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ABSTRACT

Dark matter may consist of weakly interacting elementary particles or of macroscopic compact objects. We
show that the statistics of the gravitational lensing of high-redshift supernovae strongly discriminate between
these two classes of dark matter candidates. We develop a method of calculating the magnification distribution
of supernovae, which can be interpreted in terms of the properties of the lensing objects. With simulated data,
we show that *50 well-measured Type Ia supernovae ( mag) at redshifts ∼1 can clearly distinguishDm ∼ 0.2
macroscopic from microscopic dark matter if and all dark matter is in one form or the other.Q * 0.20

Subject headings: cosmology: theory — dark matter — gravitational lensing

1. INTRODUCTION

The nature of dark matter (DM) poses one of the most out-
standing problems in astrophysics. There are essentially two
alternative hypotheses. The DM may be microscopic, consist-
ing of weakly interacting particles such as supersymmetric neu-
tralinos or axions, or else be macroscopic, compact objects such
as primordial black holes (PBHs), brown dwarfs, or old white
dwarfs (MACHOs). Big bang nucleosynthesis (BBN) puts a
bound on the density in baryonic matter of (or2Q h & 0.02b

&0.03 if one allows for inhomogeneous BBN), but the density
of PBHs is not well constrained. It is possible that some hitherto
unknown mechanism allows for DM that is dominated by mac-
roscopic objects. For these reasons, direct observational con-
straints on macroscopic DM of any density are very important.

We propose a simple test for distinguishing macroscopic
from microscopic DM. In this Letter, we consider only the
opposing hypotheses that one or the other dominates. If the
DM is microscopic, the component clustered into halos will
lens high-redshift supernovae (SNe). If the DM is macroscopic,
most light beams do not intersect any matter—i.e., there is no
Ricci focusing—and the SN brightness distribution is skewed
to an extent that can be quantitatively distinguished from halo
lensing.

2. PROPERTIES OF THE MAGNIFICATION PROBABILITY
DISTRIBUTION FUNCTION

In this Letter we consider the lensing of distant supernovae
by discrete “lenses.” A lens is the smallest unit of mass that
acts coherently for the purpose of lensing. This could be a
galaxy halo, or it could be a high-mass DM candidate such as
a PBH.

We make the distinction between macroscopic and micro-
scopic DM more quantitative by considering two mass scales.
The first is defined by the requirement that the projected density
be smooth on the scale of the angular size of the source. Ap-
plying this requirement to the DM about 1 Mpc from us gives
a maximum mass of

3l s 2m ∼ 100 g Q h f, (1)s 0( )AU
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where ls is the physical size of the source and f is a geometric
factor of order unity. If the unit of DM is smaller, it is micro-
scopic DM. Another, larger mass scale is defined by the re-
quirement that the angular size of the source be small compared
to the Einstein ring radius so that it can be considered a true
point source:

1/2 2 2D l m ll s s27m * ∼ 10 M f, (2),( ) ( )D R AUs E

where Ds and Dl are the angular size distances to the source
and lens. If a lens is near or below this mass, the high-
magnification tail of the distribution function will be modified
and the rare high-magnification events will become time de-
pendent (Schneider & Wagoner 1987). The measured velocity
of the expanding photosphere of a Type Ia SN is around

km s21 (Patat et al. 1996), which means4(1.0–1.4) # 10
AU week21. The SN reaches maximum lightl ∼ (40–57) Dts

in approximately 1 week and persists for several weeks.
The background cosmology will be taken to be the standard

Friedman-Lemaı̂tre-Robertson-Walker (FLRW) with the metric
, where the comoving an-2 2 2 2 2ds 5 dt 1 a(t) [dx 1 D(x) dQ]

gular size distance is D(x) 5 {R sinh (x/R), x, R sin (x/R)}
( ) for the open, flat, and closed1/2 21R 5 FH (1 2 Q 2 Q ) F0 0 L

global geometries, respectively. Another relevant angular
size distance is the Dyer-Roeder or empty-beam distance

(Dyer & Roeder 1974; Kantowski 1998; note differenceD̃(x)
in notation), which is the angular size distance for a beam that
passes through empty space and experiences no shear.

2.1. Magnification by a Single Lens

Consider a single lens at a fixed coordinate distance from
Earth. The path of the light is described by either of two lensing
equations:

˜ ˜r 5 y 2 a( y, D , D ), (3)⊥ l s

r 5 [1 2 k (x )]y 2 a( y, D , D ), (4)⊥ b s l s

where is the position of the lens relative to the undeflectedr⊥
line of sight to the source, is the position of its image in they
same plane, and a is the deflection angle times the angular size
distance. In equation (3), a negative background convergence
kb is included to account for the lack of background mass
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Fig. 1.—Histograms representing the total magnification probability distri-
bution for macroscopic DM and microscopic DM clumped into halos. The
means of all the distributions are zero. For the macroscopic DM case, all the
matter in the universe is in the lenses. The shape of the distribution for DM
halos is dependent on both the cosmology and the specific halo model assumed.
This is a representative sample.

density that is assumed when D is used instead of . TwoD̃
magnifications, and m, can be defined using equations (3)m̃
and (4), respectively. The requirement that the two lensing
equations agree on the true size of an object results in the
relation . The explicit form of canD̃(x) 5 [1 2 k (x)]D(x) k (z)b b

be found by comparing the standard FLRW expression for D(x)
with the solutions for found in Kantowski (1998).D̃(x)

The probability that the lens is located between r⊥ and
is . If the lens is spherically symmetricr 1 dr p(r )dr ∝ r dr⊥ ⊥ ⊥ ⊥ ⊥ ⊥

and the magnification is a monotonic function of r⊥, the ex-
pression for the magnification can be inverted (at least nu-
merically) to get . Then, the probability of a lensr (m, D, D )⊥ s

causing the magnification can be found by changing1 1 dm
variables. Lenses might also have properties such as mass, scale
length, etc., which need to be averaged.

For the case of a point-mass lens, the total magnification of
both images is given by ;2 2 1/2˜ ˆ ˆ ˆ ˆm 5 (r 1 2) /[r (r 1 4) ] r {

. The Einstein radius of the lens is givenr /R (m, D, D )⊥ E s

by . The single-lens distribution function2 ˜ ˜ ˜R 5 4GmD D /DE l ls s

is then

23/22˜ ˜ ˜ ˜[ ]p(dm)ddm ∝ (1 1 dm) 2 1 ddm. (5)

The probability in equation (5) is not normalizable; it diverges
at small . This can be handled by introducing a cutoff in˜dm
either space or in r⊥. The nature of this cutoff is not im-˜dm
portant as long as it is at sufficiently small or large r⊥. This˜dm
will be clear when the total magnification distribution due to
multiple lenses is considered.

If the DM consists of microscopic particles clumped into
halos, the entire halo will act as a single lens. In this case, the
Ricci focusing contribution to the magnification strongly dom-
inates over shear distortions produced by mass outside of the
beam (Holz & Wald 1998; Premadi, Martel, & Matzner 1998)
and is then a function of only the local dimensionless surface
density . Furthermore, the lensing of the great majority ofk( y)
SNe will be quite weak, which allows us to confidently make
the linear approximation: . This as-dm 5 2[k( y, D , D ) 1 k ]l s b

sumption has been well justified by many authors and will be
confirmed by results in § 2.2.

For the purposes of this Letter, it will suffice to use a simple
model for the surface density of halos. We use models with
surface densities given by

2 2 21V yc ⊥
S(y ) 5 1 1 . (6)⊥ ( )[ ]2Gy r⊥ s

This model behaves like a singular isothermal sphere out to
, where it is smoothly cut off.y . r⊥ s

In the following calculations, each halo is assumed to harbor
a galaxy. At all redshifts, a Schechter luminosity function fit
to local galaxies is assumed with and ∗a 5 21.07 f 5

Mpc23. The luminosities are then related to the3 30.01(1 1 z) h
circular velocity Vc by the local Tully-Fisher relation, V 5c

, where km s21. The scale lengths are0.22V (L/L ) V 5 200∗ ∗ ∗
related to the luminosity through with1/2r 5 r (L/L ) r 5c ∗ ∗ ∗

kpc. The precise values used for these parameters do not220
have a significant effect on the results of this Letter.

2.2. Total Magnification

The total magnification of a source includes contributions
from all the lenses surrounding the light path. To find the true
path connecting a source to us, the lensing equation must be
solved with multiple deflections (see Schneider, Ehlers, & Falco
1992). The magnifications due to different lens planes are in
general nonlinearly coupled. However, if the deflections due
to no more than one of the lenses are very weak, the coupling
between lenses can be ignored and their magnifications, dm or

, will add linearly. This is a good approximation for the vast˜dm
majority of light paths in realistic models. The validity of this
assumption will be justified by the results and is further in-
vestigated in Metcalf (1999). Furthermore, numerical simula-
tions and analytic arguments show that for both kinds of DM
it is a good approximation to take the lenses to be uncorrelated
in space (see Holz & Wald 1998; Metcalf 1998b). If in addition
we take the lenses’ internal properties to be uncorrelated, the
probability that the total magnification of a point source is˜dms

between and is˜ ˜ ˜dm dm 1 ddms s s

N N

˜ ˜ ˜ ˜ ˜ ˜ ˜[ ]P(dm )ddm 5 ddm P ddm p(dm ) d(dm 2 dm ), (7)Os s s E i i s i
i51 i51

where is the contribution of the ith lens.˜dmi

The magnification dms is defined as the deviation of the lu-
minosity from its mean value. As a result, the mean of the
distribution P(dms) must vanish.2 This combined with the re-
quirement that both magnifications agree on the true size of a
source results in the expression . In this1/2˜1 2 k (x) 5 Am(x)Sb

way the value of kb(x) can be found by calculating the mean
of equation (7) numerically, and a consistency check of the
calculations can be made by comparing the results with the
explicit values for D(x) and . These values agree to a fewD̃(x)
percent, which is consistent with the uncertainty introduced by
the discrete nature of the numerical calculation in the power-
law tail of the distribution. The minimum magnification dmmin

in the single-lens distribution is set low enough that the re-
sulting total distribution is independent of the cutoff.

Figure 1 shows some examples of histograms made by pro-

2 The actual mean angular size distance should be slightly larger than the
FLRW value because galaxies obscure some sources. Galaxies are presumably
correlated with high-density regions through which the magnification would
be above average were they transparent.
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Fig. 2.—Differentiating DM candidates: the cumulative distributions of the statistic . The cases in which the true DM is macroscopic rise toward the right,Mp

and microscopic DM cases rise toward the left. All the observed SNe are taken to be at , and in all cases and . Left: The different curvesz 5 1 Q 1 Q 5 1 Q 5 10 L L

are for different numbers of observed SNe as marked with mag in all cases except the dot-dashed curves. The halos have total density .Dm 5 0.16 Q 5 0.27h

Center: The solid curves are the same as in the left panel, and the other curves are described in the text. Right: Here the cosmology is marginalized over Q0,
with the widths of the prior Q-distributions marked. In this case, there are 75 observed SNe.

ducing random values drawn from the single-lens distri-˜dmi

butions and then adding them to get the total magnification.
The macroscopic DM distributions shown in Figure 1 are in-
dependent of the lens mass and peak well below their mean
and near the empty-beam solutions (corresponding to dm 5

, 20.12, and 20.084) because in these cases most lines20.21
of sight do not come very close to any lens. The probability
that there are two lenses that individually give magnifications
greater than dm becomes appreciable only below the peak. This
supports our approximation that whenever the lensing is strong
it is dominated by one lens and the coupling between lenses
is small at this redshift. In addition, we have compared our
results with the numerical simulations of Holz & Wald (1998)
and found excellent agreement.

3. DISTINGUISHING DARK MATTER CANDIDATES

The apparent luminosity of an SN, lob, after lensing can be
expressed in terms of either of the two magnifications, l 5ob

. We wish to infer via the measured luminosities of˜ ˜ml 5 ml/AmS
a set of SNe, each located at a different redshift, from which
distribution the magnifications were drawn and in this way
surmise which DM candidate is most likely. To establish some
insight into the magnitude of this effect, the differences in
magnitudes between the average and the empty-beam solutions
at are 20.25 mag for , 20.14 mag for flatz 5 1 Q 5 10

, and 20.10 mag for open .Q 5 0.3 Q 5 0.30 0

Let us denote the probability of getting a data set {dm} given
a model—either microscopic or macroscopic DM—as

, where the product isP({dm}Fmodel) 5 P P(dmFmodel)ddmi i
iover the observed SNe. The model here includes sources of

noise. This probability can be calculated numerically from the
probability distributions discussed in § 2.2. Because of Bayes’s
theorem, we know that the ratio of these two probabilities is
equal to the relative likelihood of the models being correct,
i.e., the odds, given a data set. It is convenient to modify the
odds into the statistic

( )dQ dQ p(Q ,Q )P {dm}FmacroDM, noise∫ 0 L 0 L1
M { ln ,p [ ]N ( )dQ dQ p(Q ,Q )P {dm}Fhalos, noise∫SN 0 L 0 L

(8)

where p(Q0, QL) is the prior distribution for the cosmological

model based on independent information or prejudice. The
measured is expected to be large if DM is macroscopicM p

and smaller if DM is microscopic or nonexistent.
For the left panel in Figure 2, 5000 simulated data sets were

created, was calculated for each of them, and their cu-Mp

mulative distributions were plotted. The noise included in the
simulation originates from both the intrinsic distribution of SN
luminosities, presently corrected to ∼0.12 mag, and the obser-
vational noise, presently an additional ∼0.08 mag. For the left
panel, the noise is taken to be Gaussian distributed in mag-
nitudes with a standard deviation of 0.16 mag, except for the
dot-dashed curves which have mag. The cosmologyDm 5 0.2
is fixed in this plot, i.e., p(Q0, QL) is a d-function. can beM p

calculated for a given data set and compared to this plot to
determine its significance. It can be seen here that for 51 SNe
(solid curve) at , the two distributions overlap at the 4%z 5 1
level, i.e., 96% of the time one of the DM candidates can be
ruled out at better than the 96% confidence level. One of the
advantages of is that it is close to Gaussian distributed withMp

a mean that is independent of the number of SNe observed. In
this way, once the cosmology and noise model is fixed, the
value of is a direct prediction of the kind of DM.Mp

The middle panel in Figure 2 illustrates the importance of
some possible systematic uncertainties that arise from not
knowing precisely the distribution of the noise. The solid
curves are the same as in the left panel. The dotted curve is
the extreme case in which the noise is actually Gaussian dis-
tributed in magnification (there is a low-magnitude tail), but

is calculated under the same assumptions as in the leftMp

panel. The dashed line in this panel is the case in which the
standard deviation is overestimated to be mag butDm 5 0.2
is really mag. These errors in the noise model doDm 5 0.16
not destroy the efficacy of the test, but they could be important
if a long tail exists in the intrinsic distribution of luminosities,
and they become more important for smaller Q0 and QL.

The right panel in Figure 2 addresses the question of dif-
ferentiating between DM candidates without assuming specific
values for the cosmological parameters, thereby making the
conclusion cosmology independent. Here the prior is taken to
be within a range in Q0 (p(Q , Q ) 5 d(1 2 Q 2 Q ) DQ 50 L 0 L 0

, 0.1, and 0.2) centered on 0.3 and zero otherwise. The sim-0
ulated data is the same here as for the solid curves in the other
two panels. However, the integrations in equation (8) would
be prohibitively time consuming if the entire magnification



L4 FUNDAMENTAL TEST OF NATURE OF DARK MATTER Vol. 519

distribution function were calculated for each trial cosmology.
To simplify the calculation without losing much of the test’s
effectiveness, we use approximate, analytic test distribution
functions. For the macroscopic DM case, we use equation (5)
with the low-magnification cutoff, which ensures that it gives
the correct mean. Comparison of this approximation with the
full multilens distribution shows that it is a good approximation,
especially for low Q0. For the microscopic DM/halo case, we
approximate the distribution as a Gaussian with an appropriate
width (see Metcalf 1998a). This plot shows that not only is
this simplified calculational technique adequate, but that one
does not need to assume a precise cosmological model to dif-
ferentiate between DM candidates. Increasing the width of the
prior beyond does not make much difference. TheDQ 5 0.20

reason for this is that if the assumed cosmological parameters
are significantly different than the true ones, the distribution
will be shifted to an extent that it is no longer consistent with
the data. This shift would be confused for a lensing effect if
the two kinds of distributions, illustrated in Figure 1, were
translations of each other, but they are not, even after noise is
added. For the two DM cases, the modes of the magnification
distributions follow different m-z relations, but their means are
the same. For a fixed redshift, it is the distribution of lumi-
nosities about the mean that distinguishes the two cases.

For open models ( ), it is more difficult to differentiateQ 5 0L

the DM candidates, but even in this case with 51 SNe at
and we expect to get better than 90% confi-z 5 1 Q 5 0.30

dence at least 90% of the time. If , BBN constraintsQ 5 0.10

just barely allow for all DM to be made of baryonic objects.
In this case, similar bounds to those shown in Figure 2 for 51
SNe can be achieved with 200 SNe. However, the means of
the distributions are closer together in this case, makingMp

the test more susceptible to systematic errors in the assumed
noise model.

The power of lensing to differentiate DM candidates comes
mostly from its ability to identify macroscopic DM. A positive
detection of the lensing by microscopic DM halos will take
more SNe, as will constraining the precise fraction of DM in
macroscopic form, unless correlations between SN luminosities
and foreground galaxies are utilized (Metcalf 1998b, 1999).

4. DISCUSSION

One concern in implementing the test described here is the
possibility that Type Ia SNe and/or their galactic environments
evolve with redshift. This is also a major concern in cosmo-
logical parameter estimation from SNe. So far there is no in-
dication that the colors or spectra systematically change with
redshift (Perlmutter et al. 1997; Riess et al. 1998). Since the
evolution of the magnification distribution is determined by
cosmology, it is in principle possible to make an independent
test for systematic evolution in the distribution of SN
luminosities.

Microscopic DM does not need to be clustered for this test
to work. The clustering is added to make the calculations re-
alistic. Clustering the microscopic DM to a greater or lesser
extent would affect our results quantitatively, but the test would
still be viable in more extreme cases. We conclude that if the
assumptions we have made about the noise levels in future SN
observations remain reasonable, on the order of 50–100 SNe
at should suffice to determine a fundamental question:z ∼ 1
whether the major constituent of extragalactic DM is micro-
scopic particles or macroscopic objects.

We would like to thank D. Holz for providing the results of
his simulations for the purposes of comparison.
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