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ABSTRACT

The prediction of the magnitude of the faintest star visible through a telescope by a visual
observer is a difficult problem in physiology. Many prediction formulae have been advanced over
the years, but most do not even consider the magnification used. I have attacked the prediction
algorithm problem with two complimentary approaches: (1) First, I have developed a theoretical
algorithm based on physiological data for the sensitivity of the eye. This algorithm also accounts for
the transmission of the atmosphere and the telescope, the brightness of the sky, the color of the star,
the age of the observer, the aperture, and the magnification. (2) Second, I have collected 314
observed values for the limiting magnitude as a test of my formula. I find that the formula does
accurately predict the average observed limiting magnitudes under all conditions. The differences
between the observations and the model predictions are not correlated with any of the model input
parameters or any parameter other than the observer’s experience. When the dependence on
experience is accounted for, the model error is typically 0.5 magnitude.
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1. Introduction

Amateur astronomers have long discussed how faint an
object will be visible with a given telescope. For example,
perusal of Walter Scott Houston’s long-running “Deep-
Sky Wonders” column in Sky and Telescope magazine will
show this debate in many different guises. The limiting-
magnitude question is important to visual variable-star
observers planning a night’s program and to purchasers of
telescopes. A complete prediction formula will allow the
impact of light pollution to be evaluated and the optimal
magnification to be calculated. Such a formula will allow
the evaluation of various interesting historical observa-
tions, such as the visual recovery of Halley’s comet in
1985 (O'Meara 1985). Finally, the difficult extension of
such a formula to extended sources will allow for the
prediction of the visibility of comets and possibly for an ab
initio calculation of the aperture correction required for
visual estimates of cometary brightness.

The utility of a formula for predicting limiting magni-
tudes has inspired many previously published formulae
(Dmitroff and Baker 1945; Bowen 1947; Rosebrugh 1950;
Kelly 1953; Brown 1953; Sidgwick 1971; Sinnott 1973;
Steffey 1974; Kolman, Schoonveld, and Abels 1976).

Most of these proposed criteria are of the form
m= N+ 5log(D) , 1)

where m is the limiting magnitude for a telescope with
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aperture D (in inches) and N is some normalization con-
stant. The constant N is assigned a value ranging between
8.8 (Dmitroff and Baker 1945) and 10.7 (Sidgwick 1971).
Any such formula will produce a value which is correct to
within one or two magnitudes; however, for most applica-
tions this accuracy is too poor. This class of formulae is
hopelessly naive because many effects are not included,
of which the magnification and sky brightness effects are
most important. Bowen (1947) and Kolman et al. (1976)
both introduced formulae where the magnification was
used, but other factors were ignored. All the above for-
mulae are based on some chosen functional form (usually
eq. (1)) where a normalization constant is deduced from
observations whose number ranges from one to a dozen.
The derived predictions differ from each other by typi-
cally up to three or four magnitudes for any given magnifi-
cation.

In this paper I will derive a formula for predicting the
limiting magnitude of a telescope based on physiological
data of the sensitivity of the eye. The result will be a
theoretical formula accounting for many significant effects
with no adjustable parameters. I will test my formula
against 314 observations that I have collected.

2. Formula

The sensitivity of the human eye to point sources has
been measured exhaustively, but many of these studies
(most notably Blackwell 1946) are not appropriate for use
because the color temperatures of the light sources were
not reported. An appropriate physiological study is that of
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Knoll, Tousey, and Hulburt (1946) for which Hecht (1947)
gives a convenient summary. Their data can be repre-
sented as

1=C(1+[KB]*)?, @
log (C) = —9.80, log (K) = —1.90 iflog (B) <3.17 ,
log (C) = —8.35, log (K) = —5.90 iflog (B) >3.17 ,

where B is the observed surface brightness of the back-
ground in units of millimicroLamberts (mpL) and I is the
star brightness in footcandles for the conditions of the
experiment. The two sets of constants correspond to day
vision and night vision. Equation (2) is the primary equa-
tion on which my prediction algorithm is based. The
experimental conditions were binocular vision, natural
pupils, observer’s choice fixation, and no atmospheric
absorption. However, many corrections must be applied
to relate I and B to the star and sky brightnesses in the V
magnitude system.

One correction concerns the fact that equation (2) is
based on observations made with both eyes, whereas
most telescope observing is made with one eye. The
correction from binocular to monocular sensitivity is dis-
cussed by Pirenne (1943), who concludes from both ob-
servations and theory that the difference in sensitivity is a
factor of the square root of two (which corresponds to 0.38
magnitude). Hence, the brightnesses in equation (2) must
be multiplied by a binocular correction factor, F,, which
equals 1.41.

The star brightness must be corrected for the absorp-
tion of light by the atmosphere of the Earth. This correc-
tion will depend on the extinction coefficient of the atmo-
sphere (k) and on the zenith distance of the star, Z. The
appropriate value of k will depend on local weather condi-
tions and the effective wavelength of the eye. For day
vision, the effective wavelength of the eye is 5550 A,
similar to the V magnitude system for which extinction
coefficients (k,) are frequently quoted. For night vision
the effective wavelength is 5100 A, for which the value of
kis typically 20% larger. For good conditions, k, might be
0.20 magnitude per air mass while more typical weather
has a k, value of 0.30 magnitude per air mass. The star
brightness in equation (2) can be corrected for extinction
by multiplication by a factor F, where

2.5log (F,) = q k,sec(Z) , 3)
g=12 iflog(B)<3.17,
g=1.0 iflog(B)>3.17 .

Although k, might not be known to within 25%, the
resultant uncertainty in the limiting magnitude is usually
small.

Both the star brightness and the sky brightness must be
corrected for the light lost within the telescope. For
reflector telescopes with a central obstruction (such as the

secondary mirror in a Newtonian telescope) of diameter
D,, the fraction of light lost will scale as (D,/D)* when
compared to a clear aperture. In addition, each optical
surface of the telescope will transmit only a fraction of the
incident light. The transmission by a single surface, t,,
can range from 0.96 for a clean uncoated lens surface to
perhaps 0.70 for a dirty mirror surface. Special antireflec-
tion coatings may significantly improve these figures.
This light loss will occur at each glass/air interface includ-
ing those in the eyepiece. If we idealize all n surfaces to
have the same transmission factor, then the correction
factor (i.e., the inverse of the overall transmission of the
telescope) will be

F,=1/[t;(1 - [DJ/DP)] . )

For example, a Newtonian reflector will have two reflec-
tions off the primary and secondary mirrors and perhaps
four more surfaces within the eyepiece, for a total of six
surfaces. Typically, a Newtonian reflector is constructed
with D,/D equal to 0.15. If the optics are freshly cleaned
so that ¢, is 0.95 on average, then the total transmission of
the telescope will be 72%.

Some of the light that leaves a telescope eyepiece may
be lost before it enters the eye of an observer if the exit
pupil of the telescope is larger than the pupil of the
observer. The diameter of the exit pupil is D/M, where M
is the magnification. The diameter of the pupil of the eye,
D,, will vary from person to person but will generally be a
function of the observer’s age. Kumnick (1954) and Kadle-
cova, Peleska, and Vasko (1958) present data for the aver-
age pupil diameter as a function of age which can be
represented by the equation

D, = 7 mm exp(—0.5[A/100]%) , (5)

where A is the observer’s age in years. The correction
factor for the light loss outside the pupil is

F,=(DIMD,} iD,<DIM , 6)
F,=10 if D,>DIM .

This correction factor will apply to both the star and sky
brightness.

A telescope has a much greater light-collecting area
than does the unaided eye. This implies a correction
factor, F,, for all brightnesses viewed through a telescope
of (D./D ) which is the ratio of the collecting areas of the
eye and the telescope. For extended sources such as the
background sky brightness, the telescope not only col-
lects extra light but also disperses the light by magnifying
the image. The surface brightness of the sky will be
reduced by a factor, F,,, of M?as a result of the light being
presented to the observer with a magnification of M.

Normally, the F,, factor should only be applied to the
background brightness because a point source under
magnification will still appear as a point source. However,
if too high a magnification is used, then a star image can be



214 BRADLEY E. SCHAEFER

blown up to where the sensitivity of the eye is like an
extended source. The critical size will vary somewhat
with the background brightness, but for practical cases
the critical size is roughly 15 arc minutes or 900" (Black-
well 1946; Brown et al. 1953; Cornsweet 1970). If the
radius of the seeing disk is 6 then the apparent size of the
image will be 20M. So, for example, if the seeing is poor,
say 0 is 3", and a magnification of greater than 150 is used,
then a star will appear as an extended source so that
equation (2) will no longer apply. The data in Cornsweet

(1970) allow an approximate correction factor to equation
(2) as

F, = (206M/900")"° if 20M > 900" , )
F,=10 if 20M < 900" .

Generally, the limiting magnitude of a telescope im-
proves as the magnification increases. However, this will
break down when the apparent seeing disk becomes re-
solved. The resolution of the eye will depend on both the
object and background brightness. For bright sources the
eye has a resolution that is better than the critical visual
angle. Thus, when we look at the image of a bright star,
we might be able to see airy rings. But it is impossible to
resolve a double star whose separation is smaller than the
critical visual angle when both stars are at the threshold of
visibility.

The light that enters the eye near the outer edge of the
pupil will be less efficiently used than light that enters
near the middle of the pupil. This Stiles-Crawford effect is
caused by the photon-detection efficiency falling with
distance from the center of the eye, r, as

E(r) = exp(—0.105r% iflog(B)>3.17 , (8)
E(r)=1-0.002r" iflog(B) <3.17 .

The case for bright background is the well-known pho-
topic Stiles-Crawford effect where the equation for the
efficiency is equation (5a) from Moon and Spencer (1944).
The less-well-known scotopic Stiles-Crawford effect is
much weaker, with the formulation in equation (8) based
on data from Van Loo and Enoch (1975). So, if a magnifica-
tion is used where the exit pupil is large (yet smaller than
the D), the source will appear fainter than if high magnifi-
cation is used. Since equation (2) is valid for observations
made with a natural pupil, a telescope that concentrates
the same amount of light nearer to the center of the eye
will allow slightly fainter objects to be seen. The correc-
tion factor is equal to the ratio of efficiencies averaged
over the utilized part of the eye,

Fsc = (D.M/D)[1 — exp(—0.026 {D/M }*)] 9)
/11 — exp(—0.026 D?)]

if D,>D/M andiflogB)>3.17 ,

Fec=[1— (D/12.4M)*]/[1 — (D,/12.4)"]

“if D,>D/M andiflog(B)<3.17 .

This correction factor applies to both star and sky light.

For night vision an additional correction is needed
because Knoll et al. (1946) report their photometry in
millimicroLamberts, which is tied to the photopic sensi-
tivity curve, whereas the scotopic curve is relevant for
night vision. This would be no problem if the stars and the
night sky had the same spectrum as the experimental light
source. However, the experimental light source had a
color temperature of 2360 K while the moonless night sky
has a color temperature of 5500 K (corresponding to a
color index of 0.7) and stars have a color temperature
typically ranging from 3000 K to 20,000 K. The total num-
ber of photons detected by an instrument can be idealized
as the integral over wavelength of a blackbody curve (with
some appropriate color temperature T) weighted by the
sensitivity curve. If the source brightness is IN,(T'), and
the night vision (scotopic) sensitivity curve is S, then the
total number of detected photons will be

N,(2360 K) = [ IN,(2360 K) S, d . (10)

A similar equation can be constructed to calculate
N,4(2360 K), which would be the number of photons regis-
tered by a detector with a day vision (photopic) sensitivity
curve. In equation (2), the quoted intensities are as mea-
sured by a photometer with a day vision curve, so I is
proportional to Ny(2360 K). However, what we really
want in this equation is an intensity that relates to how
many photons are detected by the eye. The need for such
a correction is apparent if we consider the extreme case
where the experimental light source is, say, very red so
that the light source will have to be made brighter so that
the observer can detect the source, despite the photome-
ter detecting many photons. The correction factor to
convert I to a quantity proportional to the number of
photons detected by the observer is

F, = N,(2360 K)/N,(2360 K) iflog(B) <3.17 ,  (11)
F,=1.0 iflog(B) > 3.17 .

The numerical value of F, will depend on the normaliza-
tion factors of the sensitivity curves.

Another similar correction factor is needed for night
vision because the reported magnitudes of stars are in the
V magnitude system which has a similar spectral response
as the day vision sensitivity curve. The need for such a
correction is apparent if we consider the case of two stars
with equal V magnitude but different color. An observer
using day vision would pronounce the two stars to be of
equal brightness, whereas if night vision were being used
the redder of the two stars would appear fainter. The
necessary correction factor for a star with a color tempera-
ture of T is

Fu = Nd(T)/Nn(T>
F,=1.0

iflog(B) < 3.17 , (12)
iflog(B) > 3.17 .
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The two correction factors F, and F, can be combined into
one color-correction factor which I will call F,. This com-
bination has the advantage that the normalization con-
stants cancel out. I have evaluated the necessary integrals
by numerical integration and have related the color tem-
perature to the color index (that is, the (B —V)) of the star
in question. The value of F, is adequately represented by
the equation

—2.5log(F,) =1 — (B—V)2
—2.5log(F,) = 0

iflog(B) <3.17 ,  (13)
iflog(B) > 3.17 .

This color correction must be applied to both the star and
sky brightness.

One final correction may be needed if the observer has
high or low sensitivity for the detection of point sources
compared to the average observer. Let this correction
factor be F,, which will be less than unity for an observer
of high acuity.

Now these corrections can be applied to equation (2).
The value of the star brightness (I *) will be related to the
star brightness as perceived by a telescopic observer as

1% =IF,F F,F,F,F,Fy.F,F, . (14)

The V brightness of the sky (B,) will be related to the
background brightness as viewed by a telescopic observer
(B)as

B,=BF,F,F,F,Fs.F,F, . (15)

From this point on I will make the assumption that the sky
brightness is sufficiently dark that night vision is in-
volved. This assumption is valid for all observations to be
discussed below. For cases where this assumption is not
valid (such as observations of the crescent moon in
twilight), the application of the above equations is easy.
The brightness of the star must be related to the V
magnitude system. The data in Allen (1973) yield

m= —16.57 — 2.5 log(I *) , (16)

where m is the V magnitude.

The only remaining task is to evaluate B,. This can be
achieved by either of two methods: The first method is to
estimate the sky brightness based on experience of local
conditions or on actual measurements. Experience can be
gained by tabulations of data such as in Koomen et al.
(1952), Walker (1970, 1973), Garstang (1989), and Pila-
chowski et al. (1989). Typically, the best sites in the world
have sky brightnesses of 21.8 magnitudes per square arc
second in the V while more normal sites may have a
brightness of 21.0 magnitudes per square arc second. The
relation between the V sky brightness in magnitudes per
square arc second (B!) and millimicroLamberts (B,, as
used in eq. (2)) is given by equation (27) of Garstang (1989)
to be

B, = 34.08 exp(20.7233 — 0.92104 B)) .  (17)

So, a typical site might have a sky brightness of 136 mpL
and the best skies in the world might have 65 mpL. For
many practical cases the value of B, does not need to be
known with any great accuracy since the KB term in
equation (2) will become insignificant with magnification.

The second method for evaluating B; uses an observa-
tion of the faintest star at zenith visible to the unaided
eye. For such an observation, F, =1, F,=1,F,=1,F, =
1,F.=1,Fsc=1,F,=1,and F, = 0.5 on average for an
ensemble of naked-eye stars. So, for this observation,
equations (2), (3), and (14)—(16) become

m,=8.68 —2.5log(F,) — 1.2k, — 5log(1 +0.158 B, , (18)

where m, is the magnitude of the faintest star near the
zenith that is visible to the unaided eye. Here there is a
basic dilemma that, to use m, to evaluate B, the ob-
server’s acuity must be known. In most cases it is reason-
able to set F, to unity. For the collection of observations
reported in the next section, the average F, value will
certainly be near unity, even though some observers have
much greater or lesser acuity than average. To a large
degree the variations in acuity will be accounted for with
the second method, since a keen-eyed observer will see
faint stars at zenith and the deduced sky brightness will be
dimmer by the right amount to compensate for the error
in F,. For a typical observer (F, = 1) and for a typical sky
(B, = 136 mp.L and k, = 0.3), the zenith limiting magni-
tude is then 6.05, in excellent agreement with common
lore. Russel (1917), Green (1985), and this paper (see
Section 4) report on observations with m, as faint as 8.9.
This would imply impossibly dark skies if F, were unity;
however, it is known that the observers had much greater
than average acuity. If the sky brightness was 65 mpL,
then the sensitivity would be as good as F, equaling 0.12.

The sky brightness at the zenith is the dimmest part of
the night sky. The typical variation with zenith distance
can be quantified as

B(Z) = B,Z = 0) (1 + Z%2) (19)

over the relevant range of Z in radians (cf. Pilachowski et
al. (1989) or Garstang (1989)). This correction should be
applied when evaluating the sky brightness from zenith
limiting magnitudes.

The long set of equations leading to a prediction of the
visual limiting magnitude of a telescope is best imple-
mented as a computer program. Such a program is pre-
sented in Schaefer (1989b). Figure 1 illustrates the pre-
dictions for a variety of standard conditions.

3. Observations

Any theory should be tested against observations. I
have located 53 observations in the literature (Kelly 1953;
Rosebrugh 1950; Kolman et al. 1976; Bowen 1947; Green
1985). This has been supplemented by eight observations
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from my own observing logs and nine observations con-
tributed by J. Bergeron and K. Krisciunas. I have also
published a questionnaire (Schaefer 1989a) in Sky and
Telescope requesting observations. I received 250 indi-
vidual observations. Six of these reports were rejected
because the observer gave grossly inconsistent data or
specifically stated that his eyes were adapted to bright
lights. Hence, I have 314 observations to test my theoreti-
cal model.

These observations are tabulated in Table 1 where they
are ordered first by aperture and then by magnification.
The first column gives a running number for use in identi-
fying a specific observation. The second column gives the
last name of the observer while the next column gives the
observer’s age in years. The fourth column indicates the
type of telescope, with “bino” being a pair of binoculars,
“r” being a refractor, “n” being a Newtonian reflector, “s¢”
being a Schmidt-Cassegrain system, and “mak” being a
Maksutov system. The fifth through seventh columns
give the telescope aperture in inches, the f-ratio, and the
magnification, respectively. The eighth column gives the
experience of the observer as described below. The ninth
column lists the magnitude of the faintest star near the
zenith that the observer could see with the unaided eye.
The next column gives the source of the magnitude se-
quence used, with “S” being Schaefer (1989a), “A” being
an AAVSO chart, “E” being Everhart (984), and “O” being
some other sequence. The eleventh and twelfth columns
list the transmission of the telescope and the light loss in
the atmosphere as discussed below. The thirteenth
column gives the zenith distance of the star in degrees.
The fourteenth column lists the magnitude of the “faintest
star seen for sure”, which would correspond roughly to a
90% probability of detection. The next column lists the
magnitude of the “faintest star suspected”, which would
correspond roughly to a 10% probability of detection. The
sixteenth column lists the theoretical prediction of the
faintest limiting magnitude as derived in Section 2 of this
paper. The last column lists the observed minus the
predicted (the average of the fourteenth and fifteenth
columns minus the sixteenth column).

The observers in the Sky and Telescope questionnaire
were asked to evaluate their experience on a scale from 1
to 9 with 9 being very experienced. Unfortunately, the
scale was ill-defined and the answers had many anoma-
lies. To overcome this lack of realistic data I telephoned
many observers and asked a series of five questions de-
signed to evaluate their experience. This and other infor-
mation available to me was used to evaluate observer
experience as shown in the eighth column of Table 1.

The transmission of the telescope was estimated with
the following assumptions: The light loss is 1% at each
coated air/glass interface. The light loss is 4% at each

-uncoated air/glass interface. All eyepieces are coated and

17 L L L L L L L " I L L L L |
16 400X

15 +
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13 - 100X (mZ=4)
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{1 /30X s
10 T T T T
0 5 10 15 20
TELESCOPE DIAMETER (inches)

LIMITING MAGNITUDE

FI1G. 1-Theoretical telescopic limiting magnitude. This graph plots the
theoretical limiting magnitude as derived in Section 2 as a function of the
telescope aperture and magnification. In general, as either the telescope
aperture or the magnification is increased, a visual observer will see
fainter stars. The plotted curves are for m, = 6, A = 30, a telescope
throughput 0f 80%, and an atmospheric throughput of 70%. Also plotted
is a curve for 100 power with an m, = 4.

all pairs of glasses are not coated. Both star diagonals and
pairs of glasses have two air/glass interfaces. Most eye-
pieces have four air/glass interfaces, although the erfle
type has six interfaces and the Nagler type I has eight
interfaces. The reflectivity of an uncoated mirror is 88%.
The reflectivity of a coated mirror is 95%. The ratio of
D,/D is 15% for any telescope type with an obstructing
secondary mirror. From the preceding assumptions, the
total transmission of a clean telescope can be estimated.
The observers were asked to rate the cleanliness of their
optics on a scale from 1 to 9 (9 being freshly cleaned). 1
roughly corrected for the dirtiness of the optics by sub-
tracting 1% off the transmission for every unit below 9 in
the estimated cleanliness.

The total light loss by extinction in the atmosphere
requires knowledge of both Z and k,. Z was calculated
from the observer’s latitude, date, and time of observa-
tion. The extinction coefficient was estimated from the
observer’s latitude, relative humidity, time of year, time
of day, altitude, and proximity to major pollution sources.
The details of similar calculations are presented for one
location in Schaefer (1990). In addition, the extinction
coefficient was also estimated on the basis of monthly data
for 231 sites which I have collected from the literature.
These sites are distributed geographically such that all
observers were within 200 km of a site for which I have
monthly extinction data. The adopted extinction coeffi-
cient is the average of my theoretical and empirical esti-
mates.

Blackwell (1946) demonstrated that the limiting magni-
tude is actually a statistical concept. Since the photon
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arrival and detection is randomly distributed in time,
some time intervals will have sufficient photons for detec-
tion while other time intervals will not. Blackwell shows
that the difference from 10% to 50% and from 50% to 90%
detection probability is roughly half a magnitude. In the
laboratory it is straightforward to measure the probability
of detection. However, at the telescope, it is not well-de-
fined what probability level is assigned to each detection
by the various observers. I assume that the “faintest star
seen for sure” corresponds to a 90% confidence level,
while the “faintest star suspected” corresponds to a 10%
probability. The experimental results (eq. (2)) are based
on a 50% probability of detection. So the error of the
model should be the average of the 10% and 90% observa-
tional limits minus the model prediction (see the last
column of Table 1). Further trouble arises since different
observers may examine the field for different lengths of
time. So, for example, an observer looking for five sec-
onds may glimpse a star once and hence not conclude that
the star is visible, but the same observer looking for 15
seconds will glimpse the star three times and may record a
confident detection. Blackwell shows that the difference
between a 6-second observation and a 60-second observa-
tion corresponds to roughly half a magnitude.

The error in the model prediction is given in the last
column for each observation. I have tested to see if the
error is correlated with any of the input values and have
found no significant correlation. In addition, I have
checked for correlations with f-ratio, sex, magnitude se-
quence, latitude, and temperature with null results. Only
the observer’s experience, e, has a significant correlation
with the error in the model prediction. It is in the sense
that an experienced observer will see fainter than an
inexperienced observer. This can be quantified as

m(e)=m+0.16 (e— 6) , (20)

where m is as given from equation (16). The cause of this
correction may be due to the experienced observer’s
better observing methods, such as knowing the most
sensitive position for averted vision and better care to
dark adapt. Another cause may be that an experienced
observer may be more confident of a faint detection. For
example, a star which is visible only 10% of the time may
be a marginal detection for an average observer, but an
experienced observer may know that this is a confident
detection.

Various unmodeled conditions may affect the observed

value of m. For example, hyperventilation is a well-
known trick gaining several tenths of a magnitude,

m(hyperventilation) = m + 0.3 . 21)

This gain in sensitivity is presumably related to extra
oxygen in the bloodstream. Other unmodeled effects may
well exist.

A histogram of the model errors is presented in Figure
2. The histogram is roughly a bell-shaped curve with a
HWHM of 0.75 magnitude and a center of —0.24 magni-
tude. The large width of the histogram is distressing
because it shows that the limit of accuracy for my model is
much larger than I would have hoped or expected. The
scatter cannot be caused by incorrect functional depen-
dencies on the input parameters, since there is no correla-
tion between any parameters and the model errors. One
possible source of scatter is observational error, when the
observer quotes values not appropriate for the observa-
tion. My primary suspicion along these lines is that the
observer did not evaluate m, with the same care that m
was evaluated. Another difficulty is that the confidence
levels for m were not well-defined, so that conservative
observers might have a bright limiting magnitude. Fi-
nally, when equation (20) is included in the model, the
HWHM is reduced to 0.5 magnitude (see Fig. 3).

The model presented in Section 2 can be tested with
the observations presented in Table 1. The lack of any
significant correlations with any of the input parameters
demonstrates that the model does not have any biases in
the functional form for each parameter. The near-zero
center of the histogram in Figure 2 demonstrates that the
model does not have any significant normalization biases.
Hence, I conclude that the model from Section 2 is an
accurate and unbiased representation of the observations.
There are unmodeled effects, such as hyperventilation
and experience, for which empirical corrections can be
applied. The cause of the 0.5-magnitude uncertainty in
the model prediction (after the correction for experience)
is not known.

Observed minus Predicted
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FiG. 2-Histogram of model errors. This shows the distribution of
model errors; that is, the observed minus predicted limiting magnitude,
for all 314 observations. A positive value for the error means that the
observer saw fainter than I would have predicted. The errors are dis-
tributed roughly as a Gaussian-shaped curve with a HWHM of 0.75
magnitude and a center of —0.24 magnitude.
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Observed minus Predicted
(corrected for experience)
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FIG. 3-Histogram of model errors after correction for experience. The
model errors are correlated with the observer’s experience, so that a
very experienced observer may see over a magnitude fainter than a
beginner. Equation (20) is an empirical representation of this correla-
tion. When the experience effect is removed from the data, the size of
the scatter in the errors is substantially reduced. The histogram of the
errors after correction for experience is Gaussian shaped witha HWHM
of 0.5 magnitude and a center of 0.0 magnitude.

4. Visual Recovery of Halley’s Comet

O’Meara (1985) claims to have visually recovered Hal-
ley’s comet with a 24" telescope when it was essentially a
stellar image of visual magnitude 19.6. Some pundits (see
Green 1985) have expressed scepticism that such a faint
limiting magnitude would be possible. However, the
internal evidence of O'Meara’s claim is by itself convinc-
ing that not only was Halley’s comet seen but that even
fainter normal stars were seen. Specifically, he was able to
detect unknown stars of roughly 20th magnitude that
were later verified from the Palomar Sky Survey. In
addition, another observer saw a 19.1-magnitude star
with the same instrumentation so that an observer of
O’Meara’s exceptional acuity (see below) could plausibly
have seen much fainter. Finally, he was able to correctly
identify the comet, detect its motion, and estimate its
correct magnitude despite the position being unknown.

O’Meara’s observation had the advantage of many spe-
cial conditions that improved his limiting magnitude.
First, he observed from the top of Mauna Kea, which is
arguably the best observing site in the world. Second, the
telescope optics had been recently cleaned. Third, he
used a high magnification of 549X which is near the
theoretical optimum value. Fourth, he was breathing
bottled pure oxygen. Fifth, O’Meara has a great visual
acuity. '

The great sensitivity of O’'Meara’s eyes is a tale that I
have heard several times around the country at amateur
gatherings. The high resolution of his eyes has been

experimentally verified by Green (1985). On the night of
his recovery of Halley’s comet, O’Meara observed an
unknown field with his unaided eye. Later comparison
with the SAO Catalog showed that he consistently saw
stars of magnitude 8.4. In 1978 I informally compared my
limiting magnitude against O’Meara’s (using the Harvard
9" Clark refractor and AAVSO charts) and found him
going two magnitudes fainter than I. In 1988 I performed
a controlled experiment where I randomly chose a star
field and had him sketch all stars visible within it. Later I
found that all stars in his sketch corresponded to real stars
and that he had seen a star of magnitude 8.2.

We can estimate the F, value for O'Meara on the night
of the Halley observation. The night-sky conditions at the
summit were likely to have been close to Bg = 65 mu.L
and k, = 0.11 magnitude per air mass (Krisciunas et al.
1987 and private communication). For m, equaling 8.4, F
must equal 0.22 by equation (18).

The other correction factors can be estimated as fol-
lows: F, = 1.41, F, = 1.13, F, = 1.32, F, = 1, F, =
0.00012, F, = 1, Fgc = 1, F,, = 301000, and F, = 0.5. For
a sky brightness of 65 mu.L the background brightness as
perceived through the telescope will be 1.9 muL. From
equation (2) the faintest point-source brightness that can
be detected is then 2.1 x 107" footcandles. When cor-
rected to astronomical magnitudes (eqs. (14) and (16)),
this corresponds to a V magnitude of 19.02.

The theoretical conclusion that O’Meara could have
seen a 19.02-magnitude star has not taken into account his
experience as an observer and his breathing of pure oxy-
gen gas. From equations (20) and (21) a further improve-
ment of roughly 0.8 magnitude is expected. So, my final
prediction of the limiting magnitude of O’Meara’s obser-
vation is roughly 19.8. And he might have gotten occa-
sional glimpses of stars even half a magnitude fainter.

In summary, the internal details of O’Meara’s observa-
tions are sufficient to prove his claim for having recovered
Halley’s comet, and the theory of telescopic limiting mag-
nitudes shows that an observer of his acuity could easily
have seen fainter than needed.
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