron stars are generally
insensitive to the exact choice for the hyperon-hyperon
interaction, as discussed below.

We emphasize again that the experimental data is far
from comprehensive, and great uncertainties still remain in
the modeling of baryonic interactions. This is especially true
regarding densities greater than where the importance ofo0,
many-body forces increases. Three-body interactions are
used in some nuclear matter models (Wiringa, Fiks, & Fab-
rocini 1988 ; Akmal, Pandharipande, & Ravenhall 1998).
Many-body forces for hyperons are currently difficult to
constrain from experiment (Bodmer & Usmani 1988),
although some attempts have been made on the basis of
light hypernuclei (Gibson & Hungerford 1995). Indeed, Ðeld
theoretical models include a repulsive component in the
two-body interactions through the exchange of vector
mesons, rather than introduce explicit many-body terms.
We note that the e†ective equation used here is also com-
patible with theoretical estimates of "NN forces through
the repulsive terms it includes (Millener et al. 1988).

In spite of these signiÐcant uncertainties, the qualitative
conclusion that can be drawn from hypernuclei is that
hyperon-related interactions are similar both in character
and in order of magnitude to the nucleon-nucleon inter-
actions. Thus, nuclear matter models can be reasonably
generalized to include hyperons as well. In recent years this
has been performed mainly with relativistic theoretical Ðeld
models, where the meson Ðelds are explicitly included in an
e†ective Lagrangian. A commonly used approximation is
the relativistic mean Ðeld (RMF) model following Serot &
Walecka (1980) and implemented Ðrst for multispecies
matter by Glendenning (1985) and more recently by
Knorren et al. (1995) and Scha†ner & Mishustin (1996) (see
the recent review by Glendenning 1996). A related approach
is the relativistic Hartree-Fock (RHF) method that is solved
with relativistic GreenÏs functions (Weber & Weigel 1989 ;
Huber at al. 1998). Balberg & Gal (1997) demonstrated that
the quantitative results of Ðeld theoretical calculations can
be reproduced by an e†ective potential model.

The results of these works provide a wide consensus
regarding the principal features of hyperon formation in
neutron star matter. This consensus is a direct consequence
of incorporating experimental data on hypernuclei (Balberg
& Gal 1997). These principal features are discussed below.

3.2. Estimates for Hyperon Formation in Neutron Stars
Hyperons can form in neutron star cores when the

nucleon chemical potentials grow large enough to compen-
sate for the mass di†erences between nucleons and hyper-
ons, while the threshold for the appearance of the hyperons
is tuned by their interactions. The general trend in recent
studies of neutron star matter is that hyperons begin to
appear at a density of about and that byo

B
\ 2o0 o

B
B 3o0hyperons sustain a signiÐcant fraction of the total baryon

population. An example of the estimates for hyperon forma-
tion in neutron star matter, as found in many works, is
displayed in Figure 1. The equilibrium compositionsÈ
relative particle fractions plotted as a function ofx

i
Èare

the baryon density, These compositions were calculatedo
B
.

with case 2 of the e†ective equation of state detailed in the
Appendix, which is similar to model d \ c\ 5/3 of Balberg
& Gal (1997). Figure 1a presents the equilibrium composi-
tions for the ““ classic ÏÏ case of nuclear matter, when hyper-
ons are ignored, and matter is composed of nucleons and
leptons. The equilibrium compositions when hyperons are
included are shown in Figure 1b, when the interaction of &
hyperons in nuclear matter (nm) is set to be equal to the

FIG. 1.ÈRelative fractions of the equilibrium composition of neutron
star matter as a function of the baryon density, for EOS 2: (a) nuclear
matter, (b) matter with nucleons and all hyperons, and (c) matter with
nucleons, ", and $ hyperons but no &Ïs.
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"-nm case (except for the inclusion of isospin-dependent
components in the &-nm case). Key qualitative aspects of
hyperon formation in neutron star matter are as follows :

1. The Ðrst hyperon species that appears is the &~,
closely followed by the ". The negative charge of the &~
outweighs the 80 MeV mass di†erence, as a result of the
more lenient condition of equation (2) that requires k" \ k

nbut However, the formation of &~ hyperonsk&~ \ k
n
] k

e
.

is quickly moderated by the isospin-dependent forces that
disfavor an excess of &~Ïs over &`Ïs, and also joint excess of
&~Ïs and neutrons (both of negative isospin projection).
Thus, the &~ fraction saturates at about 0.1, while the "Ïs,
free of isospin-dependent forces, continue to accumulate
until short-range repulsion forces cause them to saturate as
well.

2. Other hyperon species follow at higher densities.
Under the assumptions of the particular model of EOS 2,
other &Ïs generally appear before the $Ïs owing to the large
mass di†erence, but the $~ becomes favored owing to its
negative electric charge and quickly becomes abundant in
the matter.

3. A unique aspect of hyperon accumulation is the imme-
diate deleptonization of the matter. Leptons are rather
expensive in terms of energy density (and pressure) and
survive in nuclear matter only in order to maintain charge
neutrality with the protons. Hyperons o†er an option for
lowering the neutron excess free of lepton formation, and
the negatively charged hyperons allow charge neutrality to
be maintained within the baryon community. The lepton
fraction is therefore reduced by hyperon formation, and the
appearance of the $~ is followed by a very powerful delep-
tonization. The muon population is completely extin-
guished, and the electron fraction drops below 1%, whereas
it exceeds 10% in the nuclear matter case.

We remark that some of these general features are some-
what dependent on the assumptions used to describe the
hyperon-nucleon interactions. In particular, if any reaction
is changed to be highly repulsive, the formation of some
species may become suppressed. As an example, Figure 1c
shows the equilibrium compositions found when a strongly
repulsive component is introduced in the potential of &
hyperons in nuclear matter. The existence of such a repul-
sive isoscalar component has been suggested on the basis of
recent analysis of &~ atoms (Batty, Friedman, & Gal 1994 ;

et al. 1995). The analysis predicts a (&-nm) repulsionMares—
of several MeV at the nuclear saturation density, and even
larger repulsion at greater densities. If such repulsion exists,
&Ïs do not form in neutron star matter (see also Knorren et
al. 1995 and Balberg & Gal 1997). As a result, " formation
begins at slightly lower densities than when &Ïs are present,
and $ formation is especially enhanced. It is noteworthy,
however, that the overall strangeness fraction in this case is
similar to the case when &Ïs are present. Since at least the
"-nm interaction seems well determined, we believe a sig-
niÐcant change of the basic features of hyperon formation is
unlikely (see also the analysis by Glendenning & Mosz-
kowski 1991). There is less dependence on the hyperon-
hyperon interactions (again, unless they are set to be highly
repulsiveÈwhich seems unlikely in view of data from
double " hypernuclei). This is because the matter is domi-
nated by nucleons until high densities, where universal
short-range forces are expected to take precedence over the
speciÐc baryon identities.

We note in passing that * isobars are also candidates for
formation in high-density matter. Most works that exam-
ined the possible appearance of * isobars in dense matter
Ðnd that they are never present, owing to a strong isovector
repulsion. It should be noted that in some relativistic
Hartree-Fock frameworks the nucleon-* coupling (through
the o-meson) is signiÐcantly weakened, and * isobars are
found to appear in high-density neutron star matter (Weber
& Weigel 1989 ; Huber at al. 1998). In this work we follow
the assumption that *Ïs do not appear in neutron star
matter.

To conclude, it is noteworthy that recent works agree
that hyperons appear at a density of about and at2o0,
higher densities the matter will possess a sizable hyperon
fraction, coupled to signiÐcant deleptonization. We empha-
size again that these qualitative features are common to all
works that examined hyperon formation in neutron star
matter and are only weakly dependent on the speciÐcs of
the underlying models. These models are based on various
types of approximations and are limited by the large uncer-
tainties involved ; clearly, further work (and, hopefully,
more experimental data) is required to obtain more reliable
quantitative results. Nonetheless, this consensus is a direct
consequence of employing data from hypernuclei experi-
ments and therefore may serve as valid indication regarding
hyperon abundances in high-density matter at beta equi-
librium. In the following analysis we assume that these
recent works do provide a basis for the investigation of the
e†ects of hyperon formation on global properties of neutron
stars.

4. ROLES OF HYPERONS IN THE EQUATION OF STATE

The most signiÐcant implications of the composition of
high-density matter for the global properties of neutron
stars are reÑected in the equation of state (EOS). It is the
EOS that determines the mass and radius a neutron star
can hold for a given central density and what e†ect rotation
will have on these values. In turn, the observed constraints
on the maximum mass and rotational frequencies of pulsars
can provide indirect clues regarding the physics of high-
density matter.

The principal e†ect caused by hyperon formation in the
dense core of neutron stars is a softening of the EOS. The
softening is seen when compared against the EOS for
matter composed of nucleons and leptons alone, but with
otherwise identical assumptions regarding the strong inter-
actions. This basic property of matter with hyperons has
been noted in many works (Glendenning 1996 and refer-
ences therein) and is a fundamental result that is basically
independent of the precise model used for the baryonic
interactions. Hyperons o†er another degree of freedom for
baryonic matter and relieve some of the Fermi pressure of
the nucleons. The creation of additional species allows
energy to be held as mass rather than kinetic and potential
energy, which are more expensive in terms of pressure. Here
we wish to call attention to some of the underlying features
of hyperon induced softening.

It is useful to begin with an emphasis on the fundamental
relation between the microscopic baryonic interactions and
the macroscopic EOS. As demonstrated explicitly by Pand-
haripande, Pines, & Smith (1976), the nuclear matter EOS is
critically coupled to the nucleon-nucleon interaction : the
greater the short-range repulsion, the greater the energy
density for a given baryon density, and hence a sti†er EOS.
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Since there are practically no experimental limits on the
short-range repulsion, published nuclear matter equations
vary over a relatively large range.

The microscopic-macroscopic connection becomes even
more pronounced when hyperons are taken into account.
As discussed in detail by Balberg & Gal (1997), the nucleon-
nucleon interaction also determines the rate at which the
nucleon chemical potential rises with increasing density.
Since the nucleon chemical potentials determine the
amount of hyperon accumulation in the matter according
to the conditions of equation (2), strong short-range
nucleon-nucleon repulsion enhances hyperon formation,
which has a softening e†ect on the EOS. Hence, hyperon
formation induces a fundamental balance between the
microscopic equilibrium compositions and the macroscopic
properties of the EOS, which restrains the resulting equa-
tion to a relatively narrow range of values. Hyperon forma-
tion therefore serves as a ““ pressure control ÏÏ mechanism in
high-density matter.

We demonstrate the ““ pressure control ÏÏ induced by
hyperons by comparing two equations of state that are sig-
niÐcantly di†erent in their description of baryon-baryon
interactions. Both are based on the e†ective EOS of Balberg
& Gal (1997) (see Appendix). EOS 1 is moderately sti† and
has an incompressibility of K \ 240 MeV for symmetric
nuclear matter at density which is the commonly usedo0,value. EOS 2 is sti†, with K \ 320 MeV. The calculated
equations of state for matter in beta equilibrium are plotted
in Figure 2 ; plotted are the EOS for (1) matter with
nucleons and leptons alone ; (2) matter with nucleons,
hyperons, and leptons ; and (3) matter with nucleons, hyper-
ons, and leptons, but when & hyperons are absent from the
matter (i.e., a strongly repulsive &-nm interaction is
assumed).

The pressure control discussed above can be understood
from the qualitative di†erence between the respective equa-
tions of model 1 and model 2. In the nuclear matter case
(top solid thin and thick lines), EOS 2 is sti†er than EOS 1
through the entire density range since it is based on a more
powerful short-range repulsion between nucleons. No

FIG. 2.ÈEquations of state for model 1 (thick lines) and model 2 (thin
lines). The equations correspond to nuclear matter (solid lines), matter with
nucleons and all hyperons (dashed lines), and matter with nucleons, ", and
$ hyperons but no &Ïs (dot-dashed lines)

further degrees of freedom exist, and the di†erence between
the two equations grows unhindered. A qualitatively di†er-
ent picture arises when comparing the two equations if all
hyperon species are allowed to appear (thin dashed curve
and thick dashed curve for EOS 1 and 2, respectively). The
stronger repulsion between nucleons in EOS 2 enhances
hyperon accumulation, which results in a more pronounced
softening e†ect. Hyperon formation actually causes EOS 2
to become softer over some density interval and in general
conÐnes both equations to a narrower range of values.

It is also noteworthy that a similar pressure control is
achieved when & hyperons are extinct (dot-dashed lines).
Suppressing & formation eliminates some degrees of
freedom, and the resulting EOS is naturally sti†er than
when all hyperon species appear, which implies that the
EOS depends on the number of available species (Knorren
et al. 1995 ; Balberg & Gal 1997). Nonetheless, the remain-
ing hyperons maintain enough degrees of freedom to allow
for the manifestation of the basic feature of pressure control.

Similar trends of pressure control are found for other
variations of the e†ective EOS (Balberg & Gal 1997) and
may also be inferred from other works that compared equa-
tions of state (Glendenning 1985 ; Schaab et al. 1997). This is
yet another consequence of the common basis used for the
hyperon-nucleon interactions, and the same reservations
made about hyperon formation apply here as well : if the
hyperon-nucleon interactions at higher densities are rad-
ically di†erent than those inferred from hypernuclei, the
pressure regulation e†ect could be lost.

In conclusion, we emphasize that ““ pressure control ÏÏ is a
fundamental result of the availability of new baryonic
degrees of freedom. Since the bulk of the matter in neutron
stars is at a density close to that of the core, the softening of
the EOS and the hyperon-induced pressure control have
immediate consequences on the global properties of these
stars. These consequences are discussed in the following
subsections.

4.1. T he Maximum Mass
The most fundamental role played by the high-density

EOS is in determining the relation between the starÏs central
density and its mass and radius. Calculating the mass as a
function of the central density yields a mass sequence for a
given EOS, and these sequences provide a convenient
measure for comparing di†erent equations. Of special
importance is the maximum mass each equation predicts,
since it serves as an integral measurement of the properties
of the equation.

We begin with an examination of static (nonrotating)
sequences for the di†erent equations of state, by integrating
the Tolman-Oppenheimer-Volko† equations, namely

dm
dr

\ 4nr2e ;

dP
dr

\ [Gme
r2
A
1 ] P

c2e
BA

1 ] 4nr3P
c2m

BA
1 [ 2Gm

c2r
B~1

, (4)

where e is the energy density (in g cm~3) and P is the
pressure (in dyn cm~2). The integration is performed fol-
lowing the recipe of Arnett & Bowers (1977). For sub-
nuclear densities we use the EOS of Feynman, Metropolis,
& Teller (1949), followed by that of Baym, Pethick, &
Sutherland (1971b) up to the neutron drip density, and the
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equation of Baym, Bethe, & Pethick (1971a) up to nuclear
matter density. We typically interpolate over a small region
when connecting di†erent equations (while the choice of
interpolation limits is somewhat arbitrary, the resulting
neutron star properties usually show very low sensitivity to
these limits).

The resulting mass sequences are shown in Figure 3. The
onset of hyperon formation can be identiÐed clearly for
every EOS as the irregularities in each curve. The softening
induced by the formation of hyperons is also easily identi-
Ðed, since it enforcesÈfor any given central densityÈa
lower neutron star mass than the mass found for nuclear
matter with an equivalent EOS.

Correspondingly, the maximum mass found with an EOS
that includes hyperons is naturally lower than when hyper-
ons are neglected. Again, this is a general result of allowing
more baryon species to appear in the matter, regardless of
the speciÐcs of the model used for the strong interactions
(and, indeed, it is noted in all works that included hyperon
formation in neutron star matter). A more subtle e†ect con-
cerning neutron star masses is the theoretical limit that the
inclusion of hyperons forces on the range of values of the
maximum mass. This can also be seen in Figure 3, where the
di†erent equations with hyperons yield maximum masses
which lie in a rather narrow range : 1.5È1.8 M

_
.

Limiting the range for the maximum mass is not unique
to the speciÐc equations used in this work. As was Ðrst
demonstrated in the framework of RMF models
(Glendenning & Moszkowski 1991), this restriction basi-
cally arises from constraining the hyperon-related inter-
actions by hypernuclei experimental data. We emphasize
here that the underlying principal reason for this maximum
mass constraint is the hyperon-induced pressure control
discussed above and therefore is, in essence, model indepen-
dent. This conclusion is further supported by a survey of
maximum masses found in various works in which hyper-
ons were included in high-density matter : a large majority
of these works (see the reviews by Glendenning 1996 and
Prakash et al. 1997) place the maximum static mass in a
narrow range of 1.5È2.0 with the upper limit beingM

_
,

FIG. 3.ÈStatic neutron star masses (in units of as a function of theM
_

)
central energy density, for the equations of state presented in Fig. 2. Alle

c
,

lines as indicated in Fig. 2.

reached only with equations that are extremely sti† at o B
Since no ““ pressure control ÏÏ is available for nuclearo0.matter equations of state, the theoretical limit they provide

on the static maximum mass is much weaker : roughly
1.5È2.7 (Cook, Shapiro, & Teukolsky 1994).M

_Unfortunately, the current observational constraint is
only that (the well-determined mass ofMmaxº 1.44 M

_pulsar PSR 1913]16). This constraint allows almost all
theoretical equations of state to be considered legitimate.
The fact that larger mass pulsars have not been observed
may indicate that the maximum mass is indeed low, and
several arguments have been made in support of this possi-
bility (Bethe & Brown 1995). On the other hand, should a
large-mass neutron star be observed, it will prove extremely
valuable in ruling out di†erent equations of state. Currently,
the Vela pulsar is the only likely candidate for a large mass
pulsar (M. Van Kerkwijk 1997, private communication),
but the uncertainties in determining its mass are still very
large. It should be noted that recently measured kilohertz
quasi-periodic oscillations (QPOs) in X-ray binaries (van
der Klis 1998) may also provide tighter constraints on the
value of the maximum mass, since the underlying neutron
star is known to be accreting.

4.2. Radii
Solutions of the Tolman-Oppenheimer-Volko† equa-

tions relate the radius of a neutron star to its mass for
any given EOS. Broadly speaking, the radius of the neutron
star is a poor indicator of the properties of the inner core

While this inner core holds most of the mass of a(o
B
º 2o0).

D1.4 star for almost any EOS, it extends to only aboutM
_half of the starÏs radius. The radius is far more dependent on

the EOS at and below, which is indi†erent to theo
B
Do0possible appearance of new degrees of freedom in the core.

Nevertheless, some qualitative observations regarding pos-
sible e†ects of hyperon formation on neutron star radii can
still be made.

Figure 4 compares the mass-radius dependence of static
neutron stars for various published equations of state that
do not include hyperons to those of EOS 1 and 2 with all
types of hyperons. The nuclear matter equations are FPS
(Lorenz, Ravenhall, & Pethick 1993), L (mean-Ðeld EOS by
Pandharipande & Smith 1975), A (Reid soft-core by Pand-
haripande 1971a), and AU (Wiringa et al. 1988), where we
follow the notation of Cook et al. (1994). The radii at low
masses (M ¹ 1 are basically dependent only on theM

_
)

EOS below and the di†erences between the radii for2o0,various equations of state in this region reÑect the di†er-
ences regarding nuclear matter at these densities. For
masses close to the maximum mass for each equation, the
radius is naturally smaller, and the star is typically more
compact when the high-density EOS is softer.

One e†ect that does stand out concerning the equations
with hyperons is that there is a larger di†erence between the
typical radii for a low-mass star and the radius of the
maximum mass conÐguration than in other equations.
Comparing the radius of a 1.4 star and the radius forM

_the maximum mass star yields a di†erence of 3.5 and 3.4 km
for EOS 1 and 2, respectively. For the other equations this
di†erence does not exceed 2.5 km. This is a result of the
speciÐc contrast in the equations with hyperons used here,
which are moderately sti† to sti† at lower densities, and soft
(due the e†ect of hyperons) at higher densities. Clearly, such
an e†ect will be common to any EOS that follows such a
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FIG. 4.ÈRadius vs. gravitational mass (in units of relations forM
_

)
static neutron stars calculated with EOS 1 (thick solid line) and EOS 2 (thin
solid line), and for the nuclear matter equations FPS, A, AU, and L (see text
for details).

change from low to high densities ; however, hyperon for-
mation o†ers a natural explanation for such a trend, if it
indeed exists. It should also be noted that a large di†erence
between the radii at 1.4 and at maximum mass is not aM

_necessary consequence of hyperon formation and would not
have been found if the EOS was softer at low densities.

Unfortunately, current observations of neutron stars do
not provide radius measurements to any useful precision.
There is no reason to infer either presence or absence of a
large di†erence between the radius for M \ 1.4 andM

_which is not known in any case (however, asM [Mmax,discussed below, interpretation of pulsar glitches may serve
as an indication that the equation of state does change from
sti† at low densities to softer at higher ones). We note that
future analysis of QPOs might hold signiÐcant potential for
establishing mass radius relationships for accreting objects,
although accurate measurement of the neutron star rota-
tion and its e†ect on the stellar shape are required (Miller,
Lamb, & Cook 1998).

4.3. Rotation Periods and L imits
Constraints on the high-density EOS can be derived from

the maximal observed angular velocity of pulsars, from the
properties of their rotational evolution (spin-down), and
from massÈangular velocity relations that have been estab-
lished for a few pulsars. Very rapid rotation ()º 3 ] 104
s~1), if observed, will serve as an important component in
determining the structure of a neutron star (Lattimer et al.
1990). Note that rotational limits and deformation must be
treated self-consistently in the framework of general rela-
tivity.

In Figure 5 we show the dependence of the angular veloc-
ity, ), of a neutron star on its angular momentum, J, calcu-
lated with the formalism presented by Cook et al. (1994)
with EOS 2. The Ðgure describes the starÏs rotational evolu-
tion as it slows down by radiating energy and angular
momentum. The evolutionary sequence of a ““ normal ÏÏ star
of constant rest mass (solid lines) proceeds from the mass

FIG. 5.ÈConstant rest-mass sequences for EOS 2 showing the angular
velocity, ), as a function of the angular momentum, J. Selected sequences
are labeled by the value of the rest mass, and the sequence that has a static
gravitational mass of 1.4 is marked with an asterisk. The mass shedM

_limit is the bold dashed line, and the quasi-radial stability limit is denoted
by the thin dashed line. The inset shows an expanded view of the region
near the maximum mass model (open circle) and shows the location of the
maximum ) model located at the intersection of the mass shed and stabil-
ity limit.

shed limit (dashed line on the right) to the static limit (the
origin) by losing angular momentum. As with all equations
of state (Cook et al. 1994), there are also ““ supramassive ÏÏ
sequences, in which the rest mass is too large to allow a
stable static solution. A supramassive sequence is metasta-
bilized by sufficiently rapid rotation and will collapse to a
black hole at some point in its evolution. The onset of
collapse (instability to quasi-radial perturbations) corre-
sponds to the stability limit, denoted by the thin dashed line
in the Ðgure.

We call attention to the fact that for EOS 2 there are
““ normal ÏÏ sequences that show spin-up of the neutron star
during some part of the sequence. Spin-up must occur in the
supermassive sequence, since their unstable portions are
always at higher angular velocity than the stable portion for
the same value of angular momentum (Cook et al. 1994).
On the other hand, spin-up of a normal sequence is unusual
in equations of state for nuclear matter but is possible once
hyperons are included.

Loss of angular momentum causes the star to both lose
rotational energy and contract and become more spherical.
The balance of these two e†ects usually results in a decrease
of the angular velocity, but an increase is also possible if the
EOS is sufficiently soft over a large region of the star. In
Newtonian physics the condition is that the e†ective adia-
batic index of the star is less than 4/3, and when general
relativity is included, even slightly above this value (Cook,
Shapiro, & Teukolsky 1992). In Figure 6 we show the adia-
batic index, c\ d log (P)/d log (e), for EOS 2 and the EOS
with hyperons of Glendenning (1996, p. 244). The e†ect of
hyperons on the equations is obvious, as c drops consider-
ably at every density that a new species appears. For com-
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FIG. 6.ÈThe adiabatic index, c, for EOS 2 (solid line), the EOS with
hyperons of Glendenning (1996) (dashed line), and the nuclear matter equa-
tion FPS (dot-dashed line), as a function of the mass-energy density.

parison we also show c for the FPS equation, which does
not include baryon degrees of freedom beyond nucleons.
Indeed, spin-up is not found in any normal sequence of the
FPS equation and also does not occur for the EOS with
hyperons of Glendenning (N. K. Glendenning 1997, private
communication) because the variation in the adiabatic
index is not large enough. The speciÐc details of EOS 2,
however, lead to an enhanced e†ect of hyperon formation
on the adiabatic index, which is why we Ðnd that spin-up is
possible for this equation, even for some of the normal
neutron star sequences.

Assuming that equations of state that include only
nucleons cannot have an e†ective adiabatic index low
enough to allow spin-up, a neutron star that spins up
without accreting and that does not collapse may serve as
an important indication of a more complex structure of the
core. Spin-up during a pulsarÏs evolution should in principle
be easy to observe, speciÐcally through the breaking index,
deÐned as The breaking index of observedn 4 ))� /()0 )2.
pulsars is measured to good precision and is typically found
to be 2È3. A pulsar going from spin-up to spin-down should
show a breaking index going to [O at maximum fre-
quency and then decreasing from ]O as spin-down begins.
Glendenning, Pei, & Weber (1997) suggested that such
behavior of the breaking index may signal the creation of a
mixed baryon-quark phase. It is our purpose here to point
out that spin-up followed by spin-down is also a possible
(though not a necessary) result of hyperon formation.

Note, however, that spin-up occurs for EOS 2 only in
high-mass stars (rest mass larger than 1.87 whichM

_
),

could be uncommon owing to selection e†ects in the pulsar
formation mechanism. Furthermore, spin-up of stable
sequences is found only for very rapidly rotating conÐgu-
rations in which nonaxisymmetric instabilities (driven by
gravitational radiation) may set in. This further limits the
combinations of mass and rotation period that allow
spin-up in a stable sequence and could explain why such
evolution has not been observed, even if physically possible.

We conclude our discussion of rotational properties and
limits of neutron stars in the context of hyperon formation

with Figure 7, which displays the angular velocity versus
gravitational mass of constant rest mass sequences for EOS
2 with all types of hyperons. Also plotted in the Ðgure are
the known masses and angular velocities for various
observed pulsars (see Cook et al. 1994). The horizontal
dashed line is a minimum-) limit of )\ 4032 s~1 set by
PSR 1937]21. The vertical dashed line corresponds to a
mass of 1.55 which is a suggested lower limit for theM

_
,

Vela pulsar mass (still under debate).
One Ðnds that current combinations of observed pulsar

masses and angular velocities do not o†er signiÐcant con-
straints on the high-density EOS and, in general, are consis-
tent with hyperon formation (for which EOS 2 may be
taken as representative). Note that the maximum angular
velocity found for EOS 2 is D1.15] 104 s~1, well in the
range of values of ““ typical ÏÏ equations of state. This
maximum angular velocity is also in good agreement with
the ““ empirical ÏÏ formula of Haensel & Zdunik (1989) :

)max\ s
AMmax

M
_

B1@2CR(Mmax)
10 km

D~3@2
s~1 , (5)

where and are the gravitational mass andMmax R(Mmax)radius of the maximum mass static conÐguration, respec-
tively. The numerical coefficient s was found by Cook et al.
(1994) through a best Ðt to be s B 7840 s~1, when including
the supramassive sequences. In general, the softer the EOS,
the larger the predicted maximum angular velocity. Since
the mistaken measurement from the remnant of SN 1987A,
there has been much speculation regarding the constraints a
0.5 ms pulsar, if found, would place on the high-density
EOS. We have not found an EOS in which the hyperon-
induced softening is sufficient to allow a 0.5 ms pulsar, in
agreement with other published works.

FIG. 7.ÈConstant rest mass sequences for EOS 2 showing the angular
velocity, ), vs. the gravitational mass. The Ðlled circles with error bars for
the mass are the observed values of mass and angular velocity for several
binary pulsars (see Cook et al. 1994). The vertical long-dashed line is the
suggested lower limit of 1.55 on the mass of Vela X-1. The horizontalM

_long-dashed line is the angular velocity of the millisecond pulsar PSR
1937]21.
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4.4. Crustal Size and Pulsar Glitches
Pulsar glitch phenomena have been suggested as a probe

of neutron star properties (Link, Epstein, & Van Riper
1992). The basic argument is that the interpretation of
pulsar glitch phenomena suggests a relatively large crust,
which in turn implies a sti† EOS at supernuclear densities, if
a pulsar mass greater than 1 is assumed. Indeed, pulsarM

_glitches are often presented as observational proof that the
supernuclear density EOS is sti† (Alpar et al. 1993).
However, a sti† EOS also leads to a large value for the
maximum mass, which, as discussed above, is currently dif-
Ðcult to support by observation. We argue here that
hyperon formation provides a natural route to combine
large crusts and a relatively low maximum mass.

Glitches are sudden increases in the rotation frequency of
pulsars. The postglitch behavior of the pulsar indicates a
change in the spin-down rate, ranging from a frac-*)0 /)0 ,
tion of a percent (the Crab) to a few percent (the Vela). The
generic interpretation of glitches suggests a coupling and
decoupling process between di†erent components of the
pulsar (Shapiro & Teukolsky 1983). In this event angular
momentum is transformed from some weakly coupled com-
ponent to the bulk of the star, which is strongly coupled to
the crust through the magnetic Ðeld. This generic interpre-
tation, known as the ““ two-component model, ÏÏ can be
shown to predict that

*)0
)0

\ I
c

Itot
, (6)

where is the total moment of inertia of the pulsar, andItotis the moment of inertia of the more rapidly rotatingI
ccomponent.
The most successful model suggested so far for pulsar

glitches has been the vortex creep theory (Pines & Alpar
1985 ; Alpar et al. 1993). In this model, the glitches are
driven by pinning and unpinning of vortices of the neutron
superÑuid and the lattice of neutron-rich nuclei that coexist
in the inner crust of pulsars. Assuming that vortex creep can
occur between the density of neutron drip (B4 ] 1011 g
cm~3) to about half the nuclear saturation density
(B1.2] 1014 g cm~3), where the neutron pairing pre-1S0sumably breaks up and where all nuclei have dissolved to
nuclear matter, equation (6) can be used to set a lower limit
on the moment of inertia of this part of the star, TakingIicr.the value obtained from the 1978 Vela glitch *)0 /)0 \ 0.024
(Alpar et al. 1993), a signiÐcant constraint is placed on the
minimal size of the inner crust.

For any EOS, the larger the given gravitational mass, the
more compact the neutron star and the larger the fraction of
the mass held in the core. Both these e†ects combine to
reduce the fraction of the moment of inertia of the inner
crust, as the gravitational mass is increased. Hence,Iicr/Itot,a larger observed value of implies a smaller value for*)0 /)0
the neutron star gravitational mass in order to satisfy the
two-component condition of RoughlyIicr/Itot º*)0 /)0 .
speaking, a similar combination occurs for a given gravita-
tional mass when comparing a soft EOS to a sti† one, since
the softer EOS will yield a more compact star and a smaller
crust. We demonstrate this in Figure 8, which shows the
fraction of the moment of inertia carried by the inner crust,

as a function of mass for the nuclear matter equa-Iicr/Itot,tions of state presented in Figure 4, along with EOS 1 and 2
with all hyperon species. The moment of inertia of the

FIG. 8.ÈFractional moment of inertia of the inner crust, as aIicr/Itot,function of the static mass (in units of for EOS 1, EOS 2 (with andM
_

)
without & hyperons, marked as in Fig. 2), and the nuclear matter equations
FPS, A, AU, and L. The thin dashed horizontal line corresponds to the
observational constraint of the Vela 1978 glitch, Iicr/Itot º 0.024.

neutron star was calculated in the slow rotation approx-
imation, again following Arnett & Bowers (1977).

All equations show a decrease in as a function ofIicr/Itotthe gravitational mass, as discussed above. The key obser-
vation, however, is that, with the exception of the very sti†
MF model, the inner crust of a 1.4 neutron star foundM

_for nuclear matter equations of state is too small to carry a
moment of inertia with The equations ofIicrº 0.024Itot.state with hyperons are, on the other hand, able to support
a large crust in a 1.4 star, in spite of their maximumM

_masses being relatively low. This is because the crustal size
mainly depends on the EOS of the matter just below it, i.e.,
at while the maximum mass is more sensitive too

B
B o0,the EOS at higher densities. Thus, a large crust and a low

maximum mass are easily reconciled for any equation of
state that is sti† at lower densities and softens ato

B
º 2o0.This may serve to indicate that the EOS should turn from

sti† at low densities to soft at higher densities, as speculated
in the previous subsections. Again, hyperon formation
o†ers a natural (but not unique) basis for such an EOS to
prevail. Once more, we emphasize that this e†ect regarding
crustal size is a generic feature of the inclusion of more
species in dense supernuclear matter, and only the Ðner
details will be model dependent.

5. ROLES OF HYPERONS IN NEUTRON STAR

COOLING RATES

In recent years it has been possible to detect X-rays from
over 20 pulsars 1995). For a few pulsars, there is(O� gelman
strong evidence that actual surface thermal radiation has
been detected, while for others only upper limits can be
stated. The surface temperature (interpreted from the
surface radiation) and the pulsar age (usually estimated
through the spin-down rate) provide a constraint on the
thermal history of the pulsar. Comparison of observation
and theoretical models of neutron star cooling may o†er a
unique indication regarding the composition of the high-
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density matter core, including the presence of new hadronic
degrees of freedom.

The implications of hyperon formation for neutron star
cooling have been discussed in several recent studies
(Prakash et al. 1992 ; Prakash 1994 ; Haensel & Gnedin
1994 ; Schaab et al. 1996). The common theme of these
works has been that hyperons provide additional channels
for rapid cooling processes, i.e., the direct Urca. Hyperon
direct Urca processes, like the nucleon direct Urca, are basi-
cally thermal Ñuctuations of baryons and leptons :

B1] B2] e] l6
e

; B2] e] B1] l
e

. (7)

The direct Urca processes allow for large neutrino emiss-
ivity, so that rapid core cooling dominates the starÏs thermal
evolution. The direct Urca cooling emissivity, has beenvDU,
estimated as (Prakash et al. 1992)

vDU \ 4 ] 1027
Ax

e
o
B

o0

B1@3 m
B1

m
B2

m
n
2 RT 96 ergs cm~3 s~1 ,

(8)

where is the electron fraction per baryon, andx
e

m
B1

m
B2are the e†ective masses of the two participating baryons, m
nis the neutron mass, and is the core temperature in unitsT9of 109 K. R is a weak interaction matrix element factor,

which is unity for nucleon Urca and ranges(n ] p ] e] l6
e
)

between D10~2 for strangeness changing reactions (such as
and D10~1 for strangeness conserving"] p] e] l6

e
)

reactions that include hyperons (such as &~ ] "] e ] l6 ) ;
see the review by Prakash (1994) for details.

If neutron stars cool through direct Urca processes in-
deÐnitely, their temperature should drop so rapidly that the
surface temperatures (typically 10~2 of the core
temperature) would be undetectable within less than 100 yr
of the starÏs birth (Lattimer et al. 1994). Observation seems
to suggest otherwise, which indicates that direct Urca pro-
cesses are suppressed in the core through most of the starÏs
thermal evolution, so that a signiÐcant surface temperature
can be detected even at pulsar ages of 103È105 yr. If the
direct Urca is indeed suppressed, then cooling proceeds
through less efficient processes, most of which have emis-
sivities (with various numerical coefficients ; MaxwellDT 981987). Calculations of neutron star thermal evolutions in
which slower cooling processes dominate do Ðnd that the
surface temperature remains rather large for D105 yr, until
crust photon emission takes over as the dominant cooling
process.

Direct Urca processes may be suppressed by two main
mechanisms : absolute suppression if energy and momen-
tum cannot be conserved, and partial suppression if the
participating baryons pair to a superÑuid state. The pres-
ence of hyperons in neutron star cores has implications on
both issues, as discussed below.

5.1. T hreshold Concentrations
Owing to the extreme degeneracy of fermions in neutron

star cores, direct Urca reactions take place only with
baryons and leptons on their respective Fermi surfaces.
Imposing energy and momentum conservation (and
assuming a negligible neutrino energy : leads to aElB k

B
T )

combination of the conditions :

k
B1

\ k
B2

] k
e

; pF(B1)¹ pF(B2)] pF(e) , (9)

being the Fermi momenta of species X. The Ðrst con-pF(X)
dition simply imposes chemical equilibrium which is ful-
Ðlled inherently (eq. [2]), and the second is the ““ triangle
inequality, ÏÏ which must be fulÐlled for all cyclic permu-
tations of the and e. For FermionsB1, B2 pF\ (3n2xo

B
)1@3,

so that the second condition of equation (9) becomes x11@3¹
(again, along with all cyclic permutations).x21@3] x

e
1@3

According to the momentum-conservation condition
above, direct Urca processes may take place only if the
relative fractions of the two baryon species are not too
di†erent from one another and from the electron fraction as
well. The fractions required set threshold conditions for the
existence of direct Urca processes, which are otherwise
completely extinct. For nuclear matter in beta equilibrium
it has been shown that the large neutron excess requires a
threshold proton fraction of at least xpcº 11%È15%
(Prakash et al. 1992) to allow the nucleon direct Urca
process to take place. Whether or not a large enough
proton fraction exists in the cores of neutron stars depends
on the speciÐcs of the nuclear matter EOS. Once hyperons
appear in the matter, threshold concentrations are easier to
meet for all types of direct Urca processes. First, the thresh-
old concentrations for some hyperon processes with
protons or other hyperons are inherently lowÈtypically on
the order of 0.01Èsince their fractions are initially similar
(Prakash 1994). Second, since hyperon formation is fol-
lowed by an increase of the proton fraction and a reduction
of the neutron fraction, the threshold concentrations for
neutron-related Urca processes are also easier to fulÐll,
including nucleon direct Urca (x

p
/x

n
º 0.1).

Direct Urca processes will become prohibited if the elec-
tron fraction is too small to allow for momentum conserva-
tion (i.e., the triangle inequalities cannot be fulÐlled).
However, for typical equilibrium compositions with hyper-
ons, this happens only when the electron fraction drops
below about 0.5%, which does not occur at the central
density of a 1.4 star as found with practically allM

_published equations of state. The small lepton fraction
induced by hyperon formation will also reduce the direct
Urca emissivities through the dependence in equation (8).x

eHowever, even for this suppression is only by ax
e
B 0.1%,

factor of a few (and the e†ect on the cooling rate will be
somewhat balanced by a reduction of the starÏs heat
capacity). Hence, the composition of a hyperon rich core
should allow for at least most direct Urca processes to
dominate in typical neutron stars.

5.2. SuperÑuidity
In view of the lenient conditions for hyperon direct Urca

reactions, theoretical models of neutron star thermal evolu-
tion Ðnd that stars with hyperons will cool very rapidly
(Haensel & Gnedin 1994 ; Schaab et al. 1996). However,
these analyses assumed that all hyperons are in a normal,
rather than a superÑuid state. Here we wish to call attention
to the implications of a recent estimate of hyperon pairing
gaps.

Baryon superÑuidity may have various consequences on
neutron star properties including a signiÐcant moderation
of cooling processes. If the baryons on the Fermi surface
couple to superÑuid pairs with a gap energy of *, the direct
Urca emissivity is reduced by a factor of Dexp ([*/k

B
T ),

since an energy of * is Ðrst required to break up the super-
Ñuid pair. Nucleon pairing in neutron stars has received
much attention, and for the last two decades it has been
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widely accepted that nucleons can couple to superÑuid pairs
in neutron stars. The commonly accepted picture (Shapiro
& Teukolsky 1983) is that neutrons in the inner crust couple
to a superÑuid, while in the core the neutrons couple to1S0a superÑuid (due to their high Fermi momenta) and the3P2protons couple to a superconductor. Estimates of the1S0gap energies have proved to be model dependent, but core
gap energies are typically found to be in the range 0.1È1
MeV. The existence of baryon pairing is expected when the
temperature drops below the critical temperature, which is

for S-wave pairing and for P-waveD0.57*/k
B

D0.12*/k
Bpairing. Neutron stars are expected to cool below the criti-

cal temperatures for nucleon pairing within days after their
birth, and so nucleon pairing is conventionally assumed to
be present in neutron star cores, with a signiÐcant impact
on nucleon direct Urca emissivity (Lattimer et al. 1994 ;
Page 1995 ; Schaab et al. 1997).

Until recently, quantitative estimates of pairing of other
baryon species have not been performed owing to lack of
relevant experimental data. In a recent work, Balberg &
Barnea (1998) used an analysis of doubly strange hyper-
nuclei in a Ðrst attempt to determine pairing gaps for "
hyperons in a neutron star matter background. The "
hyperons were found to couple in a superÑuid, with a1S0gap energy of a few tenths of an MeV. S-wave pairing is
expected for " Fermi momenta up to about 1.3 fm~1, very
much like the corresponding value for protons in a neutron
matter background et al. 1996). These results(ElgarÔy
imply that for typical models of hyperon formation in
neutron stars, a " superÑuid will exist between the1S0threshold baryon density for " formation and the baryon
density where the " fraction reaches 15%È20%. While this
result is based on limited data from double hypernuclei (i.e.,
nuclear matter background at normal nuclear density), the
basic prediction of a " superÑuid is not surprising, in view
of the general similarity of "-" and nucleon-nucleon inter-
actions. Further work is clearly necessary, and estimation of
gap energies for other hyperon species is also required
(including possible anisotropic pairing modes), but in
general, it seems prudent not only to allow for hyperon
formation in neutron stars but also to include hyperon
superÑuidity.

A full treatment of neutron star cooling with superÑuid
hyperons is beyond the scope of this study and is reported
in another work (Schaab, Balberg, & Scha†ner-Bielich
1998). We point out that for suppression of all direct Urca
processes, it is sufficient that only the neutral baryons, e.g.,
n, ", and &0 (or n, ", and $0, if &Ïs are absent) couple to a
superÑuid state : charged baryons will be deprived of part-
ners for the direct Urca processes. Furthermore, at central
densities typical of a 1.4 neutron star (in most equa-M

_tions of state), fractions of neutral hyperons other than the
" are very small, so " and neutron superÑuidity are suffi-
cient to moderate signiÐcantly all relevant direct Urca pro-
cesses. The core temperature should then saturate
according to the lower of the neutron and the "3P2 1S0critical temperatures, with the surface temperature declin-
ing very slowly for 104È105 yr. Correspondingly, hyperon
formation can indeed be compatible with observed thermal
emission from pulsars.

6. ROLES OF HYPERONS IN PHASE TRANSITIONS

We now return to possible phase transitions of high-
density matter in the cores of neutron stars. There are two

such transitions that may occur in the matter : the forma-
tion of an S-wave meson condensate, and deconÐnement of
baryons into quarks. Both types of transitions have been
the subject of intensive study, but whether or not one (or
both) of them can actually take place in cold, beta-
equilibrated supernuclear density matter remains an open
question. This is mainly because the details of the tran-
sitions are dependent on physical values (i.e., meson e†ec-
tive masses and quark matter physics) that are currently
unattainable by experiment, which leaves uncertainties that
are too large to signiÐcantly constrain predictions.

While these phase transitions are of obvious interest from
the particle physics point of view, they also have astro-
physical implications through their possible e†ects on
neutron star properties (mass radii relations, cooling rates,
etc.). For our discussion here it is important that both types
of transitions o†er alternative hadronic degrees of freedom
to hyperon formation. Indeed, both meson condensation
and deconÐnement have been demonstrated to soften the
equation of state and cause deleptonization (o†ering nega-
tively charged hadrons or quarks to replace the leptons),
which therefore leads to most of the e†ects discussed in
previous sections (Prakash et al. 1997). Furthermore, meson
condensation and baryon deconÐnement o†er potential
competition to hyperon formation, since they too lower the
energy per baryon of the matter, thereby decreasing the
nucleon chemical potentials. In this section we examine
what inÑuence the presence of hyperons in the cores of
neutron stars can have on meson condensation and baryon
deconÐnement.

6.1. Meson Condensates
Mesons may form freely in baryonic matter since they do

not obey number conservation. At zero temperature, a
nonzero meson density naturally takes the form of a Bose
condensate, where the required energy for meson accumula-
tion is only the meson ground state energy that may be
identiÐed through the meson e†ective mass. Thus, the can-
didates considered most likely for condensation in neutron
star matter are the lightest mesonsÈthe pion and the kaon.

At low densities (including in nuclei), the available energy
is insufficient to maintain a nonzero mesonic density, and
mesons serve only as carriers of the baryonic interactions.
At higher densities the available energy in the strong inter-
actions increases, and at some Ðnite density mesons may
begin to condense.

Since the baryonic content of the matter has a net posi-
tive charge, the best candidates for condensation are the
negatively charged mesons. The relevant meson creating
reactions are or (with addi-B1] B2] n~ B1] B2] K~
tional particles participating in order to conserve
momentum). The fundamental point is that these processes
are equivalent to the lepton-related reactions (eq. [1]), so
that the mesons basically compete with the charged leptons.
Since neutrinos and antineutrinos are assumed to have zero
chemical potential, the basic condition for negatively
charged meson condensation is

m
M~* \ k

e
, (10)

where M~ denotes the n~ or K~, and m* denotes the
meson e†ective mass, which may di†er from the bare mass
owing to medium e†ects. Note that for neutral mesons the
condition for condensation is and for positivelym

M0* \ 0,
charged mesons it is even m

M`* \ [k
e
.
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The condition in equation (10) implies that hyperon for-
mation has a fundamental inÑuence over the likelihood of
meson condensation in neutron star matter. This can be
seen explicitly in Figure 9, where the electron chemical
potential is plotted as a function of baryon density for the
equilibrium compositions found with EOS 1 and 2 present-
ed above. The plots correspond to the nuclear matter case
(identical in both cases, since they have a common nuclear
symmetry term), matter with all types of hyperons, and
matter with "Ïs and $Ïs but no &Ïs.

The qualitative di†erence between nuclear matter and
matter with hyperons is explicit and is an obvious result of
the deleptonization hyperons induce in the matter. For
nuclear matter the electron fraction gradually rises for
larger densities, and the electron chemical potential reaches
300 MeV and more. On the other hand, the onset of
hyperon accumulation is followed by a drop in the electron
fraction and a corresponding reduction in the electron
chemical potentials. This is especially pronounced when
negatively charged hyperons appear. The electron chemical
potential typically reaches a maximum value that is some-
what model dependent at about 200 MeV and at very high
densities drops to even less than 100 MeV. Since limiting
the electron chemical potential is an immediate conse-
quence of hyperon formation (see also Glendenning 1996),
this suggests another general result : meson condensation is
less likely in matter with hyperons than in nuclear matter.

Whether or not the deleptonization is sufficient to deny
meson condensation also depends on the values of the
meson e†ective masses, which are poorly known at present.
Evaluating the meson e†ective mass as a function of the
baryon density and composition requires the self-consistent
inclusion of the meson Ðelds in the Lagrangian, which we
do not follow here.

We do note that modern estimates of the n-nucleon inter-
action Ðnd that the n e†ective mass is expected to grow with
respect to the bare value of B140 MeV owing to the

FIG. 9.ÈThe electron chemical potential, for EOS 1 (thick lines) andk
e
,

EOS 2 (thin lines). The curves correspond to nuclear matter (solid line,
identical for both equations), matter with nucleons and all hyperons
(dashed lines), and matter with nucleons, ", and $ hyperons but no &Ïs (dot-
dashed lines).

strength of the nucleon particle-hole interaction (Brown et
al. 1988 ; Baym 1991 ; see also Waas, Brockmann, & Weise
1997 for a recent estimate). Hence, even though the n~ was
considered a natural candidate for condensation in many
early works, most current studies agree that such conden-
sation is unlikely, even in nuclear matter. Hyperon forma-
tion will have an indirect e†ect on the likelihood of
condensation of other pion species as well, since it reduces
the total energy per baryon of the matter. However, this
e†ect cannot be estimated quantitatively in the context of
the models used in this work. In principle, repulsive nN*
coupling should suppress condensation of other pion
species as well (Baym 1991). But it should be noted that
variational models performed with Argonne three-body
forces (Wiringa et al. 1988 ; Akmal et al. 1998) Ðnd that
strong tensor correlations that imply neutral pion conden-
sation appear in nuclear matter at very low densities of
about 0.2 fm~3.

Unlike the pion, analysis of K~ atomic data (see, e.g.,
Friedman, Gal, & Batty 1994) suggests an attractive K~-
nucleon potential, which reduces the bare mass of about 500
MeV by a sizable fraction. Indeed, K~ condensation in
neutron star matter has become an active subject of investi-
gation since Ðrst suggested by Kaplan & Nelson (1986).
Some studies of K~ condensation in nuclear matter have
found a threshold condensation density as low as 3È4o0(Brown et al. 1994 ; Pandharipande, Pethick, & Thorsson
1995). However, an e†ective K~ mass as low as 200 MeV at
a density of seems unattainable in present studies (see2o0also Scha†ner et al. 1994). In view of the analysis displayed
in Figure 9, this implies that hyperons will appear in nuclear
matter prior to the onset of K~ condensation and will thus
delay the condensation to higher densities. This observation
is indeed supported by the results of two recent studies
(Knorren et al. 1995 ; Scha†ner & Mishustin 1996), which
examined K~ condensation along with hyperon formation.
Both Ðnd that hyperons appear before the K~ can condense
in nuclear matter and that condensation in matter with
hyperons is then delayed to very large densities or(º8o0)even completely suppressed.

Clearly, should meson condensation occur at lower den-
sities than hyperon formation, it is the latter that will be
delayed, but this alternative seems less likely in view of most
current works. Assuming it is hyperon formation that pre-
cedes, it will increase the threshold density for meson con-
densation, and this is once again a general feature of
allowing for hyperon formation in neutron stars.

6.2. Baryon DeconÐnement
The possibility of a phase transition of high-density bary-

onic matter into quark matter through baryon deconÐne-
ment has received much attention both in the context of
neutron stars and in heavy ion physics. Intuitively, it seems
inevitable that at large enough densities the quarks will no
longer retain their arrangement as baryons but rather will
deconÐne into larger ““ bags ÏÏ of quarks and eventually into
quark matter. However, present theoretical limits and
uncertainties in the modeling of QCD prevent a com-
prehensive analysis of deconÐnement physics. Current
studies rely on simpliÐed models, and published results and
conclusions prove to be highly model dependent. Nonethe-
less, as we show below, the presence of hyperons does have
a general e†ect on the phase transition between baryonic
and quark matter.
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Baryon deconÐnement in high-density matter is expected
to proceed gradually with increasing density through a con-
tinuous mixed phase with various spatial combinations of
the two phases. This is analogous to the transition from
nuclei to nuclear matter in the inner crusts of neutron stars.
The ground state at each density is achieved by arranging
the composition, density, and shape of each phase, includ-
ing long-range ordering enforced by the Coulomb inter-
action. This character of the transition from baryon matter
to quark matter was pointed out by Glendenning (1992 ; see
Glendenning 1996 for a review) and is a natural conse-
quence of the presence of two conserved chargesÈbaryon
number and electric charge. Pressure varies continuously
over the density range of the transition, rather than remain-
ing constant as in a ““ standard phase transition.ÏÏ A neutron
star that includes a mixed phase (and possibly, at very high
densities, a pure quark phase) is often referred to as a
““ hybrid star.ÏÏ

It is important to note that the conditions for the onset of
deconÐnement di†er considerably from the conditions for
equilibrium of the two phases. The key factor is the di†er-
ence in the strangeness fraction of the equilibrium composi-
tions of the two phases. In the quark phase, the di†erence
between the mass of the strange quark and those of the up
and down quarks is signiÐcantly lower than the Fermi ener-
gies of the quarks. The equilibrium quark composition
should therefore hold almost equal fractions of the three
Ñavors, with a strangeness fraction per baryon of almost
unity. In the baryonic phase, an overall strangeness fraction
of unity can be reached only at very high densities, when the
baryon masses no longer dominate the values of the chemi-
cal potentials.

Once a stable quark matter phase is created, it reaches its
equilibrium composition through weak decays, regardless
of the initial baryon composition. The initial deconÐnement
process, however, must take place through the strong inter-
action, which conserves Ñavor. The minimum energy state a
quark phase component can achieve through deconÐne-
ment will not be its ground state, but only the lowest energy
state with the available underlying quark composition of
the baryons. It is therefore straightforward that when the
baryonic matter includes a Ðnite strangeness fraction (i.e.,
hyperons are present), the energy a quark phase component
can achieve through deconÐnement will be lower than for a
two-Ñavor quark phase created by deconÐnement of pure
nucleon matter. The presence of hyperons lowers the energy
per baryon with respect to nuclear matter in the baryonic
phase as well, but the e†ect of a Ðnite strangeness fraction in
the quark phase is signiÐcantly larger. The threshold for
deconÐnement of matter with hyperons should thus be
lower than for nuclear matter.

We demonstrate this qualitative description with a crude
analysis for the deconÐnement threshold, as follows :
assume that baryonic matter deconÐnes as a bulk, where
baryons at a given density deconÐne spontaneously too

Bquark matter of identical density and quark composition.
Such deconÐnement will proceed if the energy per baryon in
the quark phase is equal to (or less than) that in the bary-
onic phase. Figure 10 compares the energy per baryon,

as a function of the density of the equilibriumE/A\ e
B
/o

B
,

baryon compositions of EOS 1 with the energy per baryon
of quark matter of identical composition and density. The
properties of the quark phases in each case are calculated
with simple MIT bag model parameterizations, where B is

FIG. 10.ÈEnergy per baryon, E/A, for baryonic matter (thick lines) and
for quark matter of identical composition (thin lines) as a function of the
baryonic density. The baryonic matter is calculated with EOS 1 (and the
composition corresponds to the equilibrium composition of this equation).
The quark matter is calculated with the MIT bag model with (a) B\ 100
MeV fm~3, (b) B\ 70 MeV fm~3, The solid lines area

c
\ 0, a

c
\ 0.3.

nuclear matter and the corresponding two-Ñavor quark matter ; the dashed
lines are the baryonic matter with hyperons and the corresponding three-
Ñavor quark matter.

the bag constant (in MeV fm~3) and is the strong inter-a
caction coupling constant (see Glendenning 1996, chap. 8).

The baryon density of deconÐnement corresponds to the
crossover between the baryonic matter and quark matter
curves. The e†ect of Ðnite strangeness on the energy per
baryon is much more pronounced in the quark phase,
which results in an observable decrease of the energy per
baryon when a new hyperon species appears in the matter
(i.e., where the strangeness fraction increases rapidly with
density). The density of deconÐnement for any given quark
matter model is then lower for matter with hyperons than
for nuclear matter.

The speciÐc value of the deconÐnement density is strong-
ly dependent on the values of the bag model constants.
Since the values used in the calculations are arbitrary,
emphasis is placed on the fundamental reduction in the
threshold for deconÐnement in the presence of hyperons.
Once again, this is a general feature of allowing hyperons to
appear in the matter. We also Ðnd a lower deconÐnement
density for other high-density equations of state (when com-
paring matter with hyperons and nuclear matter) and that it
is independent of the speciÐc choice of quark bag model
constants.

While the assumption that the baryon-quark phase tran-
sition proceeds through bulk deconÐnement is a crude one,
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it actually provides an upper limit for the deconÐnement
threshold. The alternative to bulk deconÐnement is nucle-
ation of quark bubbles in the baryonic background, when
only some of the baryons deconÐne. For a quark bubble to
survive it must maintain thermodynamic and chemical
equilibrium of strong interactions with the baryon back-
ground, while the net Ñavor of all of the matter must still be
conserved. Unlike the bulk deconÐnement scenario, quark
bubbles can compress or expand to have a di†erent density
than the surrounding medium. They can also maintain a
composition di†erent from the original baryons by control-
ling the fractions of baryon species that deconÐne. This
implies that bubble nucleation has more degrees of freedom
than bulk deconÐnement, and the possibility for the quark
bubbles to have a larger strangeness fraction than the
baryon background is especially helpful for bubble forma-
tion. This qualitative argument suggests both that the
threshold density for deconÐnement is lower for bubble
nucleation than for bulk deconÐnement and that the impact
of strangeness being present should be even more pro-
nounced in this case. Calculations of bubble nucleation are,
however, highly model dependent, since additional factors
such as the bag surface tension must be included (see, e.g.,
Olesen & Madsen 1994), and we conÐne ourselves to these
qualitative remarks.

Finally, it is interesting to note that in equilibrium, the
presence of hyperons is expected to increase the minimal
baryon density in which a mixed phase can exist with
respect to nuclear matter (Prakash et al. 1997). Hyperon
formation reduces the energy per baryon, and at any total
baryon density the quark component of the mixed phase
always occupies less volume and holds less baryon number
when equilibrated with a baryonic phase with hyperons
than when equilibrated with nucleons. However, since the
mixed phase can appear only following the initial deconÐn-
ement, hyperon formation does not suppress deconÐnement
but rather enhances it, as is evident from Figure 10 and the
discussion above. Furthermore, since hyperons soften the
equation of state, a larger central baryon density is required
to support a star of given mass than for nuclear matter. We
conclude that the likelihood of deconÐnement and creation
of a mixed phase in neutron stars is increased by the appear-
ance of hyperons with respect to nuclear matter. This likeli-
hood is difficult to quantify, since it is strongly dependent
on the quark matter equation of state, which may delay
deconÐnement to extremely high densities or even forbid it
from occurring in the density range relevant to neutron star
cores (in the context of the bag model, this is naturally
achieved by increasing B). Nonetheless, these general
implications of hyperon formation are, yet again, model
independent.

7. CONCLUSIONS AND DISCUSSION

Various recent studies of hyperon formation in neutron
stars share a consensus that hyperons will appear in the
cores of neutron stars at a density of about This con-2o0.sensus is a direct consequence of the common basis used in
these works for describing the hyperon-nucleon and
hyperon-hyperon interactions, as deduced from hypernuclei
experiments. The qualitative principle that arises from these
experiments is that hyperon-related interactions are similar
both in character and in order of magnitude to the nucleon-
related interactions. It is thus reasonable for the fundamen-
tal similarity of nucleons and hyperons to manifest at higher

densities, where the typical energy scales are of the order of
the mass di†erences between the di†erent species. In this
study we concentrate on the e†ects hyperon formation may
have on the global properties of neutron stars. We discuss
the implications of the presence of hyperons in the cores of
neutron stars for the high-density equation of state, for
cooling reactions, and for phase transitions that could be
possible in high-density matter.

The fundamental e†ect of hyperon formation on high-
density matter is the softening of the equation of state with
respect to the equation found for nuclear matter when using
otherwise identical assumptions regarding the strong inter-
actions. This e†ect is found in all the works that include
hyperons in high-density matter and simply reÑects that a
larger number of baryonic degrees of freedom relieves some
of the Fermi pressure of the nucleons. We also demonstrate
a more subtle e†ect, where the rate at which the strong
interaction potential energy density rises as a function bary-
onic density (owing to repulsive short-range forces) deter-
mines both the sti†ness of the nuclear matter equation of
state and the rate of hyperon accumulation. These two pro-
cesses tend to balance one another in terms of the overall
equation of state, and so hyperons induce a ““ pressure
control ÏÏ mechanism in the matter, in the sense that the
equations of state for matter with hyperons are limited to a
narrower range than nuclear matter equations of state. The
clearest manifestation of the ““ pressure control ÏÏ mechanism
is that the maximum neutron star masses found for equa-
tions of state with hyperons are limited to a rather narrow
rangeÈin this work 1.5È1.8 smaller than theM

_
Èmuch

range found for nuclear matter equations. A narrow range
for the value of the maximum mass is in good agreement
with published works, and we emphasize that it is a funda-
mental consequence of hyperon formation in neutron stars,
while speciÐc details of the modeled interactions are only of
secondary importance.

Hyperon formation provides a natural route to combine
a sti† equation of state at a density of and a softero

B
D o0equation at higher densities Such a combinationo

B
º 2o0.could make a large mass neutron star signiÐcantly more

compact than a 1.4 star and can even enable someM
_speciÐc conÐgurations to undergo a spin-up period during

their rotational evolution. Current observations do not
provide positive or negative indication regarding such a
combination in the equation of state, but we do point out
that it can also reconcile a large neutron star crust, implied
from pulsar glitch phenomena, with a low to intermediate
maximum mass. This is in contrast to the argument made
regarding nuclear equations of state, claiming the glitches
indicate a sti† equation at high densities.

Once hyperons are included, the baryon composition of
neutron star cores provides the necessary concentration
thresholds for direct Urca neutrino emitting processes. This
can lead to rapid cooling rates of neutron stars, but the
actual cooling rates may be severely moderated if the
baryons couple to superÑuid pairs. While nucleon super-
Ñuidity has been discussed extensively in the past, we point
out that hyperons should also be expected to be in a super-
Ñuid state, with gap energies in the same order of magni-
tude. Hence, hyperon formation can be consistent with
observed cooling rates.

Both meson condensation and baryon deconÐnement
o†er alternative degrees of freedom to hyperon formation in
high density matter. The threshold densities for both types
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of phase transitions are difficult to constrain, owing to large
uncertainties involved. However, current estimates of the
properties of high-density matter suggest that hyperon for-
mation will precede meson condensation and deconÐne-
ment. We show that if indeed hyperons appear Ðrst in the
matter, they a†ect the likelihood of both these transitions.
Meson condensation is suppressed, since hyperons induce
deleptonization, thus lowering the lepton chemical poten-
tial with which the mesons compete. On the other hand, the
Ðnite strangeness fraction allows the baryons to deconÐne
into a lower energy quark matter state, which makes decon-
Ðnement more favorable for any given quark matter
physics. Both these trends are opposite to those expected in
high-density nuclear matter, which has a large lepton frac-
tion and is composed of only strangeless quarks.

We emphasize again that all these results are basically
general features of matter with multiple baryon species.
Most of the speciÐc quantitative values are dependent on
the details of the modeling of the strong interaction, but the
qualitative results discussed here should prevail as long as
the general nature of these models is similar. It should be
borne in mind that while the extrapolation of these inter-
actions from hypernuclei data seems reasonable, large
uncertainties still remain. If some of the hyperon-nucleon
interactions are critically di†erent than those assumed here,
the qualitative trends can change through suppressing the
formation of some baryon species.

Unfortunately, the current status of observations of
neutron stars does not provide any signiÐcant constraints
on the properties of high-density matter. SpeciÐc indica-
tions for the presence or absence of hyperons are naturally
unavailable as well. Clearly, any further measurements of
masses, radii, and rotation frequencies will be extremely
valuable for constraining the high-density equation of state,
especially if unusual values (such as a large mass or a
rapidly rotating star) will be observed. Correlations
between these di†erent quantities for any given object are
also important, and the newly discovered quasi-periodic
oscillations in kilohertz emission in some X-ray binaries
may o†er potential in this regard.

Unique features of neutron stars, if observed, may also
provide some indication regarding the physics of high-
density matter. If several hyperon species do form in the
core, the core could be composed of multiple superÑuids,
including some negatively charged superconductors. Such a
composition might have e†ects on both the rotational
properties and the magnetic evolution of the star. Further

di†erences with respect to nuclear matter might be found
owing to the lower density (by more than an order of
magnitude) of the normal (not superconducting) lepton
component, in particular through the magnetic Ðeld evolu-
tion.

Needless to say, additional experimental data from
hypernuclei will be useful in establishing the foundations of
high-density matter models. This is especially relevant to
the hyperon-nucleon interactions, for which relevant
systems are more likely to be produced in current acceler-
ators than for hyperon-hyperon interactions.

Finally, we recall that the properties of high-density
matter may have important consequences in several related
astrophysical processes. Of these, the evolution of a newly
born neutron star has received extensive attention in recent
years (see, e.g., Keil & Janka 1995 ; Prakash et al. 1997). A
unique qualitative feature in this regard is that matter with
hyperons (and also with other negatively charged hadrons
or quarks) will support a smaller maximum mass after neu-
trinos di†use from the newly born core than while neutrinos
are still trapped. Once lepton number in the matter is
allowed to decrease, more hadronic degrees of freedom can
be exploited that will soften the equation of state. For
nuclear matter the opposite occurs, since deleptonization
leads to a larger neutron-proton asymmetry, which sti†ens
the equation of state. The maximum mass of a star with
hyperons in the core is found to be larger when neutrinos
are still trapped than after deleptonization, which implies a
mass range for which a newly born neutron star is metasta-
ble. Hyperon formation may thus play a role in creating
another route for the formation of low-mass black holes in
Type II supernova, with neutrino emission setting the time
scale for the collapse (10È15 s). Such a scenario is especially
appealing in view of the neutrino measurements from SN
1987A (Ellis, Lattimer, & Prakash 1997), in which no
neutron star has been found. If a future nearby supernova
will provide Ðner details regarding the emitted lepton
number, neutrino energy content, and time structure, valu-
able information may be inferred regarding high-density
matter and its composition and hyperon formation in
particular.
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APPENDIX

THE EFFECTIVE EQUATION OF STATE

The formalism of the e†ective equation of state discussed in this work was presented by Balberg & Gal (1997, to which the
reader is referred for detail). This equation is basically a generalization of the Lattimer-Swesty equation of state for nuclear
matter (Lattimer & Swesty 1991), which is commonly used in hydrodynamical simulations. An e†ective equation of state does
not presume to describe the underlying physics of the strong interactions but does allow for conducting extensive parameter
surveys (including Ðnite temperatures). The e†ective equation was shown to reproduce the main results of Ðeld theoretical
models in terms of the equilibrium compositions and the thermodynamic properties of the high density matter.

The core of the e†ective EOS is an adjustable baryon-baryon potential, which models the strong interaction and provides
the quantitative description of the potential energy density of high-density matter. This energy density is added to the kinetic
energy and mass densities of the baryons and to the kinetic energy and mass densities of the leptons, which are taken to be
noninteracting (as is commonly assumed).
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The baryon-baryon interactions among the various species are described by assuming local density-dependent potentials.
These potentials are constructed to reproduce the basic features of the strong interactions, i.e., long-range attraction and
short-range repulsion, andÈin some casesÈcharge dependence, compatible with isospin invariance. The potential felt by a
single baryon of species y in bulk matter of baryon species x with number density is then given in the formo
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xyterm included here was found to preempt some numerical problems that arose when a single repulsive term was used (Balberg

& Gal 1997). This term is assumed to represent universal short-range interactions, thus setting w and h to be independent of
the baryon species involved. The values of the coefficients and exponents are chosen to reproduce experimental data and
accepted theoretical results regarding the baryon-baryon interactions.

The local potential for a single baryon in a bulk of other baryons may be extrapolated into the potential energy density of
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) o

x
],

simplicity we assume that all baryon-baryon interactions have a common value of c (further generalization is, of course,
possible) and follow the common assumption of universal hyperon couplings (denoted below as and The Ðnala

YY
c
YY

).
expression for the potential energy density of baryonic matter with a baryon density o is then
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where for each species and introducing the shortened notation N \ n ] z ; $\ $0] $~ ; &\ &`] &0] &~. Inx \ o
x
/o

equation (A2) it is assumed that isospin (symmetry) forces vanish for the " and &0, which have a zero isospin projection
(I3 \ 0).

Current experimental data are insufficient to constrain all the presented coefficients, especially those corresponding to the
short-range interactions. Once the shape of these interactions is assumed (by setting the value of w and h), the rest of the
coefficients can be determined by Ðtting them to reproduce the properties of nuclei and hypernuclei. In this work two sets of
coefficients were used, denoted models 1 and 2. These models di†er mainly in their density dependence (the values of c and h),
and correspondingly reÑect two values for the incompressibility of symmetric nuclear matter at (1) K \ 240 MeV,o

N
\o0 :

which is a ““ standard ÏÏ value used for high-density matter, and (2) K \ 320 MeV, which implies a sti† EOS. The values of the
coefficients in both equations are given in Table 2. In the variation in which & hyperons are excluded from the matter, the
coefficients of the &-related interactions are ignored.

Since the e†ective EOS has no means of consistently combining relativistic and medium e†ects, the masses are set to be
equal to the bare ones. This is a somewhat crude approximation, since Ðeld theoretical models suggest an e†ective baryon
mass lower than the bare one, although the values of the coefficients in the potential energy expression can compensate in part
for this approximation. Correspondingly, the baryons are treated as nonrelativistic. We note that the equations do reach the
causality limit, dP/de \ c2, but in both cases this occurs at densities that correspond to neutron star masses slightly higher
than the maximum static mass.
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TABLE 2

COEFFICIENTS FOR THE POTENTIAL ENERGY DENSITY TERM IN EQUATION (A2)

Parameter EOS 1 EOS 2 Parameter EOS 1 EOS 2

K [MeV] . . . . . . 240 320 a&Nb . . . . . . . [481.3 [354.8
c . . . . . . . . . . . . . . . . 4/3 5/3 b&Nb . . . . . . . 214.2 214.2
h . . . . . . . . . . . . . . . . 5/3 2 c&Nc . . . . . . . 499.6 484.3
wa . . . . . . . . . . . . . . 223.6 220 a$Nb . . . . . . [410.2 [303.1
a
NN

b . . . . . . . . . . . . [690.0 [481.7 b$Nb . . . . . . 0 0
b
NN

b . . . . . . . . . . . . 107.1 107.1 c$Nc . . . . . . . 415.3 394.6
c
NN

c . . . . . . . . . . . . 744.6 715.5 a
YY

b . . . . . . . [676.1 [513.3
a"N

b . . . . . . . . . . . . [481.3 [354.8 b&&b . . . . . . . 214.2 214.2
b"N

b . . . . . . . . . . . . 0 0 b$$b . . . . . . . 0 0
c"N

c . . . . . . . . . . . . 499.6 484.3 c
YY

c . . . . . . . 658.1 764.7

a MeV fm3h.
b MeV fm3.
c MeV fm3c.

Approximating neutron star matter to have zero temperature, the kinetic energy and mass density terms for the baryons
are, respectively,

ekin(Mxi
N, o

B
)\ ;

i

pF2(xi
)

2m
i

; emass(Mxi
N, o

B
) \;

i
x
i
o
B
m

i
, (A3)

where is the Fermi momenta of the baryons. The lepton relativistic energy densities (dependent on thepF(xi
)\ +c(3n2x

i
o
B
)1@3

lepton fraction and the total density) are added as well, yielding the Ðnal EOS, e(Mx
i
, x

l
N, o

B
).
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