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ABSTRACT
We present numerical simulations of an isothermal turbulent gas undergoing gravitational collapse,

with the aim of testing for ““ logatropic ÏÏ behavior of the form o, where is the turbulent pres-P
t
D log P

tsure and o is the density. To this end, we monitor the evolution of the turbulent velocity dispersion p as
the density increases during collapse. A logatropic behavior would require p P o~1@2, a result that is not,
however, veriÐed in the simulations. Instead, the velocity dispersion increases with density, implying a
polytropic behavior of This behavior is found both in purely hydrodynamic and in hydromagneticP

t
.

runs. For purely hydrodynamic and rapidly collapsing magnetic cases, the velocity dispersion increases
roughly as p P o1@2, implying where is the turbulent pressure. For slowly collapsing magneticP

t
Do2, P

tcases, the behavior is close to p P o1@4, implying We thus suggest that the logatropicP
t
Do3@2.

““ equation of state ÏÏ may represent only the statistically most probable state of an ensemble of clouds in
equilibrium between self-gravity and kinetic support, but does not adequately represent the behavior of
the turbulent pressure within a cloud undergoing a dynamic compression as a result of gravitational
collapse. Finally, we discuss the importance of the underlying physical model of the clouds (equilibrium
versus dynamic) for the results obtained.
Subject headings : ISM: clouds È magnetohydrodynamics È methods : numerical È turbulence

1. INTRODUCTION

Molecular clouds and clumps exhibit the well-known
velocity dispersion (or line width) to size relation

p D R1@2 , (1)

where p is the line widthÈdetermined velocity dispersion,
and R is the characteristic size. This correlation has been
observed both in ensembles of clouds (Larson 1981 ; Leung,
Kutner, & Mead et al. et al.1982 ; Torrelles 1983 ; Dame

& Goodman Puget, &1986 ; Myers 1988 ; Falgarone,
Pe� rault & Bally and as a function of1992 ; Miesch 1994)
radius in quiescent cores using various tracers &(Fuller
Myers & Myers et al.1992 ; Caselli 1995 ; Goodman 1998),
although the latter studies have suggested that the scaling
exponent in may actually di†er betweenequation (1)
massive and low-mass cores. Furthermore, et al.Goodman

have suggested that the exponent may decrease and(1998)
approach zero as the innermost regions of the cores, in
which the turbulent velocity dispersion becomes subsonic,
are considered.

A second scaling relation between mean density SoT and
size, reading

SoT D R~1 , (2)

is also generally reported, although its authenticity has been
questioned on theoretical and(Kegel 1989 ; Scalo 1990)
numerical Ballesteros-Paredes, &(Va� zquez-Semadeni,
Rodri� guez grounds, and signiÐcantly discrepant1997)
scaling exponents (e.g., or none atCarr 1987 ; Loren 1989),
all (e.g., et al. have been found. EquationsPlume 1997) (1)
and constitute the now famous LarsonÏs relations.(2)

In spite of the anomalies at small scales and in high-mass
regions, LarsonÏs relations are generally accepted as distinc-
tive signatures of turbulence in molecular clouds and
clumps (e.g., and together theyLarson 1981 ; Scalo 1987),

imply

p P o~1@2 . (3)

This relation is usually interpreted as a manifestation of
virial equilibrium in the turbulent velocity dispersion
(possibly magnetohydrodynamic, or MHD) in the clouds

A turbulent pressure corresponding to(Larson 1981). P
t
,

the turbulent velocity dispersion, can then be deÐned by
& Shu hereafter(Lizano 1989 ; LS)

p24 (dP
t
/do) , (4)

in analogy to the relation between thermal pressure and
sound speed. Choosing

P
t
P log o (5)

recovers the virial relation from equation (3) (LS). Equation
is commonly refered to as a ““ logatropic equation of(5)

or simply a ““ logatrope. ÏÏstate, ÏÏ1
It is important to emphasize that the concept of a turbu-

lent ““ pressure ÏÏ may not be a very realistic representation of
the e†ects of turbulence, since it implicitly assumes a micro-
scopic and isotropic process. Turbulence, on the other
hand, is a phenomenon involving a wide range of spatial
scales, from the scale size of the system under consideration
to the smallest dissipative scales. In particular, the existence
of large-scale modes implies coherent motions that are
more akin to ram pressure (locally anisotropic, with a well-
deÐned direction) than to isotropic, thermodynamic pres-
sure. For these reasons, in the present paper we will focus
primarily on the turbulent velocity dispersion. References to
turbulent pressure will be made assuming that it can be
deÐned according to for compatibility withequation (4),

1 Strictly speaking, this is not an equation of state, since it does not
involve all three thermodynamic variables. However, we will allow our-
selves the terminology for consistency with common nomenclature.
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published work, but the above caveat should always be kept
in mind.

The logatropic equation of state has been used in a
number of studies of cloud support and stability focusing on
quasi-static contraction nonlinear wave propagation(LS),

& Fatuzzo Fatuzzo, & Watkins(Adams 1993 ; Adams,
et al. and gravitational stability1994 ; Gehman 1996),

& Pudritz among others. Nevertheless,(McLaughlin 1996),
the logatropic equation remains a completely empirical
assumption, and there is no direct evidence that turbulent
pressure indeed behaves in this manner in fully dynamic
situations. In fact, there are some reasons to suggest that it
may not :

1. LarsonÏs relations have been observed in either ensem-
bles of relaxed clouds (e.g., et al. et al.Torrelles 1983 ; Dame

& Goodman et al.1986 ; Myers 1988 ; Falgarone 1992 ;
& Bally or as a function of radius in quiescentMiesch 1994),

cores & Myers & Myers(Fuller 1992 ; Caselli 1995 ;
et al. but there is no evidence that theyGoodman 1998),

hold in fully dynamical processes, such as gravitational col-
lapse. Interestingly, clouds that are strongly perturbed also
seem not to follow the Larson scaling relations (e.g., Loren

et al. In general, there has been little1989 ; Plume 1997).
sampling of fully out-of-equilibrium, dynamical processes,
and in particular dynamical collapse has not yet been
directly detected because dynamical velocities occur only at
very small scales.

2. Although it might be argued that an ensemble of
molecular clouds provides a complete sample of various
dynamical stages, in actuality most observations are based
on clouds and clumps close to equilibrium. Thus, the clouds
included in surveys such as that of constituteLarson (1989)
an ensemble of equilibrium states for clouds of di†erent
masses rather than an ensemble of evolutionary steps of a
single cloud (of constant mass). That is, instead of represent-
ing a number of di†erent states for the same cloud, they
represent the same state for di†erent clouds.

et al. have suggested that3. Va� zquez-Semadeni (1997)
there may exist large numbers of low column density clouds
that do not satisfy the density-size relation, and that poss-
ibly only the highest column density clouds follow such a
scaling relation. Thus, the logatropic equation of state is not
expected to apply to such low column density clouds, which
are probably not in self-gravitating equilibrium, but rather
pressure or ram pressure conÐned.

As a Ðrst attempt to decide this matter, in this paper we
present two-dimensional numerical simulations of a turbu-
lent, self-gravitating, magnetized, isothermal gas, with the
aim of testing the variation of the velocity dispersion as a
cloud is compressed by self-gravity. A related calculation
has been performed by et al. who usedBonazzola (1987),
low-resolution simulations to estimate the correlation
between the nonlinear advection term (related to the turbu-
lent pressure) and the density gradient in a compressible
turbulent Ñow.

We emphasize that the simulations discussed in this
paper are not presented as models of cloud cores and their
observed line widths, but only as numerical experiments
designed to test the applicability of the logatropic equation
of state. Furthermore, throughout this paper we will refer
exclusively to the nonthermal part of the velocity dispersion.
In contrast with the observational situation, where the
separation between the thermal and nonthermal com-

ponents is an issue (e.g., & Myers in the simu-Fuller 1992),
lations this is a trivial task, since there is no confusion
between the Ñuid velocity and the thermal velocity disper-
sion, the latter being directly represented by the tem-
perature Ðeld.

The outline of the present paper is as follows. In we° 2
describe the numerical model ; in we present the results° 3
for both purely hydrodynamic and fully MHD cases, and in

we summarize and discuss our results.° 4

2. NUMERICAL MODEL

We numerically solve the full MHD equations in two or
three dimensions in the presence of self-gravity for an iso-
thermal, gravitationally unstable gas, using the pseudo-
spectral code described in Passot, &Va� zquez-Semadeni,
Pouquet although here we restrict ourselves to a(1996),
scale-free, isothermal case. The equations read

Lo
Lt

] $ Æ (ou) \ k+2o , (6)

Lu
Lt

] u Æ $u \ [ $P
o

[
A J
M

a

B2
$/] 1

o
($ Â B) Â B

[ l8+8u ] l2
C
+2u ] 1

3
$($ Æ u)

D
, (7)

LB
Lt

\ $ Â (u Â B)[ l8+8B ] g+2B , (8)

+2/\ o [ 1 , (9)

P\ c2o , (10)

where, as usual, o is the density, u is the Ñuid velocity, P is
the thermal pressure, B is the magnetic induction, and / is
the gravitational potential. The nondimensionalization is
the same as in Va� zquez-Semadeni, & PouquetPassot,

to which we refer the reader for more details of the(1995),
numerical method. The units are (mean density ino0\ SoT
the integration domain), (isothermal speed ofu0\ cssound), (size of the integration domain \ 2n),L 0 t0 \ L 0/u0(sound crossing time for the integration box), and B0(magnetic Ðeld strength such that at o \ o0, vA \ u0\ cs,where is the Alfve� n speed). The resulting nondimensionalvAparameters are the number of Jeans lengths inJ 4 L 0/L J,the integration box, and the Mach number of the velocity
unit, As a result of our choice of units,M

a
\ u0/cs. M

a
4 1.

Since the method is pseudospectral, it uses periodic
boundary conditions and has no numerical dissipation.
Owing to the latter condition, dissipative operators need to
be included explicitly. We use a combination of +8
““ hyperviscosity ÏÏ and standard second-order viscosity in
the momentum and magnetic equations, which allows con-
Ðnement of dissipative e†ects to the smallest scales in the
simulation, while Ðltering oscillations in the vicinity of
strong shocks & Pouquet see also the dis-(Passot 1988 ;
cussion by et al. We also use aVa� zquez-Semadeni 1996).
small amount of di†usion in the continuity equation (6),
which also helps the code to handle strong shocks. Finally,
the Poisson is used in a form suitable for hand-equation (9)
ling inÐnite or periodic media & Le� orat(Alecian 1988).

The initial conditions for the simulations have a smooth
Gaussian density proÐle peaked at the center of the integra-
tion box, with and a FWHM of Theomax \ 3.35o0 0.53L 0.
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TABLE 1

RUN PARAMETERS

Run omax/SoTa FWHM/L 0b L J/L 0c urms/Cs
d B

x
e kf l2g l8h

R128 . . . . . . . . . 3.35 0.53 0.9 0.8 0 0.03 2.00] 10~3 8.12] 10~12
R256 . . . . . . . . . 3.35 0.53 0.9 0.8 0 0.0075 5.00] 10~4 3.13] 10~14
R512 . . . . . . . . . 3.35 0.53 0.9 0.8 0 0.008 1.25] 10~4 2.00] 10~16
NT512 . . . . . . . 3.35 0.53 0.9 0 0 0.008 1.25] 10~4 2.00] 10~16
M256 . . . . . . . . 3.35 0.53 0.9 0.8 0.2 0.0075 5.00] 10~4 3.13] 10~14
M512 . . . . . . . . 3.35 0.53 0.9 0.8 0.2 0.008 1.25] 10~4 2.00] 10~16
MM256 . . . . . . 3.35 0.53 0.67 0.8 1.0 0.0075 5.00] 10~4 3.13] 10~14
MM512 . . . . . . 3.35 0.53 0.67 0.8 1.0 0.008 1.25] 10~4 2.00] 10~16
3D96 . . . . . . . . . 4.93 0.54 0.9 0.8 0 0.013 1.30] 10~3 4.00] 10~9

a Central density of initial density peak in units of mean density.
b FWHM of initial density peak in units of box size.
c Jeans length in units of box size.
d Initial runs turbulent speed in units of sound speed.
e Initial strength of uniform magnetic Ðeld.
f Di†usion coefficient for the continuity equation.
g Standard viscosity coefficient.
h Hyperviscosity coefficient.

initial velocity Ðeld is turbulent, with Gaussian Ñuctuations
of rms amplitude and random phases, withurms \ 0.8c

sexclusively rotational modes (i.e., no compressible motions).
We have performed three nonmagnetic simulations in

two dimensions at resolutions of 128, 256, and 512 grid
points per dimension, respectively labeled R128, R256, and
R512. Except for the resolution and the amount of dissi-
pation (smaller at higher resolution), these runs are identi-
cal. A nonturbulent run at a resolution of 512 grid points
per dimension, labeled NT512, was also performed in order
to test the numerical noise arising from grid discreteness in
the calculation of the velocity dispersion (see below).
Finally, a three-dimensional run, labeled 3D96, with a
resolution of 96 grid points per dimension, was also per-
formed in order to test for dimensional e†ects.

We also performed four magnetic simulations. For these
runs, labeled M256, MM256, M512, and MM512, the initial
magnetic Ðeld is along the x-direction, with strength B

x
\

0.2 for the M runs and for the MM runs. For allB
x
\ 1.0

runs except MM256 and MM512, the Jeans length is L J \while for MM256 and MM512, A0.9L 0, L J \ 0.67L 0.summary of the runs and their parameters, including the
di†usion coefficients, is given in In all cases,Table 1.
g \ 0.002.

The purpose of performing the three nonmagnetic simu-
lations at di†erent resolutions is to test for convergence, in
particular with regard to the e†ect of dissipation. In the
magnetic simulations, runs M256 and M512 are respec-
tively similar to R256 and R512 except for the inclusion of
the magnetic Ðeld. However, the magnetic Ðeld strength
used in the M runs is quite small, so that the magnetic Ðeld
does not prevent gravitational collapse. Runs MM256 and
MM512 have a larger magnetic Ðeld (implying an Alfve� n
speed equal to the sound speed), somewhat closer to molec-
ular cloud conditions. In order to guarantee that the MM
runs still undergo gravitational collapse, a smaller Jeans
length was used.

In the simulations, we deÐne the ““ collapsing cloud ÏÏ as a
circular region within the simulation, centered at the peak
of the density distribution (calculated each time) and con-
taining 30% of the total mass. For the turbulent runs this
may not be the best approximation, since the cloud shape is
not really circular (see However, using a trueFig. 1).
Lagrangian cloud boundary would be much more numeri-

cally involved, and we feel that our deÐnition still provides
reasonably accurate results, since ultimately gravity over-
powers the turbulence and the shapes do not di†er substan-
tially from circular. For the three-dimensional run, the
cloud was deÐned as the region containing 10% of the total
mass.

The computation of the velocity dispersion requires some
special care in order to remove the bulk infall velocity. This
is a necessary step, since by deÐnition the velocity disper-
sion is the rms velocity Ñuctuation, i.e., S(u [ SuT)2T.
However, in the present case of a collapsing cloud, the mean
velocity is a function of Thus, we use the followingradius.2
procedure. We Ðrst compute the average infall speed as au

rfunction of radius, and we then compute the velocity disper-
sion as , where is the unit vector inp 4 S(u(r) [ u

r
(r)rü )2T1@2 rü

the radial direction, and the average is taken over the whole
cloud, but using r \ o r o at each position. This procedure
shows why our Cartesian grid introduces noise : the
““ circular ÏÏ paths along which is computed are not au

rperfect circumference, but rather the best possible approx-
imation on a Cartesian grid, and the grid points on the path
are not all at exactly the same distance from the center.
Thus, even in the nonturbulent case there will be a system-
atic velocity dispersion at every radius due to the presence
of a radial velocity gradient and to the ““ thickness ÏÏ of the
circumference, the error being largest at the smallest radii.
In order to estimate the magnitude of the numerical noise,
we compute the numerical velocity dispersion in the non-
turbulent case as well.

3. RESULTS

As a typical example, Figures and show the density1 2
and velocity dispersion Ðelds at times t \ 0.9 and t \ 2.4,
respectively, in nondimensional units for run R512. The
former corresponds to the time of minimum velocity disper-

2 In general, the mean velocity will always be a function of position for a
gas mass undergoing a global volume change. The simplest example is a
gas mass in a cubic container compressed by a piston on one side. In the
direction of compression, the mean Ñow velocity will be a function of
position, being zero at the Ðxed wall and equal to the velocity of the piston
at the side of the piston. If the gas is additionally turbulent, the turbulent
motions will be superposed on this mean-Ñow velocity.
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FIG. 1.ÈViews of the density (top) and velocity dispersion (bottom) Ðelds for run R512 at time t \ 0.9 in nondimensional code units. At this time the
velocity dispersion is at a minimum, after having been already dissipated by shocks but not yet enhanced by the gravitational compression. The velocity
dispersion is shown within a circle containing 0.3 of the total mass in the simulation. The gray scale for the density is logarithmic.

sion, after shocks have dissipated the initial velocity disper-
sion to a more slowly decaying level, but before
compression has begun to enlarge it again (see discussion of

below). The latter time is the Ðnal state of the simula-Fig. 3
tion, after which it stops because the code can no longer
handle the very large gradients that develop at the center of
the cloud.

shows the log of the velocity dispersion plottedFigure 3
against the log of the mean density for all runs as they
evolve. For all the turbulent cases, it can be seen that the
initial transients su†er signiÐcant dissipation through

shocks until a less dissipative regime is reached, where the
velocity dispersion is a minimum. Subsequently, the veloc-
ity dispersion tends to increase with mean density, although
with signiÐcant Ñuctuations. This behavior is in sharp con-
trast to For the purely hydrodynamic runsequation (3).
R128, R256, and R512, a trend toward longer periods (i.e.,
larger density ranges) of nearly power-law behavior is
noticeable. Although convergence on the duration of the
power-law epoch of the evolution may not yet have been
reached at 5122 resolution, the slope does appear to be
converging to a value of 1/2. Even if convergence has not
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FIG. 2.ÈSame as for time t \ 2.4. This is the Ðnal stage of the collapse. Note that the gray scale in this Ðgure di†ers (has a larger maximum value)Fig. 1,
from that in in order to maximize clarity. The maximum density isFig. 1 omax \ 330SoT.

yet been attained, the observed trend is toward steeper
slopes at higher resolutions, so in any case the discrepancy
with appears to be robust.equation (3)

An important possible problem is that this result might
be an e†ect of the two-dimensionality of the simulations.
Run 3D96 was performed as an attempt to resolve this
question, although the resolution is necessarily lower. The
evolution of the velocity dispersion and the mean density
for this run is also shown in Although at muchFigure 3.
slower rates than in the two-dimensional runs because of
the higher dissipation inherent to the lower resolution, the
trend in run 3D96 is still toward increasing p with SoT after
the initial transients have passed. Thus, even though run

3D96 does not permit conÐrmation of the rates approached
by the high-resolution two-dimensional runs, the increasing
trend of p with SoT is maintained, suggesting that this
behavior is real, and not just an e†ect of the two-
dimensionality.

In this regard, note that in general the simulations over-
estimate the viscous dissipation rate, since for numerical
reasons the viscous coefficients must be chosen so that the
dissipative scales Ðt within the resolution of the simulation.
In the actual interstellar gas, on the other hand, the dissi-
pation scales may be many orders of magnitude smaller
than the scales of interest. Thus, the increase rate of p
found in the simulations is at worst a lower bound to the
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FIG. 3.ÈThe log-log plot of the velocity dispersion vs. average cloud
density for all runs. The plot for run NT512 has been displaced upward by
1.5 in the y-axis. In all cases, the velocity dispersion is seen to increase with
average density. The circles in the curve for run R512 indicate the individ-
ual times during the collapse at which the curve was sampled, taken at
intervals *t \ 0.1 code time units. The two solid straight lines show power
laws with exponents 1/2 and 1/4.

actual rate, and the net increase of p found in the simula-
tions is expected to be a real e†ect. In particular, run 3D96
is the most dissipative of the runs performed, but a net
increase is also found in this case.

The nonturbulent run NT512 also exhibits a velocity dis-
persion that increases with mean density. This should be
interpreted as a numerically generated velocity dispersion
that increases at larger infall speeds because the radial
velocity gradient is also larger. Nevertheless, this numerical
velocity dispersion is seen to be generally about 2 orders of
magnitude smaller than that for the turbulent runs (note
that the curve for the nonturbulent run has been displaced
upward by 1.5 in log p so that it Ðts within the plot). Thus,
we rule out numerical noise as the cause of the trends
observed for the turbulent runs in Figure 3.

The magnetic runs also exhibit a trend of increasing
velocity dispersion with increasing mean density, although
with quite stronger Ñuctuations. Runs MM256 and MM512
exhibit a range of densities for which again roughly
p D o1@2. Runs M256 and M512 exhibit a somewhat slower
dependence, close to p D o1@4. In any case, the general trend
is the same as in the nonmagnetic cases, contrary to the
logatropic behavior described in equation (3).

4. CONCLUSIONS

4.1. Summary and Discussion
We have argued that relations and theLarsonÏs (1981)

resulting logatropic ““ equation of state ÏÏ and virial(eq. [5])
condition may describe an ensemble of clouds in(eq. [3])
(near) equilibrium between self-gravity and the turbulent
velocity dispersion, but not out-of-equilibrium, dynamical
processes occurring in a single cloud. We have tested this
assertion by means of numerical simulations of collapsing
clouds with an initial turbulent velocity Ðeld, in both mag-
netic and nonmagnetic regimes.

The simulations exhibit in all cases a turbulent velocity
dispersion that increases with mean density as the collapse
proceeds, in contradiction to the expected behavior for a
logatrope as represented in Nonmagnetic andequation (3).
strongly self-gravitating runs seem to approach a power-
law behavior of the form p D SoT1@2, while weakly self-
gravitating magnetic runs in general tend to have shallower
dependences, although always with positive exponents. In
particular, the fact that magnetic runs exhibit the same
qualitative behavior suggests that weak magnetic Ðelds also
cannot induce a logatropic (or a p D o~1@2) behavior. Inter-
estingly, run M512 exhibits a behavior very close to
p D o1@4. Assuming that this run has converged to the true
slope, it is noteworthy that the implied turbulent pressure
satisÐes This result is consistent with that ofP

t
D o3@2.

& Zweibel for the polytropic index of Alfve� nMcKee (1995)
waves under slow compression. However, runs MM256 and
MM512 appear to be closer to the p D o1@2 behav-(P

t
P o2)

ior observed in the nonmagnetic runs. This distinction is
likely to be a result of the larger Jeans length used in the M
runs, implying a slower collapse (Ðnal time thantfin \ 2.4)
for the MM runs so that the M runs are closer to(tfin \ 1.0),
the slow compression assumption of McKee and Zweibel.

We emphasize that although convergence may not yet
have been fully achieved at the highest resolution we used
(512 ] 512 grid points), the trend is toward faster increase
of the velocity dispersion with density at higher resolution,
away from the behavior predicted by the logatropic equa-
tion. Thus, the result that velocity dispersion increases with
mean density appears quite robust. Moreover, the trend of
increasing p with SoT is preserved in run 3D96 (albeit at a
slower rate owing to the lower resolution of this run), thus
ruling out the possibility that our results are a purely two-
dimensional e†ect.

The main consequence of our results is that the logatro-
pic ““ equation of state ÏÏ appears to be inadequate for the
description of dynamical processes occurring in a cloud.
This implies that the use of the logatropic equation in
studies of gravitational collapse and dynamical stability is
questionable. Its use in studies of quasi-static processes (e.g.,

may still be justiÐed, although in general the questionLS)
remains open as to whether the logatropic equation, which
can be thought of as representing the Ðnal states of the
virialization process, also represents the behavior of the
turbulent pressure during the relaxation processes leading
to virialization. For this reason, it would also be interesting
to test its applicability in problems of nonlinear wave pro-
pagation (e.g., & Fatuzzo Fatuzzo, &Adams 1993 ; Adams,
Watkins et al.1994 ; Gehman 1996).

Finally, we remark that the ensemble consisting of the
evolutionary states of our simulated gravitationally collaps-
ing clouds with Ðxed mass is completely di†erent from the
ensemble constructed from the observations of many clouds
of di†erent masses in near equilibrium. The present work
shows that for the former ensemble, the logatropic equation
of state is not applicable.

4.2. Comparison with Previous W ork
In our simulations, we obtain a polytropic form P

t
Poceff

for the e†ective ““ equation of state ÏÏ of the turbulence, with
polytropic exponents for nonmagnetic and stronglyceff \ 2
self-gravitating cases, and for weakly self-ceff \ 3/2
gravitating cases. This result appears to be in contradiction
to that of & Pudritz hereafter whoMcLaughlin (1996, MP),
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conclude that the total pressure (thermal plus turbulent) is
not expected to behave as a polytrope. reach this con-MP
clusion on the basis of a stability analysis, noting that trun-
cated polytropic solutions with (consistent with0 \ceff \ 1
the observed lower temperatures of denser structures) never
have unstable, or even critically stable, equilibrium solu-
tions. That is, absolutely stable conÐgurations are discarded
by so that a cloud is eventually able to collapse andMP,
form a star.

It can then be seen that the di†erence between our results
and those of arises from a consideration of di†erentMP
physical models of the clouds. While clouds are inMPÏs
hydrostatic equilibrium, our clouds are always out of equi-
librium and are already unstable from the start. They may
originate from clumps rendered unstable by external turbu-
lent compressions et al. if the(Va� zquez-Semadeni 1996)
e†ective equation of state (i.e., the heating and cooling)
permits it. In such cases, the clumps need never pass
through a static equilibrium state. Another possibility is the
well-known onset of gravitational instability arising from
the loss of magnetic support caused by ambipolar di†usion
(e.g., Nakano 1979 ; LS).

Finally, we note that the polytropic exponents implied by
our simulations are larger than the critical value c

c
\ 4/3

below which gravitational collapse can proceed to a singu-
larity (e.g., Thus, if turbulent pressureChandrasekhar 1961).
continued with this behavior unrestrictedly, it would even-
tually halt the collapse. However, we do not expect this to
occur since, at late stages of the collapse, dissipation
becomes important again because of the large velocity gra-
dients that develop. In fact, in an end to the steadyFigure 3
increase of p is seen at large values of SoT for several of the
runs. Thus, we speculate that turbulent pressure cannot by
itself halt the collapse.
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UNAM. This research has received partial Ðnancial support
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