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ABSTRACT
We calculate the dynamical tides raised on a nonrotating solar-type star by a close stellar or planetary

companion. Dissipation arising from a turbulent viscosity operating in the convection zone and radiative
damping in the radiative core are considered. We compute the torque exerted on the star by a compan-
ion in circular orbit and determine the potentially observable magnitude of the tidally induced velocity
at the stellar photosphere. These calculations are compared to the results obtained by assuming that a
very small frequency limit can be taken in order to calculate the tidal response (equilibrium tide). For a
standard solar model the latter is found to give a relatively poor approximation at the periods of interest
of several days, even when the system is far from resonance with a normal mode. This behavior is caused
by the small value of the Brunt-Va� isa� la� frequency in the interior regions of the convection zone. It is
shown that although the companion may go through a succession of resonances as it spirals in under
the action of the tides, for a Ðxed spectrum of normal modes its migration is controlled essentially by the
nonresonant interaction. We Ðnd that the turbulent viscosity that is required to provide the observed
circularization rates of main-sequence solar-type binaries is about 50 times larger than that simply esti-
mated from mixing-length theory for nonrotating stars. We discuss the means by which this enhanced
viscosity might be realized. These calculations are applied to 51 Pegasi. We show that the perturbed
velocity induced by the tides at the stellar surface is too small to be observed. This result is insensitive to
the magnitude of the turbulent viscosity assumed and is not a†ected by the possibility of resonance. For
this system the stellar rotation and the orbital motion are expected to be synchronized if the mass of the
companion is as much as 1/10 M

_
.

Subject headings : binaries : close È hydrodynamics È planetary systems È stars : interiors È
stars : late-type È stars : oscillations È waves

1. INTRODUCTION

Theoretical analyses of the tidal interaction between close
binaries can be classiÐed according to whether an equi-
librium tide is assumed or the dynamical tide is taken into
account. The theory of the equilibrium tide is based on the
assumption that a star subject to the tidal disturbance of a
companion instantly adjusts to hydrostatic equilibrium

A calculation of the dynamical tide takes(Darwin 1879).
into account the fact that gravity or g-modes can be excited
in the convectively stable layers of the star and that reso-
nances between the tidal disturbance and the normal modes
of the star can occur So far, dynamical tides(Cowling 1941).
have been studied only in massive close binaries, which
have a convective core and a radiative envelope (Zahn 1975,

Savonije & Papaloizou Papaloizou1977 ; 1983, 1984, 1997 ;
& Savonije Papaloizou, & Alberts1985, 1997 ; Savonije,

In this paper we examine the e†ect of dynamical tides1995).
excited by a companion on a solar-type star, in which a
radiative core is surrounded by a convective envelope.

This is of particular interest in connection with circular-
ization of solar-type binaries. It has been proposed that

1 On leave from Laboratoire dÏAstrophysique, Observatoire de Greno-
ble, Universite� Joseph-Fourier/CNRS, BP 53, 38041 Grenoble Cedex 9,
France.

circularization occurs through the action of turbulent vis-
cosity, originating in the convective envelope, on the tide.
However, according to & Cunha see alsoClaret (1997 ;

& Oh who have used the equilibrium tideGoodman 1997),
formalism of the circularization rate resultingZahn (1989),
from this mechanism is too small by about 2 orders of
magnitude to account for the circularization timescales
required on the main sequence.

The tidal response calculation undertaken here is also of
interest in connection with the newly discovered planets,
some of which are found to orbit around solar-type stars
with a period comparable to that of the high-order g-modes
of the star. One such example is 51 Pegasi & Queloz(Mayor

& Butler1995 ; Marcy 1995).
In these binaries g-mode oscillations are excited by the

companion in the radiative region beneath the convective
envelope. They become evanescent in the convection zone
where they are damped by their interaction with the con-
vective eddies. Dissipation leads to an exchange of
angular momentum between the star and the orbit if the
stellar rotation and the orbital motion are not synchro-
nized. Here we assume that the orbital frequency is initially
larger than the rotational frequency of the star. Then, tidal
interaction results in the decay of the orbit and the spin-up
of the star. If the mass of the secondary companion is con-
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siderably smaller than that of the primary, the timescale for
orbital decay is smaller than the stellar spin-up timescale,
and the companion eventually plunges into the primary.
But if the mass of the companion is large enough, synchro-
nization may occur before the binary has merged, stopping
further orbital decay. Estimates based on the theory of the
equilibrium tide et al. et al.(Rasio 1996 ; Marcy 1997)
suggest that the orbital decay timescale and the stellar
spin-up timescale for a system like 51 Pegasi are longer than
the inferred age of the primary if the companion is a Jovian-
like planet.

In this paper we examine the e†ect of resonances on these
timescales and determine the potentially observable magni-
tude of dynamical tides at the photosphere of a solar-type
star. We also compare the dynamical tide calculations to
the results of an asymptotic analysis that we carry out in the
limit of small frequencies that should correspond to the
adiabatic equilibrium tide theory.

The paper is organized as follows : In we study the° 2
tidal response of the star to the perturbation by a compan-
ion in a circular orbit with a period in the range 4È13 days.
In we Ðrst consider the linear adiabatic response and° 2.1
then, away from resonance with a g-mode, extend the
analysis using Ðrst-order perturbation theory to calculate
the torque resulting from dissipation in the convective
envelope. For the assumptions made about turbulent vis-
cosity, this mechanism is then found to be more important
than nonadiabaticity arising from heat transport in the
radiative interior (i.e., radiative damping). However, this is
not the case in the vicinity of a g-mode resonance. There we
also calculate the torque caused by nonadiabaticity in the
radiative core using a WKB treatment of the nonadiabatic
terms. We Ðnd that the torque at e†ective resonances is
mainly determined by radiative damping. An analysis valid
for very low frequencies (equilibrium tide) is given in ° 2.2.

The orbital circularization timescale for systems initially
in noncircular orbits can be derived from the response cal-
culations for companions in circular orbits. This is done in

We then discuss how this might be used to calibrate° 2.3.
the magnitude of the turbulent viscosity required to Ðt the
observations in ° 2.4.

Numerical calculations are presented in The results° 3.
assuming the equilibrium tide are given in In we° 3.1. ° 3.2
present the results of the dynamical tide calculations. We
describe the tidal response of the star to a companion in
circular orbit, give the induced velocity at its surface, and
the tidal torque. We describe the resonances and show that,
for the periods of interest of several days, they are not
expected to a†ect the orbital evolution of the binary. In ° 3.3
we compare the calculations based on the dynamical and
equilibrium tides. We Ðnd that for the standard solar model
at the orbital periods of interest, because of the long time-
scale associated with convection, the equilibrium tide calcu-
lations give a relatively poor approximation to the results of
the dynamical tide calculations.2

We Ðnd that the viscosity that is required to provide the
observed circularization rates is about 50 times larger than
that simply estimated from mixing-length theory and
discuss the means by which this viscosity might be
enhanced in However, we note that the strength of the° 3.4.
resonances for orbital periods larger than D8 days and the

2 By dynamical tide we mean the full tidal response calculated without
the assumption of hydrostatic equilibrium.

perturbed velocity at the surface of the star are insensitive to
the magnitude of the turbulent viscosity assumed. Only for
periods D4 days is the strength of the resonances decreased
by a factor D4. The observable width of the resonances is
also reduced when the viscosity is increased. We also give
the relation between the orbital evolution, circularization,
and spin-up timescales and the orbital frequency in ° 3.5.

Finally in we discuss and summarize our results,° 4
applying them to 51 Pegasi in ° 4.1.

2. TIDAL RESPONSE TO A COMPANION

IN CIRCULAR ORBIT

The calculations presented in this section will be applied
to close binary systems where the primary is a solar-type
star and the secondary is a stellar or planetary companion.
The orbital periods of interest lie in the range 4È13 days.
The rotational angular velocity of the primary is assumed
to be small compared to the orbital frequency, so that it can
be neglected. Quadrupolar tidal forcing thus occurs
through potential perturbations with periods in the range
2È6.5 days.

When calculating the tidal response well away from a
condition of resonance with a g-mode, we Ðrst calculate the
tidal response assuming it to be adiabatic throughout the
star. First-order perturbation theory is then used to calcu-
late the dissipation occurring in the convective envelope.
The idea here (as is borne out by the numerical results) is
that although short-wavelength g-modes are excited in the
radiative core, when they are away from resonance they do
not play an important role in comparison with the global
component of the tidal response for large enough turbulent
viscosity. Also, the variations in the convective envelope
occur on a comparatively long length scale, making the
adiabatic approximation a reasonable one.

When there is a resonance with a high-order g-mode, the
response becomes one with a very short length scale, such
that nonadiabaticity in the radiative core cannot be
neglected. However, the modes are of high order, such that
a WKB treatment of the nonadiabatic e†ects is possible,
and this is used close to resonance where the normal mode
dominates the response. Such nonadiabatic e†ects turn out
to be more important than the action of turbulent viscosity
in the convective envelope, with the torque at signiÐcant
resonances being determined mainly by nonadiabatic
e†ects.

2.1. L inearized Equations
2.1.1. Adiabatic Perturbations

The linearized momentum, mass, and energy equations
governing the adiabatic response of the nonrotating star to
the perturbing potential may be written as (see, e.g.,(

Tet al.Unno 1989)

L2n
Lt2 \ [ 1

o
$P@] o@

o2 $P[$(
T

, (1)

o@\ [$ Æ (on) , (2)

*S \ 0 , (3)

where P is the pressure, o is the density, S is the entropy, n is
the Lagrangian displacement vector, * denotes the
Lagrangian perturbation, and the primed quantities are
Eulerian perturbations. We use the approx-Cowling (1941)
imation, applicable to stars with high central condensation,
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which neglects the perturbation to the stellar gravitational
potential. We also have the thermodynamic relation

*S \ P
oT

1
!3 [ 1

A*P
P

[ !1
*o
o
B

, (4)

where T is the temperature, and and are the adiabatic!1 !3exponents of Chandrasekhar. This relation, together with
leads toequation (3),

o@
o

\ P@
!1 P

[ Am
r
, (5)

where

A\ d ln o
dr

[ 1
!1

d ln P
dr

\ [N2
g

, (6)

with sgn (N2) oN2 o1@2 being the Brunt-Va� isa� la� frequency,
and g being the acceleration due to gravity.

Following only the dominant quadrupo-Cowling (1941),
le term is considered in the perturbing potential arising
from the companion. For a binary system with a circular
orbit, this is given in spherical polar coordinates (r, h, r) by
the real part of

(
T
(r, h, r, t)\ fr2Y

n,m(h, r)e~imut , (7)

where the spherical harmonic

Y
n,m(h, r)\ P

n
@m@(cos h)eimr ,

with n \ m\ 2, being the associated Legendre poly-P
n
@m@

nomial with indices n and m. Here u is the orbital angular
velocity ; where D is the orbital separation ;f \ [GM

p
/4D3,

and is the mass of the companion. We adopt the sameM
pangular and time dependence for the perturbations, so that

P@, o@, and S@ are proportional to r) exp ([imut). TheY
n,m(h,

corresponding expression for the Lagrangian displacement
is

n \
C
m
r
(r), m

h
(r)

L
Lh

, m
h
(r)

L
sin h Lr

D
Y
n,m(h, r)e~imut . (8)

The factor will be henceforth takenY
n,m(h, r) exp ([imut)

as read, so that hereafter the perturbations will be taken to
depend only on r. Physical perturbations are then found by
taking real parts after inserting this factor.

The horizontal displacement is given by the nonradialm
hequation of motion (1) :

m
h
\ 1

m2u2r
AP@

o
] fr2

B
. (9)

This relation, together with allows P@ and o@ toequation (5),
be eliminated from the system of equations The(1)È(3).
radial equation of motion (1) and the continuity equation

can then be written as a pair of ordinary di†erential(2)
equations for andm

r
m
h
:

dm
r

dr
\
A
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r
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h
] Afr
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(11)

the solution of which requires two boundary conditions. At
the surface of the star we take a free boundary : *P\ 0, i.e.,

The boundary condition at r \ 0, whereP@\ [m
r
dP/dr.

equations and have a regular singularity, is that the(10) (11)
solutions be regular. Since at r D 0, P\ P

c
] O(r2), o \ o

c] O(r2), and A\ O(r), where and are, respectively, theP
c

o
ccentral pressure and density, this leads to m

h
\ m

r
/n.

2.1.2. Torque Caused by Dissipation in the Convective Envelope

The interaction between convective motions and the tidal
Ñow is expected to lead to the dissipation of tidally excited
waves (e.g., We model this e†ect as arising fromZahn 1977).
a turbulent viscosity. To do this we suppose there is an
additional dissipative force per unit mass acting in the con-
vection zone, given in spherical coordinates by

F
c
\ 1

or2
L
Lr
A
or2l L¿

Lr
B

, (12)

where is the Ñow velocity, and l is the turbulent viscosity.¿
Here, we assume that variation in the radial direction is the
most signiÐcant and note that the viscous force is deÐned in
such a way as to lead to a positive-deÐnite energy dissi-
pation rate.

For the turbulent viscosity coefficient we take (see, e.g.,
Cheng, & DengXiong, 1997)

l\ c1
t
c

"2
1 ] c2(mt

c
/P

o
)s

, (13)

where and are two constants, being on the order ofc1 c2 c1unity, is the orbital period, " is the mixingP
o
\ 2n/u

length, and is the convective timescale. Thet
c
\ 1/oN2 o1@2

viscosity is then for small forcing frequency mu. Thec1"2/t
cfactor where we shall use s \ 2, allows for a1 ] c2(mt

c
/P

o
)s,

reduction of efficiency of the damping of high-frequency
oscillations to which the convection cannot adjust. A
similar prescription with s \ 1 has been proposed by Zahn

and used by whereas s \ 2 has been(1966) Zahn (1989),
considered by & Keeley and used byGoldreich (1977)

& Papaloizou and & MazehCampbell (1983) Goldman
& Oh have also recently put(1991). Goodman (1997)

forward some arguments in favor of s \ 2. For the mixing
length we shall take the standard relation "\ a/o d ln P/dr o
and set a \ 3.

In principle, equations should be solved with(1)È(3) F
cadded on the right-hand side of in the convec-equation (1)

tive envelope. However, this would increase the order of the
di†erential system to be solved and make the numerical
calculations much more complicated. Instead, we have
found it adequate to solve Ðrst the adiabatic problem and
then to treat the dissipative e†ect using a Ðrst-order pertur-
bation theory. This is valid everywhere, except very close to
resonances, because dissipation is weak enough so that the
imaginary parts of and are much smaller in magnitudem

r
m
hthan their real parts. Thus, we solve equations (1)È(3)

without dissipative terms and use these (real) solutions to
calculate the rate of energy dissipation dE/dt arising from
convection, given by

dE
dt

\ [
P
Vc

o Re (F
c
) Æ Re (¿)dV , (14)

where the integration is over the volume of the convec-V
ctive envelope, and the angular dependence of and hasF

c
¿

to be taken into account. Using the relation and¿\ Ln/Lt
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the expression (8) for n, we obtain

dE
dt

\ [ 48n
5

m2u2
P
Ri

Rc
or2l

CALm
r

Lr
B2] 6

ALm
h

Lr
B2D

dr , (15)

where and are, respectively, the inner and outer radiiR
i

R
cof the convective envelope. Noting that the ratio of the rate

of exchange of energy and angular momentum with the
orbit is given by the pattern speed of the tidal disturbance
u, the torque exerted by the companion on the star is given
by

T\ [ 1
u

dE
dt

. (16)

This torque is positive because the star is nonrotating.
When the frequency of the tidal wave is equal to that of

some adiabatic normal-mode frequency of the star, we can
no longer use Ðrst-order perturbation theory, because it
would give an inÐnite torque. However, when the frequency
u is very close to a resonant frequency the torque willu0,be given by an expression of the form

T\ A

m2(u[ u0)2] c2 , (17)

where A is an amplitude, and c is the damping rate for
the mode. First-order perturbation theory assumes that
dissipative e†ects are small in the response calculation.
Therefore, it is valid only for frequencies such that

However, the damping rate, if small, canm2(u[ u0)2? c2.
be found from Ðrst-order perturbation theory, applied, as
described above, very close to resonance where the mode
dominates the response. Then, it is given by (see, e.g.,
Goldstein 1980)

2c\ [ 1
2E

K

dE
dt

, (18)

very close to resonance, where is the kinetic energy of theE
Kmode,

E
K

\ 1
2
P
V
o[Re (v)]2 dV \ 24n

5
m2u2

P
0

R_
or2(m

r
2] 6m

h
2)dr ,

(19)

the integration being over the volume V of the star. (In the
Ðrst integral the angular dependence of has to be taken¿
into account.) In the total energy of the modeequation (18)
is because at resonance there is equipartition between2E

K
,

kinetic and potential energy. We calculate c using equation
as outlined above, making sure that u is close enough(18)

to by checking that c remains approximately constantu0when u is slightly changed. To get A we Ðt the torque
obtained from Ðrst-order perturbation theory to equation

in the region approaching the resonance, where(17)
still. This procedure works satisfactorilym2(u[ u0)2? c2

when c is small, with consequent strong resonances. This
appears to be the situation when turbulent viscosity alone is
assumed to act. However, radiative damping cannot be
neglected for resonances at low forcing frequency ; this is
discussed below.

2.1.3. Torque Caused by Nonadiabaticity in the Radiative Core

Nonadiabatic e†ects become important when the radi-
ative di†usion time across the length scale associated with

the tidal response shortens to become comparable to the
wave propagation time across the star. In principle these
e†ects should be taken into account both in the radiative
core and above the convection zone. However, since
g-modes, which are excited in the radiative core, are evanes-
cent in the convective envelope, we do not expect non-
adiabaticity to play an important role above the convection
zone. To take nonadiabatic e†ects into account, equation

has to be modiÐed in the radiative core to(3)

oT
L(*S)

Lt
\ [$ Æ F@ , (20)

where F@ is the perturbed radiative Ñux. Here for simplicity
we neglect gradients in the chemical composition. The radi-
ative Ñux is given by the radiative di†usion equation

F \ [K$T ,

where T is the temperature, and K \ 4acT 3/(3io) is the
radiative conductivity, with a being the Stefan-Boltzmann
radiation constant, c being the velocity of light, and i being
the opacity. Therefore,

$ Æ F@\ [ 1
r2

L
Lr
C
r2
A
K

LT @
Lr

] K@
dT
dr
BD

[ $
h
2(KT @) , (21)

where is the nonradial component of the operator $. We$
hnow suppose that close to resonance, the response behaves

exactly like a free g-mode with very large radial wavenum-
ber so that WKB theory can be used together with thek

r
,

local dispersion relation to evaluate $ Æ F@. The dominant
term in the right-hand side of is thenequation (21)

and all the other terms can be[K L2T @/Lr2\ Kk
r
2T @,

neglected. For a high-order free g-mode, the local disper-
sion relation gives (see, e.g., et al.Unno 1989)

k
r
2\ N2

(mu)2
n(n ] 1)

r2 . (22)

This expression of is derived under the adiabatic approx-k
rimation. However, since we want to incorporate non-

adiabatic e†ects to the lowest order, we do not need to take
them into account in evaluating We have in thek

r
. k

r
? 1/r

radiative core because N ? mu there. The perturbed tem-
perature T @ can be expressed as a function of P@ and o@ using
the thermodynamic relation

T @
T

\ 1
s
T

P@
P

[ so
s
T

o@
o

, (23)

where ands
T

\ L ln P/L ln T )o, so\ L ln P/L ln o)
T
.

The equation of state in the radiative core of a solar-type
star is primarly that of a perfect gas (we neglect here the
radiation pressure, which is very small compared to the gas
pressure). We then have and!1\!3\ 5/3 so \ s

T
\ 1.

Using the above, the facts that n \ 2 and L/Lt \ [imu, and
we can recast in the formequation (4), equation (20)

o@
o

\ 1 ] iv!1
1 ] iv

P@
!1P

[ A
1 ] iv

m
r
, (24)

where

v\ 16acT 4N2
5(mu)3ioPr2 . (25)



792 TERQUEM ET AL. Vol. 502

For high-order free g-modes, we have (see, e.g., etUnno
al. 1989)

P@/P
Am

r
D

mu
N

d ln P
d ln r

,

which means that in the radiative core of aoP@/P o> o Am
r
o

solar-type star at the frequencies of interest. The non-
adiabatic correction of the term associated with pressure in

is then very small compared to the non-equation (24)
adiabatic correction of the term involving Therefore,m

r
.

can be approximated byequation (24)

o@
o

\ P@
!1 P

[ A1 m
r
, (26)

where we have deÐned We note thatA1 \ A/(1 ] iv).
because we have identiÐed the tidal response with a normal
mode, this calculation is valid only close to resonances.

is similar to but with A beingEquation (26) equation (5),
replaced by The system of di†erential equations that weA1 .
have to solve to get the nonadiabatic response of the star is
then the same as equations and but with the fol-(10) (11),
lowing modiÐcation in the radiative core. In equations (10)
and A, where it appears as a coefficient of has to be(11), m

r
,

replaced by The system of di†erential equations soA1 .
obtained is complex. In general, for the periods that we
consider, v¹ 5 ] 10~4 is small. We then calculate both the
real and imaginary parts of the response, so that the torque
can be computed directly from

T\ [
P
V
o@

L(
T

Lr
dV , (27)

where the integral is over the volume V of the star. The
angular dependence of and o@ has to be taken into(

Taccount in this expression. can be recast inEquation (27)
the form & Papaloizou(Savonije 1983)

T\ [ 96nf
5
P
0

R_
Im (o@)r4 dr . (28)

As in we can calculate the damping rate c@ in reso-° 2.1.2,
nances resulting from nonadiabatic e†ects using equation

Here, the rate of energy dissipation is calculated from(18).
the torque (see eq. [16]).

2.2. L ow-Frequency L imit
In the limit of small u, the following relations may be

obtained for the adiabatic equilibrium tide :

Peq@ \ [fr2o , (29)

and, if N2D 0 :

m
r,eq \ fr2o

AdP
dr
B~1

, (30)

m
h,eq \ 1

n(n ] 1)r
d
dr

(r2m
r,eq) , (31)

where the subscript ““ eq ÏÏ denotes the equilibrium value.
Using these displacements, the torque may be calculated
using equations and(15) (16).

However, we comment that which statesequation (30),
that the Lagrangian perturbation to the pressure is zero,
can only be derived in the adiabatic low-u limit if the

Brunt-Va� isa� la� frequency is not zero (in practice, one also
requires that the forcing period be short compared to the
thermal timescale of the star, but the latter is so long that it
can be assumed to be inÐnite in this context). Equations (30)
and do not apply in a Ðnite region where strictly(31)
N2\ 0. In that case the Ñuid is locally barotropic, and the
displacement can be written as the gradient of a potential :

n \ $['(r)Y
n,m] . (32)

The continuity equation then gives, for low frequencies,

$ Æ (on) \ 1
r2

d
dr
A
r2o d'

dr
B

[ n(n ] 1)o'
r2

\ [oeq@ \ [Peq@ o
!1P

\ fr2o2
!1P

. (33)

gives a second-order di†erential equation forEquation (33)
'(r). This applies inside the region where N2\ 0. It is pos-
sible, using the two available boundary conditions for

to match given by at theequation (33), m
r,eq equation (30)

boundaries of such a region, but not in general givenm
h,eqby This means that there will tend to be aequation (31).

discontinuity in the tangential displacement at the bound-
aries for low frequencies.

When oN2 o is not zero, but very small, in particular small
compared to m2u2, which corresponds physically to the
convective timescale being much longer than the forcing
period, the tidal response more closely matches that given
by than that given by equations andequation (33) (30) (31).
This feature causes a very slow convergence toward the
low-frequency limiting solution (equilibrium tide) found
here, as well as near discontinuous behavior near the inner
convective envelope boundary. This is borne out by our
numerical results (see °° and3.2.1 3.3).

2.3. T imescales
2.3.1. Orbital Evolution and Stellar Spin-up T imescales

The torque T gives the rate at which angular momentum
is transferred from the orbit to the star. We can then calcu-
late a tidal evolution (decay) timescale of the circular orbit :

torb\ kuD2
T

, (34)

where is the reduced mass. In prin-k \M
p
M

_
/(M

p
] M

_
)

ciple, the variation of the torque with u has to be taken into
account for the total decay time to be calculated. However,
since the torque increases as the companion spirals in, istorbmainly determined by the initial position of the companion,
and a good estimate can be obtained by using the above
formula.

This exchange of angular momentum also results in the
spin-up of the star, the timescale of which is given by tsp\
Iu/T & Papaloizou with I being the stellar(Savonije 1983),
moment of inertia. Out of resonance, angular momentum
deposition initially occurs mainly in the convective
envelope where the turbulent viscosity acts &(Goldreich
Nicholson It is then of interest to calculate the1989).
spin-up timescale for the convective envelope alone, which
is where is the moment of inertia of thetsp,c \ I

c
u/T, I

cconvection zone. We note, however, that on the long time-
scales associated with tidal evolution, angular momentum
may be redistributed throughout the star.



No. 2, 1998 TIDAL INTERACTION IN CLOSE BINARIES 793

2.3.2. Circularization

In practice we Ðnd that the torque caused by turbulent
viscosity acting on the tide arising from a companion in a
circular orbit varies with frequency approximately Pu4.
This result can be used to relate the orbital circularization
timescale to the initial orbital decay timescale, provided
that the eccentricity is not too large. In practice, both these
timescales can be signiÐcantly longer than the spin-up time-
scale of the star, because of its relatively small moment of
inertia. We should then consider that the star is synchro-
nized with the orbit.

The ratio between the orbital decay timescale and the
circularization timescale is found to be about 6 for thetcirccalculated frequency dependence of the circular orbit
torque (see, e.g., the expressions given in Savonije & Papa-
loizou This appears to be independent of1983, 1984).
whether the star is assumed to be synchronously rotating or
nonrotating, in that the circularization rate calculated
assuming no rotation, as we do here, gives a reasonable
estimate in the synchronous case In addition, toalso.3
evaluate for an equal-mass system, we have to take intotcircaccount the reciprocal torque exerted by the primary on the
companion. To do this we take to be proportional to atcircfactor that is when and is 1 when12 M

p
\ M

_
M

p
> M

_
.

To a reasonable approximation, we then obtain

tcirc\
torb

6(1 ] M
p
/M

_
)
. (35)

2.4. Circularization T imescale as a Calibration
of Turbulent Viscosity

One of the purposes of this paper is to calculate the
tidally induced velocities on the star. In order to do this the
processes responsible for dissipating the disturbance should
be included as accurately as possible. An important dissi-
pation process is that associated with turbulent friction in
the convection zone. As this process has been suggested as
being responsible for circularizing the orbits of main-
sequence binaries of sufficiently short period (see Mathieu

we investigate whether reasonable assumptions1994),
about the behavior of turbulent viscosity can lead to the
observed circularization rates.

2.4.1. Background

& Bouchet have investigated the preÈmain-Zahn (1989)
sequence evolution of late-type binaries in which the stars
are fully convective. The main conclusion of their work was
that circularization occurs at the very beginning of the
Hayashi phase, with hardly any decrease of the eccentricity
on the main sequence. The cuto† period they predict is
between 7.3 and 8.5 days. According to them, observations
show a cuto† period around 8 days, independent of the age
of the star, and are then in agreement with their results.

However, we note that for this agreement to be reached,
some observations had to be discarded. Those by &Mayor
Mermilliod which indicated that the cuto† period of(1984),
late-type binaries was at most 5.7 days, and those by

& Mazeh which showed that the cuto†Mathieu (1988),
period in the 4 Gyr old cluster M67 was more than 10 days.
In a review article see alsoMathieu (1994 ; Mathieu 1992

3 Note that the e†ects of g-mode resonances are not included in these
estimates.

and et al. has conÐrmed that ““ cuto† periodsMathieu 1992)
increase with age, consistent with active main-sequence
tidal circularization.ÏÏ The preÈmain-sequence cuto† period
is very likely to be 4.3 days (an upper limit being 6.4 days),
and cuto† periods for solar-mass binaries are 7.05 days in
the Pleiades (0.1 Gyr), 8.5 days in the Hyades (0.8 Gyr), 12.4
days in M67 (4 Gyr), and 18.7 days in the halo Ðeld (16 Gyr).
It is then reasonable to conclude that active circularization
does take place for main-sequence binaries and that it is less
efficient than proposed by & Bouchet on theZahn (1989)
preÈmain-sequence.

Recently & Cunha have applied the formal-Claret (1997)
ism developed by to di†erent stellar models.Zahn (1989)
They have computed the parameters that enter into the
expression for the circularization timescale, which is based
on treatment of the equilibrium tide, for a wide grid of
stellar models as a function of mass and time. Their conclu-
sion is that turbulent dissipation is too low by a factor of
100È200 during the main sequence to Ðt the observed cuto†
periods.

3. NUMERICAL RESULTS

The calculations presented in the are applied to the° 3.1
standard solar model described by Christensen-Dalsgaard
et al. (1996).

3.1. Equilibrium T ide
The torque associated with the equilibrium tide was cal-

culated as indicated in As mentioned there, this calcu-° 2.2.
lation is only expected to apply at very low frequencies. For
periods between 4.23 and 12.4 days, and thec1\ c2\ 1,
calculated torque can be interpolated by the following
power law:

T(g cm2 s~2) \ 1.200] 1055
A M

p
M

p
] M

_

B2
u4.08 . (36)

3.2. Dynamical T ide
For the calculation of the dynamical tide, we solve the

di†erential equations and numerically using a(10) (11)
shooting method to an intermediate Ðtting point et(Press
al. To evaluate nonadiabatic e†ects in the radiative1986).
core close to resonances, we modify these equations as
described in We deÐne the dimensionless quantity° 2.1.3.

where is the outer radius of the convectivex 4 r/R
c
, R

cenvelope. With this notation, the equations are integrated
from to The radiative corexin\ 10~6 xout \ 1.00071256.
extends from x \ 0 to x ^ 0.7. The results presented below
have been obtained with the values and a \ 3 (ac1\ c2\ 1
being the ratio of the mixing length " to the pressure scale
height). We discuss the e†ect of changing these parameters.

3.2.1. T idal Response and Velocity at the Surface of the Star

For illustration purposes, we plot the horizontal and
radial displacements induced in the star at orbital periods of

and 8.46 days away from resonance in the adia-P
o
\ 4.23

batic approximation. The Ðrst period is that inferred for the
system 51 Pegasi. The spatial distribution of the real parts
of and are shown in These representmum

r
mum

h
Figure 1.

typical values of the radial and horizontal velocities, the
maximum values being 3 and 6 times larger, respectively.
Since these quantities depend on the perturbing mass
through the ratio they have been rep-M

p
/(M

p
] M

_
),

resented in units of this factor.
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FIG. 1.ÈReal part of (solid lines) and (dotted lines) in unitsmum
r

mum
hof m s~1 vs. x for (top), 0.01¹ x ¹ 0.1M

p
/(M

p
] M

_
) xin ¹x ¹ 0.01

(middle), and (bottom) and for (left) and 8.46 (right)0.1¹ x ¹ xout P
o
\ 4.23

days. These represent typical values of the radial and horizontal velocities,
the maximum values being 3 and 6 times larger, respectively.

As expected, the stellar response shows oscillations
between turning points near the center and the inner radius
of the convection zone, where m2u2\ N2 ; otherwise it is
evanescent. The horizontal displacement varies rapidly in
the photosphere because the temperature drops to zero
rapidly there.

We see from that when the perturbing massFigure 1
the maximum radial velocity at the surface ofM

p
\ M

_
,

the star is about 6 and 1 m s~1 for and 8.46 days,P
o
\ 4.23

respectively. These numbers drop to 10~2 and 2] 10~3,
respectively, when the perturbing mass is 1 Jupiter mass
(M

p
\ 10~3 M

_
).

The radial displacement and the perturbed pressure at
the surface of the star are well approximated by the equi-
librium values, equations and respectively. These(30) (29),
quantities are found to be insensitive to the existence of
resonances calculated taking nonadiabatic e†ects into
account, with the consequence that the radial velocity at the
surface of the star never di†ers much from the values given
above. For the smallest periods considered, the ratio oRe

at the surface of the star can vary by up to 1(m
h
)/Re (m

r
) o

order of magnitude on passage through resonance. This
results from the fact that is proportional tom

h
(P@ [ Peq@ )/P

(see Even though this ratio remains small, it caneq. [9]).
vary by up to an order of magnitude as a resonance is
passed through.

The numerical results indicate that both the amplitude
and the wavelength of the response increase with the orbital

frequency, in agreement with the theoretical expectation of
a smaller radial order for higher frequencies (Christensen-

& Berthomieu and references therein).Dalsgaard 1991
Finally, as expected (see the plots shown in° 2.2), Figure 1

(see also indicate that at the boundary of the radi-Fig. 3)
ative core and the convection zone, there is a near discon-
tinuity in the mean value of obtained after averaging outm

hthe interior oscillations.

3.2.2. Circular Orbit Torque
3.2.2.1. Resonances

shows T versus u in a log-log representation forFigure 2
three di†erent small frequency intervals in the vicinity of

8.5, and 12.4 days. On each plot the dotted lineP
o
\ 4.23,

gives the values obtained from the theory of the equilibrium
tide as given by Since the torque depends onequation (36).
the perturbing mass through the factor itM

p
2/(M

p
] M

_
)2,

has been represented in units of the latter. These plots show
several resonances, which occur when the frequency of the
tidal wave is equal to the frequency of some normal mode of
the star. The left panels show the torque arising from con-
vective dissipation, through turbulent viscosity, alone (see

These plots have been displayed for comparison° 2.1.2).
with the right panels, for which radiative damping has been
taken into account in the resonances (see ° 2.1.3).

As indicated by the the normal-mode dampingTable 1
rate owing to radiative damping (c@) is much larger than
that due to convective dissipation (c). Thus, the torque in

FIG. 2.ÈShown is T with T in units of g cm2log10 M
p
2/(M

p
] M

_
)2

s~2 vs. u for (top), 8.5 (middle), and 12.4 (bottom) days. Thelog10 P
o
\ 4.23

solid and dotted lines correspond, respectively, to the dynamical and equi-
librium tides calculations. L eft : T is calculated using convective dissi-
pation only. Right : T is calculated using radiative dissipation alone in the
resonances and convective dissipation alone away from resonances.
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TABLE 1

NORMAL-MODE DAMPING RATES

P
o

u c c@
(days) (s~1) (s~1) (s~1)

4.23 . . . . . . 1.72] 10~5 6 ] 10~12 10~10
8.5 . . . . . . . 8.56] 10~6 5 ] 10~12 7 ] 10~10
12.4 . . . . . . 5.86] 10~6 4 ] 10~12 2 ] 10~9

the center of resonances, where they are signiÐcant, is pre-
dominantly determined by radiative damping. For the fre-
quencies that we consider and this contribution toc2 \ 1,
the torque becomes much smaller than that from turbulent
viscosity in the tail of the resonances. This means that non-
adiabatic e†ects in the radiative core are negligible away
from resonances. Therefore, in the right panels of Figure 2
we have plotted the torque resulting from radiative
damping acting alone in the center of resonances and that
resulting from convective dissipation acting alone away
from resonances. A comparison between the strength of the
resonances shown in the right and left panels indicates the
importance of nonadiabatic e†ects in the radiative core. As
expected, the resonances are weakened and broadened, this
e†ect being marginally important for days.P

o
D 4.23

We now discuss the properties and the e†ect of reso-
nances on the tidal torque. From now on, when resonances
are discussed, we shall refer to the calculations that take
into account radiative damping.

In the neighborhood of 8.5, and 12.4 days, theP
o
\ 4.23,

relative separation *u/u between successive resonances is,
respectively, 4.5] 10~3, 2 ] 10~3, and 10~3. The relative
width du/u of the resonances is, respectively, 3] 10~4,
1.5] 10~4, and 10~4. Here we have arbitrarily deÐned the
width of a resonance as being the frequency interval over
which T is at least 3 times larger than the minimum torque
obtained just out of this resonance. From these widths we
can also extrapolate the torque due to radiative damping
midway between resonances using remember-equation (17)
ing to take account of the resonances on either side. Then
we Ðnd the torques midway between resonances to be
factors of 37, 30, and 17 below the torques due to turbulent
viscosity with at periods of 4.23, 8.5, and 12.4 days,c2 \ 1
respectively.

To calculate the probability of the companion being in a
resonance, we have to take into account the fact that it
drifts away from the resonances much more rapidly than
elsewhere. The relevant quantity for calculating the tidal
evolution timescale is 1/T (see For a Ðxed oscil-eq. [34]).
lation spectrum, we can approximate this probability by
du/*u times the ratio of the mean value of 1/T over a
resonance to the mean value of 1/T between two reso-
nances, where the mean value is deÐned by

T 1
T

U
\
P du

T

NP
du ,

with the integrals being taken over the relevant frequency
interval.

This gives a probability of being in a resonance that is
close to 0.7% for and 8.5 days and 2% forP

o
\ 4.23 P

o
\

12.4 days. The fact that the probability of being in a reso-
nance increases with is not signiÐcant, because reso-P

onances get weaker when the period increases (see Fig. 2).

We note that this discussion applies only if the a priori
probability of being in any frequency interval of a given
width is independent of the frequency, as might be expected
to be a reasonable assumption if the normal-mode spectrum
is Ðxed. However, di†erent circumstances may apply if the
combined e†ect of orbital and stellar evolution were to lock
the companion in a resonance with changing location. But
we shall not consider the possibility of this process here.

As the companion spirals inward, it goes through a suc-
cession of resonances. However, for a Ðxed normal-mode
spectrum, the above calculation tells us that its migration is
controlled essentially by the nonresonant interaction. This
can be seen by comparing S1/TT evaluated over a large
frequency range, both taking into account and neglecting
the resonances. Such a comparison shows that neglecting
resonances changes S1/TT by at most a few percent.

3.2.2.2. Relation between the Mean Torque, u, and
the Circularization Timescale

Here we interpolate the numerical results to express the
torque as a power of the frequency. To begin with, we con-
sider the three frequency intervals described above. We take
the appropriate torque to be 1/S1/TT, where the mean
values are taken over the frequency intervals displayed in

The results can be interpolated with the followingFigure 2.
relation :

T(g cm2 s~2) \ 1.654] 1053
A M

p
M

p
] M

_

B2
u3.85 . (37)

We have checked that the above formula gives a good esti-
mate of the torque at other nonresonant frequencies
between 4.23 and 12.4 days. Since the index of the power
law is close to 4, the circularization timescaleequation (37)

is given by At days, istcirc equation (35). P
o
\ 12.4 tcircfound from the above formula to be 56 times larger than the

timescale of 4 Gyr that is indicated by the observations.
We note that both the dynamical and equilibrium tide

calculations give a power law with an index close to 4,
which results in the circularization timescale being pro-
portional to the binary period to the 13/3. For compari-P

oson, Zahn and & Mazeh using(1977, 1989) Goldman (1991),
equilibrium tide calculations, found to be proportionaltcircto raised to the power 16/3, 13/3, and 10/3, respectively.P

oThe di†erence between these results can be related to a
di†erent choice of s in for l. These authorsequation (13)
used an expression similar to with, respec-equation (13)
tively, s \ 0, 1, and 2. The fact that we obtain an index close
to 13/3 by setting s \ 2 or even 1 (see below), in contrast to
the results above, is at least partially due to the e†ectively
smaller value of that we used (see below).c2We comment further that foundTassoul (1988) tcircPfor his postulated alternative hydrodynamicalP
o
49@12

mechanism for tidal circularization.

3.3. Comparison between Calculations Based on the
Dynamical and Equilibrium T ides

The results presented above show that the torque corre-
sponding to the dynamical tide is smaller than that given by
the adiabatic equilibrium tide for all of the frequencies that
we have computed. However, the di†erence tends to
decrease as the frequency gets smaller. From equations (36)
and we calculate that the ratio of these torques is indeed(37)
about 6.0 and 4.8 for and 12.4 days, respectively.P

o
\ 4.23
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(solid line), (dashed line), andFIG. 3.Èm
r,eq/Rc

\ m
h,eq/Rc

m
r
/R

c
m
h
/R

c(dotted line) in units of vs. x for and forM
p
/(M

p
] M

_
) 0.6¹ x ¹xout(top) and 12.4 (bottom) days.P

o
\ 4.23

shows and inFigure 3 m
r,eq/Rc

\ m
h,eq/Rc

, m
r
/R

c
, m

h
/R

cunits of versus x in the rangeM
p
/(M

p
] M

_
) 0.6¹x ¹xoutfor and 12.4 days. It is clear from these plots thatP

o
\ 4.23

and departs from the asymptotic value in the convec-m
r

m
htive envelope. The di†erence is not very large, but the deriv-

atives of and from which the torque is calculated (seem
r

m
hdepart more from their asymptotic values.eq. [15])

In the limit where the magnitude of the Brunt-Va� isa� la�
frequency is everywhere large compared to the tidal forcing
frequency, calculations based on the dynamical tide should
converge toward those based on the equilibrium tide. This
is because the convective timescale is small enough that the
convective motions adjust essentially instantaneously to the
tidal forcing.

We have checked this expectation by artiÐcially increas-
ing the magnitude of the Brunt-Va� isa� la� frequency in the
convection zone. Except in the part of the convective
envelope just below its outer radius, wherever oN2 o\ qu2,
q being an arbitrary constant, we make the replacement
N2 \ [qu2. In we plot versus x in theFigure 4 m

r,eq/mrrange for days and for q \ 10, 100,0.6¹x ¹xout P
o
\ 12.4

and 400. For comparison we also plot the case correspond-
ing to the original solar model.

As expected, converges toward 1 when the magni-m
r,eq/mrtude of the Brunt-Va� isa� la� frequency is increased. We note

that q \ 400, which corresponds to oN oº 10mu, gives
This conÐrms that the asymptotic limit1 [ m

r,eq/mr
\ 5%.

is reached when the magnitude of the Brunt-Va� isa� la� fre-
quency is very large compared to the frequency of the tidal
wave.

vs. x in the range for days andFIG. 4.Èm
r,eq/mr

0.6¹ x ¹ xout P
o
\ 12.4

for q \ 10 (dotted line), 100 (short-dashed line), and 400 (long-dashed line),
the deÐnition of which is given in the text. For comparison we have also
plotted the case corresponding to the original solar model (solid line).

is close to 1 when oN o? mu.m
r,eq/mr

We note that the very slow convergence toward the equi-
librium tide was predicted from the arguments presented in

Also expected was the discontinuity in the mean value° 2.2.
of obtained after averaging out the interior oscillations,m

h
,

at the boundary of the radiative core and the convection
zone that is observed in (see alsoFigure 3 Fig. 1).

3.4. Calibration of the Turbulent V iscosity
We shall limit the comparison of our results with obser-

vations of main-sequence binaries because our calculations
do not apply to preÈmain-sequence stars, which have a
much larger convective envelope than the Sun. As men-
tioned above, the observed circularization timescale we
have to Ðt is then 4 Gyr for daysP

o
\ 12.4 (Mathieu 1994).

As indicated above, when using a simple estimate of the
turbulent viscosity based on mixing-length theory for non-
rotating stars, the circularization timescale we obtain from
our calculations for this period is 56 times larger than 4
Gyr. This indicates either (i) that solar-type binaries are not
circularized through turbulent viscosity acting on tidal per-
turbations (but see and & GoodmanTassoul 1988 Kumar

for other suggested tidal mechanisms), or (ii) that dissi-1996
pation in the convective envelope of solar-like stars is sig-
niÐcantly more efficient than is currently estimated.

postulates that efficient tidal dissipationTassoul (1995)
occurs in a very thin Eckman layer close to the surface of a
tidally deformed star and that this process greatly increases
the efficiency of tidal interactions. But a refutation of the
notion that the free surface boundary condition appropriate
to the tidally deformed star, rather than the more common
rigid boundary condition, leads to such an e†ective bound-
ary layer has been given by & ZahnRieutord (1997).
Further & Tassoul state that their mecha-Tassoul (1997)
nism is inapplicable to extreme mass ratio cases, such as 51
Pegasi, that we consider later in the paper.

We now consider brieÑy here the mechanism proposed
by & Goodman namely enhanced dissi-Kumar (1996),
pation associated with high-order oscillation modes excited
through parametric instability. The growth rate for the
most rapidly growing modes is expected to be p D

where is the radial displacement in the primarymum
r
/R

_
, m

r



No. 2, 1998 TIDAL INTERACTION IN CLOSE BINARIES 797

oscillation, which we shall assume to be the equilibrium
tide, evaluated at and mu is its frequency.r \R

_
,

If we assume that the nonlinear development of the para-
metric instability and subsequent dissipation of the excited
modes leads to an e†ective viscosity and frictional dissi-
pation rate which is big enough to suppress thet

f
~1 \p,

linear instability, then we expect from the classical theory of
that there will be a phase lag associatedDarwin (1879) h

twith the tide given by

h
t
\ p

R
_
3

GM
_

u . (38)

For a binary of unit mass ratio and period D10 days, syn-
chronization occurs on a timescale very much shorter than
that required for circularization, so that we assume that the
stellar rotation is synchronized with the orbit and m\ 1 in
the calculation of p. For small eccentricity, the circular-
ization timescale is approximately given bytcirc 1/tcirc\where the apsidal motion frequency is)

a
h
t
, )

a
\

with k being the apsidal motion15k(M
p
/M

_
)(R

_
/D)5u,

constant We use the equilibrium tide value(Cowling 1938).
to estimate at as for a(eq. [30]) m

r
/R

_
r \R

_
(R

_
/D)3/4

mass ratio of unity. We then get 1/tcirc \ 7.5ku(R
_
/D)11P

u25@3 for given by For an orbital period ofh
t

equation (38).
12.4 days, this gives Gyr. Since k D 0.01, ittcirc\ 6 ] 103/k
is not very likely that this mechanism will be able to explain
the observed circularization rates. However, we stress that
this has not been shown from a full nonlinear calculation of
the development of parametric instability.

3.4.1. Enhanced Turbulent V iscosity

In general, a large increase in the simply estimated turbu-
lent viscosity coefficient is needed in order to explain the
observed circularization rate. We now investigate what is
needed to achieve this and give the numerical results of tests
that we have carried out. In all cases, we have checked that
the velocity at the surface of the star is not sensitive to the
magnitude of the turbulent viscosity assumed.

In addition, as indicated above, the resonances are essen-
tially controlled by radiative damping in the radiative core
as long as c@? c. When the turbulent viscosity is enhanced,
c is increased. However, in the tests that we present below,
for orbital periods larger than D8 days, c@ stays large
enough compared to c so that although the nonresonant
torques increase, the central structure and strength of the
resonances is determined by radiative damping. For orbital
periods on the order of D4 days and c can becomec2\ 1,
comparable to c@. Then the damping factor in equation (17)
has to be replaced by (c] c@)2, and the strength of the reso-
nance is reduced by a factor of D4.

We Ðrst consider the e†ect on the circularization time-
scale of varying the parameters s, and " inc1, c2, equation

for l. Note that the denominator we used in this expres-(13)
sion is rather than Using the1 ] c2(mt

c
/P

o
)2, 1 ] c2(mut

c
)2.

latter with is equivalent to setting in thec2\ 1 c2\ (2n)2
former. At present, it seems that our knowledge of convec-
tion does not allow discrimination between these pos-
sibilities (see, e.g., the discussion in However,Zahn 1989).
we note that & Oh have recently putGoodman (1997)
forward some arguments in favor of Usingc2\ (2n)2. c2\
(2n)2 in results in a circularization time forequation (13)

days that is 10 times larger than that obtainedP
o
\ 12.4

with If we set is decreased by only ac2\ 1. c2\ 0, tcircfactor of 2. This is because when the factorc2\ 1,

TABLE 2

FOR DIFFERENT VALUES OF s ANDtcirc c2
P

o
tcirc(days) c2 s (Gyr)

4.23 . . . . . . . . . . . . 1 2 2.46
. . . 1 1.37

12.4 . . . . . . . . . . . . . . . 2 220
. . . 1 211

4.23 . . . . . . . . . . . . (2n)2 2 39.4
2n 1 5.98

12.4 . . . . . . . . . . . . (2n)2 2 2010
2n 1 685

is already smaller than (or even very small com-c2(mt
c
/P

o
)2

pared to) unity in a large part of the convective envelope.
Thus it seems that adjusting the way in which turbulent
viscosity responds to short period forcing cannot produce
the required enhancement in this case.

In we summarize the results obtained for di†erentTable 2
values of s and for the case of mass ratio unity, and inc2we indicate the corresponding index of the powerTable 3
law in We note that corresponds to theequation (37). c2\ 1
denominator in being whereasequation (13) 1] (mt

c
/P

o
)s,

corresponds toc2\ (2n)s 1 ] (mut
c
)s.

We note that setting with s \ 2 decreases thec2\ (2n)2
index of the power law in to D3.3. This gives aequation (37)

proportional to the orbital period to the D11/3, whichtcircis similar to the value found by & MazehGoldman (1991).
& Bouchet have argued that the prescriptionZahn (1989)

s \ 2 suggested by & Keeley and usedGoldreich (1977)
later by & Papaloizou and &Campbell (1983) Goldman
Mazeh see also & Oh would lead to(1991 ; Goodman 1997)
cuto† periods that are in clear conÑict with the obser-
vational data, which they claim require s \ 1. The results
presented for the model adopted here do not support this
statement. If hardly changes when s is changedc2\ 1, tcircfrom 2 to 1. If the di†erence between s \ 1 andc2\ (2n)s,
s \ 2 is not dramatic for days. Within the uncer-P

o
D 8È12

tainties associated with convection, our results do not allow
a distinction to be made between s \ 1 and s \ 2.

Finally, taking the mixing length to be the distance to the
top boundary of the convective envelope rather than 3
times the pressure scale height does not signiÐcantly a†ect
the circularization timescale.

We note that the torque is directly proportional to andc1a2. However, is expected to be on the order of unity, andc1a is usually taken to be between 1 and 4.

3.4.2. ModiÐcations to the FrequencyBrunt-V a� isa� la�

The magnitude of the turbulent viscosity given by
would be increased if the magnitude of theequation (13)

Brunt-Va� isa� la� frequency were larger in the convection zone.

TABLE 3

INDEX OF THE POWER LAW IN EQUATION (37)
FOR DIFFERENT VALUES OF s AND c2
c2 s Index of Power Law

1 . . . . . . . . . . . . . . . . 2 3.85
1 4.3

(2n)2 . . . . . . . . . . . . 2 3.3
2n . . . . . . . . . . . . . . 1 4.1
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This is because the convective timescale decreases. We
comment that a reduction in the convective timescale while
the same length scale is maintained implies larger convec-
tive velocities that would have to occur without increasing
the heat Ñux. This is the essential feature of the modiÐ-
cation. To illustrate the e†ect of increasing the Brunt-
Va� isa� la� frequency, we consider the following dimensionless
number :

g \ N2
g
Ad ln P

dr
B~1

,

which is the superadiabatic temperature gradient when
radiation pressure and variations of the mean molecular
weight are neglected. The accuracy with which g is known
from helioseismic observations is not better than D10~2

However, in most of the convective envelope,(Gough 1984).
this parameter, estimated from mixing-length theory
applied to nonrotating stars, is much smaller than 10~2.

We have made a numerical investigation in which we
increased oN2 o in the convection zone by replacing g by min
(pg, 10~3), p being an arbitrary constant, wherever g ¹ 10~3
(except just below the outer radius of the convective
envelope). We have considered p \ 50 and 100. It is doubt-
ful that consideration of present helioseismic data could
preclude such an increase of oN2 o (Thompson 1997).

shows g in the convective envelope versus x forFigure 5

FIG. 5.ÈTop: Dimensionless parameter g \ N2/(gd ln P/dr) in the con-
vective envelope vs. x. The curves correspond to the original solar model
(solid line) and to the models with increased oN2 o (p \ 50 [dotted line] and
100 [dashed line], where p is as deÐned in the text). Bottom panel : Factor by
which oN2 o is increased in the convective envelope vs. x. corre-Noriginal2
sponds to the original solar model, and N2 corresponds to the models with
p \ 50 (dotted line) and p \ 100 (dashed line).

the original solar model and for p \ 50 and p \ 100. We
also display the factor by which oN2 o has been increased in
each case.

The circularization timescales that we Ðnd with c2\ 1
and s \ 2 for days when p \ 50 and 100 are,P

o
\ 12.4

respectively, 13 and 7.7 Gyr, which are now larger than the
observed value by factors of 3 and 2, respectively. Small
discrepancies of this magnitude could be dealt with by
adjustments to the mixing length or When either p \ 50c1.or p \ 100, the circular orbit torque is found to be pro-
portional to u4.6.

If, keeping s \ 2, we adopt is increasedc2\ (2n)2, tcirconly by a factor of 1.3 compared to the case of forc2\ 1
p \ 100. This is because the factor is smallerc2(mt

c
/P

o
)2

than (or even very small compared to) unity in almost all
the convection zone, whatever the value of between 1 andc2(2n)2.

Although an increase in oN2 o of the magnitude that we
consider might be thought to be unrealistic, we note that
such an increase in the deep layers of the convection zone
has also been considered by as a means ofDÏSilva (1995)
explaining the dynamics of sunspots without invoking too
strong a magnetic Ðeld. In his model, which applies strictly
to a star rotating at the same rate as the sun, oN2 o has to be
larger than 4 ] 10~11s~2, which means that it has to be
multiplied on average by a factor of D8. In the solar model
we use, we need to multiply oN2 o by a factor of between
100 and 400 for 0.722º x º 0.713, between 10 and 100
for 0.828º x º 0.722, and between 1 and 10 for
0.915º x º 0.828 in order to obtain such a minimum
value. If we do this, the circularization timescale that we
obtain for days is only 6 times larger than theP

o
\ 12.4

observed one. In this context, it is possible that if the pro-
posed increase in oN2 o is related to the stellar rotation, this
may be even greater for the more rapidly synchronously
rotating star that is expected in the equal-mass binary
case.

We note that numerical simulations of turbulent convec-
tion in the presence of rotation show an increase of oN2 o
with the e†ect of rotation Hurlburt, & Toomre(Brummell,

This is because, as pointed out by Brummel et al.1996).
(1996), rotation inÑuences the thermodynamic mixing
properties of the convection in such a way that it leads to a
decrease in correlation between temperature Ñuctuations
and vertical velocities. The efficiency of the vertical convec-
tive transport is then weakened, with a subsequent
enhanced superadiabatic mean stratiÐcation in the interior
of the Ñuid (see their Fig. 8a). This suggests that the magni-
tude of the Brunt-Va� isa� la� frequency in the convective
envelope of rotating stars is actually larger than the values
given by the solar model that we have been using here.
However, it seems questionable that the extremely large
increase required to account for the observed circular-
ization rates can be achieved.

3.4.3. Turbulent V iscosity below the Convection Zone

Another means of increasing the total amount of dissi-
pation is to assume that turbulent viscosity acts down to
some depth below the inner boundary of the convective
envelope. This might be expected if convective overshooting
takes place. However, this might not be a very e†ective
process because of the slow convective motions expected
and the rapid increase in oN2 o that occurs as the radiative
zone is entered.
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Estimates based on the observed solar oscillation fre-
quencies give an upper limit of between 0.05 (Basu 1997)
and D0.1 Monteiro & Thompson(Christensen-Dalsgaard,

times the pressure scale height on the extent of over-1995)
shoot below the convection zone.

Here we consider a simple illustrative situation in which
convective blobs or some other turbulent motions are able
to penetrate into the stratiÐed radiative core over some
fraction z of the pressure scale height o d ln P/dr o~1, produc-
ing a turbulent viscosity. We model this by setting l to be
constant from a distance 0.5z o d ln P/dr o~1 above the inner
radius of the convective envelope down to the same distance
below this radius, equal to its value at the top of this zone.
Because such a viscosity is able to act on the short-
wavelength part of the tidal response associated with
g-modes, it has a dramatic e†ect.

For z\ 1 and the circularization timescalec1\ c2\ 1,
for days is decreased by a factor of about 400,P

o
\ 12.4

being now 8 times smaller than the observed timescale. If we
set (see discussion above), is increased by ac2\ (2n)2 tcircfactor of 15, being about 4 times larger than the observed
timescale.

For z\ 0.1 and we get a circularizationc1\ c2 \ 1,
timescale for days that is about 30 times largerP

o
\ 12.4

than that observed. For the calculated timescale to be in
agreement with the observations, we need z to be between
0.4 and 0.5, with In the model that we havec1\ c2\ 1.
adopted, the e†ect is of less importance for shorter periods,
because the number of oscillations of the response in the
region of the radiative core where turbulent dissipation is
introduced decreases with forcing frequency. Therefore, the
torque does not vary with u as a simple power law with an
index close to 4. However, in reality, the e†ectiveness of the
turbulent viscosity should be reduced for short wavelength
disturbances, giving a compensating e†ect to make it rela-
tively less e†ective at low frequencies.

The above calculations show that overshooting is not
likely to be efficient enough to decrease the circularization
timescales by a factor of about 50. To get such an e†ect, we
indeed require an extent of overshoot below the convection
zone that is at least 5 or 10 times larger than that deduced
from the observations. In addition, we have not taken into
account the fact that overshooting leads to an increase of
the g-modes length scale through a decrease in the buoy-
ancy or the magnitude of N2. This in turn would decrease
the amount of turbulent dissipation associated with over-
shooting.

3.5. Fitting the Observations
As we have already mentioned above, calculations based

on both the dynamical and equilibrium tide theories give a
torque that is proportional to the orbital frequency raised to a
power of D4 (see eqs. and If circularization of[36] [37]).
solar-type binaries does occur through the action of turbu-
lent viscosity on the tides, then its magnitude has to be
calibrated so as to account for the observed timescale. We
have discussed in somewhat speculatively, how the° 3.4,
required enhancement of the magnitude of the viscosity
above that obtained from simple estimates might be envis-
aged to occur. Since the enhancement might depend on
forcing frequency, it is not clear that the resulting torque
will still be proportional to the frequency to a power of D4.
However, the increase to oN2 o described above gave torques

that approximately preserved this power law, so that in the
absence of additional information, we shall suppose that it
holds. Then the calibration acts only to adjust the coeffi-
cient of the power law.

We note that the observations do not rule out any expo-
nent between 3 and 5 (see below). Since our calculations can
only strictly be applied to solar-type stars, we calibrate our
results using Gyr for days. This gives (intcirc\ 4 P

o
\ 12.4

cgs)

T(g cm2 s~2) \ 5.086] 1035
A M

p
M

p
] M

_

B2A u
10~5 s~1

B4
,

(39)

or, equivalently,

T(g cm2 s~2) \ 1.423] 1039
A M

p
M

p
] M

_

B2A P
o

1 day
B~4

.

(40)

The corresponding for the orbital and spin-upformul~
timescales (in Gyr) are

torb(Gyr) \ 2.763] 10~4 (M
p
/M

_
] 1)5@3

M
p
/M

_

A P
o

1 day
B13@3

,

(41)

tsp(Gyr) \ 1.725] 10~6
AM

p
] M

_
M

p

B2A P
o

1 day
B3

, (42)

and (for the solar model that we use,tsp,c \ I
c
tsp/II\ 1.064] 1054 and g cm2).I

c
\ 1.5] 1053

Since the torque is proportional to u4, we can use
for so that the circularization time isequation (35) tcirc,given by

tcirc(Gyr) \ 4.605]10~5 (M
p
/M

_
] 1)2@3

M
p
/M

_

A P
o

1 day
B13@3

.

(43)

Even though our calculations can only be applied to solar-
type stars, it is of interest to compare the circularization
timescales that we obtain from to theequation (43)
observed ones. For 7.05, 8.5, and 18.7 days,P

o
\ 4.3,

gives, respectively, 0.3, 0.8, and 24equation (43) tcirc\ 0.04,
Gyr, to be compared to the observed timescales of 0.003,
0.1, 0.8, and 16 Gyr, respectively. The agreement for P

o
º

8.5 days is within a factor of 1.5. For smaller periods, circu-
larization is expected to occur when the convective
envelopes of the stars are larger, making turbulent dissi-
pation more efficient. We note that et al.Mathieu (1992)
have already pointed out that a power law pro-tcircP P

o
13@3

vides a close Ðt to the slope of the observed cuto† periods.
However, the observations are equally well Ðtted with an
index of 10/3, and an index of 16/3 cannot be ruled out

et al.(Mathieu 1992).
If the simple estimate of the turbulent viscosity based on

mixing-length theory for nonrotating stars is used, the coef-
Ðcients in the for the torque have to be divided by aformul~
factor of D50, whereas those in the for the time-formul~
scales have to be multiplied by the same factor.
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FIG. 6.ÈGraph of in units Gyrtorb (M
p
/M

_
] 1)5@3/(M

p
/M

_
) (eq. [41])

and in units Gyr vs. u and P in atcirc (M
p
/M

_
] 1)2@3/(M

p
/M

_
) (eq. [43])

log-log representation. The cross indicates the position of 51 Pegasi. These
timescales Ðt the observations. If instead they are calculated using the simple
estimate of the turbulent viscosity based on mixing-length theory, they have
to be multiplied by D50.

In we have plotted in units ofFigure 6 torb (M
p
/M

_and in units of] 1)5@3/(M
p
/M

_
) tcirc (M

p
/M

_
] 1)2@3/

versus u and in a log-log representation.(M
p
/M

_
) P

o

4. DISCUSSION

4.1. Application to 51 Pegasi
It is of interest to apply these results to the system 51

Pegasi, for which the orbital period (assuming that the
observed oscillations are caused by a companion) is P

o
\

4.23 days. If the companion is a Jupiter mass planet (M
p
\

10~3 then the tidal orbital evolution timescale givenM
_
),

by is Gyr, the star spin-up timescaleequation (41) torbD 140
is Gyr, and the spin-up timescale of the(eq. [42]) tspD 130

convective envelope is Gyr. All of these timescalestsp,c D 18
are long compared to the inferred age of 51 Pegasi

et al. If the companion is a low-mass(Edvardsson 1993).
star of 0.1 as has been recently suggested, is 100M

_
, torbtimes smaller, while and are 104 times smaller. Wetsp tsp,cthen expect the primary star to be synchronized with the

orbit, in which case exchange of angular momentum is no
longer taking place. Synchronization is actually expected if
the mass of the companion is larger than about 10 Jupiter
masses. The orbital decay timescale is also smaller than the
age of the system, but since tidal interaction stopstsp\ torb,before the companion has plunged into the central star.

If the simple estimate of the turbulent viscosity based on
mixing-length theory for nonrotating stars is used, all these
timescales have to be multiplied by D50. In that case syn-
chronization is expected if the mass of the companion is
larger than about 70 Jupiter masses.

The planetary companion interpretation has been ques-
tioned recently by the reported 4.23 day modulation in the
line proÐle of 51 Pegasi and the possibility that(Gray 1997),
this modulation may be caused by g-mode oscillations has
been considered & Hatzes(Gray 1997).

We note that, according to our results, such a modulation
could not arise from g-mode oscillations tidally driven by a
companion. For the oscillation to have a period of 4.23
days, the orbital period would have to be 8.46 days. The

maximum perturbed radial velocity induced by the com-
panion at the surface of the star would then be between
2 ] 10~3 and 1 m s~1 for a perturbing mass of between
10~3 and 1 T hese numbers do not depend on the magni-M

_
.

tude of the turbulent viscosity assumed, and they are not
expected to be a†ected by the possibility of resonance. These
velocities are at least about 50 times smaller than those
observed.

4.2. Summary
In this paper we have studied the dynamical response of a

star to the tidal perturbation of a companion. We have
computed the torque caused by dissipation in the convec-
tive envelope using Ðrst-order perturbation theory. In the
vicinity of resonance, we have also calculated the torque
arising from nonadiabaticity in the radiative core using a
WKB treatment. We have found that the torque at e†ective
resonances is mainly determined by radiative damping. We
have carried out an analysis based on the adiabatic equi-
librium tide and showed that agreement with the dynamical
tide calculations can be rather poor. For the unmodiÐed
stellar model and the periods of interest of several days, the
torque derived using the equilibrium tide is 4È6 times larger
than that corresponding to the dynamical tide.

We have found that the presence of Ðxed resonances does
not a†ect the long-term orbital evolution of the binary, so
that the di†erent timescales (orbital evolution, circular-
ization, and spin-up) are mainly determined by the nonreso-
nant interaction. Our calculations show that the viscosity
that is required to provide the observed circularization rates
of solar-type binaries is D50 times larger than that simply
estimated from mixing-length theory for nonrotating stars.

We have explored some means by which this viscosity
might be enhanced. We have found that it could become
large enough if the magnitude of the Brunt-Va� isa� la� fre-
quency in the deep convective envelope were increased suffi-
ciently. Such an increase is expected to be produced by the
e†ect of rotation on convection, but it is questionable
whether it can be of sufficient magnitude.

We note that the strength of the resonances for orbital
periods larger than D8 days and the perturbed velocity at the
surface of the star are insensitive to the magnitude of the
turbulent viscosity assumed. Only for periods of D4 days
and is the strength of the resonances decreased by ac2\ 1
factor of D4. The e†ective widths of the resonances a†ect-
ing the tidal torques are also reduced when the viscosity is
increased.

We have applied our results to 51 Pegasi and showed that
the oscillations that have been observed at the surface of
this star cannot be a tidally driven nonradial g-mode. Also,
we have found that the stellar rotation and the orbital
motion of this system are expected to be synchronized if the
mass of the companion exceeds 0.1 M

_
.
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Note added in proof.ÈAt the proof stage we became aware of a paper submitted by J. Goodman and E. S. Dickson on tides
in a solar-type star. These authors adopted a smaller estimate of the turbulent viscosity, equivalent to than in thisc2\ (2n)2,
paper. Their results then indicate that torques due to nonadiabatic e†ects become comparable to those caused by turbulent
viscosity at periods of about 5 days midway between resonances. This is consistent with our results quoted in if the° 3.2.2.1
value is used (seec2\ (2n)2 Table 2).


