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ABSTRACT
Photometric redshifts are quickly becoming an essential tool of observational cosmology, although

their utilization is somewhat hindered by certain shortcomings of the existing methods, e.g., the unreli-
ability of maximum-likelihood techniques or the limited application range of the ““ training-set ÏÏ
approach. The application of Bayesian inference to the problem of photometric redshift estimation e†ec-
tively overcomes most of these problems. The use of prior probabilities and Bayesian marginalization
facilitates the inclusion of relevant knowledge, such as the expected shape of the redshift distributions
and the galaxy type fractions, which can be readily obtained from existing surveys but are often ignored
by other methods. If this previous information is lacking or insufficientÈfor instance, because of the
unprecedented depth of the observationsÈthe corresponding prior distributions can be calibrated using
even the data sample for which the photometric redshifts are being obtained. An important advantage of
Bayesian statistics is that the accuracy of the redshift estimation can be characterized in a way that has
no equivalents in other statistical approaches, enabling the selection of galaxy samples with extremely
reliable photometric redshifts. In this way, it is possible to determine the properties of individual galaxies
more accurately, and simultaneously estimate the statistical properties of a sample in an optimal fashion.
Moreover, the Bayesian formalism described here can be easily generalized to deal with a wide range of
problems that make use of photometric redshifts. There is excellent agreement between the B130 Hubble
Deep Field North (HDF-N) spectroscopic redshifts and the predictions of the method, with a rms error
of up to z\ 6 and no outliers nor systematic biases. It should be remarked that*zB 0.06(1] zspec)since these results have not been reached following a training-set procedure, the above value of *z
should be a fair estimate of the expected accuracy for any similar sample. The method is further tested
by estimating redshifts in the HDF-N but restricting the color information to the UBV I Ðlters ; the
results are shown to be signiÐcantly more reliable than those obtained with maximum-likelihood tech-
niques.
Subject headings : galaxies : distances and redshifts È galaxies : photometry È methods : statistical

1. INTRODUCTION

The advent of the new class of 10 m ground-based tele-
scopes is having a strong impact on the study of galaxy
evolution. Instruments such as LRIS at the Keck telescopes
allow observers to regularly secure redshifts for dozens of
IB 24 galaxies in several hours of exposure. Technical
advances in the instrumentation, combined with the pro-
liferation of 10 m class telescopes, guarantees a vast increase
in the number of galaxies, bright and faint, for which spec-
troscopic redshifts will be obtained in the near future. In
spite of the progress in the sheer numbers of available
spectra, the IB 24 ““ barrier ÏÏ (for reasonably complete
samples) is likely to stand for awhile yet, since there are no
foreseeable dramatic improvements in the telescope area or
detection techniques. This means that most of the galaxies
detected in very deep exposures are in practice inaccessible
to spectroscopical analysis. The best example is the Hubble
Deep Field North (HDF-N; Williams et al. 1996) : after
several years of intensive e†orts by the astronomical com-
munity, the spectroscopical sample only comprises B20%
of the I\ 27 galaxies detected in that Ðeld. Very few areas
of the sky will receive such a telescope barrage in the near
future, so this can almost be considered as the limit of what
is currently achievable by spectroscopy. In contrast, sur-
prisingly accurate photometric redshifts were quickly
obtained for most of the HDF-N galaxies (notably by
Sawicki, Lin, & Yee 1997 ; see also Lanzetta, Yahil, &

1996 ; Gwyn & Hartwick 1996), althoughFerna� ndez-Soto
due to the maximum-likelihood methodology employed by

these authors, a signiÐcant fraction of redshift estimates pre-
sented large, ““ catastrophic ÏÏ errors (Ellis 1997). Moreover,
as will be shown below, using a Bayesian statistical
approach it is possible to obtain fast, inexpensive andÈ
more importantÈhighly reliable photometric redshifts for
B90% of the I\ 27 HDF-N galaxies.

In spite of the e†orts of Thomas Loredo, who has written
stimulating reviews on the subject (Loredo 1990, 1992),
Bayesian inference is still far from becoming the standard
approach in astrophysics, and is often used as just another
tool in the available panoply of statistical methods.
However, as any reader of the fundamental treatise by
Jaynes (2000)1 can learn, Bayesian probability theory rep-
resents a uniÐed look to probability and statistics, which
intends not to complement, but rather to fully replace the
traditional ““ frequentist ÏÏ statistical techniques (see also
Bretthorst 1988, 1990 ; Sivia 1996 ; Gelman et al. 1998). The
basic aim of this paper is to consider the problem of photo-
metric redshift estimation from the point of view of Bayes-
ian inference. Kodama, Bell, & Bower (1998) also developed
a Bayesian classiÐer for photometric redshifts. There are,
however, several di†erences between their approach and the
one followed in this work, perhaps the most signiÐcant of
which is the treatment of priors (see ° 3.3).

The outline of the paper is as follows. Section 2 reviews
the current methods of photometric redshift estimation,

1 Jaynes (2000) is also available at : http ://bayes.wustl.edu/etj/
prob.html.
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pointing out their main sources of error. Section 3 describes
in detail how to apply Bayesian probability to photometric
redshift estimation. Section 4 compares the performance of
traditional statistical techniques, such as maximum likeli-
hood, with Bayesian photometric redshift (BPZ) estimation,
by applying both methods to the HDF-N spectroscopic
sample and to a simulated catalog. Section 5 brieÑy sum-
marizes the main conclusions of the paper.

2. PHOTOMETRIC REDSHIFTS : TRAINING SET VERSUS

SED-FITTING METHODS

There are two basic approaches to photometric redshift
estimation ; using the terminology of Yee (1998), they may
be called ““ spectral energy distribution (SED)ÈÐtting ÏÏ and
““ empirical training set ÏÏ methods. The Ðrst technique (Koo
1985 ; Lanzetta et al. 1996 ; Gwyn & Hartwick 1996 ; etPello�
al. 1996 ; Sawicki et al. 1997, etc.) begins by compiling a
library of template spectra, empirical or generated with
population synthesis techniques. These templates, after
being redshifted and corrected for intergalactic extinction,
are compared with the galaxy colors to determine the red-
shift z that best Ðts the observations. The training-set tech-
nique (Brunner et al. 1997 ; Connolly et al. 1995 ; Wang,
Bahcall, & Turner 1998) starts with a multicolor galaxy
sample with apparent magnitudes and colors C thatm0have been spectroscopically identiÐed. Using this sample, a
relationship of the kind z\ z(C, is determined using am0)multiparametric Ðt.

It should be said that these two methods are more similar
than they are usually thought to be. To understand this, let
us look in more detail at how they work. For simplicity, we
forget about the magnitude dependence and assume that
only two colors, are enough to estimate theC\ (C1, C2),photometric redshifts. Thus, given a set of spectroscopic
redshifts and colors MCN, the training-set method willMzspecNtry to Ðt a surface z\ z(C) to the data. This is based on a
very strong assumption : that the surface z\ z(C) is a func-
tion deÐned on the color space, where each value of C corre-
sponds to one and only one redshift. Visually, this means
that the surface z\ z(C) does not ““ bend ÏÏ over itself in the
redshift direction. Although this functionality of the
redshift/color relationship cannot be taken for granted in
the general case, it seems to be a good approximation to the
real picture at z\ 1 redshifts and bright magnitudes
(Brunner et al. 1997). A certain scatter around this surface is
allowed : galaxies with the same value of (C) may have
slightly di†erent redshifts, and it seems to be assumed
implicitly that this scatter is the factor limiting the accuracy
of the method.

The SED-Ðtting method is based on the color/redshift
relationships generated by each of the library templates T ,

A galaxy at the position C is assigned the red-C
T

\ C
T
(z).

shift corresponding to the closest point of any of the C
Tcurves in the color space. If these functions are inverted,C

Tone ends up with the curves which in generalz
T

\ z
T
(C

T
),

are not functions, since they may present self-crossings (and
of course intersect each other as well). If we limit ourselves
to the region in the color/redshift space in which the
training-set method deÐnes the surface z\ z(C), for a realis-
tic template set, the curves would be embeddedz

T
\ z

T
(C

T
)

in the surface z\ z(C), conforming its ““ skeleton ÏÏ and
deÐning its main features.

The fact that the surface z\ z(C) is continuous, whereas
the template-deÐned curves are sparsely distributed, does

not make a great di†erence. The gaps may be Ðlled by Ðnely
interpolating between the templates (Sawicki et al. 1997),
but this is not strictly necessary : usually, the statistical pro-
cedure employed to search for the best redshift performs its
own interpolation between templates. When the colors of a
galaxy do not exactly coincide with one of the spectra, s2 or
the maximum-likelihood method will assign the redshift
corresponding to the nearest template in the color space.
This is equivalent to the curves havingz

T
\ z

T
(C

T
)

““ inÑuence areas ÏÏ around them, conforming a sort of step-
like surface that interpolates across the gaps and also
extends beyond the region limited by them in the color
space. Therefore, the SED-Ðtting method comes with a
built-in interpolation (and extrapolation) procedure, and
for this reason, the accuracy of the photometric is not dra-
matically improved by Ðnely interpolating between sparse
spectra (see ° 4).

The intrinsic similarity of the two photometric redshift
methods may explain their comparable performance, espe-
cially at (Hogg et al. 1998). For magnitude rangesz[ 1
with a relatively simple color-redshift topology, the
training-set method should perform better, if only because it
avoids the possible systematics due to mismatches between
the predicted template colors and the real ones, and also in
part because it includes not only the colors of the galaxies
but also their magnitudes, which helps to break the color/
redshift degeneracies (see below). It should not be forgotten,
however, that despite its apparent precision (dzB 0.06 for
the HDF-N; Connolly et al. 1997), by its own nature there
is not a strong guarantee that such an accuracy will be
reached in future samples, even within the same magnitude
and redshift ranges. Nevertheless, this could be a good
approach for large, low- to moderate-redshift surveys with
abundant calibration spectroscopy, such as the Sloan
Digital Sky Survey (Gunn & Weinberg 1995).

However, in most cases the training-set approach is
impractical or even unfeasible. A basic Ñaw of this method
is the assumption of a single functional form for the color-
redshift relationship, since it is obvious that as one goes to
higher redshifts and/or fainter magnitudes, the topology of
the color-redshift distribution z\ z(C, displays severalm0)nasty degeneracies, even if the near-IR information is
included. This problem can be somewhat overcome by
dividing the redshift/color space into several regions and
performing piecemeal Ðttings within each of them (Wang et
al. 1998). Another problem is that because of its empirical
and ad hoc basis, it can only be reliably extended as far as
the spectroscopic redshift limit. This means that it cannot
be applied where it is more needed, to study faint galaxy
samples beyond the reach of the spectrograph. Moreover, it
is not straightforward to transfer the calibration obtained
with a given Ðlter set to a di†erent one. Such an extrapo-
lation can be done with the help of templates, but once the
shape of these templates has been determined, it seems more
convenient to switch to the more versatile SED-Ðtting
method, especially in its Bayesian version, which will be
developed below.

Although the SED-Ðtting method is not a†ected by some
of these limitations, it also comes with its own set of prob-
lems. Several authors have analyzed in detail the main
sources of errors a†ecting this method (Sawicki et al. 1997 ;

et al. 1999), which can be divided into twoFerna� ndez-Soto
broad classes : color/redshift degeneracies and template
incompleteness.
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Figure 1 (left) shows V [I versus I[K for the morpho-
logical types employed in ° 4 and 0 \ z\ 5. The color/
redshift degeneracies happen when the line corresponding
to a single template self-intersects or when two lines cross
each other at a point corresponding to di†erent redshifts
[these cases correspond to ““ bendings ÏÏ in the redshift/color
relationship z\ z(C)]. It is obvious that the frequency of
such crossings will rise with the extension of the considered
redshift range and with the number of templates included.
Moreover, the presence of color/redshift degeneracies is
also increased by random photometric errors, which can be
visualized as a blurring or thickening of the relation-C

T
(z

T
)

ship (Fig. 1, right) : each point of the curves in the left panel
of Figure 1 is expanded into a square of size dC, the error in
the measured color. The Ðrst consequence of this is a
““ continuous ÏÏ [dzB (LC/Lz)dC] increase in the rms of the
““ small-scale ÏÏ errors in the redshift estimation. Worse still,
the overlaps in the color-color space become more frequent,
with a corresponding rise in the number of ““ catastrophic ÏÏ
redshift errors. Multicolor information may often be
redundant, so increasing the number of Ðlters does not nec-
essarily break the degeneracies. For instance, by applying a
simple PCA analysis to the HDF-N photometric sample, it
can be shown that the information contained in the seven
UBV IJHK Ðlters for the HDF galaxies can be condensed
using only three parameters, the coefficients of the principal

components of the Ñux vectors (see also Connolly et al.
1995). Therefore, if the photometric errors are large, increas-
ing the number of Ðlters cannot totally eliminate the color/
redshift degeneracies, which makes them almost
unavoidable in faint galaxy samples. The training-set
method somewhat alleviates this problem by introducing an
additional parameter in the estimation : the magnitude,
which in some cases breaks the degeneracy. However, color/
redshift degeneracies may also a†ect galaxies with the same
magnitude, and the training-set method does not even con-
template their possibility.

The SED-Ðtting method at least allows for the existence
of this problem, although it is not very efficient in dealing
with it, especially with noisy data. Its choice of redshift is
exclusively based on the goodness of Ðt between the
observed colors and the templates. In cases such as the one
described above, where two or more redshift/morphological
type combinations have nearly the same colors, the value of
the likelihood L would have two or more approximately
equally high maxima at di†erent redshifts (see Fig. 2).
Depending on the random photometric error, one
maximum would prevail over the others, and a small
change in the Ñux could involve a catastrophic change in
the estimated redshift (see Fig. 2). However, in many cases
there is additional information, discarded by the maximum
likelihood (ML) method, that could potentially help to

FIG. 1.ÈL eft : V [I vs. I[K for the templates used in ° 4 in the interval 1 \ z\ 5. The size of the Ðlled squares grows with redshift, from z\ 1 to z\ 5. If
these were the only colors used for the redshift estimation, every crossing of the lines would correspond to a color/redshift degeneracy. Right : The same
color-color relationships, ““ thickened ÏÏ by a 0.2 photometric error. The probability of color/redshift degeneracies increases greatly.
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FIG. 2.ÈExample of the main probability distributions involved in BPZ for a galaxy at z\ 0.28 with an Irr spectral type and IB 26, to which random
photometric noise is added. From top to bottom: (a) : Likelihood functions p(C o z, T ) for the di†erent templates used in ° 4. Based on ML, the redshift chosen
for this galaxy would be and its spectral type would correspond to a spiral. (b) : Prior probabilities, p(z, for each of the spectral typeszML \ 2.685, T om0),(see text). Note that the probability of Ðnding a spiral spectral type with z[ 2.5 and a magnitude I\ 26 is almost negligible. (c) Probability distributions,
p(z, T oC, that is, the likelihoods in the top plot multiplied by the priors. The high-redshift peak due to the spiral has disappeared,m0)P p(z, T om0)p(C o z, T ),
although there is still a small chance of the galaxy being at high redshift if it has a Irr spectrum, but the main concentration of probability is now at low
redshift. (d) Final Bayesian probability, p(z oC, which has its maximum at The shaded area corresponds to the value ofm0)\ £

T
p(z, T oC, m0), z

b
\ 0.305.

which estimates the reliability of and yields a value of B0.91.p*z, z
b

solve such conundrums. For instance, it may be known
from previous experience that one of the possible redshift/
type combinations is much more likely than any other,
given the galaxy magnitude, angular size, shape, etc. In that
case, and since the likelihoods are not informative enough,
Bayesian probability states that the best option would be
the one more likely a priori. This is plain common sense,
but it is not easy to implement using ML; at best, one can
modify the redshift of the problematic objects by hand or
devise ad hoc solutions for each case. In contrast, Bayesian
probability theory allows one to include this additional
information in a rigorous and consistent way, e†ectively
dealing with this kind of error (see ° 3).

Although in some cases the spectrum of a galaxy has no
close equivalents in the template library, it will be assigned
by ML the redshift corresponding to the nearest template in
the color/redshift space, no matter how distant it is from the
observed color (and from the real redshift) in absolute
terms. The solution to this problem seems obvious : to
include more templates in the library until all the possible
galaxy types are considered. However, since all the tem-
plates have equal status in ML, doing this increases the

number of color/redshift degeneracies. Bayesian inference is
much less a†ected by this problem, since it weights each
template by its prior probability, and therefore templates
corresponding to relatively uncommon types, such as, e.g.,
AGNs, etc., can be included without unduly disturbing the
redshift estimation for normal galaxies.

As explained above, the SED-Ðtting techniques perform
their own ““ automatic ÏÏ interpolation and extrapolation, so
once the main spectral types are included in the template
library, the results are not greatly a†ected if one Ðnely inter-
polates among the main spectra. The e†ects of using a
correct but incomplete set of spectra are shown in ° 4.

Both sources of errors described above are exacerbated
for high-redshift galaxies, which are usually faint, and there-
fore have large photometric errors. Moreover, the color/
redshift space has a very extended range in z, and thus
degeneracies are more likely to appear ; in addition, the
template incompleteness is worse, since there are few or no
empirical spectra with which to compare the template
library.

The e†ectiveness of any photometric redshift method is
established by contrasting its output with a sample of gal-
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axies with spectroscopic redshifts. It should be kept in mind,
however, that the results of this comparison may be mis-
leading, since the available spectroscopic samples are
almost by deÐnition especially well suited to photometric
redshift estimation, being relatively bright (and thus with
small photometric errors) and often Ðlling a privileged niche
in the color-redshift space, far from degeneracies (e.g.,
Lyman-break galaxies). Thus, it is risky to extrapolate the
accuracy reached by current methods as estimated from
spectroscopic samples (this also applies to BPZ) to fainter
magnitudes. This is especially true for the training-set
methods, which deliberately minimize the di†erence
between the spectroscopic and photometric redshifts.

3. BAYESIAN PHOTOMETRIC REDSHIFTS (BPZ)

Within the framework of Bayesian probability, the
problem of photometric redshift estimation can be posed as
Ðnding the probability p(z oD, I), i.e., the probability of a
galaxy having redshift z given the data and theD\ MC, m0N,prior information I, which includes any knowledge relevant
to the hypothesis under consideration not already con-
tained in the data D. Although some authors recommend
that the term o I should not be dropped from the expres-
sions of probability, here the rule of simplifying the mathe-
matical notation whenever there is no danger of confusion
will be followed, and from now on p(z) will stand for p(z o I),
p(D o z) for p(D o z, I), etc.

As a trivial example, let us consider just one template in
our library. Applying BayesÏ theorem,

p(z oC, m0)\
p(z om0)p(C o z)

p(C)
P p(z om0)p(C o z) . (1)

Here the expression p(C o z)4L(z) is simply the redshift
likelihood : the probability of observing the colors C if the
galaxy has redshift z. The probability p(C) is a normal-
ization constant, and usually there is no need to calculate it.

The Ðrst factor, the prior probability, is the red-p(z om0),shift distribution for galaxies with magnitude This func-m0.tion allows us to include information such as the existence
of upper or lower limits on the galaxy redshifts, the presence
of a cluster in the Ðeld, etc. The e†ect of the prior onp(z om0)the estimation depends on how informative it is. It is
obvious that for a constant prior (all redshifts equally likely
a priori), the estimate obtained from equation (1) will
exactly coincide with the ML result. This is also roughly
true if the prior is ““ smooth ÏÏ enough and does not present
signiÐcant structure. However, in other cases, values of the
redshifts that are considered very improbable from the prior
information would be ““ discriminated ; ÏÏ i.e., they must Ðt
the data much better than any other redshift in order to be
selected.

Note that rigorously, one should write the prior in equa-
tion (1) as

p(z om0)P
P

dmü 0 p(mü 0)p(m0 omü 0)p(z omü 0) , (2)

where is the ““ true ÏÏ value of the observed magnitudemü 0 m0,is proportional to the number counts as a function ofp(mü 0)the magnitude andm0, p(m0 omü 0)P exp [(m0[ mü 0)2/2p
m0
2 ],

i.e., the probability of observing if the true magnitude ism0The above convolution accounts for the uncertainty inmü 0.the value of the magnitude which has the e†ect of slight-m0,ly ““ blurring ÏÏ and biasing the redshift distribution p(z om0).

To simplify our exposition, this e†ect will not be consider
hereafter ; just and its equivalents will be used.p(z om0)

3.1. Bayesian Marginalization
It may seem from equation (1) (and it is unfortunately

quite a common misconception) that the only di†erence
between Bayesian and ML estimates is the introduction of a
prior ; in this case, However, there is more top(z om0).Bayesian probability than priors.

The galaxy under study may belong to di†erent morpho-
logical types, represented by a set of templates. This set isn

Tconsidered to be exhaustive, i.e., including all possible types,
and exclusive : the galaxy cannot belong to two types at the
same time. In that case, using Bayesian marginalization, the
probability p(z oD) can be ““ expanded ÏÏ into a basis formed
by the hypothesis p(z, T oD) (the probability of the galaxy
redshift being z and the galaxy type being T ). The sum over
all these ““ atomic ÏÏ hypothesis will give the total probability,
p(z oD). That is,

p(z oC, m0) \ ;
T

p(z, T oC, m0) P;
T

p(z, T om0)p(C o z, T ) ,

(3)

where we have applied BayesÏ theorem in the second step.
Here p(C o z, T ) is the probability of the data C given z and
T (where it is assumed that it does not depend on the mag-
nitude The prior p(z, can be developed using them0). T om0)product rule,

p(z, T om0) \ p(T om0)p(z o T , m0) , (4)

where is the galaxy type fraction as a function ofp(T om0)magnitude, and p(z o T , is the redshift distribution form0)galaxies of a given spectral type and magnitude.
Equation (3) and Figure 2 clearly illustrate the main dif-

ferences between the Bayesian and ML methods. ML would
just pick the highest maximum over all the likelihoods
p(C o z, T ) as the best redshift estimate, without looking at
the plausibility of the corresponding values of z or T . On
the contrary, Bayesian probability averages over all the
likelihoods after weighting them by their prior probabilities,
p(z, In this way, the estimation is not a†ected byT om0).spurious likelihood peaks caused by noise (Fig. 2 ; see also
the results of ° 4). Of course, in an ideal situation with
noiseless observationsÈand a nondegenerate color/redshift
spaceÈthe results obtained with ML and Bayesian infer-
ence would be the same.

It is straightforward to extend equation (3) to a spectral
library that depends on a set of continuous parameters, e.g.,
synthetic templates that depend on the metallicity Z, the
dust content, the star formation history, etc., or a set of a
few empirical spectra that are expanded using the principal
component analysis (PCA) technique & Cuevas(Sodre�
1997). In general, if the spectra are characterized by pos-n

Ssible parameters (which may be physical char-S \ Ms1. . .snSNacteristics of the models or just PCA coefficients), the
probability of z given C and can be expressed asm0

p(z oC, m0) \
P

dSp(z, S oC, m0)

P
P

dSp(z, S om0)p(C o z, S) . (5)

One situation in which the use of redshift priors most
clearly reveals its advantages is the study of galaxy cluster
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Ðelds, especially when near-IR photometry is not available.
Since the 4000 break in the spectra of intermediate-Ó
redshift cluster members is difficult to distinguish from the
Lyman break of higher redshift galaxies, for many objects
the redshift likelihood will present two or more peaks,
making ML photometric redshift estimation unfeasible for
a major fraction of the sample. Using a redshift prior
modeled as a smooth background component with a
““ spike ÏÏ at the cluster redshift strongly reduces the number
of objects with undetermined redshifts even with limited
color information (N. & T. Broadhurst, inBen•� tez
preparation).

3.2. T he Redshift L ikelihood
The redshift likelihood was written above as p(C o z, T ),

assuming that it only depends on z and T . However, the
redshift likelihood usually employed by ML photometric
redshift techniques also depends on a, the template normal-
ization factor :

[log (L)] const P s2(z, T , a)\ ;
a

( fa [ af
Ta)2

p
fa
2 , (6)

where with are the observed galaxy Ñuxes,M faN, a \ 0, n
c
,

and are the Ñuxes of the set of templates. Thef
Ta(z) n

Texpression for s2 in the previous equation can be rewritten
as

s2(z, T , a)\ F
OO

[ F
OT
2

F
TT

] (a [ a
m
)2F

TT
, (7)

where

a
m

\ F
OT

F
TT

(8)

is the value of a that minimizes equations (6) and (7), and

F
OO

\;
a

f a2
p
fa
2 , F

TT
\;

a

f
Ta2

p
fa
2 , F

OT
\ ;

a

fa f
Ta

p
fa
2 . (9)

In Bayesian Probability, the nuisance parameter a should
be introduced from the beginning in the full expression for
the redshift probability :

p(z oC, m0)\
P

da ;
T

p(z, T , a oC, m0)

P ;
T

p(z, T om0)
P

da p(a om0)

] p(C o z, T , a) , (10)

where we have assumed that z and T do not depend on a
once is known. It is obvious by comparison with equa-m0tion (3) that under these assumptions,

p(z oC, T )P
P

da p(a om0)p(C o z, T , a) . (11)

In the absence of information about the shape of ap(a om0),safe approach in this particular case is to assume a Ñat
prior, Integrating over a, the likelihoodp(a om0)\ const.
deÐned using equations (6) and (7), we Ðnd

p(C o z, T )P F
TT

(z)~1@2 exp
C
[s2(z, T , a

m
)

2
D

, (12)

i.e., the same expression that would be reached using ML,
except for the normalization factor F

TT
~1@2(z).

Instead of Ñuxes, it may be more convenient to work with
colors, normalizing the total Ñuxes in each band by the Ñux
in a ““ base ÏÏ Ðlter, e.g., the one corresponding to the band in
which the galaxy sample was selected and is considered to
be complete. Here the colors, are deÐned asC\ Mc

i
N,

(i \ 1, where is the base Ñux. The exact wayc
i
\ f

i
/f0 n

c
), f0in which the colors are deÐned is not relevant ; other com-

binations of Ðlters are equally valid. Introducing the follow-
ing deÐnitions,

C
OO

\ ;
i

c
i
2

p
ci
2 , C

OT
\;

i

c
i
c
Ti

p
ci
2 , C

TT
\ ;

i

c
Ti
2

p
ci
2 , (13)

where and one hasp
ci

\ p
fi
/f0 c

Ti
\ f

Ti
/f
T0,

s2(z, T , a
m
) \ p0~2 ] C

OO
] (p0~2 ] C

OT
)2

p0~2]C
TT

, (14)

F
TT

\ a02(p0~2]C
TT

) , (15)

where and Equations (3) and (12)Èp0\ p
f0

/f0 a0\ f
TO

/f0.(15) will be used below in all tests and practical applications.

3.3. Prior Calibration
In those cases where the a priori information is vague and

does not allow us to choose a deÐnite expression for the
prior probability, Bayesian inference allows us to
““ calibrate ÏÏ the prior, if necessary using the very sample
under consideration.

Let us suppose that the distribution p(z, T , is para-m0)metrized using continuous parameters j. These may benjthe coefficients of a polynomial Ðt, a wavelet expansion, etc.
In that case, including j in equation (3), the probability can
be written as

p(z oC, m0) \
P

dj ;
T

p(z, T , j oC, m0)

P
P

dj p(j) ;
T

p(z, T , om0, j)

] p(C o z, T ) , (16)

where p(j) is the prior probability of j, and p(z, isT om0, j)
the prior probability of z, T and as a function of them0parameters j. The latter has not been included in the likeli-
hood expression, since C is completely determined once the
values of z and T are known.

Now let us suppose that the galaxy belongs to a sample
containing galaxies. Each jth galaxy has a base magni-n

gtude and colors The sets andm0j C
j
. C4 MC

j
N m04

contain the colors and magnitudes, respec-Mm0jN, ( j \ 1, n
g
)

tively, of all the galaxies in the sample. Then the probability
of the ith galaxy having redshift given the full samplez

i
,

data C and can be written asm0,

p(z
i
oC, m0) \

P
dj ;

T
p(z

i
, T , j oC

i
, m0i, C@, m0@ ) . (17)

The sets and are iden-C@4 MC
j
N m0@ 4 Mm0jN, j \ 1, n

g
, j D i

tical to C and except for the exclusion of the datam0, C
iand Applying BayesÏ theorem, the product rule, andm0i.simplifying,

p(z
i
oC, m0) P

P
dj p(j oC@, m0@ )

] ;
T

p(z
i
, T om0i, j)p(C o z

i
, T ) , (18)
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where, as before, the likelihood of only depends onC
i

z
i
, T ,

and the probability of and T only depends on C@ andz
i

m0@through j. The expression we obtain is very similar to equa-
tion (16), only now the shape of the prior is estimated from
the data This means that even if one starts with aC@, m0@ .very sketchy idea of the shape of the prior, the very galaxy
sample under study can be used to determine the value of
the parameters j, and thus to provide a more accurate esti-
mate of the individual galaxy characteristics. Assuming that
the data C@ (as well as are independent among them-m0@ )selves,

p(j oC@, m0@ )P p(j)p(C@ om0@ , j)\ p(j) <
j,jEi

p(C
j
om0j, j) ,

(19)

where we have taken into account that the parameters j do
not depend on the set [since they describe the redshift/m0@type prior probability distribution of a galaxy given its
magnitude but do not contain any information aboutm0,the general number counts distribution, n(m0)] :

p(C
j
om0j, j)\

P
dz

j
;
Tj

p(z
j
, T

j
, C

j
om0j, j)

\
P

dz
j
;
Tj

p(z
j
, T

j
om0j, j)p(C o z

j
, T

j
) . (20)

If the number of galaxies in our sample is large enough, it
can be reasonably assumed that the prior probability
p(j oC@, will not change appreciably with the inclusionm0@ )of the data belonging to a single galaxy. In that case,C

i
, m0ia time-saving approximation is to use as a prior the prob-

ability p(j oC, calculated using the whole data set,m0),instead of calculating p(j oC@, for each galaxy. In addi-m0@ )tion, it should be noted that p(j oC, represents them0)Bayesian estimate of the parameters that deÐne the shape of
the redshift distribution.

3.3.1. Physical Priors : Galaxy Evolution and Redshift Clustering

In the next section, a semiempirical parameterization j is
chosen to describe the redshift prior, p(z, This isT om0).done for convenience, but nothing prevents the use of a
more physical parameter set, particularly if we consider that
the parameters j characterize the joint magnitude-redshiftÈ
morphological type galaxy distribution, which contains
important information about galaxy evolution and the fun-
damental cosmological parameters. If it is assumed that all
the galaxies in a sample can be classiÐed as belonging to a
few morphological types, the joint redshiftÈmagnitude-type
distribution would be

n(z, m0, T )P
dV (z)
dz

/
T
(m0) , (21)

where V (z) is the comoving volume as a function of redshift,
which depends on the cosmological parameters and)0, "0,and is the Schechter luminosity function for eachH0, /

Tmorphological type T , with the absolute magnitude M0replaced by the apparent magnitude (a transformationm0that depends on the redshifts, cosmological parameters, and
morphological type). SchechterÏs function also depends on
M*, a, and /*, and on the evolutionary parameters v, such
as the merging rate, the luminosity evolution, etc., and
therefore, the prior probability of z, T, and depends onm0the parameters and v.j

C
\ M)0, "0, H0N, j

*
\ MM*, /*aN,

These parameters can therefore be directly estimated from a
large enough multicolor sample using equation (19).

Another instance in which equation (19) can be used
beyond its original purpose of aiding the redshift estimation
is in the detection of galaxy clusters. Although the presence
of a high-z cluster may only produce a negligible e†ect in
the number counts normalization, it is usually signaled by a
conspicuous spike in the redshift distribution. The latter can
be parametrized as a combination of a smooth ““ Ðeld ÏÏ com-
ponent and a sharp Gaussian at the cluster redshift, z

c
,

which, together with the number of galaxies in the cluster,
can be left as free parameters and determined usingn

c
,

equation (19). This procedure, which has already been suc-
cessfully applied to search for possible galaxy clusters in
deep NICMOS/VLT observations et al. 1999), will(Ben•� tez
be developed and tested in detail in a forthcoming paper
(N. in preparation).Ben•� tez,

4. A PRACTICAL TEST FOR BPZ

The Hubble Deep Field North (HDF-N; Williams et al.
1996) has become the benchmark in the development of
photometric redshift techniques. In this section, BPZ will be
applied to the HDF-N and its performance contrasted with
the results obtained with the standard ““ frequentist ÏÏ (in the
Bayesian terminology) approach, the procedure most fre-
quently applied to the HDF-N (Gwyn & Hartwick 1996 ;
Lanzetta et al. 1996 ; Sawicki et al. 1997, etc.). The photo-
metry used for the HDF-N is that of Lan-Ferna� ndez-Soto,
zetta, & Yahil (1999), which, in addition to magnitudes in
the four Hubble Space Telescope (HST ) UBV I Ðlters, also
includes JHK magnitudes from the observations of
M. Dickinson et al. (in preparation). Here is chosen asI814the base magnitude, The colors are deÐned as describedm0.in ° 3.2. Mark Dickinson has kindly provided a recent com-
pilation of (D130) HDF-N spectroscopic redshifts drawn
from Cohen et al. (1996), Steidel et al. (1996), Lowenthal et
al. (1997), Dickinson (1998), Weymann et al. (1998), Spinrad
et al. (1998), Hogg et al. (1998), and Barger et al. (1999),
together with some unpublished redshifts from the Steidel
and Spinrad groups. From this catalog, we excluded the
stars and object 2-256.0, whose spectroscopic redshift is
problematic (M. Dickinson 1999, private communication).

After a few tests with the HDF-N spectroscopic sub-
sample, a template library similar to that of Sawicki et al.
(1997) was chosen. It contains the four Coleman, Wu, &
Weedman (1980) templates (E/S0, Sbc, Scd, and Irr), plus
the spectra of two starbursting galaxies from Kinney et al.
(1996 ; Sawicki et al. 1997 used two very blue SEDs from
GISSEL). All the spectra were extended to the UV using a
linear extrapolation and a cuto† at 912 and to theÓ,
near-IR using GISSEL synthetic templates. The spectra are
corrected for intergalactic absorption following Madau
(1995).

It might seem in principle that a synthetic template set
that takes galaxy evolution into account (at least
tentatively) is more appropriate than a low-redshift empiri-
cal library extrapolated to very high redshifts. However,
simple tests (see also Yee 1998) show that the extended
CWW set o†ers much better results than the GISSEL
models (Bruzual & Charlot 1993). Since the synthetic
models do not seem to work well even within the relatively
bright magnitude range corresponding to the HDF-N spec-
troscopic sample, there are few reasons to suppose that their
performance will improve at fainter magnitudes.
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A crucial point is to ensure that the template library
covers the main characteristics of all the spectral types
present in the data. Figure 3 illustrates the e†ects of tem-
plate incompleteness on the redshift estimation. The top
plot displays the results obtained using ML (° 3.2) redshift
estimation using only the four CWW templates (this plot is
similar to the diagram shown inzphot-zspec Ferna� ndez-Soto
et al. 1999). In the bottom panel of Figure 3, the results
shown also use ML (no BPZ yet), but include two more
templates, SB2 and SB3 from Kinney et al. (1996). It can be
seen that the new templates have little a†ect in the low-
redshift range, but the changes at z[ 2 are quite dramatic ;

FIG. 3.ÈTop : Photometric redshifts obtained by applying our ML
algorithm to the HDF-N spectroscopic sample using a template library
that contains only the four CWW main types : E/SO, Sbc, Scd, and Irr.
These results show characteristics similar to those of et al.Ferna� ndez-Soto
(1999). Bottom : Shows the signiÐcant improvement (without using BPZ)
obtained by just including two of the Kinney et al. (1996) spectra of star-
burst galaxies, SB2 and SB3, in the template set. The sagging or systematic
o†set between 1.5\ z\ 3.5 is eliminated, and the general scatter of the
relationship decreases from to*z/(1] zspec)\ 0.09 *z/(1 ] zspec)\ 0.07.

the sagging of the CWW-only diagram disappears, and the
general scatter of the diagram decreases by 25%.

The next step in the application of BPZ is choosing the
shape of the prior probabilities. Because of the depth of the
HDF-N, there is practically no reliable information about
the expected redshift distribution. This is therefore a good
example of a situation in which the prior calibration pro-
cedure described in ° 3 should be applied. It will be assumed
that the early types (E/S0) and spirals (Sbc, Scd) have a
spectral type prior (eq. [4]) of the form

p(T om0) \ f
t
e~kt(m0~20) , (22)

with t \ 1 for early types and t \ 2 for spirals. The fraction
of irregulars (the remaining three templates ; t \ 3) is auto-
matically set to complete the galaxy mix, so there is no need
to parametrize it. The spectral fractions at arem0\ 20
E/SO 35%, spirals 50%, and Irr 15%. The results are very
robust with respect to changes in these initial values, since
the free parameters and provide enough leeway to setk1 k2the correct fractions from the data at fainter magnitudes.
The shape chosen for the redshift prior is

p(z o T , m0) P zat exp
G
[
C z
z
mt

(m
o
)
DatH

. (23)

This tentatively reproduces the exponential cuto† at high
redshifts present in spectroscopical redshift surveys, and has
the advantage of a great Ñexibility : depending on the value
of the parameter it can roughly approximate almost anya

t
,

reasonable unimodal redshift distribution, from very
narrow, concentrated ones for to practically Ñat onesa

t
? 2

at In this way, the prior distribution to be estimateda
t
> 1.

from the data is as little biased as possible by the functional
shape chosen in equation (23). The ““ median ÏÏ redshift, isz

m
,

chosen to have a simple, linear dependence on magnitude,

z
mt

(m0) \ z0t] k
mt

(m0 [ 20) . (24)

In total, there are 11 free parameters (j \ Ma
t
, z0t, k

mt
, k

t
N)

to be determined using the calibration procedure.
The HDF-N data set used for the prior calibration pro-

cedure is formed by 737 galaxies with 20\ I\ 27. For the
D130 objects with spectroscopic redshifts, the likelihood
p(C o z, T ) was built as a delta function located at the galaxy
redshift and type T . The calibration sample was beefed up
at bright magnitudes by including the CFRS catalog (Lilly
et al. 1995 ; Crampton et al. 1995), 591 galaxies with
20 \ I\ 22.5 that were spectrally classiÐed using their
V [ I colors. This ensures the presence of enough galaxies
at all magnitude ranges for a meaningful determination of
the parameters j.

Table 1 shows the best values, of the parameters injü ,
equations (23) and (24), found by maximizing the probabil-
ity in equation (19) using the subroutine POWELL, a
direction-set minimization method (Press et al. 1992). To
estimate the errors on these parameters, the region around
the maximum is approximated as a multidimensional
Gaussian,

p(j oD) B p(jü oD) exp [[12(j [ jü )I(j [ jü )] .

The Fisher information matrix, I, is deÐned as

I\ L2 ln [p(jü oD)]
L2j ,
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TABLE 1

PARAMETERS OF THE PRIORS, p(z o T , m0)

Spectral Type a
t

z0t k
mt

k
t

E/S0 . . . . . . . . . . 2.46^ 0.22 0.431 ^ 0.030 0.091 ^ 0.017 0.147^ 0.013
Sbc, Scd . . . . . . 1.81^ 0.10 0.390 ^ 0.024 0.0636 ^ 0.0090 0.450^ 0.036
Irr . . . . . . . . . . . . 0.91^ 0.05 0.063 ^ 0.013 0.123 ^ 0.012 . . .

and calculated by numerical di†erentiation. The 1 p errors
of the parameters, which can be estimated by inverting I,
are shown in Table 1.

Figure 4 shows the full prior in redshift found byp(z om0),summing over T :

p(z om0)\ ;
T

p(T om0)p(z o T , m0) . (25)

Once the priors are determined, we can proceed to the
redshift estimation using equation (16). The results for indi-
vidual galaxies are very robust to variations in the prior
parameters within the errors shown in Table 1, and thus the
multiplication by the probability distribution p(j) and the
integration over dj will be skipped ; the additional compu-
tational e†ort of performing an 11 dimensional integral is
not justiÐed.

There are several options for converting the continuous
probability, p(z oC, to a point estimate of the ““ best ÏÏm0),redshift, Here the mode of the Ðnal probability is chosen,z

b
.

although taking the median value of z, corresponding to
50% of the cumulative probability, or even the average,
SzT 4 / dz zp(z oC, could also be valid.m0),Since Bayesian theory works with full probabilities, it
o†ers a way to characterize the accuracy of the redshift
estimation not available to ML estimates. For instance, a 1
p error can be deÐned using an interval that contains 66%
of the integral of p(z oC, around etc. The indicator ofm0) z

b
,

redshift reliability chosen here is the quantity the prob-p*z,ability of where z is the galaxy redshift.o z[ z
b
o\ *z,

When the value of is low, we are warned that the red-p*z

FIG. 4.ÈPrior in redshift, estimated from the HDF-N datap(z om0),using the prior calibration procedure described in ° 4, for di†erent values of
the magnitude, m0 (I814\ 21È28)

shift probability is spread over a large range in redshift, and
therefore the prediction is likely to be unreliable. As demon-
strated below, efficiently picks out the galaxies withp*zcatastrophic redshift errors, usually those with multimodal
or very diluted redshift likelihoods.

The photometric redshifts resulting from applying BPZ
to the HDF-N spectroscopic sample are plotted in Figure 5.
Some interpolation (three intermediate spectra between
each pair of our template library) has been performed,
which only has the e†ect of slightly (10%) reducing the
small-scale scatter. A Ðner interpolation did not appreciably
improve the scatter and considerably increased the compu-
tational burden. Only one galaxy is discarded after applying
the threshold, not by coin-p*z \ 0.95, *z\ 0.2] (1 ] z)
cidence one of the two outliers appearing in Figure 3. The
other outlier is assigned a correct redshift by BPZ, and in
general it is evident from Figure 5 that the agreement is very
good at all redshifts. The residuals, have*z

b
\ z

b
[ zspec,The rms of the quantity is onlyS*z

b
T \ 0.01. *z

b
/(1 ] z

b
)

0.059, and there are no appreciable systematic e†ects.
Comparing the bottom panel of Figure 3 with Figure 5, it

may seem that, apart from the elimination of two outliers,
there is little advantage in using BPZ rather than ML. This
is not surprising in the particular case of the HDF-N spec-
troscopic sample, formed of relatively bright galaxies, which

FIG. 5.ÈBPZ photometric redshifts, plotted against the spectroscopical
ones for the HDF-N. Some interpolation (three intermediate spectra) is
performed between the main template spectra mentioned in the text, which
slightly reduces (by 10%) the small-scale scatter. One of two outliers in the
bottom panel of Fig. 3 is assigned a correct redshift by BPZ. The other is
the only object discarded when a threshold is applied (see text).p*z \ 0.95
The rms scatter around the continuous line is *z

b
/(1 ] z

b
) \ 0.059.
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often occupy privileged regions in the color space, and
which consequently have sharp likelihood peaks, little
a†ected by smooth prior probabilities. To better illustrate
the e†ectiveness of BPZ, especially when working under
worse than ideal conditions, the photometric redshifts for
the spectroscopic sample are estimated again using ML and
BPZ, but restricting the color information to the UBV I
HST Ðlters. The results are plotted in Figure 6. The ML
redshift diagram displays six catastrophic errors

Note that these are the same kind of errors(*zZ 1).
pointed out by Ellis (1997) in the Ðrst HDF-N photometric
redshift estimations. BPZ assigns correct redshifts to four of
these outliers, and setting a threshold (which dis-p*z [ 0.95
cards a total of three galaxies) eliminates the other two. This
is a clear example of the capability of BPZ (combined with

FIG. 6.ÈTop : Results of applying ML to the HDF-N spectroscopic
sample using only the four UBVI HST bands. Bottom : E†ects of applying
BPZ to the same sample. Four of the outliers are assigned correct redshifts,
and setting a threshold (which discards three galaxies) elimi-p*z [ 0.95
nates the other two. Compare with Fig. 3 (bottom), which also includes the
near-IR photometry of Dickinson et al. (1998), in preparation. Even with
fewer Ðlters, BPZ is more reliable than ML.

an adequate template set) to obtain reliable photometric
redshift estimates. Note that the ML estimates shown in
Figure 3 presented outliers, which shows that applying BPZ
to UV-only data may yield results more reliable than those
obtained with ML including near-IR information.

The advantages of BPZ can also be illustrated with a
simulated sample. These can be generated using the pro-
cedure described in et al. (1999). EachFerna� ndez-Soto
galaxy in the HDF-N is assigned a redshift and type using
BPZ, and a mock catalog is created containing the colors
that correspond to the best-Ðtting redshifts and templates.
To simulate the photometric errors, a random photometric
noise of the same amplitude as the real photometric error is
added to each object. The bottom panel of Figure 7 shows
the ML estimated redshifts for the mock catalog (I\ 28)
against the ““ true ÏÏ redshifts ; although in general the agree-

FIG. 7.ÈTop : BPZ photometric redshifts, for the I\ 28 HDF-Nz
b
,

mock catalog, plotted against the ““ true ÏÏ redshifts, (see text). A thresholdz
tof has been applied, which eliminates 20% of the objects.p*z[ 0.95

Bottom : Results obtained by applying ML to the same mock sample. The
fraction of outliers is 7%.
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FIG. 8.ÈTop : Probability, plotted against the absolute value of thep*z,di†erence between the ““ true ÏÏ redshift and the one estimated using BPZ(z
t
)

for the mock sample described in ° 4. The higher the value of the(z
b
) p*z,more reliable the redshift should be. The shaded region shows the low

quartile in the value of Most of the outliers are at low values ofp*z. p*z,which allows us to eliminate them by setting a suitable threshold of (seep*ztext and Fig. 7, bottom). Bottom : Plot showing that it is not possible to do
something similar using ML redshifts and s2 as an estimator. The value of
s2 of the best ML Ðt is plotted against the error in the ML redshift
estimation, The shaded region shows the high quartile in theo z

t
[ zML o .

values of s2. One would expect that low values of s2 (and therefore better
Ðts) would correspond to more reliable redshifts, but this obviously is not
the case. This is not surprising : the outliers in this Ðgure are all due to
color/redshifts degeneracies, like the one displayed in Fig. 1, which may
give an extremely good Ðt to the colors, C, but a totally wrong redshift.

ment is not bad (as could be expected), there is a consider-
able fraction of outliers (7%), whose positions illustrate the
main source of color/redshift degeneracies : high-z galaxies
that are erroneously assigned redshifts and vice versa.z[ 1
This shortcoming of the ML method is analyzed in detail in

et al. (1999). In contrast, the top panel ofFerna� ndez-Soto
Figure 7 shows the results of applying BPZ with a threshold
of which eliminates 20% of the initial samplep*z [ 0.95,
(almost one-third of which have catastrophically wrong

redshifts), but reduces the number of outliers to a remark-
able 1%.

It is not clear how to deÐne a reliability estimator analo-
gous to within the ML framework. The obviousp*z [ 0.95
choice, s2, is practically useless as a criterion to pick out the
outliers. Although one would naively expect that low values
of s2 (and therefore better Ðts) would correspond to more
reliable redshifts, the bottom panel of Figure 8 shows
almost the opposite to be true. This Ðgure plots the value of
s2 versus the ML redshift error for the mock catalog, with
the shaded region representing the upper quartile (25%) in
s2 ; most of the outliers are above it, at lower s2. This is not
difficult to understand : these outliers are caused by color/
redshift degeneracies (Fig. 1), which may produce excellent
Ðts to the colors C, but catastrophically wrong redshifts. In
stark contrast, the top panel of Figure 8 plots the errors in
the BPZ redshifts versus the values of The shadedp*z.region representing the lower quartile contains practically
all the outliers. Thus, by setting an appropriate threshold,
one can virtually eliminate the catastrophic errors.

Figure 9 shows the numbers of galaxies above a given p*zthreshold in the HDF-N as a function of magnitude and
redshifts. It shows how the reliability of photometric red-
shifts quickly decreases for faint objects as the frac-IZ 27
tion of objects with possible catastrophic errors steadily
grows with magnitude.

There is one caveat regarding the use of or similarp*zquantities as a reliability estimator. They provide a safety
check against the color/redshift degeneracies, since basically
they tell us whether there are other probability peaks com-
parable to the highest one, but they do not insure against
template incompleteness. If the template library does not
contain any spectra similar to the one corresponding to the
galaxy, there is no statistical indicator that can warn us
about the unreliability of the prediction.

Finally, Figure 10 shows the redshift distributions for the
HDF-N galaxies with I\ 27. No objects have been
removed on the basis of so the values of the histogramp*z,bins should be taken with caution. The overplotted contin-
uous curves are the distributions used as priors (see text).
The results obtained from the HDF-N and HDF-S will be
analyzed in more detail using a revised photometry else-
where.

5. CONCLUSIONS

Although spectroscopical techniques have experienced
remarkable progress in the last few years, photometric red-
shifts are becoming increasingly important in many areas of
observational cosmology. This is not surprising, as the
example of the HDF-N (Williams et al. 1996) shows : after
several years, the best e†orts of the astronomical com-
munity have only provided spectroscopic redshifts for
B20% of the I\ 27 galaxy sample. In contrast, reasonably
accurate photometric redshifts for most of its galaxies were
obtained within a few months by several groups, mostly
using the SED-Ðtting method with a ML statistical
approach. However, the redshifts estimated following this
procedure present a considerable number (D10%) of
catastrophic errors which excludes their use for(*zZ 1),
many practical applications (Ellis 1997). The other
approach to photometric redshift estimation, the training-
set method, is apparently more reliable, but since it cannot
be extended beyond the spectroscopical limit, it is of limited
use for very faint samples, such as the HDF-N.
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FIG. 9.ÈL eft : Histograms showing the number of galaxies over thresholds of 0.95 and 0.99 as a function of magnitude. It can be seen that the numberp*zof galaxies with reliable photometric redshifts quickly decreases with magnitude. Right : Same as left panel, but as a function of redshift.

FIG. 10.ÈThe redshift distributions for the I\ 27 HDF-N galaxies,z
bdivided by spectral types. Solid lines represent the corresponding p(z, T )

distributions estimated with the HDF-N and CFRS samples using the
prior calibration method described in the text.

The application of Bayesian inference to photometric
redshift estimation e†ectively overcomes most of the draw-
backs of the ML and training-set methods. The use of prior
probabilities and Bayesian marginalization facilitates the
inclusion of relevant knowledge, such as the expected shape
of the redshift distributions and the galaxy type fractions,
which can be readily obtained from existing surveys but are
often ignored by other methods. If this previous informa-
tion is lacking or insufficient (for instance, because of the
unprecedented depth of the observations), the correspond-
ing prior distributions can be calibrated using even the data
sample for which the photometric redshifts are being
obtained. An important advantage of Bayesian statistics is
that the accuracy of the redshift estimation can be charac-
terized in a way that has no equivalents in other statistical
approaches, enabling the selection of galaxy samples with
extremely reliable photometric redshifts. In this way, it is
possible to determine more accurately the properties of
individual galaxies and simultaneously estimate the sta-
tistical properties of a sample in an optimal fashion. More-
over, the Bayesian formalism described here can be easily
generalized to deal with a wide range of problems that make
use of photometric redshifts.

There is an excellent agreement between the B130
HDF-N spectroscopic redshifts and the predictions of the
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method, with a rms error up to z\ 6*zB 0.06(1 ] zspec)and no outliers nor systematic biases. It should be remarked
that these results have not been reached following a
training-set procedure ; since the template library is empiri-
cal, the above value of *z should be a fair estimate of the
expected accuracy for any similar sample. The method is
further tested by estimating redshifts in the HDF-N but
restricting the color information to the UBV I Ðlters ; the
results are shown to be signiÐcantly more reliable than
those obtained with maximum-likelihood techniques.
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