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ABSTRACT
In order to test di†erent models of coronal heating, we have investigated how the magnetic Ðeld

strength of coronal Ñux tubes depends on the end-to-end length of the tube. Using photospheric magne-
tograms from both observed and idealized active regions, we computed potential, linear force-free, and
magnetostatic extrapolation models. For each model, we then determined the average coronal Ðeld
strength, SBT, in approximately 1000 individual Ñux tubes with regularly spaced footpoints. Scatter plots
of SBT versus length, L , are characterized by a Ñat section for small L and a steeply declining section for
large L . They are well described by a function of the form log SBT \ C1] C2 log L ] C3/2 log (L2
] S2), where and 40¹ S ¹ 240 Mm is related to the characteristic size of theC2B 0, [3 ¹ C3¹ [1,
active region. There is a tendency for the magnitude of to decrease as the magnetic complexity of theC3region increases. The average magnetic energy in a Ñux tube, SB2T, exhibits a similar behavior, with only

being signiÐcantly di†erent. For Ñux tubes of intermediate length, 50¹ L ¹ 300 Mm, correspondingC3to the soft X-ray loops in a study by Klimchuk & Porter (1995), we Ðnd a universal scaling law of the
form SBT P Ld, where d \ [0.88^ 0.3. By combining this with the Klimchuk & Porter result that the
heating rate scales as L ~2, we can test di†erent models of coronal heating. We Ðnd that models involv-
ing the gradual stressing of the magnetic Ðeld, by slow footpoint motions, are in generally better agree-
ment with the observational constraints than are wave heating models. We conclude, however, that the
theoretical models must be more fully developed and the observational uncertainties must be reduced
before any deÐnitive statements about speciÐc heating mechanisms can be made.
Subject headings : Sun: corona È Sun: magnetic Ðelds È Sun: X-rays, gamma rays

1. INTRODUCTION

Ever since it was realized, some 60 years ago, that the
solar corona is 2 orders of magnitude hotter than the under-
lying photosphere (Grotrian 1939), scientists have puzzled
over the reason for these extreme conditions. What physical
mechanism is responsible for heating the plasma to tem-
peratures in excess of one million degrees? A number
of plausible ideas have been proposed, including the
dissipation of magnetohydrodynamic (MHD) waves
(alternating current models) and the dissipation of stressed,
current-carrying magnetic Ðelds (direct current models).
Unfortunately, the conversion of magnetic to thermal
energy best occurs on spatial scales that are far smaller than
can be observed directly by present-day solar instrumen-
tation, and it has proven extremely difficult to identify the
exact cause of the heating. We have been forced to rely on
rather indirect means of determining the important pro-
cesses involved.

One approach to the coronal heating problem is to inves-
tigate the height dependence of the heating rate (e.g., Stur-
rock, Wheatland, & Acton 1996 ; Kano & Tsuneta 1996 ;
Priest et al. 1998). Some models predict preferential heating
at higher or lower altitudes in the corona, while others
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predict a more uniform distribution. Another promising
approach is to determine how the heating rate correlates
with observable physical parameters. Scaling laws can be
derived both from observations and theory, and the results
can be compared to evaluate the models. For example,
many models predict that the heating rate has a power-law
dependence on both the strength of the magnetic Ðeld and
the length of the Ðeld lines. Because the dependence is di†er-
ent for each model, the observed correlations provide a
valuable test.

Golub et al. (1980) and more recently Falconer (1997) and
Fisher et al. (1998) have examined scaling relationships for
entire active regions. They compared measures of the total
heating in active regions with various ““ global ÏÏ magnetic
quantities. Fisher et al. found that the 1È300 X-ray lumi-A�
nosity of an active region scales nearly linearly with its total
unsigned magnetic Ñux. In addition, they found no signiÐ-
cant correlation between the X-ray luminosity and the total
unsigned vertical electric current (other than what can be
accounted for by the correlation between Ñux and current).
The authors concluded that coronal heating bears no direct
relationship to large-scale currents that are detectable by
ground-based vector magnetographs.

This may seem surprising, given that the magnetic free
energy available for plasma heating is directly related to the
currents that are present in the stressed magnetic Ðelds.
However, it has been known since the time of Skylab that
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most of the hot emission from the corona originates in thin
loop structures that occupy only a very small fraction of the
coronal volume (e.g., Orall 1981 ; Bray et al. 1991). Acton
(1996) attributes 23% of the X-ray luminosity from active
regions to 4% of the active region area, and therefore 1% of
active region volume. The result of Fisher et al. (1998) is
therefore not totally unexpected ; the currents involved in
coronal heating apparently have a much smaller scale than
those revealed by the Mees Stokes Polarimeter data used in
their analysis (see also Metcalf et al. 1994). It is nonetheless
interesting that the small-scale currents associated with
loop heating are not more closely related to the large-scale
current systems responsible for shear and twist patterns
observed in collections of loops (e.g., Rust & Kumar 1996 ;
Schmieder et al. 1996 ; Pevtsov, CanÐeld, & McClymont
1997).

Recognizing that coronal loops are the fundamental
building blocks of the corona, Klimchuk & Porter (1995)
attacked the coronal heating problem by determining
scaling laws for a sample of 47 loops observed by the Soft
X-Ray Telescope (SXT) aboard Yohkoh (see also Porter &
Klimchuk 1995). They found that loop temperature and
length are statistically uncorrelated and that pressure varies
inversely with length to approximately the Ðrst power.
Noting that the observed lifetimes of the loops are much
longer than their cooling times, the authors then used quasi-
static loop equilibrium theory to infer that the volumetric
heating rate scales inversely with length to approximately
the second power.

This is a very powerful result, since di†erent coronal
heating models make di†erent predictions about what the
scaling between heating rate and length should be. Klim-
chuk & Porter were unable to make deÐnitive tests,
however, because the model predictions depend upon the
statistical relationship that exists between Ðeld strength and
loop length, and this relationship was unknown at the time
of their study. To make progress, they assumed a power-law
dependence of the form

BP Ld , (1)

where B is the Ðeld strength and L is the length of the loop.
They then showed that three coronal heating models
involving braided Ðelds, twisted Ðelds, and resonantly
absorbed waves are consistent with the SXT obser-Alfve� n
vations only if d \ [0.5, 0, and [2, respectively. It was
unknown which, if any, of these values is correct, or even
whether the single power-law form of equation (1) is appro-
priate. A comparison with Skylab results relating the
average pressures and Ðeld strengths of entire active regions
(Golub et al. 1980) suggested that d B[0.7, thereby favor-
ing the braided Ðeld model (Parker 1983, 1988), but no Ðrm
conclusions could be drawn.

The general goal of our work reported here is to explore
the statistical relationship between the Ðeld strength and
length of coronal magnetic Ñux tubes. Surely, B tends to
decrease with L , but what is the nature of the relationship,
and how does it depend upon the size and complexity of the
active region? A more speciÐc goal is to evaluate whether
the power-law form assumed by Klimchuk & Porter is rea-
sonable and, if so, to determine the value of d. Only then can
coronal heating models be rigorously constrained.

Our basic approach is to construct potential, linear force-
free, and magnetostatic models of active regions and to
generate scatter plots of Ðeld strength versus length for the

Ñux tubes which comprise the regions. We then characterize
the B(L ) relationship by Ðtting the scatter plot data to well-
chosen functions. We consider both observed active regions,
including many from the Klimchuk & Porter study, and
idealized active regions, which allow us to more easily
investigate the factors which control the B(L ) relationship
(shear, complexity, etc.).

Our paper is laid out as follows. In ° 2, we describe the
observations, model construction, and computation of mag-
netic Ñux tube variables. In ° 3, we present the scatter plots
and functional Ðts, and we propose a general function that
represents the data quite accurately over all values of L . We
then consider in ° 4 a restricted range of L corresponding to
the Yohkoh loops studied by Klimchuk & Porter. We show
that a single power law is, indeed, appropriate for this
range. In ° 5, we use our results to constrain models of
coronal heating, including, but not limited to, the three
models considered by Klimchuk & Porter. Finally, we sum-
marize and conclude in ° 6.

2. METHOD OF ANALYSIS

2.1. Description of the Data
Because we wish to combine our results with those of

Klimchuk & Porter (1995), we decided to examine many of
the same active regions (ARs) used in their study. We selec-
ted seven regions based on the availability of magneto-
grams and the desire to have observations close to disk
center (see Table 1, Ðrst group of ARs). About one-quarter
of the loops in the Klimchuk & Porter sample are contained
in these regions. All but one lie within 30¡ of disk center, the
exception being located at S26 W35. Only longitudinal
magnetograms are available for these regions, so we must
rely on potential Ðeld models of the coronal Ðeld. The prox-
imity of the regions to disk center allows us to extrapolate
from the observed line-of-sight Ðelds without making sig-
niÐcant adjustments for geometrical e†ects, a procedure
which can sometimes introduce errors. As discussed in ° 2.3,
we have compared the modeled Ðeld lines to observed soft
X-ray loops to verify that the models are reasonable.

The active regions in this group are fairly typical and
represent a variety of types, ranging from young and well-
formed to old and decayed. None were Ñaring at the time of
the Yohkoh observations, and the loops appeared to be in
quasi-static equilibrium. To extend our study, we also con-
sidered a second set of seven regions that are di†erent in the
sense that they were observed Ñaring close to the time of the
magnetic Ðeld observations (see Table 1, second group of
ARs). Their magnetic Ðeld topology and its relationship to
coronal events such as solar Ñares or X-ray bright points
(XBPs) have been analyzed in several papers in order to
determine the most likely mechanism for energy release (see
Mandrini et al. 1996 ; Schmieder et al. 1996 ; et al.De� moulin
1997 ; and references therein). These ARs are also located
close to disk center and they are mature regions, except the
one in which an XBP was observed (AR 7493), which is old
and decayed. Their conÐgurations range from bipolar to
quadrupolar, some including several parasitic polarities,
with di†erent degrees of magnetic shear.

The coronal magnetic Ðeld is computed from the longitu-
dinal Ðeld component obtained at Ðve di†erent observa-
tories, depending on the studied AR, as indicated in Table 1.
We have also included in this table the NOAA AR number
and the magnetogram observation date. In the case of the
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TABLE 1

LIST OF THE ARS INCLUDED IN THE STUDY

a
s

Number AR (NOAA) Date Observatory (Mm~1)

1 . . . . . . . . 7056 1992 Feb 14 KPNO 0.
2 . . . . . . . . 7117 1992 Mar 30 KPNO 0.
3 . . . . . . . . 7222 1992 Jul 14 KPNO 0.
4 . . . . . . . . 6982 1991 Dec 26 KPNO 0.
5 . . . . . . . . 7135 1992 Apr 22 KPNO 0.
6 . . . . . . . . 7183? 1992 Jun 5 KPNO (see text) 0.
7 . . . . . . . . 7064 1992 Feb 20 KPNO 0.
8 . . . . . . . . 2511 1980 Jun 13 PO and MSFC 0.
9 . . . . . . . . 2511 1980 Jun 15 PO and MSFC [0.006
10 . . . . . . 2776 1980 Nov 5 MSFC [0.025
11 . . . . . . 7493 1993 May 1 MSO and ESO 0.02
12 . . . . . . 2372 1980 Apr 6 MSFC 0.
13 . . . . . . 2779 1980 Nov 12 MSFC [0.019
14 . . . . . . 6718 1991 Jul 11 KPNO 0.013

region observed on 1992 June 5 no AR is identiÐed in Solar
Geophysical Data (SGD) records at the location of SXT
loops on that date, but we believe that the observed Ðeld
corresponds to the decaying state of AR 7183 (SGD 576,
Part 1). The magnetograph of Kitt Peak National Observa-
tory (KPNO) has been described by Livingston et al. (1976).
It provides daily full disk longitudinal magnetic Ðeld maps
with a spatial resolution of around 1A. The vector magneto-
grams from Mees Solar Observatory (MSO), Hawaii, have
been obtained with the Stokes Polarimeter (Mickey 1985)
with a resolution of The vector magnetographs from2A.8.
the Marshall Space Flight Center (MSFC) in Huntsville
(Hagyard et al. 1982) and the Einsteinturm Solar Observa-
tory (ESO) in Potsdam (Staude, Hofmann, & Bachmann
1991) have a spatial resolution of and 3A, respectively.2A.5
Finally, the longitudinal magnetograph at Paris Observa-
tory (PO) in Meudon has a spatial resolution of 1A.2 ] 2@@
(Rayrole 1980).

2.2. Magnetic Field Modeling
The magnetic Ðeld is not measured accurately in the

corona and therefore it must be computed from photo-
spheric magnetograms. This so-called extrapolation
method is based on certain physical laws. Because the
plasma velocity is usually much lower than the Alfve� n
speed, we use the following magnetohydrostatic equations :

1
k0

($ Â B) Â B [ $p [ og \ 0 , (2)

$ Æ B \ 0 . (3)

Low (1992) has found solutions to these equations by
writing the current density in terms of Euler( j \$ Â B/k0)potentials. The solutions which are linear in B are of great
interest because they can be used with any boundary condi-
tions, in particular those provided by magnetograms (while
the few known analytical nonlinear solutions are restricted
to boundary conditions which do not represent active
regions and, moreover, have a trivial magnetic topology).
We consider a Cartesian system of coordinates, where z
refers to the height above the photosphere, located at z\ 0.
For any given function of height, F(z), Low found a class of
solutions satisfying the following simpliÐed equation :

$ Â B \ a
s
B ] F(z)$B

z
Â u

z
, (4)

where is the vertical unit vector, and is a constant.u
z

a
sWith F(z) \ 0, we have the usual linear force-free Ðeld solu-

tions including the potential solution for a
s
\ 0.

The function F(z) is related to the plasma pressure by

p \ p0(z) [ F(z)
B
z
2

2k0
, (5)

where is the plasma pressure of the hydrostatic atmo-p0(z)sphere without magnetic Ðeld. In order to estimate simply
the e†ects of the plasma, we suppose an atmosphere in
which the Ðnite Lorentz force decreases with height in such
a way that

F(z) \ a exp ([z/H) . (6)

We further suppose that H is comparable to the plasma
pressure scale height. For consistency, the hydrostatic pres-
sure can also be taken of this form, but it is worthp0(z)noting that has no inÑuence on the magnetic Ðeld andp0(z)so on the results reported below.

Solutions of equation (4) are found by means of Fourier
transforms in the horizontal directions (x, y), leading to an
ordinary di†erential equation in the vertical direction for
each Fourier mode of The components theB

z
. B

x
, B

y
,

plasma pressure p, and density o are then computed from
the solution and equations (2) and (3). The practicalB

zimplementation of the problem is identical to the linear
force-free Ðeld case (see et al. 1997, for the use ofDe� moulin
the fast Fourier transform and also for the transformation
of coordinates for regions located away from disk center).

2.3. Characteristics of the Computed Magnetic
ConÐgurations

We have computed three types of coronal magnetic Ðeld
models : potential, linear force free, and magnetostatic.
Since only longitudinal magnetograms are available for the
Ðrst group of observed active regions, we used potential
Ðelds to model them. We Ðnd that these models are(a

s
\ 0)

in generally good agreement with the Yohkoh observations.
This is demonstrated in Figure 1, where the soft X-ray loop
indicated by the arrow is seen to have a similar shape to the
extrapolated Ðeld lines. Local agreement can usually be
improved by choosing a nonzero value of but this oftena

s
,

results in greater discrepancies elsewhere in the active
region. It is our experience that Yohkoh images are not
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FIG. 1.ÈComparison of (a) the observed soft X-rays loops with (b) the coronal Ðeld lines computed for a potential model of the photospheric Ðeld of AR
7135. The arrow in (a) points to the loop included in Klimchuk & Porter (1995) study. (b) is a three-dimensional view of the AR in the observerÏs perspective.
Three isocontour levels of (^100, 500, 1000 G) are shown with positive and negative values drawn with solid and dashed lines, respectively. The size of theB

lregion in both Ðgures is 240 ] 240 Mm. North is up, and west is to the right.

sufficient for determining the nonzero that best charac-a
sterizes the entire active region. Furthermore, we believe that

the potential Ðeld approximation is adequate for our pur-
poses here.

For the second group of active regions, we have both
vector magnetograms and Ha images to constrain the
models and, therefore, we could more easily construct linear
force-free Ðelds. The parameter was determined by Ðttinga

sthe direction of either the observed transverse Ðeld com-
ponent or the Ha Ðbrils in the surroundings of the Ñare
brightenings. The resulting values are given in Table 1.

In ° 3.2, we consider idealized active regions produced by
magnetic point charges buried below the photosphere. One
motivation is to investigate the e†ects that the coronal
plasma may have on the Ðeld. How does it distort the Ðeld
lines and inÑuence the relationship between B and L ? To
address this issue, we constructed a series of magnetostatic
models corresponding to di†erent values of a in[F(z)D 0]
equation (6). As we show later, the e†ects of the plasma
pressure and gravity forces are minimal in the low-b
coronal environment.

2.4. DeÐnition of Averages of the Magnetic Field
The magnetic Ñux tubes which comprise these di†erent

models tend to expand with height, and so the Ðeld strength
is a function of position along the tube. In contrast, most
coronal heating models are worked out in idealized conÐgu-
rations in which the Ðeld is both nearly uniform and
straight. Furthermore, Ñux tubes that correspond to distin-
guishable X-ray loops are observed to have nearly constant
cross sections (Klimchuk et al. 1992). In order to link our
analysis to the heating models and to the Klimchuk &
Porter results, it is necessary that we deÐne certain Ñux
tube-averaged magnetic quantities.

We Ðrst consider the average of the Ðeld strength B over
the tube volume:

SBT \ / BdV
/ dV

B
L

/ ds/B
, (7)

where dV is the elemental volume, s is the curvilinear coor-
dinate along the central axis of the tube, and L \ / ds is its
length. We are able to replace the volume integral by a line
integral under the assumption that the tube is thin
(negligible variation of B within the cross section), where we
have made use of magnetic-Ñux conservation (eq. [3]).

Because most coronal heating models depend on a power
of B that ranges between 1 and 2, we also consider the
average of B2, the magnetic energy density :

SB2T \ / B2dV
/ dV

B
/ Bds
/ ds/B

. (8)

In both cases, the volume average tends to preferentially
weight the top of the loop, where the cross section is larger.
On the other hand, the nonlinear nature of B2 gives empha-
sis to the feet, where the Ðeld is stronger.

3. A LAW FOR THE CORONAL MAGNETIC FIELD

For each of our magnetic Ðeld models, we determine SBT,
SB2T, and L for a subset of Ðeld lines (inÐnitesimally thin
Ñux tubes) that have footpoints regularly spaced on the
photosphere. This is accomplished by tracing the Ðeld lines
from a rectangular grid of footpoint starting positions. The
grid spacing is typically 1 Mm, and the number of traced
Ðeld lines is of order 104. Note that the ends of the traces
occur at conjugate footpoint positions that are not neces-
sarily evenly spaced.

We then generate scatter plots of SBT versus L and SB2T
versus L using only the Ðeld lines that satisfy certain selec-
tion criteria. Because we are interested in coronal loops and
coronal heating, we limit our analysis to Ðeld lines for which
(unless noted di†erently) : the length is in the interval [1,
1000] Mm, the average coronal Ðeld strength is above 1 G,
and the photospheric Ðeld strength of both loop feet, isB

f
,

above 10 G.
Typically 500 to 2] 103 Ðeld lines satisfy these criteria in

each model. Our reasons for adopting the criteria are
twofold : Ðrst, 10 G is the typical noise level of the magneto-
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grams, and we wish to exclude noisy data ; and second,
weak Ðeld regions are not expected to contribute signiÐ-
cantly to coronal heating, and including them in the scatter
plots would produce an unwanted bias in the statistical
relationship we are trying to establish. It is worth noting
that is the average magnetic Ñux measured in a magne-B

ftogram with Ðnite spatial resolution. If photospheric mag-
netic Ñux is concentrated in unresolved Ñux tubes with a
Ðeld strength of B1500 G, as generally believed, then B

f
º

10 G implies a magnetic Ðlling factor greater than 1%.
Sams, Golub, & Weiss (1992) and Schmieder et al. (1996)

have shown that X-ray coronal loops are observed mainly
in regions of intermediate photospheric Ðeld strength (see
also Aschwanden et al. 1999), and since we are especially
interested in the Ñux tubes that correspond to such loops,
we also consider the more restrictive interval 100 ¹ B

f
¹

500 G. In some cases, the number of traced Ðeld lines
satisfying this criterion is not statistically signiÐcant, and we
do not include those results.

3.1. Observed Active Regions
Figure 2 shows scatter plots of SBT and SB2T versus L for

region number 6 in Table 1. Figures 2a and 2b correspond
to Ðeld lines with G, while Figures 2c and 2d corre-B

f
º 10

spond to Ðeld lines with G. In each case,100 ¹B
f
¹ 500

the distribution of points has a distinctive shape character-
ized by a nearly Ñat section for small L and a steeply declin-

ing section for large L . The transition between the two
sections occurs fairly abruptly at a noticeable knee in the
distribution. A large dispersion is seen in Figures 2a and 2b
for Ðeld lines shorter than B30 Mm. This is due to the
presence of numerous small Ñux concentrations in this par-
ticular active region. Since the region is in its decaying state
and the Ñux concentrations are weak, few Ðeld lines have

G as shown in Figures 2c and 2d.100 ¹B
f
¹ 500

The trend evident in Figure 2 is present for all the ARs
included in Table 1. Di†erences in the individual distribu-
tions are related to the unique magnetic characteristics of
each case ; that is, the number, intensity, and relative posi-
tions of the photospheric Ñux concentrations. In particular,
the location of the distribution knee (i.e., the value of L at
which the distribution changes slope) is related to a typical
AR length scale, as we discuss further below. Based on the
universal shape of the distributions, we propose that
log SBT and log SB2T have a functional dependence on L
with the following general form:

F1(L ) \ C1] C2 log L ]C3
2

log (L2] S2) . (9)

The four parameters and S are unique for eachC1, C2, C3,active region. We determine their values by performing
least-squares Ðts to the scatter plot data. The Ðts for region
number 6 are shown as continuous curves in Figure 2. In
practice, we Ðnd that only and S di†er signiÐcantly fromC3

FIG. 2.ÈScatter plots of SBT and SB2T vs. L for region number 6 in Table 1. The axes have logarithmic scales with the Ðeld line length L (abscissa)
measured in Mm and the magnetic Ðeld B in G. Each point represents a computed Ðeld line. (a) and (c) correspond to SBT, while (b) and (d) correspond to
SB2T (as deÐned in ° 2.4). (a) and (b) are for Ðeld lines for which G at both photospheric feet. (c) and (d) are the results for a restricted set of Ðeld linesB

f
[ 10

with G. The curve in each plot is a least-squares Ðt of function to the points, and the two vertical dashed lines indicate the interval of100 \B
f
\ 500 F1(L )

coronal loop lengths in the study of Klimchuk & Porter (1995).
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FIG. 3.ÈResults from Ðtting function to the SBT vs. L scatter plot data derived from the observed active regions (Fig. 2 being one example). TheF1numbers in the abscissa are those given in the Ðrst column of Table 1. Parameter S is plotted in (a), and coefficients (top) and (bottom) are plotted in (b).C2 C3The thick (thin) lines are for G G). The dash-dotted line in (a) represents the estimated active region size as given by eq. (10).B
f
º 10 (100\ B

f
\ 500 SAR

one region to the next ; is nearly the same for all regions,C2and is not relevant to our purposes here.C1When equation (9) simpliÐes to the powerF1\ log SBT,
law SBT P Ld in the two limits L > S and L ? S, where

and respectively. For L much largerd \C2 d \ C2] C3,than the size of ARs (typically 100 Mm), the dipolar term
dominates over the other multipolar terms of the magnetic
Ðeld expansion. In this limit, we expect that d \ C2] C3\
[3. The extrapolation models show exactly this behavior
for Ðeld lines longer than 1000 Mm. These Ðeld lines are,
however, far longer than the observed soft X-ray loops seen
in ARs (and considered by Klimchuk & Porter). This sug-
gests that the slope d should have a magnitude less than 3 if
we restrict the range of lengths to those of observed coronal
loops. As can be seen in Figure 2, we have e†ectively limited
our analysis to Ðeld lines shorter than B500 Mm by
requiring that SBT be greater than 1 G.

Figure 3 shows the parameters S, and obtainedC2, C3from Ðts to the SBT versus L scatter plot data for the di†er-
ent active regions, plotted as a function of region number
from Table 1. Thick solid lines connect the values obtained
with the criterion G, and thin solid lines connectB

f
º 10

the values obtained with the criterion G.100 ¹ B
f
¹ 500

Regions 7, 10, 12, and 13 do not have enough traced Ðeld
lines satisfying the latter criterion to be included. As
described above, the regions have been divided into two
groups : those belonging to the Klimchuk & Porter study
and those that have undergone recent Ñaring activity.
Within each group, the regions are ordered according to
their magnetic complexity, beginning with relatively simple
conÐgurations and progressing to more complex ones.
Thus, in the Ðrst group we put Ðrst the well-developed ARs

(with several strong spots), then the less intense ones, and
Ðnally the ““ old ÏÏ and decayed ARs. The ordering in the
second group follows a similar trend. The Ðrst AR is basi-
cally bipolar, and afterward the number of polarity centers,
together with the complexity of their distribution, increases.
The quality of the least-squares Ðts is indicated by the
PearsonÏs correlation factor r. Its average is given in Table 2
for all 14 active regions combined.

We see from Figure 3 that hovers very close to 0 in allC2cases, indicating that average Ðeld strength is nearly inde-
pendent of length for L ¹ S. ranges mostly between [3C3and [1 and tends to be less negative for more complex
regions. Its average value is B[2 for both of the cri-B

fteria. The parameter S varies from about 40 to 240 Mm, and
we expect that it is related to some typical AR length scale.
To verify this, we have computed a quantity called the AR
size, which is the Ñux-weighted mean distance betweenSAR,opposite polarity photospheric Ðelds. It is deÐned as

SAR2 \ (X
p
[ X

n
)2] (Y

p
[ Y

n
)2 , (10)

where

X
p
\; xB

z
; B

z
, Y

p
\; yB

z
; B

z
(11)

give the mean position of the positive concentrations
and similar expressions give the mean position of(B

z
[ 0),

the negative concentrations Only vertical Ðeld(B
z
\ 0).

strengths G are included to avoid noisy data. TheoB
z
o[ 10

computed values of are connected with a dash-dottedSARline in Figure 3a. As anticipated, there is a reasonably good
correlation with S.

TABLE 2

AVERAGE VALUES OF AND CORRELATION FACTORS TOC3 F1
B

f
Range C3(SBT) C3(SB2T) r(SBT) r(SB2T)

Observed Regions

10 ¹ B
f
. . . . . . . . . . . . . . . . . . [2.14 ^ 0.64 [2.81 ^ 0.69 0.67 ^ 0.16 0.56 ^ 0.20

100 ¹ B
f
¹ 500 G . . . . . . [1.93 ^ 0.58 [2.57 ^ 0.65 0.91 ^ 0.06 0.88 ^ 0.07

Models

10 ¹ B
f
. . . . . . . . . . . . . . . . . . [1.71 ^ 0.55 [2.5 ^ 0.74 0.75 ^ 0.07 0.65 ^ 0.07

100 ¹ B
f
¹ 500 G . . . . . . [2.00 ^ 0.40 [2.92 ^ 0.56 0.94 ^ 0.05 0.91 ^ 0.06
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The results obtained for SB2T are similar to those
obtained for SBT : a very Ñat distribution for L > S

and a steeply declining section for large L . The(C2B 0.)
main di†erence is that the coefficient is more negativeC3(see Table 2). The coefficient obtained with SB2T is notC3twice as large as the one obtained with SBT (as one may
have expected) because of the following reason. For long
Ðeld lines the numerator of equation (8), / Bds, is mainly
dominated by the part which is close to the photosphere,
then it is nearly independent of the length L , while the
numerator of equation (7) is simply L . From this consider-
ation one rather expects that TheC3(SB2T)B C3(SBT) [ 1.
computations show slightly closer values : C3(SB2T) B

(see Table 2).C3(SBT)[ 0.65

3.2. SimpliÐed ConÐgurations
In order to gain insight into the dependence of the pro-

posed law, on the properties of the magnetic conÐgu-F1(L ),
ration, we have constructed a series of idealized theoretical
models of varying complexity. The models are based on
subphotospheric magnetic charges of di†ering strength and
position. Figure 4 shows an example produced by six
charges corresponding to three bipoles. The models are
used to derive theoretical magnetograms, which are then
extrapolated into the corona in the same way as the
observed magnetograms. In the case of potential and linear-
force models, the coronal magnetic Ðeld can also be derived
analytically. A comparison between the two Ðelds shows the
distortions introduced by the extrapolation procedure.
These distortions are caused by the Ðnite size and resolution
of the theoretical magnetograms, as well as by the period-
icity imposed by the fast Fourier transform. All the theoreti-
cal magnetograms presented here have a size of 500] 500
Mm and resolution of 2 Mm, but other values appropriate
to di†erent magnetographs have also been tried. In all cases,

FIG. 4.ÈExample of one simpliÐed magnetic conÐguration (number 16
and 21 in Table 3). The isocontour values of the Ðeld are the same as in Fig.
1. Several Ðeld lines have been added.

we verify that the extrapolation procedure has a negligible
e†ect on the results.

The idealized models are separated into several groups,
each of which highlights a particular property of the Ðeld.
The deÐning characteristics are listed in Table 3 and dis-
cussed below. For each model, we generate scatter plot data
using the same L , SBT, and selection criteria as before.B

fLeast-squares Ðts are performed, and the resulting Ðt
parameters are plotted in Figure 5. Once again, only the
SBT results are given because the SB2T results are so similar
(see Table 2).

The simplest model (number 1) is built from two mag-
netic charges of opposite sign separated by D\ 120 Mm
and located a depth d \ 10 Mm below the photosphere.
The magnitudes of the charges are chosen to produce a
maximum vertical Ðeld strength of 2000 G in the photo-
sphere. The potential Ðeld associated with this model is the
simplest approximation of an active region. It has a B(L )
relationship that can be simply understood by analyzing the
general dependence of the formula for two monopoles
separated by D :

BP [(z] d)2] (D/2)2]~3@2 P (L2] D2)~3@2 . (12)

So for the full range of lengths, the expected values are
and For the restricted range of lengthsC2\ 0 C3\ [3.

considered here, the scatter plot Ðts give andC2B 0.1 C3between [2.1 and [2.7 (see Fig. 5) ; this implies that the
slope for L [ S is slightly less steep than the dipole limit at
large loop lengths ([3).

The following polarity Ðelds of active regions are usually
much more dispersed than the preceding polarity Ðelds. We
investigate the e†ect of this asymmetry by placing the fol-
lowing polarity charge at progressively greater depths
below the photosphere. The resulting conÐgurations are
characterized by an asymmetry parameter (see Table 3),A

sdeÐned to be the ratio between the depth of the following
polarity charge to the depth of the preceding polarity
charge. As becomes larger (models 1È5), the scale of theA

sactive region grows, and there is a corresponding increase in
the Ðt parameter S (Fig. 5a). In addition, greater asymmetry
causes a sharper decrease in SBT for L [ S, giving a more
negative coefficient C3.Many ARs have one or more parasitic bipoles embedded
within the primary bipolar structure. Such conÐgurations
have a complex topology that is typical of Ñaring ARs (see

et al. 1997 and references therein). To simulateDe� moulin
this, we add a second bipole at the center of the main one,
with half of its size and strength. Models 6È14 demonstrate
the e†ect of increasing the angle between the bipoles, /2,from 0 to n in the horizontal plane. At the bipoles/2\ n,
are antiparallel and the conÐguration is that of a quad-

TABLE 3

PARAMETERS FOR THE THEORETICAL CONFIGURATIONS

a
s

ConÐguration N0 N0 of Bipoles A
s

/2 /3 (Mm~1) a

1È5 . . . . . . . . . . . . . . . . 1 1.È3. 0. 0.
6È14 . . . . . . . . . . . . . . . 2 1. 0Èn 0. 0.
15 . . . . . . . . . . . . . . . . . 3 1. 0 n/2 0. 0.
16È20 . . . . . . . . . . . . . 3 1. n n/2 0.È2.] 10~2 0.
21È24 . . . . . . . . . . . . . 3 1. n n/2 0. 0., 0.2, 0.5, 1.
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FIG. 5.ÈResults from Ðtting function to the SBT vs. L scatter plot data derived from the idealized theoretical models. The format is identical to that ofF1Fig. 3, and the model numbers in the abscissa are those given in the Ðrst column of Table 3. Models 1È5 correspond to a single bipole with increasing
asymmetry in the areas of the preceding and following polarities. Models 6È14 correspond to two bipoles with increasing angular deviation, from parallel to
antiparallel. Models 15È24 correspond to three bipoles with increasing shear (16È20) and increasing plasma pressure (21È24).

rupole. In comparing models 1 and 6È14, we see a general
tendency for to become less negative as the complexityC3of the Ðeld increases (Fig. 5), although the behavior is not
perfectly monotonic. This trend continues as we further
increase the complexity by adding a third bipole of the same
size and strength as the second, but at an angle /3\ n/2
(models 15 and 16, where and n, respectively). In all/2\ 0
cases, remains close to zero, indicating once again thatC2the average Ðeld strength is nearly independent of the length
for L ¹ S.

It may seem counter intuitive that SBT decreases less
rapidly with L as new bipoles are added and the complexity
of the Ðeld increases. Greater complexity implies that higher
order multipoles are more important, and such multipoles
decrease more rapidly with distance from the current
source. The apparent discrepancy has two causes. First,
there is a nontrivial relation between the length of a Ðeld
line and its mean distance from the origin in the multipolar
expansion. Second, most of the Ðeld lines included in our
scatter plots reside close enough to the origin that the
angular dependence of the multipoles is very important. It is
only at large distances and when the topology is trivial that
simple conclusions can be drawn. The results are explained
by the following consideration. As the magnetogram com-
plexity increases, as does the magnetic topology, the Ðeld
lines become shorter, except for the ones with a length
larger than the active region size. This implies a larger
number of short Ðeld lines with a stronger average Ðeld. The
shortening of the Ðeld lines in the vicinity of the curve knee
dominates and the coefficient becomes less negative inC3this case.

To investigate the e†ect of magnetic shear, we take the
case of three bipoles and vary the(/2\n, /3\ n/2)
parameter in equation (4) from 0.0 to 0.02 Mm~1 (modelsa

s16È20). We have also done this for the single bipole conÐgu-
ration and Ðnd similar results. Except for the last models in
the series, which have unphysical properties discussed
below, the general trend is for S to remain constant and C3to become less negative as the Ðeld becomes progressively
sheared. The reasons for this behavior can be understood as
follows. Increasing corresponds to rotating the Ðeld. Thea

smean separation of the opposite polarity poles, is notSAR,a†ected (dash-dotted line in Fig. 5), and this is the dominant
factor in determining the value of S. Concerning it is aC3,well-known property of magnetic conÐgurations that they
inÑate (i.e., expand outward) whenever the Ðeld is sheared

(e.g., Klimchuk 1990). For linear force-free Ðelds, the shear
is greatest in the outer parts of the active region, away from
the neutral line. Longer Ðeld lines are lengthened more than
shorter ones, and the net e†ect is to decrease the slope of
SBT versus L . The opposite is true of nonlinear force-free
Ðelds for which shorter Ðeld lines near the neutral line have
the greatest shear. This is more typical of observed active
regions (e.g., Schmieder et al. 1996). We conclude that the
inÑuence of magnetic shear can be signiÐcant and that it
depends on the detailed distribution of the shear and associ-
ated electric currents. Such information is not usually avail-
able in observed ARs, in particular when the measured
transverse Ðeld strength is below a few hundred G and the
currents are difficult to infer. It is for this reason that we
restrict the deduction of to low-shear regions.F1These general trends break down when exceeds a criti-a

scal level related to the horizontal size of the computational
box Mm~1 for the valueS

b
: acrit\ 2n/S

b
B 1.2] 10~2

Mm used here. Beyond this, the Ðrst harmonics ofS
b
\ 500

the solutions oscillate with height and have substantial
amplitude. They have inÐnite energy and are discarded in
the computations (see et al. 1997). This explainsDe� moulin
the nonmonotonic change in the variation of S and atC3the end of the shear sequence (models 16È20) in Figure 5.

The Ðnal e†ect that we consider is that of a Ðnite b
coronal plasma. We compute magnetohydrostatic solutions
to equation (4) using a typical pressure scale height H \ 100
Mm (see eq. [6]), although changing H by a factor 2
has little e†ect on the Ðt parameters. In the present model,
there is a plasma pressure depletion [dp \ a(B2/2k0) exp
([z/H)] where the Ðeld is strong and nearly vertical

when a is positive. This is consistent with mea-(B
z
B B)

surements of the pressure above strong Ðelds, such as sun-
spots. Because the plasma pressure should be positive,

should be at least as large as dp (for the same height z).p0(z)This implies a plasma pressure greater than a(B2/2k0)exp ([z/H), where the magnetic Ðeld is horizontal. The b
there is as large as (where and Ba exp ([z/H)(B/B

h
)2 B

hare, respectively, the Ðeld strength at which the Ðeld is hori-
zontal and vertical at the same height z). Typical b values in
the quiet corona are in the range [10~4, 10~3], which
implies a values approximately in the same range. Models
21È24 are generated using the unsheared three bipole con-
Ðguration and varying a from 0 to 1. As seen from Figure 5,
a starts to become important only for values greater than
0.2 in Figure 5. These are unrealistically large, and we con-
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clude, as expected, that plasma pressure and gravity forces
have negligible e†ect in actual active regions.

3.3. General Scaling of the Magnetic Field versus L oop
L ength

Both the observed active regions and idealized theoretical
models are well described by the function The corre-F1(L ).
lations are slightly better for the idealized models, as evi-
denced by the larger average correlation factors in Table 2.
This can be attributed to two causes : magnetogram noise
and large numbers of small Ñux concentrations that are
present in the observed regions but not in the idealized
models. Noise is treated as though it is real Ñux by the
extrapolation procedure, and this gives rise to coronal Ðeld
lines that should not exist. However, because noise has a
spatial scale comparable to a pixel, it a†ects mainly the
shortest extrapolated Ðeld lines and so it has a small e†ect
on and S. We conclude that the di†erence is due to theC3larger number of Ñux concentrations in the observations
than in the models. Finally, note that the correlation factors
are larger for the G selection criterion, in100 ¹B

f
¹ 500

part because noise is not a factor, and in part because the
range of Ñux tubes is more restricted.

Another di†erence between the observed active regions
and idealized models concerns the behavior of the Ðt
parameter S in relation to For the observed regions, SSAR.is systematically less than varying from about half ofSAR,

in mature ARs to approximately in decaying ARs.SAR SARThis trend is especially evident for the G100 ¹ B
f
¹ 500

Ðts. In contrast, S and have the same average size in theSARidealized models, although they do not track each other
closely. We can understand this di†erence by recognizing
that only characterizes the dipolar aspects of the photo-SARspheric Ñux distribution. When the distribution is complex
and has intermixed polarity centers, does not necessar-SARily reÑect the separation of these centers. For example, con-
sider the extreme case of a region of fully mixed Ðeld, as in
most of the quiet Sun during solar minimum. The value of

for this region will be zero, even though the oppositeSARpolarity network elements have a characteristic separation
scale. Since the observed active regions are more complex
than the idealized models, we expect their values to beSARsystematically lower in comparison to S.

The behaviors of and are quite similar for theC2 C3observed active regions and idealized models. For both
groups, indicating that Ðeld strength is statisticallyC2B 0,
independent of length for Ðeld lines shorter than S. Also for
both groups, increases from B[3 in well-formed andC3simpler regions to B[1 in the more complex conÐgu-
rations. The Ñaring regions have a higher coefficient C3than the quiet ones, on average. This is not surprising since

Ñares have always been associated with complex topologies
(e.g., et al. 1997). We conclude that the functionDe� moulin

accurately describes the statistical relationship betweenF1SBT and L over a wide range of Ðeld line lengths. The
results for SB2T are similar, except that is more negativeC3(the slope is steeper) by the amount [0.65 (see ° 3.1).

4. A LAW FOR A RESTRICTED RANGE OF LOOP LENGTHS

The general law discussed above involves parameters
that vary from one active region to the next (primarily S
and It would be much more convenient to have aC3).universal law with a single parameter or parameters that
are the same for all cases. This is especially true if we wish to
combine our results with those of Klimchuk & Porter
(1995), which were obtained from a collection of loops
observed in many di†erent active regions. Let us consider
the simplest case of a power law, BP Ld, as adopted by
Klimchuk & Porter. We have already shown that F1(L )
reduces to this form in the limits L > S and L ? S. Does a
power law also apply over a limited range of intermediate
lengths (L B S), where most of the coronal loops are
observed? In this section we show that, indeed, it does and,
furthermore, that the value of d is similar for all active
regions (i.e., it is universal) !

4.1. Observed Regions
The SXT loops included in the Klimchuk & Porter study

have lengths in the range [50, 300] Mm. As shown in Figure
3, this is also the approximate range of S, which is the
location in L where the scatter plot distributions have their
knee and change slope. Since the knee occurs at di†erent L
values for di†erent regions, we expect that a composite dis-
tribution composed of all the scatter plot data combined
would wash out the individual knees and produce a more
linear dependence on L . We have veriÐed that this is in fact
the case. We therefore Ðt the individual active region dis-
tributions over limited length intervals to the function

F2(L ) \ C] d log L . (13)

Note that this is equivalent to B\ 10CLd when F2\ log B.
We consider the interval [50, 300] Mm, corresponding to
the observed SXT loops, as well as the modiÐed intervals
[50, 400] and [30, 300] Mm. Figure 6 shows d as a function
of the AR number (Table 1) for the case G. ResultsB

f
º 10

for G are similar. In Table 4, we list the100 ¹ B
f
¹ 500

average values of d and their standard deviations. We also
give the average correlation factors indicating the quality of
the Ðts. The most striking aspect of the results is that d is
conÐned to a rather narrow range. It depends only weakly
on the precise interval of Ðeld line length. This provides

TABLE 4

AVERAGE VALUES OF THE SLOPES AND CORRELATION FACTORS TO F2
B

f
Range d(SBT) d(SB2T) r(SBT) r(SB2T)

Observed Regions

10 ¹ B
f
. . . . . . . . . . . . . . . . . . [0.84 ^ 0.21 [1.28 ^ 0.39 0.66 ^ 0.13 0.56 ^ 0.16

100 ¹ B
f
¹ 500 G . . . . . . [1.11 ^ 0.29 [1.82 ^ 0.47 0.88 ^ 0.05 0.87 ^ 0.06

Models

10 ¹ B
f
. . . . . . . . . . . . . . . . . . [1.05 ^ 0.17 [1.65 ^ 0.39 0.64 ^ 0.09 0.52 ^ 0.09

100 ¹ B
f
¹ 500 G . . . . . . [1.14 ^ 0.25 [1.82 ^ 0.42 0.93 ^ 0.05 0.89 ^ 0.09
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FIG. 6.ÈResults from Ðtting the linear function to the scatter plot data derived from the observed active regions (described in Table 1). The slope d isF2plotted against the region number for (a) SBT and (b) SB2T. The solid curve is for the range of loop lengths in the study of Porter & Klimchuk (1995, i.e., [50,
300] Mm). The upper (lower) curve is for a range of [30, 300] ([50, 400]). The selected Ðeld lines have greater than 10 G.B

f

further evidence that a universal scaling law exists for
observed coronal loops.

4.2. SimpliÐed ConÐgurations
We have performed an identical analysis of the idealized

theoretical models described in ° 3.2. Results are presented
in Figure 7 and Table 4. Again, d lies within a narrow range,
similar to that for the observed active regions. The reason
for this behavior can be understood by analyzing the slope
of since d is essentially the average slope of over aF1, F1restricted interval of L . Taking to simplify theC2\ 0
expression, we have

dF1
d log L

\ C3 L2
S2] L2 . (14)

As can be seen from Figure 5 and to a lesser extent from
Figure 3, there is a substantial tendency for and S to beC3anticorrelated. Thus, becomes more negative when SC3increases, and the changes tend to o†set each other in equa-
tion (14). This explains why di†erent active regions have
comparable slopes even when their values and S valuesC3are dissimilar.

4.3. A Universal Power L aw for Active Region L oops
We have shown that a power law of the form Ld provides

a good statistical Ðt for both SBT and SB2T in the range of
L corresponding to observed coronal X-ray loops
(approximately [50, 300] Mm). The value of d exhibits no
signiÐcant dependence on the age or complexity of the
active region, or on whether the region is quiet and Ñaring.
Only strong asymmetries in the areas of the leading and

following polarities which are rare) and large values(A
s
º 3,

of the average shear Mm~1) produce sig-(a
s
º 2. ] 10~2

niÐcant deviations in d. We conclude that SBT and SB2T are
related to L by a power law, as supposed by Klimchuk &
Porter (1995), and that the slope of this power law has an
almost ““ universal ÏÏ value : [0.97^ 0.25 for SBT and
[1.55^ 0.43 for SB2T.

We can compare this with the recent results of Aschwan-
den et al. (1999), who analyzed 30 loops observed in a single
active region by the Extreme Ultraviolet Imaging Telescope
(EIT) and the Michelson Doppler Imager (MDI) experi-
ments on the Solar and Heliospheric Observatory (SOHO).
They measured the lengths of the loops using a ““ dynamic
stereoscopy ÏÏ technique and obtained a mean value of 433
Mm and a rather small standard deviation of 136 Mm.
They then assigned footpoint Ðeld strengths to the loops by
Ðnding the strongest MDI magnetogram pixels in the vicin-
ity of the observed ends. These values range mostly between
50 and 400 G. Finally, assuming a power-law dependence,
they found a best-Ðt slope of [1.02^ 0.43, which is
remarkably close to our value of [0.97.

We can also compare our result to another more indirect
estimation of d. Using Skylab data, Golub et al. (1980)
derived a statistical relationship of the form rela-PAR PBARb
ting the average plasma pressure and average magnetic Ðeld
strength of active regions of di†erent size and emissivity.
This approach is di†erent from that of Klimchuk & Porter,
who studied individual loops and deduced a relationship
PP Lb. Nevertheless, the sizes of the Golub et al. active
regions and the Klimchuk & Porter loops are comparable,
and it is tempting to combine the two results to obtain
BP Lb@b. This provides an observational estimate of d \ b/b

FIG. 7.ÈSame as Fig. 6 but for the idealized models described in Table 3
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with an uncertainty

*d\ o d o [(*b/b)2] (*b/b)2]1@2 . (15)

Taking b \ 1.6 as given by Golub et al. and
b \ [0.96^ 0.8 as given by Klimchuk & Porter, we Ðnd
that where we have assumed a conserva-dobs\ [0.6^ 0.5,
tive value of ^0.3 for *b. This estimate for d is higher (less
negative) than the one we have deduced, but still within the
error bars.

Sturrock & Uchida (1981) have noted that the results of
Golub et al. are strongly biased by a single data point that
was taken from a di†erent study. Considering the possibility
that this is inappropriate, they conclude that b could lie
anywhere in the range [0.6, 1.9] ! Adopting this range, we
get This estimate is closer to ours,dobs@ \[0.77 ^ 0.8.
although the uncertainty is substantial. We conclude that
our results obtained directly from magnetic Ðeld extrapo-
lations are consistent with those obtained more indirectly
from the scaling of the plasma pressure with Ðeld strength in
ARs.

5. CAN WE CONSTRAIN CORONAL HEATING MODELS ?

5.1. An Overview on Coronal Heating Models
Models or theories of coronal heating can be divided into

two main categories : stressing models, in which energy is
extracted from coronal magnetic Ðelds that are stressed by
slow footpoint motions, and wave models, in which energy
is deposited by waves that are incident from below. These

are also sometimes referred to as direct current (DC) and
alternating current (AC) models, respectively. Many models
address the question of how the free magnetic energy or
wave energy is dissipated, while others are concerned only
with the origin of this energy and do not prescribe a speciÐc
dissipation mechanism. We now describe brieÑy a number
of di†erent models, Ðrst considering those in the stressing
category and then considering those in the wave category.
The models are listed in Table 5 together with the scaling
laws that they predict. The parameters included in these
laws are deÐned either in this section or in ° 5.2. We note
that the parameter R that appears in many of the scaling
laws cannot always be interpreted straightforwardly as the
loop radius. We defer discussion of this and of the param-
eter q until after the models are presented (see ° 5.1.3).

5.1.1. Stressing Models

Photospheric and subphotospheric motions displace
magnetic footpoints in both random and systematic ways
and can include both translational and rotational com-
ponents. The magnetic free energy that is pumped into the
Ðeld can be released in real time or stored in the Ðeld to be
released later. Thus, the resulting plasma heating can be
steady, quasi-steady, or highly episodic, depending on the
model. Quasi-steady heating refers to situations where the
time interval between heating events is short compared to
the cooling time by radiation and thermal conduction.

Stochastic buildup.ÈModel 1 (Sturrock & Uchida 1981 ;
Berger 1991) considers the random twisting of individual

TABLE 5

SUMMARY OF THE SCALING LAW FOR DIFFERENT MODELS OF CORONAL HEATING

Model Characteristics N0 References Scaling Law Parameters

Stressing Models (DC)

Stochastic buildup . . . . . . . . . . . . . . . . . . . . . . . . 1 1 B2L~2V 2q
Critical angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 B2L~1V tan h
Critical twist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 B2L~2V R/
Reconnection Pv

A
. . . . . . . . . . . . . . . . . . . . . . . . 4 4 BL~2o1@2V 2R

Reconnection Pv
AM

. . . . . . . . . . . . . . . . . . . . . . 5 5 B3@2L~3@2o1@4V 3@2R1@2
Current layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 B2L~2V 2q log R

m
7 7 B2L~2V 2qS0.1
8 8 B2L~2V 2q

Current sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9 B2L~1R~1V ph2 q
Taylor relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . 10 10 B2L~2V ph2 q
Turbulence with :

Constant dissipation coefÐcients . . . . . . 11 11 B3@2L~3@2o1@4V 3@2R1@2
Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12 B5@3L~4@3o1@6V 4@3R1@3
Closure ] spectrum . . . . . . . . . . . . . . . . . . . 13 13 Bs`1L~1~so(1~s)@2V 2~sRs s \ 0.7, m\ [1.

14 s \ 1.1, m\ [2.5

Wave Models (AC)

Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 14 B1`mL~3~mo~(1`m)@2 m\ [1.
16 m\ [2.

Resonant absorption . . . . . . . . . . . . . . . . . . . . . 17 15 B1`mL~1~mo~(1`m)@2 m\ [1.
18 m\ [2.
19 16 B1`mL~mo~(m~1)@2 m\ [1.
20 m\ [2.

Current layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 17 BL~1o1@2V 2
Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 18 B5@3L~4@3R1@3

REFERENCES.È(1) Sturrock & Uchida 1981, Berger 1991 ; (2) Parker 1988, Berger 1993 ; (3) Galsgaard & Nordlund
1997 ; (4) Parker 1983 ; (5) Parker 1983, modiÐed ; (6) van Ballegooijen 1986 ; (7) Hendrix et al. 1996 ; (8) Galsgaard &
Nordlund 1996 ; (9) Aly & Amari 1997 ; (10) Heyvaerts & Priest 1984, Browning & Priest 1986, Vekstein et al. 1993 ; (11)
Einaudi et al. 1996, Dmitruk & 1997 ; (12) Heyvaerts & Priest 1992, Inverarity et al. 1995, Inverarity & PriestGo� mez
1995a ; (13) Milano et al. 1997 ; (14) Hollweg 1985 ; (15) Ofman et al. 1995, Ruderman et al. 1997 ; (16) Halberstadt &
Goedbloed 1995 ; (17) Galsgaard & Nordlund 1996 ; (18) Inverarity & Priest 1995b.
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Ñux tubes which produces a stochastic buildup of energy.
Although the amount of twist may be increasing or decreas-
ing at any given moment, there is a long-term increase due
to the random nature of the process (random walk in twist
angle). The energy grows linearly with time, on average, and
is assumed to dissipate episodically at intervals that are
long compared with the correlation time of the Ñow. The
heating events can be large or small and can eliminate all or
part of the twist. This scaling law also applies to stochastic
energy buildup resulting from random translation motions,
but the random walk step size must be short compared to
the correlation length of the Ñow pattern so that Ðeld lines
do not wrap around each other.

Critical angle.ÈWhen the random walk step size is not
short compared to the correlation length, the Ðeld becomes
entangled and braided, and the energy builds quadratically
with time in a monotonic fashion. This is the scenario in
model 2 (Parker 1988 ; Berger 1993), which supposes that
heating occurs when a critical angle h is reached between
adjacent misaligned Ñux tubes. Parker suggests that a
steady state is set up in which dissipation balances energy
input to maintain the angle at or close to the critical value.
In fact, the same scaling law applies even if the heating is
highly episodic and the angle decreases substantially
between events. We can extend the model to the case of Ñux
tubes that are twisted rather than braided. The only change
to the scaling law is that h must now be interpreted as the
angle between the twisted Ðeld lines at the outer edges of
adjacent tubes.

Critical twist.ÈModel 3 (Galsgaard & Nordlund 1997) is
similar, except that energy release occurs when a Ñux tube
reaches a critical twist angle, /, perhaps due to the onset of
a kink instability. Note that / is the end-to-end angular
rotation of the twisted tube, which is di†erent from h.

Reconnection.ÈMagnetic reconnection may be
responsible for the conversion of magnetic to thermal
energy in the above models, but this is not explicitly treated.
In model 4 (Parker 1983), it is the prescribed mechanism. It
is assumed to occur at tangential discontinuities (current
sheets) that are postulated to form even in simple magnetic
conÐgurations when footpoints are displaced by continuous
motions. The scaling law is derived by equating the mag-
netic reconnection rate with the energy buildup rate. If we
modify ParkerÏs original derivation to account for the fact
that the reconnection rate is likely to depend on the trans-
verse Ðeld strength, rather than the total Ðeld strength, we
obtain model 5, with a somewhat di†erent scaling law.

Current layers.ÈThere is considerable skepticism that
current sheets will actually form from continuous footpoint
motions unless the coronal magnetic Ðeld is sufficiently
complex (contains nulls, separatrices, etc.). Nonetheless,
there is widespread agreement that currents can easily
become concentrated in layers of small but Ðnite thickness.
In model 6 (van Ballegooijen 1986), energy that is pumped
into the Ðeld over large scales gradually cascades to smaller
and smaller scales until eventually the scale is small enough
for Ohmic dissipation to be e†ective. This is a purely kine-
matic cascade in the sense that the coronal Ðeld responds
quasi-statically to the boundary motions. It is di†erent from
the dynamic cascades that occur in turbulence, as discussed
later. Models 7 (Hendrix et al. 1996) and 8 (Galsgaard &
Nordlund 1996) are fundamentally similar to model 6,
except that they involve MHD simulations. Simple foot-
point shearing motions are imposed at the boundary with

the direction of motion rotating by 90¡ at time intervals
selected randomly. Currents develop exponentially at stag-
nation points in the corona, but they are dissipated rather
suddenly after growing for only about one correlation time
of the driver. No signiÐcant braiding occurs. A primary
di†erence from model 2 (the critical angle model) concerns
the energy buildup time between heating events. In models
7 and 8, this is roughly the Ñow correlation time, which is
the same for all loops, but in model 2, the energy builds
until the critical angle is reached, and this takes more time
for long loops than for short ones.

Current sheets.ÈModel 9 (Aly & Amari 1997) considers
the formation and destruction of true current sheets in mag-
netic conÐgurations containing X-points. Such sheets
appear and grow naturally from X-points in the presence of
a steady Ñow (convergent Ñow in this model, but any Ñow in
general). It is proposed that these sheets dissipate episodi-
cally, by magnetic reconnection, in a sequence of energy
release events. For the scaling law in Table 5, we have
accounted for the fact that most of the energy release will be
conÐned to those Ðeld lines that have undergone reconnec-
tion.

Taylor relaxation.ÈModel 10 (Heyvaerts & Priest 1984 ;
Browning & Priest 1986 ; Vekstein, Priest, & Steele 1993)
makes use of TaylorÏs well-known conjecture (Taylor 1974)
that magnetic Ðelds relax via reconnection to the lowest
energy state that conserves helicityÈthe linear force-free
state. In this scenario, footpoint motions produce nonlinear
force-free Ðelds, and these Ðelds episodically relax to the
corresponding linear Ðeld having the same helicity, thereby
releasing energy. The relaxation timescale, q, enters into the
scaling law in di†erent ways depending on the speciÐc
assumptions that are made.

Turbulence.ÈIt is well known that turbulence develops in
ordinary Ñuids whenever the Reynolds number is larger
than about 100 (e.g., Landau & Lifshitz 1959). Turbulence
may also develop in the corona, where the Lundquist
number exceeds the critical threshold by many orders of
magnitude (although there is some question about the sta-
bilizing inÑuence of line tying). This has led a number of
authors to propose coronal heating models in which the
small spatial scales necessary for e†ective dissipation are
produced by turbulence. As in model 6, energy is pumped
into the Ðeld at large scales, and it cascades to smaller scales
where the heating can more readily occur. Unlike model 6,
the cascade is a dynamical e†ect resulting from the nonlin-
earities in the governing equations and is only weakly
related to the details of the boundary motions.

Two di†erent approaches have been used to study turbu-
lent heating in the corona. Model 11 (Einaudi et al. 1996 ;
Dmitruk & 1997) involves MHD simulations in aGo� mez
two-dimensional plane corresponding to a cross-sectional
cut across a Ñux tube. Forcing terms are included in the
equations to approximate the inÑuence of adjacent planes,
which are magnetically coupled to the plane of the calcu-
lation. The coefficients of resistivity and kinematic viscosity
are constant and, for computational reasons, much larger
than actual coronal values. Turbulence develops as part of
the time-dependent solution and is not assumed a priori.
Models 12 (Heyvaerts & Priest 1992 ; Inverarity, Priest, &
Heyvaerts 1995 ; Inverarity & Priest 1995a) and 13 (Milano,

& Martens 1997) are fully three dimensional, butGo� mez,
the nonlinear terms in the Equations are replaced by di†u-
sion terms which mimic the e†ects of an assumed turbu-
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lence. The turbulent di†usion coefficients are free
parameters and are determined self-consistently according
to ““ closure models ÏÏ that relate the magnitudes of the coeffi-
cients to the magnitude of the energy cascade and, hence,
the magnitude of the energy input by footpoint driver
motions. These motions are assumed to have a Kolmogo-
rov spectrum in wavenumber (Pk~5@3), and model 13 also
includes a power-law spectrum in frequency (Pum). The
parameter s in the scaling law is related to m as indicated in
the last column of Table 5.

5.1.2. Wave Models

Waves occur in coronal loops whenever the timescale of
the motions is shorter than the end-to-end travelAlfve� n
time. Although waves can be generated directly in the
corona, such as by bursty reconnection, we do not consider
that situation here since the energy that powers the waves
resides initially in the stressed coronal magnetic Ðelds. We
instead concentrate on models in which the waves are gen-
erated at the base of the corona, possibly by photospheric
turbulence, and propagate upward to heat the corona.

Resonance.ÈBecause of the steep density and tem-
perature gradients at the footpoints of coronal loops, wave
energy can be both reÑected and transmitted at the bound-
ary. The loop acts as a driven, leaky, resonance cavity.
Model 15 (Hollweg 1985) addresses the conditions that
must be met in order for signiÐcant energy to be transmitted
into the loop from below. Similar sorts of conditions are
satisÐed by antireÑective coatings on camera lenses. The
scaling law for this model depends on the power-law index
of the assumed driver frequency spectrum, m. Note that the
constant of proportionality in this and other wave heating
scaling laws is not dimensionless, and the complete form
has the correct physical units.

Resonant absorption.ÈModels 17È20 (Ofman, Davila, &
Steinolfson 1995 ; Ruderman et al. 1997 ; Halberstadt &
Goedbloed 1995) consider a di†erent aspect of loop reso-
nance. Whenever the velocity is nonuniform in aAlfve� n
loop cross sectionÈfor example, if the density varies with
radial distance away from the loop axisÈa phenomenon
known as resonant absorption occurs. The wave amplitude
is enormously enhanced in a narrow layer where the local

resonance frequency matches the frequency of theAlfve� n
global loop oscillations. Gradients in the magnetic Ðeld and
velocity are extremely large in this layer, and the wave
energy is easily dissipated by Ohmic and viscous processes.
Note that Ofman, Davila, & Shimizu (1996) (as well as
Klimchuk & Porter 1995) obtained a somewhat di†erent
scaling law than that of model 17 because they did not
relate the global loop oscillations in the simulations, which
have a nonÑat energy spectrum, to the spectrum of the
presumed external driver. This turns out to have little
impact on the results presented in ° 5.5.

Current layers.ÈModel 21 (Galsgaard & Nordlund 1996)
is basically the same model as model 8 but taken in the limit
of rapid boundary excitations compared to the end-to-end

travel time. Compared to previous wave models, oneAlfve� n
major di†erence is that the boundary condition is not
described by a power-law spectrum in frequency, but rather
by a series of shearing motions randomly modiÐed. In this
AC limit of the model the total dissipation in the loop is
independent of its length.

Turbulence.ÈModel 22 (Inverarity & Priest 1995b) is
similar to model 12 except that the footpoint motions have

a high enough frequency to produce waves rather than a
quasi-static evolution. The loop cross section has a uniform

speed, so there is no resonant absorption. Instead,Alfve� n
the waves are dissipated via a turbulent cascade to small
scales.

5.1.3. T he Meaning of Certain Parameters

The interpretation of the scaling laws in Table 5 is not
always as simple as one would like. For example, the
parameter R is in some instances just the loop radius. Any
twisting motions then lead to a slightly di†erent scaling law
depending on whether the loop does [case (b)] or does not
[case (a)] expand above the photosphere according to ° 5.4.
In other instances, R is a characteristic horizontal length
scale for the magnetic Ðeld and/or Ñow Ðeld, and it can only
be interpreted very loosely as a loop radius. For some
models, especially those involving turbulence, the random
driver motions produce an unknown combination of trans-
lation and twist, and the impact of Ñux tube lateral expan-
sion is not obvious. We therefore italicize R only for those
models where it is clear that case (a) and case (b) should be
di†erent ; otherwise, we do not.

Another complication concerns the parameter L . For
most models this is simply the loop length, but for models 9,
10, 12, and 22 it is the characteristic width of an assumed
magnetic arcade. The scaling law applies to the spatially
averaged heating rate throughout the arcade, even though
the arcade is composed of many di†erent Ñux tubes of dif-
fering length (for model 9, the heating will tend to be con-
centrated near the separatrix). The scaling laws should
therefore be applied to observations of individual loops
only with caution.

Several of the models involve a parameter q. In some
cases it represents the correlation time of the driver Ñow,
and in other cases (models 9 and 10) it represents the char-
acteristic time interval between heating events. Some
models imply a weak dependence on the magnetic Reynolds
number or the Lundquist number S. We assume that q,R

mas well as h, /, and S, are independent of loop length,R
m
,

and we include them in Table 5 only for completeness. We
remind the reader that the H P L~2 scaling law of Klim-
chuk & Porter was determined under the assumption that
the observed loops are heated quasi-steadily. This will not
be the case if the time interval between heating events is
long compared to the cooling time.

5.2. How Can Observations Test Heating Models?
The aim of coronal-heating models is to identify the

mechanism responsible for the energy input at coronal
heights. However, many of the hypotheses involved (e.g., the
formation of small scale lengths) are not directly veriÐable
with present observations. One test that is typically applied
to models is to compare the predicted heating rate with that
obtained from observations. Several models pass this test
successfully for both quiet Sun and active region conditions.
The aim of our work is, Ðnally, to provide more severe
constrains by comparing the dependence given by models
with those deduced from observations.

For simplicity, we consider the heating of individual
coronal loops. In this paper we will use results obtained on
X-ray loops, but the magnetic scaling laws obtained in °° 3
and 4 can be used in a broader context. Coronal loops can
refer to the bright structures that are easily distinguishable
in soft X-ray and EUV images, or to the ““ di†use ÏÏ corona,
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which can be thought of as a collection of tightly packed
loops having similar properties (note that even the di†use
corona may be comprised of distinct structures that are
below our resolution limit). As shown in Table 5, most
coronal heating models give a heating rate per unit volume
which can be expressed in the following generic way :

H
m

P BaLbocV dRe , (16)

where B and o are the coronal Ðeld strength and plasma
density, L is the loop length, and V is the transverse velocity
at the base of the corona, while the meaning of R has been
discussed in ° 5.1.3. The coronal base is located a small
distance above the photosphere, at the height where the
Ðeld has expanded out to become essentially force free, as
discussed below. The coefficients a through e predicted by a
variety of models are given in Table 5.

If B, o, V , and R have a known power-law dependence on
L , equation (16) reduces to the simple form

H
m

P Lam , (17)

where the subscript m indicates a model quantity. This can
be compared to the observed relationship

H P La (18)

determined from Yohkoh data by Porter & Klimchuk
(1995). If and a agree to within the uncertainties, then thea

mmodel can be considered viable. Otherwise, it must be
rejected. Porter & Klimchuk obtained independent esti-
mates of a based on the observed relationships PP Lb and
T P Lc. The pressure scaling gives a most probable value for
a of [1.95 with a 90% conÐdence interval of [[3.11,
[0.95], while the temperature scaling gives [2.00 and
[[4.59, [0.67]. Note that the most probable values are
essentially identical, and in ° 5.5 we refer to a single result.

In this paper, we have shown how B scales with L . To
proceed, we must know how the other physical variables in
equation (16) scale with L . The density scaling can be
inferred from the pressure and temperature results given by
Porter & Klimchuk:

o P Lv , (19)

where v\ b [ c\ [0.96. We have recently performed a
direct statistical analysis of the density and length data for
these same loops and Ðnd a nearly identical value of
v\ [0.90, where the 90% conÐdence interval is [[1.55,
0.20]. How V and R depend on loop length is much less
certain, and we return to this issue in ° 5.4.

5.3. Nonuniformity of the Magnetic Field
In the above discussion, we have glossed over the precise

meaning of B in equation (16). The models we have sum-
marized in Table 5 are based on a highly idealized corona.
For example, most of them assume a quasi-uniform mag-
netic Ðeld between two plates that are meant to represent
the positive and negative polarity parts of the photosphere.
This fully neglects the magnetic complexity of observed
conÐgurations. In particular, with these restrictions, only a
characteristic Ðeld strength (B) is present in the prediction
of the heating rate (eq. [16]). What is the meaning of B in
the context of magnetic extrapolation where the Ðeld
strength is found to vary along every Ðeld line? We can
deÐne a heating averaged along the loop because parallel
conduction efficiently transports energy along the loop.
Then the heating is approximately proportional to (a@SBa{T

could be di†erent from a in the case when V or R depend on
B, as in eqs. [21] and [23]). Since for most models we have
1 ¹ a@¹ 2 we have chosen to use two limiting cases :
B\ SBT and B\ SB2T1@2 as deÐned by equations (7) and
(8). The results of ° 4 show that the relationship B(L ) is only
minimally sensitive to the average chosen. Therefore, the
test of the models is not severely inÑuenced by the details of
how the Ðeld strength is averaged.

Furthermore, observations show that coronal loops have
a nearly constant cross section (Klimchuk et al. 1992).
Because the magnetic Ðeld is divergence free, this implies
that the Ðeld strength should be nearly uniform along a
coronal loop. The variation of the Ðeld strength obtained
with our magnetic Ðeld extrapolations is then likely to be
only an artifact of the potential approximation used.
However, without a good understanding of the physical
reasons for the observed constant cross sections, it is not
possible to extrapolate the Ðeld more accurately. This is a
natural future extension of the present work.

5.4. E†ects of Boundary Conditions
For all but the wave heating models, the source of the

energy that heats the corona is the continual stressing of the
Ðeld by photospheric or subphotospheric Ñows. These Ñows
perform work on the Ðeld, and the increased magnetic
energy is ultimately liberated into the plasma via some
process. The temporally and spatially averaged heating rate
in a loop can therefore be equated with the Poynting Ñux
coming through the footpoints, which is relatively easy to
determine.

The quantities V and R in equation (16) refer to the base
of the corona, which is separated from the photosphere by
the chromosphere and transition region. On the other hand,
the driver motions which displace the coronal magnetic
Ðeld are associated with convection, or some other turbu-
lent or organized Ñows that originate at or below the solar
surface. How are V and R related in these two regions? One
possibility, which we refer to as case (a), is that the coronal
and photospheric quantities are identical :

R\ Rph, V \ Vph[case (a)] . (20)

This is the assumption made for nearly all published
models.

A second possibility, case (b), takes into account the well-
known fact that the photospheric Ðeld is strongly concen-
trated in thin Ñux tubes. Magnetic Ñux conservation implies

RB Rph
SBph

B
[case (b)] . (21)

Any braiding or shearing motions in the photosphere are
transmitted to the bottom of corona with nearly the same
amplitude. However, the velocity of twisting motions will be
ampliÐed due to the Ñux tube expansion (van Ballegooijen
1986). For a stationary twisting motion, conservation of
angular velocity gives

u\V
R

B
Vph
Rph

. (22)

Then, using equation (21), the twisting velocity at the base
of the corona is

V B Vph
SBph

B
[case (b)] . (23)
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Because plasma densities are so much larger in the photo-
sphere than in the corona, it is reasonable to suppose that
photospheric quantities are essentially una†ected by the
physical conditions of the corona. This suggests that Bph,and are statistically independent of the coronalRph, Vphloop length, L . With this hypothesis, the power-law index in
equation (17) has the form given bya

m
a
m

\ da ] b ] vc for case (a) , (24)

and

a
m

\ d(a [ (d ] e)/2) ] b ] vc for case (b) , (25)

where we have assumed that other parameters intrinsic to
some of the models are also statistically independent of the
loop length L . If the errors in d and v are uncorrelated, the
uncertainty in the index is

*a
m

\ [a2(*d)2] c2(*v)2)]1@2 for case (a) , (26)

and

*a
m

\ [(a [ (d ] e)/2)2(*d)2] c2(*v)2)]1@2 for case (b) .

(27)

5.5. Test on the Heating Models
Figure 8 shows the values of predicted by the di†erenta

mmodels in Table 5. Error bars are based on equations (26)
and (27), where we use

v\ [0.90, *v\ 0.88 . (28)

For the magnetic Ðeld scaling, we use

d \ [0.88^ 0.3 , (29)

which is the average of d obtained with SBT and d/2
obtained with SB2T, for both ranges of Note that theB

f
.

conclusions we draw below are not a†ected by the precise
choice of d.

The horizontal line in Figure 8 indicates the observed
value, a, determined by Porter & Klimchuk. The shaded
bands indicate the 90% conÐdence intervals determined
with the pressure scaling (dark, narrow band) and the tem-

perature scaling (light, broad band). Neither interval is cen-
tered on the most probable value. In order for a model to be
strictly consistent with the Yohkoh observations, its error
bar must overlap with the dark band. Only some of the
models satisfy this requirement. However, in all but models
17È20, the disagreement is quite small, and given the
approximate nature of the error estimations, it is not appro-
priate to reject these models as impossible.

We nonetheless Ðnd that some models are in better agree-
ment with the observations than others. In particular, with
the hypothesis of no Ñux expansion [case (a)], models in
which energy release occurs at a critical angle of the mag-
netic Ðeld (Parker 1988 ; Berger 1993 ; model 2) or which
involve magnetic reconnection (Parker 1983 ; models 4 and
5 ; Aly & Amari 1997 ; model 9) or which involve turbulence
(Einaudi et al. 1996 ; Dmitruk & 1997 ; Heyvaerts &Go� mez
Priest 1992 ; Inverarity, Priest, & Heyvaerts 1995 ; Inver-
arity & Priest 1995a ; models 11 and 12) predict verya

mclose to the most probable value. Wave heating models,
especially models 17È20, exhibit the poorest agreement with
these observations with the remarkable exception of model
15 (Hollweg 1985) while models 21 and 22 (Galsgaard &
Nordlund 1996 ; Inverarity & Priest 1995a) are both close to
the most probable value of a. Taking into account the mag-
netic Ñux expansion [case (b)], nearly all the stressing
models (except model 10, which involves Taylor relaxation)
are closer to the most probable value determined by Porter
& Klimchuk. This is a warning that Ñux-tube expansion
should be treated in models (rather than the often used
uniform Ðeld).

6. CONCLUSIONS

The main motivation of this work has been to provide
observational constraints on coronal heating models by
testing their predictions for the heating rate as a function of
several physical parameters. Because thermal conduction
transports energy efficiently along Ðeld lines, and not across
them, coronal loops are the fundamental building blocks of
the corona. For quiescent loopsÈwhich have lifetimes
much longer than their cooling timesÈscaling laws relate
statistically the temperature, pressure, heating rate, and
length of the loops. Porter & Klimchuk (1995) applied these
laws to Yohkoh observations to deduce how the heating rate

FIG. 8.ÈComparison of the heating rate vs. length scaling law, H P La, as deduced from observations and models. The plotted points with error bars
indicate the power-law index predicted by the models listed in Table 5. The horizontal line at a \ [2 is the most probable value deduced froma

mobservations (Porter & Klimchuk 1995), with the dark (light) shaded band representing the 90% conÐdence interval associated with the pressure
(temperature) measurements.
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scales with L . To use this result as a test of the models
requires further information on how other basic parameters
scale with L . The most important of these parameters is the
coronal magnetic Ðeld strength, and so we have investigated
its statistical relationship to loop length using extrapo-
lations of the photospheric magnetic Ðeld.

We found that the averages SBT and SB2T along elemen-
tal Ñux tubes are both statistically well represented by a
function Thus, the averages are nearly con-P(L2] S2)C3@2.
stant for L \ S, and they follow a power law for L [ S.LC3
To within a factor of 2, the size scale S is linked to the
characteristic size of the active region. The value of forC3SBT ranges typically between [3 and [1. The lower limit
corresponds to a simple bipole at large distances. Most
active regions are far more complex than this, and C3becomes less negative as the complexity increases. The
results for SB2T are similar, the main di†erence being that

is typically more negative by the amount [0.65.C3In the range of loop lengths studied by Porter & Klim-
chuk (1995), [50, 300] Mm, we found that the general law
reduces to a simple power law of the form Ld. The index d
has a nearly constant value of [ 0.97^ 0.25 for SBT and
[1.55^ 0.43 for SB2T. In contrast to the general law, there
is no systematic dependence on the maturity or complexity
of the active region. We showed how this is due to the
o†setting inÑuences of S andC3.

We then used these results to test models of coronal
heating by comparing the predicted scaling of heating rate
with L to that determined observationally by Porter &
Klimchuk (1995). We want to stress that the scaling law
derived by these authors refers to long-lived loops, mostly
in active regions. Ofman et al. (1996) found a di†erent
scaling law, H P L0.6, for loop transient brightenings. The
most striking aspect of Figure 8 is that the stressing models,
as a group, are in much better agreement with observations
than are the wave models. Most have error bars that either
overlap or nearly overlap the dark gray band, which is the
most stringent observational constraint from the study of
Porter & Klimchuk (small di†erences are not signiÐcant
due to the approximate nature of the error estimates). In
contrast, many of the wave models have error bars lying
well outside this band and must be considered untenable in
their present form. Models 15, 21, and 22 are exceptions.
The latter two have counterparts in the stressing category
(models 8 and 12). The only real di†erence for these models
is the frequency of the imposed driver motions (DC vs. AC
motions). Moreover, they are the only wave models in
Table 5 that have no power spectrum in frequency imposed
at the boundary.

Comparisons of this kind have obvious value, but further
observational and theoretical progress is necessary before
we can identify the detailed mechanism of coronal heating
with conÐdence. First, the observational value of a must be
determined much more accurately. Broadband plasma
diagnostic techniques such as those used by Porter & Klim-
chuk are not sufficiently precise for these purposes. We
suggest that the best way to proceed is through spectro-
scopic measurements of loop temperature and density using
instruments like the Solar Ultraviolet Measurements of
Emitted Radiation (SUMER) and the Coronal Diagnostic
Spectrometer (CDS) on board SOHO, or perhaps the new
spectrometer that will Ñy on the upcoming Solar-B mission.

Second, the magnetic Ðeld properties of coronal loops must
be better understood. We have here examined Ñux tubes
without regard for whether they correspond to X-ray loops.
This is a potential drawback, since the nearly constant
thickness of observed loops suggests that their magnetic
Ðelds may be di†erent from those in the surrounding fainter
regions. Perhaps they are more highly twisted, as suggested
by Klimchuk et al. (1992). A detailed understanding of the
magnetic structure of individual loops must probably await
the high spatial resolution vector Ðeld measurements from
T HEMIS and Solar-B.

Much progress is also required in the area of theory/
modeling. Due to the inherent complexity of coronal
physics, most of the existing models treat only one aspect of
the complete coronal heating problem. For example, model
2 allows for multiple wrapping and braiding of the Ðeld, as
one would expect from random footpoint motions, but it
does not provide a detailed description of the dissipation
mechanism. Conversely, models 7 and 8 treat the dissi-
pation explicitly (if only approximately), but because of the
unrealistically small Reynolds numbers that must be used,
the dissipation sets in before any appreciable wrapping or
braiding can occur. Wave models are similarly limited in
their scope. Model 15 is spectacularly successful in match-
ing the observations, but this is for a particular power-law
spectrum in frequency (Pu~1), and it only treats the ques-
tion of wave transmission. Its uniform corona does not
allow for resonant absorption e†ects, which we know are
important in actual nonuniform coronal loops. These e†ects
are treated properly in models 17È20 (although see Ofman,
Klimchuk, & Davila 1998), but those models ignore the
important transmission e†ects. A complete model of wave
heating is still lacking. Many of the turbulence models (11,
12, and 22) appear very promising. Unfortunately, they all
assume a Ñat frequency spectrum, and a more realistic spec-
trum can change the results rather dramatically (models 13
and 14 ; Milano et al. 1997). Two important points, omitted
in many models, are to take into account the expansion of
Ñux tubes from the photosphere to the corona and to
include boundary conditions closer to observed ones. In
addition, work needs to be done to evaluate the possible
inÑuence that photospheric line tying has on the develop-
ment of coronal turbulence. At the present time, we con-
clude that stressing models involving slow footpoint
motions are more likely to be the correct explanation of
coronal heating than are wave models, but a deÐnitive
statement must await further observational and theoretical
progress.
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