ASTRONOMICAL OBSERVATIONS IN 1908.

Made by Torvald Köhl, at Odder, Denmark.
Variable Stars.
(The instrument used is a 3 -inch Steinheil, power 42.)

S Ursa Majoris. ${ }^{1}$

Jan. 2: $\quad \mathrm{S}\left\{\begin{array}{l}\geq \mathrm{e} . \\ <\mathrm{d} .\end{array}\right.$
4: id.
5: <d.
ıo: i step $<\mathrm{d}$.
13: = d.
14: id.
18: id.
20: id.
21: id.
28: id.
29: id.
3I: id.
Feb. 2: I step $>\mathrm{d}$.
6: 2 steps $>\mathrm{d}$.
8: id.
10: id.
16: id.
19: $\left\{\begin{array}{l}\text { in the midst } \\ \text { between } d \text { and } c .\end{array}\right.$
23: $21 / 2$ steps $>$ d.
29: $\{$ in the midst between d and e.
Mar. 23: I step $>$ e.
24: = e.
25: I step $<\mathrm{e}$.
26: id.
27: id.
28: 2 steps $<$ e.
29: id.
30: 3 steps $<$ e.
Apr. I: 4 steps $<\mathrm{e}$.
2: 3 steps $>$ f.
3: id.
6: id.
7: id.

Apr. 8: id.
19: I step $>\mathrm{f}$.
May $\mathrm{I}:=\mathrm{f}$.
II: =g.
I8: $\left\{\begin{array}{l}<\mathrm{g} . \\ >\mathrm{h} .\end{array}\right.$
20: id.
Aug. 14: I step $>$ d.
17: 2 steps $>\mathrm{d}$.
23: id.
24: id.
27: id.
29: I step $>$ d.
3I: $21 / 2$ steps $>d$.
Sept. 3: 3 steps $>\mathrm{d}$.
9: id.
16: 5 steps $>\mathrm{d}$.
19: 6 steps $<$ c.
22: 5 steps $<\mathrm{c}$.
24: id.
25: id.
30: 5 steps $>\mathrm{d}$.
Oct. 3: id.
5: id.
io: 4 steps $>\mathrm{d}$.
18: I step $<\mathrm{d}$.
22: 2 steps $>\mathrm{d}$.
Nov. $\mathrm{I}:=\mathrm{e}$.
6: id.
8: id.
16: $\left\{\begin{array}{l}\text { in the midst } \\ \text { between }\end{array}\right.$
26: 2 steps $>$ f.
$29:\left\{\begin{array}{l}<\mathrm{f} . \\ >\mathrm{g} .\end{array}\right.$

[^0]
T Ursa Majoris. ${ }^{1}$

Jan. 2: T 5 steps $>\mathrm{a}$.
4: 4 steps $>$ a.
5: id.
10: 2 steps $>$ a.
13: I step $>\mathrm{a}$.
14: id.
18: 2 steps $>$ a.
20: $11 / 2$ step $>\mathrm{a}$.
21: 2 steps $>$ a.
28: I step $<$ a.
29: id.
3I: id.
Feb. 2: 2 steps <a.
$6:\{<b$.
8: I step $<b$.
9: id.
10: 2 steps $>\mathrm{c}$.
16: id.
19: $\left\{\begin{array}{l}\text { in the midst } \\ \text { between } \mathrm{c} \text { and } \mathrm{d} .\end{array}\right.$
23: 1 I $/ 2$ step $>d$.
$29:\left\{\begin{array}{l}\text { in the midst } \\ \text { between } d \text { and } .\end{array}\right.$
Mar. I8: <e.
23: $=\mathrm{f}$.
24: $\left\{\begin{array}{l}<\mathrm{f} . \\ >\mathrm{g} .\end{array}\right.$
25: id.
26: I step $>$ g.
27: = g .
28: id.
29: I step $<\mathrm{g}$.
30: id.
Apr. I: very faint.
2: id.
3: id.
6: id.
7: id.
The comparison stars f and g are found to be a little variable. August 24th, I have noted: g i step $>$ f. On November 29th: $\mathrm{f}=\mathrm{g}$. Usually I note: $\mathrm{f}>\mathrm{g}$, the difference being only i step. B. D. has $\mathrm{f}=\mathrm{g}=9^{\mathrm{m}} .5$; Harvard has $\mathrm{f}=1 \mathrm{o}^{\mathrm{m}} .75, \mathrm{~g}=1 \mathrm{o}^{\mathrm{m}} .40$.

[^1]W Pegasi. ${ }^{1}$

SS Cygni. ${ }^{2}$

Jan. 1; $6^{\mathrm{n}}: ~ \mathrm{SS}=\mathrm{g}$.
2, $9^{\text {h }}:<\mathrm{g}$.
4, $6^{\mathrm{h}}:=\mathrm{h}$.
5, 7^{h} : very faint.
14, $6^{\text {h }}$: invisible.
18, $6^{\text {h }}$: id.
$20,6^{\mathrm{h}}$: id.
2I, 7^{h} : id.
29, 7^{h} : I step $<\mathrm{b}$.
$3 \mathrm{I}, 7^{\mathrm{h}}:=\mathrm{b}$.
Feb. 2, $7^{\mathrm{h}}:\left\{\begin{array}{l}<\mathrm{b} . \\ 2 \text { steps }>c .\end{array}\right.$
6, $6^{\mathrm{h}}: 2$ steps $>\mathrm{d}$.
9, $6^{\mathrm{h}}:=\mathrm{e}$.
I6, 7^{h} : invisible.
19, 7^{h} : very faint.
Apr. 20, 12^{h} : invisible.
2I, $10^{\text {h }}$: id.
$26, \mathrm{II}^{\mathrm{h}}$: id.
May $\mathrm{I}, \mathrm{II}^{\mathrm{h}}:$. I step $<\mathrm{e}$.
9, Io $^{\text {h }}$: I step $<$ c.

May II, II $^{\text {h }}:\left\{\begin{array}{l}3 \text { steps }>c . \\ \text { I step }<b .\end{array}\right.$
15, $1 \mathrm{o}^{\mathrm{h}}:$ I step $>\mathrm{c}$.
18, I $^{\mathrm{h}}$: I step $<\mathrm{c}$.
$20,12^{\mathrm{h}}:=\mathrm{d}$.
Aug. 14, Io $^{\text {h }}:\left\{\begin{array}{l}>\mathrm{e} . \\ <\mathrm{d} .\end{array}\right.$
I5, $1 \mathrm{o}^{\mathrm{h}}:\left\{\begin{array}{l}\text { in the midst } \\ \text { bet. } \mathrm{d} \text { and e. }\end{array}\right.$
17, $1 I^{\text {h }}$: <e.
18, $1 \mathrm{o}^{\mathrm{h}}$: 4 steps $<$ e.
23, $10^{\mathrm{h}}:=\mathrm{f}$.
24, Io $^{\text {h }}:\left\{\begin{array}{l}>\mathrm{f} . \\ <\mathrm{e} .\end{array}\right.$
27, $1 \mathrm{o}^{\mathrm{h}}$: I step $>\mathrm{f}$.
29, Io $^{\text {h }}:\left\{\begin{array}{l}>\mathrm{f} . \\ <\mathrm{e} .\end{array}\right.$
31, $10^{\text {h }}:=$ e.
Sept. 3, $\mathrm{IO}^{\mathrm{b}}:=\mathrm{e}$.
4, $9^{\mathrm{h}}:\left\{\begin{array}{l}>\mathrm{f} . \\ <\mathrm{e} .\end{array}\right.$

[^2]Sept. 9, $9^{\text {h }}:=\mathrm{d}$.
II, $8^{\mathrm{h}}: 2$ steps $<\mathrm{c}$.
12, $8^{\mathrm{h}}: \mathrm{I}^{\mathrm{I} / 2}$ step $<\mathrm{c}$.
16, $9^{\mathrm{h}}: 2$ steps $>\mathrm{c}$.
19, $9^{\mathrm{h}}:\left\{\begin{array}{l}\text { in the midst }\end{array}\right.$
20, $8^{\text {b }}$: b(3)SS(2) c
$23,8^{\mathrm{h}}:\left\{\begin{array}{l}<\mathrm{c} . \\ >\mathrm{d} .\end{array}\right.$
24, $10^{\mathrm{h}}:=\mathrm{d}$.
25, $9^{\text {h }}: 2$ steps $<d$.
30, $12^{\mathrm{h}}: 4$ steps $<\mathrm{d}$.
Oct. $\mathrm{I}, \mathrm{IO}^{\mathrm{h}}$: id.
3, $9^{\mathrm{h}}:=\mathrm{e}$.

Oct. 5, $8^{\mathrm{h}}:\left\{\begin{array}{l}<\mathrm{d}^{\prime} . \\ >\mathrm{e} .\end{array}\right.$
IR, $9^{\mathrm{h}}: \mathrm{d}^{\prime}(3) \mathrm{SS}(2) \mathrm{e}$
Nov. I, $8^{\mathrm{h}}:\left\{\begin{array}{l}<\mathrm{d}^{\prime} . \\ >\mathrm{e} .\end{array}\right.$
4, $8^{\mathrm{h}}:=\mathrm{e}$.
6, $9^{\mathrm{h}}:=\mathrm{e}(?)$.
8, $7^{\mathrm{h}}: \mathrm{d}^{\prime}(3) \mathrm{SS}(2) \mathrm{e}$
14, $7^{\mathrm{h}}: 2$ steps $>$ c.
16, $8^{\mathrm{b}}:=\mathrm{d}$.
26, $6^{\mathrm{h}}:=$.
29, $6^{\mathrm{h}}:$ I step $>$ f.

Z Cygni. ${ }^{1}$
Jan. I: Z 2 steps $>$ a.
2: I step $>$ a.
4: < a.
$5:\left\{\begin{array}{l}<\mathrm{a} . \\ >\mathrm{b} .\end{array}\right.$
14: I step $>$ a.
18: 2 steps $>$ a.
20: I step $>$ a.
2I: id.
28: =a.
29: 2 steps $>$ a.
3I: I step $>$ a.
Feb.
2: =a.
6: = b.
16: 2 steps $>b(?)$.
19: $=\mathrm{b}$.
Mar. 25: very faint.
Apr. I: id.
20: invisible.
2I: id.
26: very faint.
May I: faint, <e.
9: invisible.
I5: id.
I8: id.
20: id.
Aug. 14: id.
18: id.
23: id.
Sept. 3: =e.
$9:\left\{\begin{array}{l}>\mathrm{e} . \\ <\mathrm{d} .\end{array}\right.$
II $:\left\{\begin{array}{l}>\mathrm{d} . \\ <\mathrm{c} .\end{array}\right.$
16: id.
19: = d .
$22:\left\{\begin{array}{l}>\mathrm{c} . \\ <\mathrm{b} .\end{array}\right.$
24: id.
30: $=\mathrm{b}$.
Oct. 3: $=\mathrm{b}^{\prime}$.
5: id.
$\begin{aligned} & \text { If: }\left\{\begin{array}{l}<\mathrm{a} . \\ >\mathrm{b}^{\prime} .\end{array}\right. \\ & \text { Nov. } \mathrm{I}:=\mathrm{b}^{\prime} . \\ & 4:=\mathrm{b} . \\ & 6: \text { I step }>\mathrm{b} . \\ & \text { 8: } \mathrm{I} / 2 \text { step }<\mathrm{b} . \\ & \text { In: } \mathrm{I} \text { step }<\mathrm{b} . \\ & \text { 16: }:\{\mathrm{b} . \\ &>\mathrm{c} .\end{aligned}$

$$
\text { Y Tauri (B. D. } \left.+20^{\circ} \mathrm{ro83}\right) .
$$

A number of forty comparisons have been made upon this irregular variable star, which during the whole year was either

[^3]equal to or some steps brighter than the star A = B. D. $+20^{\circ}$ 1095 ($7^{\mathrm{m}} \cdot 4$). In February, March, and April the star Y had reached its maximum ($7^{\mathrm{m}} . \mathrm{I}$), but in January and November it had decreased a few steps.

U Herculis.

Apr. 20: U invisible(?)	Sept. II : $\left\{\begin{array}{l}<\mathrm{c} . \\ >\mathrm{d} .\end{array}\right.$
May I: id.	12: $=$ c.
18: I step $>\mathrm{h}$.	16. $\{<\mathrm{c}$.
20: id.	16: $\{>\mathrm{d}$.
Aug. 15: $=\mathrm{a}$.	19: $\mathrm{C}(2) \mathrm{U}(3) \mathrm{d}$.
17: $\left\{\begin{array}{l}>c \\ <a\end{array}\right\} b>a$.	22: id.
17: $\{<$ a $\}$ b>a.	23: $\{$ in the midst
18: 2 steps $<$ a.	$23 \cdot$? between c and d .
23: id.	24: id.
24: id.	25: $\mathrm{C}(3) \mathrm{U}(2) \mathrm{d}$.
27: id.	30: id.
29: id.	Oct. 3: $=\mathrm{d}$.
3I: $=\mathrm{c}$.	5: 2 steps $>\mathrm{d}$.
Sept. 3: id.	10: 1 step $>$ d.
4: I step $>\mathrm{c}$.	18: $=$ e.
9: $1 / 2$ step $>\mathrm{c}$.	Nov. 29: 2 steṕs < f.

I have used the sketch in the Publications A. S. P., No. ro6, 18, 52, drawn by Miss Rose O'Halloran, but have added the two small neighboring stars g at a and h at f, both northward.

> A Suspected Variable Star. I 38.1908 Herculis.

During my observations upon U Herculis my attention was directed to the two comparison-stars,

$$
\begin{array}{ll}
\mathrm{a}=\text { B. D. }+19^{\circ} 3096 & 7^{\mathrm{m}} . \mathrm{o} . \\
\mathrm{b}=\text { B. D. }+19^{\circ} & 3089 \\
7^{\mathrm{m}} .8 .
\end{array}
$$

The star b is here eight steps fainter than a. On August 5, 1907, I found $\mathrm{b}>\mathrm{a}$, and so I have seen it until October, 1908. On October 5th, roth, and 18th, I have noted: b 2-3 steps $<$ a. But when the ocular was screwed out the reddish star a was "diminished," and then seemed to be equal to or even dimmer than b. In A. G. Berlin A 5856 is

$$
\begin{aligned}
& \mathrm{a}=7^{\mathrm{m}} \cdot 2 \\
& \mathrm{~b}=7^{\mathrm{m}} \cdot 7
\end{aligned}
$$

and in Harvard Annals, 37, 170 and 183, we find

$$
\begin{aligned}
& \mathrm{a}=7^{\mathrm{m}} \cdot 36 \\
& \mathrm{~b}=7^{\mathrm{m}} \cdot 39
\end{aligned}
$$

Whether the variable is a or b is still difficult to decide. According to its red color, it might perhaps be the star a, though a look at the differences might point out b as the variable one. It will be necessary to compare b with a and c. (Vide Astronomische Nachrichten, No. 4274, 179, 29.)

Meteors.

Fireballs have been observed from stations in Denmark at the following dates: January 3d, 21st; March 2d, 16th, 25th; April 8th, I5th; May Ist, IIth, 29th; June 25th, 26th ; July 2d, 20th, 21st; August 6th, 20th; October 7th, 24th; November 8th, 2ist ; December 3d, 7th.

Shooting-Stars.

A little swarm of shooting-stars, during five minutes more than thirty meteors, was observed on January $2 \mathrm{~d}, 8^{\mathrm{h}} 10^{\mathrm{m}}-8^{\mathrm{h}} 20^{\mathrm{m}}$, at Hjörring, Denmark, radiant $=300^{\circ}+61^{\circ}$; and on January $3 \mathrm{~d}, 1 \mathrm{I}^{\mathrm{h}} 23^{\mathrm{m}}-\mathrm{I} 2^{\mathrm{h}} 42^{\mathrm{m}}$, seventeen large shooting-stars were mapped at Paderborn, Germany. (Vide Astronomische Rundschau, No. 98, and Astronomische Nachrichten, No. 4263, 178, 255.) On June 25th, $10^{\mathrm{h}} 30^{\mathrm{m}}$, an observer at Odense, Denmark, mapped a most interesting twin-meteor, two shooting-stars with parallel paths, with a distance of $1 / 2^{\circ}$, one on each side of the pretty star Arcturus.

The weather was, in the year 1908, quite unfavorable for the planned observations on shooting-stars in August, and after November 29th the sky was overcast with clouds every night here at Odder.

The above-mentioned estimations of variable stars have often been controlled by my young assistant, Jörgen Fog.

[^0]: ${ }^{1}$ Vide the sketch in the Publications A. S. P., No. 73, 12, 56.

[^1]: ${ }^{1}$ Vide the sketch in the Publications $A . S . P .$, No. 22, 4, 63.

[^2]: ${ }^{1}$ Vide the sketch in the Publications A. S. P., No. 60, 10, 23.
 2 Vide the sketch in the Publications A. S. P., No. 1оо, 17, 18.

[^3]: ${ }^{1}$ Vide the sketch in the Publications A. S. P., No. 100, 17, 16.

