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ON ASYMPTOTIC "EIGENFUNCTIONS" OF THE CAUCHY PROBLEM
FOR A NONLINEAR PARABOLIC EQUATION

UDC 517.956

V. A. GALAKTIONOV, S. P. KURDYUMOV AND A. A. SAMARSKll

ABSTRACT. The asymptotic (/ —» +oo) behavior of solutions of the Cauchy problem is
studied for the semilinear parabolic equation

», = 4 a - u ' , t > 0, χ e RN; u(0, x) = uo(x) > 0, χ e RN,

where β = const > 1 and uo(x) —» 0 as \x\ —> +oo. The existence is established of an
infinite collection (a continuum) of distinct self-similar solutions of the form uA(t,x) =
(T + ί)~1Λβ~1)θΑ(ξ), ξ = \x\/(T + r ) 1 / 2 , where the function ΘΑ > 0 satisfies an ordinary
differential equation. Conditions for the asymptotic stability of these solutions are estab-
lished. It is shown that for /? > 1 + 2/N there exist solutions of the problem whose
behavior as / —> + oc is described by approximate self-similar solutions (ap.s.-s.s.'s) ua(t, x)
which in the case β > 1 + 2/N coincide with a family of self-similar solutions of the heat
equation («„), = A« a, while ίοτβ = 1 + 2/N and u 0 e Ll(RN) the ap.s.-s.s. has the form

ua = [(T+ t)\n(T+ t)YN/1cNzxV(-\x\2/A{T+ r ) ) ,

where cN = {N/2)N/2(l + 2/N)Nl/\

Figures: 2. Bibliography: 78 titles.

§1. Introduction

1. Formulation of the problem. In this paper we study the asymptotic behavior (as

/ -* + oo) of solutions of the Cauchy problem for a semilinear parabolic equation which

describes the diffusion of heat in a medium with a nonlinear volumetric energy sink

B ( w ) = ut- Au + up = 0 , t>0,x^RN, (1.1)

u(0,x) = uo(x) > 0, x<ERN; uo<a C(RN),supuo< oc. (1.2)

Here / > 0 and χ e RN are, respectively, the time and space coordinates, Δ = Σ,ι^/dxf

is the Laplace operator, and β > 1 is a fixed constant. Regarding the initial function w0 in

(1.2) it is assumed that uo(x) -» 0 as \x\ -» + oo. A bounded solution of problem (1.1),

(1.2) exists, is unique, and is a classical solution in any region of the form [τ, + oo) X RN,

τ > 0 (see, for example, [1]). Moreover, it is not hard to show that for β > 1 the solution

u = u(t, x) is strictly positive in R\x RN if w0 # 0.
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Before proceeding to an exposition of the main results, we shall say a few words about

the physical meaning ascribed to the present investigation. Here we limit ourselves to a

brief explanation of the concept of an "eigenfunction" of a nonlinear dissipative medium;

for more details see the survey given below (§1.3) and the literature cited there.

In an unbounded heat-conducting medium with nonlinear absorption in which the

diffusion of heat is described by equation (1.1) an initial temperature perturbation

w(0, x) = uo(x) > 0, u0 ψ 0, of rather arbitrary form is introduced from without. What is

the subsequent fate of this perturbation? It turns out that, after the elapse of a certain

time, as a rule some stable spatially inhomogeneous formation develops in the medium

which is a time-dependent thermal structure with its own laws of evolution for large t. To

each of these laws there corresponds a set of attraction W in the space of initial functions,

and the "laws" of evolution for large times do not depend on specific features of the

initial perturbation (i.e., they are the same for any w0 e W). In other words, using the

terminology of [2] and [3], it may be said that a given nonlinear medium has its own

collection of stable "eigenfunctions" (abbreviated e.f., and we henceforth omit the

quotation marks) which determine the asymptotic behavior of solutions of problem (1.1),

(1.2) for rather arbitrary initial perturbations «0. We emphasize that for (1.1) we consider

the Cauchy problem without boundary conditions which makes it possible to speak

precisely of an e.f. of the medium not subject to any external influence. Of course, this

formulation is also natural from the point of view of the qualitative theory of partial

differential equations (what else if not the equation itself should determine the asymptotic

behavior of solutions of the problem). However, we wish to especially mention that the

concept of an e.f. of a nonlinear medium plays an important role in the description of

complex time-dependent physical, chemical, biological, and other processes, in particular,

the process of morphogenesis in active biological media (regarding this, see [2], [4], [5], and

the brief survey given below in §1.3).

There arises the question of what is the collection of e.f. of the nonlinear medium (1.1)

in question and the set of attraction in the space of initial perturbations (1.2) correspond-

ing to each e.f. In other words, we pose the problem of the constructive description of an

attractor of the nonlinear parabolic evolution equation (1.1).

2. The main results. A considerable part of the paper is devoted to the investigation of

one family of special solutions of equation (1.1)—radially symmetric self-similar solutions

of the form

uA{t, x)=(T+ ()-ΙΑβ-λ)θΑ{ϊ), Ϊ = \x\/(T + t)l/\ (1.3)

where Τ > 0 is an arbitrary constant, while the function θΑ(ξ) > 0 is determined by

integration of the ordinary differential equation obtained after substitution of (1.3) into

the original equation (1.1):

( 1)-θΐ! = 0, ξ>0, (1.4)

where Δ ξ is the Laplace operator; in the radially symmetric case

It has the obvious homogeneous solution

1 Α β 1 \ ξ>0, (1.5)
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and all other solutions must satisfy the boundary conditions

^(0) = 0, 0Λ + οο) = 0. (1.6)

Because of the first of these, the function (1.3) is a solution of (1.1) everywhere in
R\X RN.

In [2] we established the existence of an infinite collection of distinct nontrivial
self-similar functions θΑ(ξ) > 0 defined for any ξ > 0. It is shown that the structure of the
family {ΘΑ} is different in the cases β > 1 + 2/N and 1 < β < 1 + 2/N, and in the final
analysis this difference is what determines the principal special features of the asymptotic
behavior of solutions of the problem for β >1 + 2/N and β e (1,1 + 2/N) (the
meaning of this conclusion is explained at the end of the paper).

In §3 we establish that each self-similar solution, generally speaking, is the "center of
attraction" of a large set of solutions of problem (1.1), (1.2) corresponding to distinct
"non-self-similar" initial distributions uo(x), i.e., the particular solutions uA(t, x) are
asymptotically stable under perturbations of the "self-similar" initial function uA(0,x)
which are not too "large" and do not take uo(x) out of the set of attraction WA. Thus, the
functions uA are the desired (self-similar) e.f. of the nonlinear medium and are elements of
an attractor of the evolution equation. Here there thus arises a situation which has already
become common in which the e.f. are suitable self-similar (invariant) solutions of the
parabolic equation which as a result pass from the class of simply individual special
solutions of the equation into a class of global attractors of a large set of rather arbitrary
solutions (see the bibliography in [6]-[8]). We mention also that the self-similar laws of
development of the process are frequently also preserved under rather "strong perturba-
tions" of the nonlinear operator of the parabolic equation in question; this makes it
possible in a number of cases to construct a complete system of so-called approximate
self-similar solutions (ap.s.-s.s.'s) of the equation with coefficients of rather arbitrary form
(see [6], [7], and [9]-[12]); however, it often happens that the "generating" self-similar
solutions lie in a family of invariant solutions of an equation which at first glance has
nothing in common with the equation considered; such "degenerate" ap.s.-s.s.'s, which
satisfy an equation of lower order than the original equation, were constructed in [9], [7],
and [10]. Nontrivial ap.s.-s.s.'s also exist for problem (1.1), (1.2) at the "critical" value of
the parameter β = 1 + 2/N and also for some initial functions u0 in the case β > 1 +
2/N.

It is shown in §3 that for β e (1,1 + 2/N) the self-similar solutions exhaust the entire
set of radially symmetric e.f.i1)

Here the structure of the set of attraction WA corresponding to the solution (1.3) with a
fixed self-similar function ΘΑ(1·) is determined by means of upper #+(£) and lower #_(£)
(0 + > θ in R\) solutions of (1.4) on the basis of which the existence of a given solution
of problem (1.4), (1.6) is proved in §3 (we note that generally the asymptotic stability of
the solutions (1.3) proved in §3 makes it possible to simultaneously establish certain
properties of solutions of problem (1.4), (1.6) which are rather difficult to obtain directly
from an analysis of the ordinary differential equation).

( l)The question of the existence of self-similar solutions (1.3) which are not radially symmetric, where
£ = x(T + t)~i//2 e RN, remains open. We mention that J e S * does not belong to the class of equations
indicated in [13], all solutions of which are symmetric relative to some point (see (1.4)).
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In the case β > 1 + 2/N classes of solutions of problem (1.1), (1.2) are distinguished

which evolve as t -> + oo according to "non-self-similar laws" different than in (1.3). For

β > 1 + 2/N the asymptotic behavior of the majority of them is described by a family of

distinct self-similar solutions of the heat equation without a sink

vt=Av, t>0,x<=RN, (1.7)

but, as already mentioned above, there also exist solutions whose asymptotic evolution is

described by nontrivial ap.s.-s.s.'s. For the case β = 1 + 2/N in §3 a family of solutions

of problem (1.1), (1.2) is distinguished whose asymptotic behavior as / -» + oo is de-

scribed by the ap.s.-s.s.

ua(t,x) = [(T+t)\n(T+t)YN/2g*U), | = \x\/(T + t)l/\ (1.8)

It differs from the self-similar solution (1.3) (for β = 1 + 2/N) by the additional

logarithmic factor. The function g*(£) is generally uniquely determined (see §3). These

results sharpen the corresponding conclusions of [14]. We note that in [14], in addition,

sufficient conditions are obtained for the asymptotic stability of the homogeneous

self-similar solution (1.3) with function (1.5) which, as we show, are also necessary.

The ap.s.-s.s. (1.8) satisfies the parabolic equation

dujdt = Aua -(N/2)ua/{T + t)ln(T + t). (1.9)

It is interesting to trace how the structure of the attractor of the original parabolic

equation (1.1) changes depending on the change of the parameter β > 1 (in the case of

radially symmetric solutions). For β e (1,1 + 2/N) the attractor consists entirely of a

one-parameter family of solutions of the type (1.3), and its dimension is hence equal to 1.

For β > 1 + 2/N, as already mentioned, the e.f. additionally include a manifold of

self-similar solutions of the heat equation (1.7) without a sink, which under particular

conditions on the initial function uo(x) is inconsequential as / —> +oo. Because of the

linearity of (1.7), the latter family is already two-dimensional. The value of the parameter

β = 1 + 2/N is thus "critical"; on passing through it, the type of the equation for one

collection of e.f. changes ((1.1) goes over into (1.7)), and their structure and also,

apparently, the dimension of the attractor also change. Here at the point β = 1 + 2/N a

new asymptotics arises—the ap.s.-s.s. (1.8) satisfying equation (1.9) which is notably

different from the original equation.

To a large extent the investigation of the asymptotic behavior of solutions of problem

(1.1), (1.2) is based on results and representations developed in [2], [3], and [15]—[17] (see

also the bibliography in [2], [4], [5], and [7]) which are devoted to the analysis of

unbounded self-similar e.f. (regimes with peaking) corresponding to the quasilinear heat

equation with a source

u, = V ( M " V M ) + up, ο Ο , χ ε ί " , (1.10)

where σ > 0 and β > 1 are constants and V(·) = gradx(·) (see also [18], where global

self-similar solutions of (1.10) for β > 1 + 2/N were considered).

REMARK. In §§2 and 3 we have tried to use as infrequently as possible the semilinear

structure of equation (1.1), i.e., the possibility of reducing problem (1.1), (1.2) to an

equivalent integral equation by inverting the operator 3/3? - Δ. Therefore, the majority

of our results carry over without major alteration to the case of the quasilinear equation

u, = Aua+l - ιιβ, t>Q,x^RN, (1.11)
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where β > σ + 1 and σ > 0 (some specific possibilities of such a generalization are

discussed in the text of §§2 and 3). The construction of upper and lower solutions of (1.1)

should be coordinated with the space-time structure of its self-similar solutions which in

this case have the form

uA(t, x) = (T+ ί)-ι/{β~1)θΑ{ϊ), ξ = \x\/(T + {)β-ΐ°

For the function ^ > 0 a degenerate ordinary differential equation is obtained which

admits compactly supported generalized solutions. Here there also occurs a "critical"

value of the parameter equal to β = σ + 1 + 2/N, and the structure of the family {ΘΑ}

and the asymptotic properties of solutions of the partial differential equation differ in an

essential manner in the cases β > σ + 1 + 2/N and β ε ( σ + 1,σ + 1 + 2/Ν) (we note

that this same "critical" value β also occurs in the case of the equation with a source (1.8)

[2], [16]; it thus characterizes some general laws of evolution of global solutions of (1.9)

and (1.8) for β > σ + 1 + 2/N). The quasilinear equation (1.11) will be discussed in

somewhat more detail in the survey below.

3. A brief survey of results of the investigation of time-dependent solutions of nonlinear heat

equations with a sink. We first note the role which in our view the study of time-dependent

solutions of nonlinear parabolic equations (in particular, they include (1.10), (1.1),, and

(1.11)) plays in the theory of dissipative structures and synergetics which have been

developed intensively in recent times (see [19]-[24]). A large number of dissipative

structures arising in open thermodynamic systems due to the interaction, actually, of three

"conflicting" processes are now known and have been studied in some detail; these three

processes are diffusion (a dissipative process) and, we emphasize especially, processes of

emission and absorption of "energy", i.e., the action of volumetric sources and sinks. As a

result, after the elapse of a certain time stable steady-state or quasi-steady-state periodic

structures of complex form may arise in a medium (for example, in the familiar

" Brusselator" model [19], [21], [24]), periodic travelling waves (bores in [25]), etc. We

especially note that in all such problems a localization effect of the evolution processes

occurs over particular lengths or segments of the medium in each of which they proceed as

if independently. It can be asserted that localization in some form is a necessary

prerequisite for the occurrence of complex structures in a dissipative medium. Moreover,

estimation of the size of the region of localization (it may frequently not be arbitrary, and

is determined by intrinsic properties of the medium) makes it possible to predict in

advance the e.f. which can arise and stably evolve in the region in question (the process of

self-organization in the medium [2]).

From our point of view, to understand the "laws" of interaction of the processes of

emission and absorption of "energy", which in the final analysis form the spectrum of the

dissipative structures, it is first necessary to study them in the simplest models individu-

ally, i.e., to separately consider an equation with a source and an equation with a sink. On

this path there immediately arises the concept of essentially time-dependent dissipative

structures whose amplitude and spatial profile vary rapidly with time. Here it is ap-

propriate to draw an analogy, for example, with the generally accepted conclusions that in

a neighborhood of a bifurcation point of steady-state, quasi-steady-state, or periodic

solutions of infinite-dimensional nonlinear evolution equations the number of degrees of

freedom of the system is reduced to small finite values which generally bears witness to the

existence of general laws of development of instabilities in various nonlinear media (see
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[26]-[28]). We believe that the same generality must be contained in elementary time-de-

pendent models of " nonlinear heat conduction" + a " source" (or + a " sink"), pertaining

now to the character of occurrence of essentially time-dependent processes, i.e. the

development of various rapid (or even singular in time) processes have intrinsic common

features that are evident at the qualitative level in certain simple models. This generality is

undoubtedly present in processes occurring in "superfast" regimes with peaking (see [2],

[5], and the bibliography given there).

For comparison we indicate below in very compressed form the range of problems and

the main directions of investigation of regimes with peaking which arise in nonlinear

media with volumetric energy emission—a process opposite to absorption.

3.1. On equations with a source. Properties of time-dependent solutions of quasilinear

parabolic equations with volumetric energy emission, for example, of the form (1.10) have

been studied in a large number of papers; see the surveys in [5] and [2]. It is now possible

to speak of establishing certain general laws of the occurrence of such processes. In

particular, of great interest from the viewpoint of applications is the study of thermal

regimes with peaking to which there correspond unbounded solutions of (1.10) which exist

for a finite time with an amplitude which grows without bound over a finite interval of

change of time: sup xu(i, x) -» + oo as t -» TQ < + oo (/ = TQ is the time of peaking). It

was established that in the Cauchy problem for (1.10) for values of the parameters of the

nonlinear medium β > σ + 1 unbounded solutions are localized in space in the sense that

u(t, x) -» + oo as t -* TQ in a bounded region (for β > σ + 1—the LS-regime—on a set

of measure zero, and for β = σ + 1 on a fundamental "length" depending only on the

quantity σ > 0; the profile of the nonmonotone initial perturbation uo(x) here plays no

role). The effect of localization for β > σ + 1 in the final analysis determines the

possibility that complex structures (e.f.) appear in the medium, evolving in a regime with

peaking. Investigations have shown that e.f. with a large number of extremal points on the

spatial profile are self-similar solutions of (1.10) of the form (cf. (1.3))

uA(t,x) = (T0-ty1Ap-1)eAU), t = x/(T0-t)m, (1.13)

where m = [β - (σ + 1)]/2(β - 1), and the function θΑ(ξ) > 0 satisfies the elliptic

equation

Vt((?;v{^) - m Σ ^ | ξ , - -~jeA + itf = 0, ξε R\ (1.14)

θΑ(ξ) -* 0 as \ξ\ -> +oo. In the recent note [29] it was shown that equation (1.14) for

β > σ + 1 in the multidimensional case has a particular collection of solutions which are

not radially symmetric of very diverse form, for example, a solution effectively localized in

a region forming a star (regarding previous investigations of equation (1.14) see [2], [3], [5],

[15], and [17]). In accordance with (1.13) each of these solutions determines a time-depen-

dent dissipative structure evolving as t -> T^ in a regime with peaking with its own

"architecture" of the spatial profile, its own region of localization, and "laws" intrinsic

only to it of combining elementary structures into more complex structures.

The effect of heat localization occurs also in problems for an equation without a source,

for example, of the form

u , = ( u ° u x ) x , t>0, x>0, (1.15)
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where the volumetric energy emission is modelled by the action on the boundary of the

half-space χ > 0 of a regime with peaking (see [30] and the bibliography given there). The

special methods developed for investigating nonlinear parabolic equations make it possi-

ble to carry out a rather detailed investigation of unbounded solutions of a heat equation

with a source of the general form

«,= V(k(u)vu) + Q(u), (1.16)

where k > 0 and Q > 0 are practically arbitrary functions (the coefficient of thermal

conductivity and the power of volumetric energy sources respectively); see [5]. This

concerns primarily 1) conditions for the occurrence of regimes with peaking, 2) conditions

on k and Q for the occurrence of the effect of heat localization, and 3) in some generality

it is possible also to resolve the question of a "fine" space-time structure of unbounded

solutions—e.f. of the nonlinear medium (1.16).

Nevertheless, a number of important problems in the theory of regimes with peaking in

heat-conducting media remain unsolved even with regard to equation (1.11) with power

nonlinearities. Here we single out two of them. The first consists in a constructive

description of the entire collection of e.f. of the nonlinear medium, i.e., all possible

solutions of the elliptic equation (1.14) (the results obtained in [29] were for the most part

based on qualitative and numerical methods). In this connection we note that (1.14) does

not admit an equivalent variational formulation; therefore, variational methods of study-

ing nonlinear elliptic problems in RN developed in recent years (see, for example, [31]) are

apparently not applicable to it. The second problem consists in investigating asymptotic

stability as t -» Γο~ of all e.f.; this makes it possible to carry out "evolutional selection" of

the e.f. of the nonlinear medium. The difficulties occurring here are, in general, connected

with the singularity of the solution in time and its instability in the usual sense under

perturbations of the initial function. It must be said that this question remains open also

in other problems for nonlinear equations and systems of Schrodinger type, hyperbolic

equations, etc. (regarding this, see, for example, [5]). We note that a problem of the same

sort arises for equations (1.1) or (1.11) with absorption for values of β e (0,1) when a

singular process of complete cooling in finite time is possible; see below.

From the point of view indicated above the properties of time-dependent solutions of

parabolic equations with absorption have not been studied in as much detail as in the case

of equations with sources. This pertains mainly to the Cauchy problem, in which the

concept of an e.f. of the nonlinear medium arises in a natural way. To a considerable

extent this stimulated our work. At the same time, a large amount of literature has been

devoted to the investigation of the equations with absorption (1.1) and (1.11) and also the

equation of general form

u, = v ( J f c ( « ) v w ) - e ( « ) . k>0,Q>0, (1.17)

.and a number of important and interesting results have been obtained; we shall now

briefly consider some of them.

3.2. A nonlinear heat equation with a sink. The authors of [32] first called attention to

the interesting property of localization of thermal perturbations in media with absorption.

In particular, they constructed a simple special generalized solution of the Cauchy

problem for the equation with a linear sink

ut = Au"+1 - u, t>0,x(=RN,
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which has the form

= exp(-t)[xo(t)] -N
a2-

1/σ

(1.18)

where a > 0 is an arbitrary constant and

xo(t) = {[1 - exp(-a/) ]/a} 1 / ( 2 + W<7>, t > 0 (1.19)

(in (1.18) we have used the notation (p) + = {ρ if ρ > 0; 0 if ρ < 0}). At each time t > 0

this solution is compactly supported in x; the support of the generalized solution is a ball

of radius R(t) = axo(t). Moreover, it follows from (1.19) that R(t) increases, and

R(t) -> ασ~1/(2 + Νσ) < + oo as t -> + oo, i.e., thermal perturbations penetrate a finite

distance and are localized in the region {\x\ < ασ~λ/{2 + Να)} during all time. Other

examples of localized solutions of equation (1.17) and of (1.1), β e (0,1), in the one-

dimensional case were also presented in [32]. In the subsequent paper [33] localized

solutions of (1.11), Ν = 1, for/3 Φ 1 were constructed numerically.

In [34] existence and uniqueness theorems were then proved for a solution of the

Cauchy problem for degenerate parabolic equations (1.17), Ν = 1, the validity of theo-

rems for comparing solutions was established, and the concepts of generalized upper and

lower solutions (super- and subsolutions; see also [35]) were introduced. On the basis of

this machinery in [34] sufficient (and close to necessary) conditions for the localization of

thermal perturbations were obtained by comparison with steady-state solutions. For

equation (1.11), Ν = 1, they look as follows: if β < σ + 1, then compactly supported

thermal perturbations are localized; for β > σ + 1 there is no localization, and the heat

wave penetrates arbitrarily far (as was subsequently shown in [36], this also occurs for

β = σ + 1). For equation (1.17), Ν = 1, of general form the sufficient condition for

localization has the form [34]

/ / ζ>{ψ~1{ϊ))άζ\ άη<+οο, (1.20)
Jo [Jo ]

where φ" 1 is the function inverse to φ(κ) = JQk(s)ds, u > 0. For (1.11) with Ν — I,

(1.20) is the necessary and sufficient condition for localization of compactly supported

solutions.

Moreover, in [34] the curious effect of complete cooling in finite time was studied: if the

function Q(u), u > 0, satisfies the condition

+oo, (1.21)

then for any bounded initial perturbation uo(x) > 0 there exists a T > 0 such that

u(t, x) = 0 for all / 3s Τ (this result was obtained by comparison of the solution of the

Cauchy problem with the spatially homogeneous solution U(t) satisfying the ordinary

differential equation U'(t) = -Q(U(t)); for (1.1) and (1.11) condition (1.21) implies that

β e (0,1)). Differential properties of generalized solutions of (1.11), Ν = 1, were studied

in [37]; it was shown that a generalized solution u(t,x) possesses a bounded derivative

(w A ) v where λ = max{a,(a + 1 - β)/2} (this result is sharp).

Conditions for the motion or immobility during finite time of a compactly supported

front of a heat wave described by equation (1.11), Ν = 1, were obtained in [35] by

constructing upper and lower solutions. Conditions for the movement of a heat wave
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forward (a "heating wave") or backward (a "cooling wave") were determined in [38]. In
all cases the character of the motion of the front depends on the asymptotic behavior of
uo(x) in a neighborhood of the initial point of degeneration. Regarding the generalization
of the results of [35] to the case of equation (1.17) of general form, see [39]. Possible
regimes of motion of a heat wave and also the effect of complete cooling are very
graphically illustrated by the following solution of (1.11) for β = 1 - σ, σ e (0,1); see
[38] and [39]:

uA(t,x) = i(t)eU), ξ = \χ\/φ(ή,

where ψ(?) > 0 and φ(/) > 0 are, respectively, the amplitude and width of the thermal
structure:

Here A > 0 is an arbitrary constant,

[ -)(") 4. Mn\ I Na/(1+Nc)

a J
c o =

and the function θ(ξ) > 0 is compactly supported: θ(ξ) = [(1 - | 2 ) + ] 1 / σ . The size of the
support of the given generalized solution varies in time in a nonmonotone manner. On the
interval (0, ?*), where

[ 2 ( 2 -

a2

4(1 +

h No) ]2

Na)\

1 2 ( 2

L
+ iVa)
σ

the width of the structure <p(?) increases, the surface of the heat "front" then begins to
move backward toward the origin χ = 0, and finally at time

t Τ ( Δ /U \(2+M>)/2(l + JVa)

ψ(ί) and φ(ί) vanish simultaneously (uA(T0,x) = 0), i.e., complete cooling ensues. The
self-similar solution is localized; at any time the diameter of its support does not exceed
2φ(ί*) < + oo.

Theorems on the existence and uniqueness of generalized solutions of boundary value
problems for (1.17), Ν = 1, are proved in [36]. Conditions for the localization of
boundary regimes in a medium with absorption are also obtained there (see also [38] and
[41]). Regarding localization in the case of equations with absorption containing addi-
tional terms, for example,

η,= { η " + ί ) χ χ - { η λ ) χ - η ^ λ > 1,

see [42] and [43]. We note that here localization may be one-sided depending on the
relation between the parameters σ,β, and λ; in particular, if λ < ητίη{σ + Ι,β}, then
there is localization on the left [42].

We note that, somewhat earlier than [32], in [44] there was constructed a localized
special solution of another quasilinear equation with linear absorption

u t = { \ u x \ ° u x ) x - u , σ > 0 (1.22)

(see also [45] and [46]). Subsequently, various (mainly qualitative) investigations of
localization and the character of motion of heat fronts in the case of nonlinearities more
general than in (1.11) and (1.22) were carried out in [47]-[49] and elsewhere.
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We return to the one-dimensional equation (1.17). Naturally, localization of thermal
perturbations is possible only in the case where the heat wave has a finite front, i.e.,
perturbations in the medium propagate with finite speed. The necessary and sufficient
condition for the presence of this property obtained in [50] has the form

/ :
,V+ J

(it is easy to verify that if the localization condition (1.20) holds, then the integral in (1.23)
also converges). Some rather delicate results for equation (1.17) of general form for Ν = 1
were obtained in [51]. They pertain to conditions for the absence of the effect of complete
cooling (what happens if (1.21) is not satisfied?) and to answering the question of the
closeness of (1.20) to a necessary condition for localization.

For the degenerate equation (1.17) with several space variables existence and uniqueness
theorems, various types of comparison theorems, etc. were established in [43], [52], and
[53] (see also [54] and the bibliographies of these papers). An interesting effect directly
connected with the property of complete cooling in finite time was discovered in [55],
where equation (1.17) for k = 1 was considered. It was shown that under the condition

< + « > (1.24)
2

(if Q is a monotone function, then (1.21) follows from (1.24)), any solution of the Cauchy
problem with an initial function uo(x) > 0 in RN not having compact support such that
uo(x) ^> 0 as \x\ -* +oo at some time t > 0 becomes compactly supported in x.

Questions connected with the asymptotic behavior as / -» + oo of time-dependent
solutions of equations of the type (1.11) considered in a bounded domain Ω c RN were
studied in [56] and [57]. A problem for the equation ut = Δ(|Μ|"Μ) - \uf~lu (the
"parabolic" continuation of (1.11) into the region of negative values of u) with Neumann
conditions on the boundary, (3/3«)( |M|"M) = 0, t > 0, χ e 9Ω, was analyzed in [56]. It
was shown that in the case /8>a + l a s f - > +oo stabilization to the spatially homoge-
neous solution y{t) = [(β - 1)/]" 1 / ( ^" υ always occurs in the sense that

u(t,x)/y(t) -> c a s i - > + o o ,

where c takes one of the values -1 , 0, +1 depending on the initial perturbation
uo(x) = M(0, Λ;) in Ω. Here the condition β > σ + 1 is essential; in the case β = σ + 1 the
equation has an infinite collection of spatially inhomogeneous solutions in separated
variables of the form u(t, x) = y(t)Xt{x) (of course, the functions Xt do not have
constant sign in Ω). In the boundary value problem for (1.11) with the Dirichlet condition
u(t, x) = 0 on 3Ω, studied in detail in [57], stabilization may take place according to
different laws depending on the magnitude of the parameters β and σ. In the case
β > σ + 1 for large t the sink is inconsequential compared with the diffusion operator,
and the asymptotics of the process is described by the self-similar solution vA =
(1 + t)~1/ag(x) of the equation υ, = Δνσ+1 where g(x) > 0 in Ω is such that Aga+1 +
{\/a)g = 0 in Ω, g = 0 on 3Ω. If β = σ + 1, then stabilization takes place in accordance
with the exact self-similar solution uA of (1.11), uA = (1 + ί)'1/σ/(χ), where f(x) > 0
satisfies the problem Δ/ σ + 1 + (1/σ)/ - / σ + 1 = 0 in Ω, / = 0 on 3Ω. If 1 < β < σ + 1
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(for these values localization of perturbations occurs in the Cauchy problem; see (1.20))

the diffusion term of the equation is inconsequential as t -> + oo. As a result, as t -* +00

the solution of the problem converges asymptotically everywhere in supp u(+ 00, x) to the

spatially homogeneous solution y{t) (y'(t) = -y^(t)), i.e.,

tl^^u{t,x) -{β - ΐ)^^^ ^ 0 a s ? ^ +00,

for any χ e supp«( + 00, x); for all other χ e Ώ, u(t,x) = 0. Estimates of the rate of

stabilization were obtained in [56] and [57].

The asymptotic behavior of solutions of the Cauchy problem for (1.11) has been studied

to less extent. In addition to [14], mentioned earlier (see also §3 of the present paper), and

the result of [57] on the stabilization to a homogeneous state for 1 < /? < σ + 1, the sharp

estimates of the speed of motion of heat fronts obtained in [39], [58], and [59] also tell us

about the asymptotic properties of solutions of (1.11), Ν = 1; see also the bibliography

there. In [39] and [58] it was established that in the case β > σ + 3 the size of the support

of a compactly supported solution of the Cauchy problem can be estimated according to

the formula suppw(i, χ) ~ tl/(aJrT), t -* + 00, which can be associated with the conver-

gence of u(t,x) to the known self-similar solution vA = ί - 1 / ( σ + 2 ) /( .χ ί- 1 / ( σ + 2 ) ) of the

equation v, = (va+1)xx. This means that for β > σ + 3 in the Cauchy problem the sink in

the equation is inconsequential as t -* +00 (the conclusions of [52] bear witness to this).

For σ + 1 < β < σ + 3 in [59] the estimate

suppu(t,x) ~ tV-i'+VW-v, /-» +00,

is obtained, which can be assessed as evidence of the asymptotic stability of the

self-similar solution (1.12). Finally, if β = σ + 1, then swppu(t,x) ~ In/ for large t [59]

(in particular, supp u -» Rl as / -» +00 and for β = σ + 1 there is no localization). In

this case equation (1.11), Ν = 1, β = σ + 1, has a self-similar solution of the form

uA(t, x) = (1 + ί)~ν"/(η), η = χ - a l n ( l + t), a = const,

which under the assumption of stability provides the required estimate.

In conclusion we mention that the following question remains open: What is the

structure of singular solutions of (1.11) with absorption under conditions of complete

cooling in finite time when β e (0,1)? In this case there exist completely damped localized

self-similar solutions of the form (1.13), uA = 0 for t > TQ, where the (compactly

supported) function ΘΑ satisfies the elliptic equation (cf. (1.14))

ΔΑ'+1 - m Ε ^ , + j^6A - tf - 0, fie R», (1.25)

and, as usual, θΑ(ξ) -» 0 as |£| -> + 00. It is important to note that this equation admits

nonmonotone solutions, while solutions (1.12) without damping (β > 1) cannot be

nonmonotone (this follows directly from the equation for the function ΘΛ). Here there

arise fundamental problems of investigating the manifold of solutions of the nonlinear

elliptic problem (1.25), and thus of determining the spectrum of possible e.f. of the

nonlinear medium with absorption, and also of proving their asymptotic stability.

§2. On radially symmetric self-similar solutions

This section is entirely devoted to investigating solutions of the boundary value problem

(1.4), (1.6) for an ordinary differential equation. It is convenient to simultaneously

consider the family of Cauchy problems for the same equation

Α Λ ( * ) = 0, t > 0; fl'(0) = 0, 0(0) = μ, (2.1)
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where the constant μ > 0 plays the role of a parameter. It is necessary to find values

μ > 0 to which there corresponds a function θ = θ (ξ; μ) positive in R\ satisfying the

condition 0 ( + ο ο ; μ ) = Ο. The function θ(ξ;μ) will then be the desired "self-similar"

function θΑ(ξ). From the form of the operator A R we immediately obtain

LEMMA 1. For all 0 < μ < (β - i )- 1 /^- ! ) = QH the solution of problem (2.1) is strictly

decreasing everywhere where it is positive. If μ > ΘΗ, then θ(+ οο; μ) > 0.

A formal asymptotic analysis of equation (1.4) as £ -» + oo (i.e. as ΘΑ -» 0 + ) gives the

following asymptotics of possible solutions of problem (1.4), (1.6); there is either the

"power" asymptotics

θΑ(ξ) = c r 2 / ( / 3 + 1 ) + ·•·, £ ^ + o o ; C > 0 , (2.2)

or the "exponential" asymptotics

θΛ(ξ) = Dyw-V-Wexpi-P/A) + • • · , ξ ^ + o o ; D > 0. (2.3)

It can be said that (2.3) is a limit case of the "power" asymptotics (2.2), i.e., (2.2) "goes

over" into (2.3) as C -> 0 + (this conclusion will be justified below). The existence of

solutions of the type (2.2) and (2.3) is established by analysis of equation (1.4) in a

neighborhood of ξ = + oo based on fixed-point theorems of continuous transformations;

in the same way the corresponding asymptotics for the derivatives θΑ(ξ) and θΑ(ξ) are

obtained, and local solvability of the Cauchy problem for all sufficiently small ξ > 0 is

proved.

Investigation of problem (1.4), (1.6) is carried out by different methods in the cases

β > 1 + 2/N and β e (1,1 + 2/N).

1. The case β > 1 + 2/N. It is shown below that for β > 1 + 2/N there exists only one

infinite set of functions with asymptotics of type (2.2) (this is established in the same way

as in subsection 2 by constructing upper and lower solutions of (1.4); in addition, this will

be proved in §3 by a different method).

THEOREM 1. Let β > 1 + 2/N. Then for all μ e (0,θΗ) the solution of problem (2.1) is

strictly positive in Rl

+, θ(+ οο; μ) = 0, and it cannot have "exponential" asymptotics of the

type (2.3).

PROOF. We multiply (2.1) by ζΝ~~ι and integrate both sides over the interval (0, £). As a

result, we obtain

f - J^J + fl'-HTj)] άη. (2.4)

For β > 1 + 2/N we have N/2 - Ι/(β - 1) > 0, and hence the right side of (2.4) is

strictly positive. Suppose θ = θ(ξ; μ) vanishes at some point ξ = ξ* > 0. Then obviously

θ'(ξ*; μ) < 0, the left side of (2.4) for ξ = ξ* is nonpositive, and (2.4) is impossible. Thus,

θ (ξ; μ) > 0 in R\ and by monotonicity θ( + οο; μ) = 0.

The second assertion of the theorem also follows from (2.4). Indeed, if θ(ξ; μ) had

"exponential" asymptotics and θ (ξ; μ) = ο(ξ~α) as ξ -> + οο for all α > 0 (then it is not

hard to show that the derivative Θ' would also have this property; see [18]), then (2.4) for

ξ = + oo would give a contradiction.

REMARK. It will be shown in §3 that for β > 1 + 2/N a solution with a fixed constant

C > 0 in the expansion (2.2) is unique.
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FIGURE 1

The case β>\ + 2/N

For β > 1 + 2/N the solutions #(£; μ) are easily ordered according to the magnitude

of the parameter μ.

THEOREM 2. Suppose β > 1 + 2/N. Then the solution θ(ξ; μ) depends monotonically on

the parameter μ e (0, ΘΗ), i.e., if 0 < μχ < μ2 < ΘΗ, then

θχ = θ(ξ; μλ) < 0(ξ; μ2) = θ2 everywhere in R\. (2.5)

PROOF. We set ζ = θ2 - θν We suppose otherwise: there exists a £ = £* such that

z ( ^ ) = 0 for ζ > 0 on (Ο,ξ*), and hence z ' ( | + ) < 0. From (2.4) for θλ and θ2 we then

easily obtain

+ J8/ 1

which contradicts the condition z'(£*) < 0.

Figure 1 shows the approximate schematic representation of the behavior of the

functions θ = θ(ξ; μ) for different values of the parameter μ <Ξ (0, ΘΗ).

2. The case β e (1,1 + 2/N). Here the picture of the behavior of the solutions

corresponding to different values of μ is somewhat different than shown in Figure 1.

2.1. We first consider problem (2.1) for sufficiently small μ > 0. We start by proving the

following simple assertion.

LEMMA 2. For all

0 < μ < ( l / ( j 8 - ΐ)-Ν/2γ/(β~1\ 1 < β<\ + 2/Ν, (2.6)

there does not exist an everywhere positive solution of problem (2.1) with asymptotics (2.2) or

(2.3).

PROOF. We suppose otherwise: let θ(ξ; μ) > 0 in R\ for some μ in the set (2.6). Passing

to the limit in (2.4) as ξ —> + oo and using the fact that θξΝ —» 0 and θ'ξ^'1 —> 0 as

ξ —> + oo, we obtain
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However, because of the monotonicity of θ(ξ; μ) in ξ this integral is strictly less than the

expression

which is nonpositive if (2.6) holds; this leads to a contradiction.

It is not hard to show that under the conditions of the lemma the solution θ(ξ; μ)

vanishes at some point ξ = ξμ < + oo. This involves some rather cumbersome computa-

tions (see, for example, [18]). Instead of this, we prove the simpler

LEMMA 3. Suppose | 8 e ( l , l + 2/N). Then there is a value μ1 e (0, ΘΝ) such that for all

μ e (0, μχ) the solution of problem (2.1) vanishes at some point ξ = ξμ < + oo.

The proof proceeds by "linearizing" equation (2.1) relative to the trivial solution θ = 0.

We first extend the equation into the region of negative values of Θ, for example, in the

following manner: in place of (2.1) we consider the equation

({"- ty ' J ' / i " " 1 + *'£/2 + θ/(β - 1) - \β\β~ιβ = 0, ξ > 0 (2.7)

(in the region θ > 0 it coincides with the original equation). We now set

where 0(£; μ) is the solution of (2.7) with conditions (2.1). Then obviously

/μ(0) = 1, /;(0) = 0 (2.8)

and /μ(ξ) satisfies the equation

with the small parameter μ^"1 in front of the nonlinear "perturbation" term on the right

side. We consider the corresponding linear problem for the value μ — 0:

F«(/o) = 0, ξ > 0; /0(0) = 1, /0'(0) = 0. (2.10)

By the change

£ = 2(-η) 1 / 2 , η < 0 , (2.11)

(2.10) reduces to a boundary value problem for the degenerate hypergeometric equation

/0"ij + (ΛΓ/2 - TJ)/0' - /„/(£ - 1) = 0, r, < 0.

PROPOSITION (see [60]). If N/2 > 1/(β - 1), then /0(η) > 0 for all η < 0. If N/2 <

1/(β - 1), i.e. β < 1 + 2/N, thenfo(i\) has at least one root for η < 0.

Lemma 3 follows from this proposition and the continuous dependence of a solution of

the ordinary differential equation (2.9) on the small parameter μ/"1.

2.2. We begin to increase the parameter μ; suppose now (2.6) is not satisfied. We prove

the following assertion.

THEOREM 3. For β e (1,1 + 2/N) problem (2.1) has at least one positive solution with

exponential asymptotics.

The proof is based on constructing suitable upper and lower solutions θ+ and θ_ of

(2.1) which we seek in the "exponential" form

e±U) = A±exp{-aJ2), ξ > 0 (fl'±(0) = θ), (2.12)



THE CAUCHY PROBLEM FOR A PARABOLIC EQUATION 435

where A + and α ± are positive constants which remain to be determined. It is not hard to
show that

AR{6±) = Λ ± ε χ ρ ( - α ± ξ 2 ) [ α ± ( 4 α ± - 1 ) | 2 + 1/(β - 1) - 2Na±

and hence θ+ is an upper solution (i.e., AR(6 + ) < 0 in R\) if

- 1
_ Α β-1 > 7 Net I exn

4 > Λ+ =* Ι ο _ γ ζ - ί ν α + I e x P 1 - 4a

and, correspondingly, θ_ is a lower solution (ΑΛ(0_) > 0 in T?1 )̂ if, for example,

a_= 1/4, Λ ^ 1 < 1/(β - 1) - ΛΓ/2. (2.14)

We note that it follows from (2.14) that an "exponential" lower solution exists only in the

case where 1/(β - 1) - N/2 > 0, i.e. for β < 1 + 2/N.

For arbitrary values A ± and α ± satisfying (2.13) and (2.14) respectively, everywhere in

Rl

+ there is the inequality #_(£) < θ+(ξ), and hence (see, for example, [61]) problem (2.1)

has at least one positive solution θ (ξ; μ) such that #_< θ < θ+ in Λχ

+. From the last

inequality we obtain the "exponential" character of the asymptotics of this solution (for

example, θ = o(exp(-(l/4 - ε)£2)) as ξ -> + oo for any ε e (0,1/4)).

REMARK. It is possible to refine the spatial structure of the solution by setting in place

of (2.12)

θ±(ξ) = Α±(α\+ ξ2)'" exp(- | 2 /4) , ξ > 0,

and it is not hard to show that for the lower solution we can take δ_= \/{β — 1) — Ν/2,

while a suitable upper solution exists for any δ + > ί/(β — 1) - N/2. Thus,

θ(ξ;μ) = ο{ξ1Αβ-1)~Ν/2+'&χρ(-ξ2/4)}, £ - + ο ο , (2.12')

for any ε > 0 (for ε = 0 the asymptotics (2.12') coincides with (2.3)).

We now show that the solution with "exponential" asymptotics is the smallest among

all positive solutions of problem (1.4), (1.6).

THEOREM 4. Let β e (1,1 + 2/N), and set

μ* = sup^f = s u p ^ > Ο|0(£;μ) = 0 for some ξ = ξμ < +οο) . (2.15)

Then μ+(0, ΘΗ), and the function θ£(ξ) = θ (ξ; μ*)—the solution of problem (1.4), {1.6)—has

"exponential" asymptotics and is minimal among all other solutions of it.

PROOF. By Lemma 3 the set Jt is nonempty, and by Theorem 3 it is bounded above.

Hence, sup.J' exists, μ+ e (0,θΗ), and θ(ξ; μ*) > 0 in R\. The last follows from the

continuous dependence of a solution of problem (2.1) on the parameter μ on an arbitrary

compact set of R\. The second part of the theorem will be proved in §3.

From Theorem 4 we immediately obtain the

COROLLARY. Let β e (1,1 + 2/N). Then for any μ e (μ*,θΗ) the functions θ(ξ;μ) are

strictly positive and are solutions of problem (1.4), (1.6).

2.3. We now proceed to the investigation of solutions with "power" asymptotics. Such

solutions exist, as is shown below, for any values β > 1.

THEOREM 5. For β > 1 problem (1.4), (1.6) has an infinite set of solutions with "power"

asymptotics (2.2).
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PROOF. This time we seek upper and lower solutions of (2.1) in the form

) ~ l / ( P ~ l \ k > 0 (0'±(O) = 0).

It is not hard to verify that

θ±{ξ) = A±{a\ (2.16)

«\~ 2N

|
(β -1)2

Therefore, AR(9 + ) < 0 in R\, i.e., #+(£) is an upper solution if

A^1 > (a2

+- 2Ν)/(β - 1) + 4β/(β - if.

Similarly, Ακ(θ_) > 0 in R\, and #_(£) is a lower solution if

al > 2N, At'1 *ζ (ai - 2Ν)/(β - 1).

ί2 · (2.Π)

(2.18)

(2.19)

It remains to distinguish pairs of functions 0_ and θ + such that θ_*ζ θ + in R\. Between
them there then lies a positive solution of problem (1.4), (1.6). We fix an arbitrary C > 0
satisfying the condition

C^"1 > (4/(/3 - 1))(β/(β - 1) - N/2),

and we set A + = A _= C. The functions (2.16) then have the same asymptotics

0±(i) = α - 2 / < ^ υ + ·•·, f-> +oo.

Obviously ί + > β_ in R\ if a + < a_. We choose

(2.20)

= (β - \ f al= 2Ν+(β- IN.

Then α_> α + > Ο (the last inequality is ensured by condition (2.20)), and (2.18) and (2.19)
are satisfied. Hence, there exists a solution θΑ(ξ) of (1.4), (1.6) such that θ_(ξ) < θΑ(ξ) <
θ + (ζ) in Λ+, and it has the asymptotics (2.2).

REMARK. It follows from (2.20) that for Ν = 1 and JV = 2 to each arbitrary value
C > 0 in the expansion (2.2) there corresponds at least one solution of problem (1.4),
(1.6).

Figure 2 shows the approximate behavior of solutions of problem (2.1) for different
μ e (0, ΘΗ) in the case β e (1,1 + 2/N). We note that here distinct curves θ = θ (ξ; μ)
may, generally speaking, intersect, but this can occur only at those points where θ is
sufficiently small. Namely, the following assertion holds; it is proved in the same way as
Theorem 2.

THEOREM 6. Let ( 8 e ( l , l + 2/N). Then in the region

the solutions θ(ζ; μ) depend on the parameter μ in monotone fashion.
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FIGURE 2

The case β e (1,1 + 2/N). The heavy line designates the "self-similar"

function θΑ*(ξ) = θ(ξ; μ*) with "exponential" asymptotics.

In conclusion we present a solution of problem (1.4), (1.6) which can be represented in

explicit form [62]. Let β = 2. Then the functions

ο,
where

Λ± = 48(-ΛΓ - 14 + 10(1 + 7V/2)1/2),

ΰ ± = 24(2 ± ( 1 + Ν/2)1/2), α ± = 2(iV + 14 + 10(1 )

satisfy (1.4). Of them θ+(ξ) is strictly positive in R\ for any integer Ν > 1. We note that

for Ν = 1 the quantity β = 2 lies in the interval (1,1 + 2/N) = (1,3); for Ν = 2 we have

0 = 2 = 1 + 2/W, while for all Ν Ss 3 we have /? = 2 > 1 + 2/7V.

§3. Eigenf unctions of the nonlinear problem

In this section we investigate the asymptotic behavior of solutions of problem (1.1),

(1.2) and, in particular, prove the stability of self-similar solutions. Here one of the main

problems consists in distinguishing in the space of initial functions regions of attraction

corresponding to each e.f. of the nonlinear problem in question (as shown in §2, there are

infinitely many self-similar solutions which are the principal "candidates" for the role of

e.f.).

In §2 the self-similar functions θΑ(ξ) > 0 were ordered by introducing the parameter

μ = θΑ(0) e (0, ΘΗ). The set of attraction corresponding to the self-similar solution(2)

ΗΑ(ί,χ;Τ) = (Τ+ί)-ΙΑβ-1)θ(ξ;μ), ξ = χ/(Τ+ί)1/2, (3.1)

where Τ = const > 0, we denote by Ψ~μ (naturally, we are interested in nontrivial sets Ψ~μ

consisting not only of self-similar initial distributions uA(0, χ; Τ)). By asymptotic stability

of the self-similar solution (3.1), as usual (see, for example, [6], [7], and the bibliography

there), we mean the convergence as t -> + oo of the self-similar representation of the

( 2 )Here { e RN; the self-similar functions constructed in §2 depend on the single variable \ξ\.
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solution of the original problem (1.1), (1.2) corresponding to some value Τ > 0,

Μ',ί) = Ρτ·(«(',*))('.ί)
= (T+t)1Afi-1)u(t,t(T+tY/2), t>0,i(ERN, (3.2)

to the corresponding self-similar function ΘΑ = θ(ξ; μ). The quantity Τ in (3.2) is

determined on the basis of the form of the initial function u0 e ΊΡ~μ. It is obvious that the

normalization (3.2) of the self-similar solution (3.1) gives precisely the function <?(£; μ).

Below we shall need the following elementary upper and lower bounds for a solution of

problem (1.1), (1.2).

LEMMA 4. Suppose β > 1. Then everywhere in R\x RN

u(t, x) < (Γο + tyl/U3'l\ To = [^/supno]'-1, (3.3)

and for any t0 > 0 everywhere in [t0, + oo) X RN

u(t, x) > (4vtYN/2Foexp(-\x\2/4t), (3.4)

where the constant Fo = FQ(tQ) has the form

1. The case β > 1 + 2/Ν.

1.1. Stability of self-similar e.f. For β > 1 + 2/Ν it is especially simple to determine

conditions for the stability of self-similar solutions. Below we prove theorems on the

stabilization θ —> ΘΑ as / -> + oo which is uniform with respect to ξ e i?^.

THEOREM 7. Suppose that for β > 1 + 2/N ί/im? exists a T > 0 5«c/i

φ)-^(0,^)ε^(^). (3.5)

\\θτ(ΐ,ξ) - 0,(011^= 0(rW+W-V), (3.6)

ο. (3.6')( )
t-> +00

PROOF. We set

wo

+(x) = max{wo(x),M / 1(0,x;7 1)}, wo~(x) = min{i/ 0(x), Μ^(0, Χ; Γ)}

and denote by w±(t, x) solutions of (1.1) with the initial conditions w±(0, x) = WO

±(JC),

χ e RN. It is obvious that w + > uA(t, χ; Τ) and w~^ uA(t,x;T). We consider the

function z + = w+— uA > 0 which satisfies the problem

ζ? =ίίζ + - ^ + ) β + u^Az+, t>0,x^RN, (3.7)

z + (0,x) = zo

+(x) ^ wo

+(x) - uA(0,x;T) e LHi?^).

From this we immediately obtain

(3.8)



THE CAUCHY PROBLEM FOR A PARABOLIC EQUATION 439

The lower bound for z~(t,x) is derived in a similar way. Now, using the facts that
z"< u — uA < z + and

II» - «Jc,<«»>- (Γ+ 0~1 / ('~>7-(',i) - ^(Ol|ct(*"), (3-9)
we arrive at (3.6).

The second estimate is obtained even more simply. In analogy to the foregoing, from
the equations for the functions ζ ± we have

\\u{t, x) - uA(t, x; T)\\UARN) < | |«0(x) - uA(0, χ; T)\\LiARsy

From this, since

II" - «J4(*"> = (T + ί

we obtain (3.6').
REMARK. It is necessary to observe that in spite of the heat potential occurring in (3.8)

this theorem can be completely carried over without difficulty to the case of the
quasilinear equation (1.9). Here in place of (3.8) we use the following estimate of the
solution of the Cauchy problem for the equation pt = Δ/>σ+1, σ > 0, presented, for
example, in [63]:

sup p(t,x)<(c/tk)\\p(0,x)\\2

Lfi^),

where k = N/(2 + Νσ) and c > 0 is a constant not depending on the function p(0,x) (in
this case it is easy to verify that θτ -» ΘΑ as t -» + oo in the norms of C(RN) and l}(RN)
holds for β > a + 1 + 2/N).

The next theorem gives what is apparently the optimal set Ψ~μ of stability of the
self-similar solution (3.1).

THEOREM 8. For β > 1 + 2/N the set of attraction #^ corresponding to the given
self-similar solution (3.1) has the form

Ψ" = {u0^ Q\there exists Τ > 0 such that

uo(x) - uA(0,x;T) = ο(|*Γ2/(/>-ι>) α, |*| - +00}. ( 3 ' 1 O )

REMARK. That the set (3.10) is optimal follows from Theorem 5.
PROOF. We consider the first estimate (3.8) for the function z+{t, x). In the present

case, generally speaking, ZQ(X) ̂  U(RN), but because of the condition u0 e Ψ~μ there is
a monotonically decreasing function φ = φ(|.χ|) = o{\x\~2/^~l)), \x\ -* + 00, such that
ZQ(X) < ψ(\χ\) m RN- Suppose for simplicity that SUPXZQ(X) = ζ£(0). From (3.8) we then
have

sup z{t,x) = z+(o,*) =

From this estimate and an analogous one for z~, using (3.9), we obtain

and, as is not hard to see, the right side tends to zero as t —> + 00.
A curious corollary follows immediately from Theorem 8.

COROLLARY 1. Let β > 1 + 2/N, and fix an arbitrary C > 0. Then problem (1.4), (1.6)
can have at most one solution with given leading term in the "power " asymptotics (2.2).
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We emphasize that here the uniqueness theorem for a solution of an ordinary differen-

tial equation is proved on the basis of an analysis of solutions of a corresponding partial

differential equation.

1.2. "Non-self-similar" e.f. (approximate solutions). Of course, Theorem 8 remains valid

also in the case where uA = 0, i.e., for θΑ(ξ) = 0. Therefore, the set of attraction #"0

corresponding to the self-similar function θΑ(ξ) = θ(ξ; 0) = 0 has the form

iT0 = {u0 > 0|«0(x) = oiW-W-»), \x\ - + <*}. (3.11)

Thus, if for β > 1 + 2/Ν we have uo<aWo, then

θτ(ί,ξ) ->0 ast ^ +oo (3.12)

uniformly with respect to ^ e RN. We observe that this simultaneously proves the

following familiar assertion (see Theorem 1).

COROLLARY 2 OF THEOREM 8. For β > 1 + 2/Ν problem (1.4), (1.6) has no solution

θΑ(ξ) with the "exponential" asymptotics (2.3).

Indeed, otherwise there would exist a self-similar solution uA(t, χ; Τ) such that

uA(0, x; T) <= Wo. Then PT(uA(t, χ; Τ)) = θΑ(ξ) > 0 in RN, which contradicts (3.12).

Thus, if «o e #"0, then the solution w(i, x) evolves as t —> + oo according to non-self-

similar laws. It will be shown below that the asymptotic behavior of "almost all" such

solutions is determined by the space-time structure of a family of self-similar solutions of

the heat equation

v, = Av, t > 0, χ e RN, (3.13)

i.e., in other words, if u0 e #"0, then in the case β > 1 + 2/N in the original equation

(1.1) the nonlinear energy sink u& becomes inconsequential as t -* + oo by comparison

with the diffusion term. We note that such a situation is rather typical for quasilinear

parabolic equations. In particular, on the basis of this particular "asymptotic degeneracy"

of certain terms of an equation large classes of stable ap.s.-s.s.'s of various nonlinear heat

equations with quite arbitrary (nonpower) coefficients were constructed in [6], [7], and

We shall need a one-parameter family of self-similar solutions of (3.13) which has the

form

vA(t,x;T) = (T+tyafa(r]), η = \x\/{T + t)l/\ (3.14)

where a > 0 is a parameter. Substitution of (3.14) into (3.13) leads to the following

problem for the function fa > 0:

V1-"^-1/;)' + /eV2 + afa = 0, η > 0, (3.15)

/;(0) = 0, /,( + « ) = 0. (3.16)

Conditions for the solvability of problem (3.15), (3.16) and some required properties of its

solutions are indicated in the next assertion.

PROPOSITION (see [60]). For any a e (0, N/2) problem (3.15), (3.16) has a positive

solution fa(-q) in R\, and if a e (0, N/2), then

fa{t\) = Μη~2α + ••• , τ? -> +oo; M = const > 0. (3.17)

// α = N/2, then the only suitable solution is the function

fa = fa*M = Mexp(-7,2/4), η > 0; Μ > 0. (3.18)

For a > N/2 positive solutions do not exist.
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We denote by fT(t, 17) (here η e RN, in contrast to (3.14)) the self-similar representation

of the solution u(t, x) coordinated with the form of the self-similar solution (3.14) of

(3.13):

t)l/2), t>0,v^RN. (3.19)

Just as earlier in Theorem 8, in the case u0 e Wo the asymptotics of the solution of

problem (3.15), (3.16) determined by the choice of the parameter a e (0, N/2] in (3.14)

depends on the specific form of the initial function. In particular, two cases here are

essentially different: uQ £ ϋ(ΙΙΝ) and w0 e l}(RN). We first consider the case u0 <£

U-(RN), to which there correspond values a < N/2. We note that in the proof of our

theorem the possibility of inverting the operator 3/3/ - Δ is not used, i.e., this assertion

can be reformulated without difficulty in application to the quasilinear equation (1.11).

THEOREM 9. Suppose that β > 1 + 2/N and, moreover,

β(Ν - 2) < Ν, (3.20)

i.e., β <= (1 + 2/N, + oo) for Ν = 1 or Ν = 2 and β e (1 + 2/N, N/(N - 2)) for Ν > 3.

Suppose there exist a e (l/(/8 - 1), N/2) and positive constants Τ, Μ, and A such that

uo(x)-vA(O,x;T)^Ll(RN), (3.21)

uo(x)^AvA(O,x;T), x^RN. (3.22)

Then \\fT(t, r,) - / e(T/)| |^ ( R W ) - 0 as t -» + rc.(3)

PROOF. We set ζ = vA - u. For ζ we then obtain the equation

z, = Δζ + ηβ, t > 0, χ e ί"; ζ(0, χ) e ^ ( Λ " ) . (3.23)

We set z + = max{0, z} > 0, z " = -min{0, z} > 0, i > 0 and JC e i?^. Obviously

P ( 0 | I L ' ( « « ) = ΙΙ*+(ΟΙΙζ.'(«») + ΙΙ^(ΟΙΙζ.' («·ν,,

and by (3.21) z + (0, x) e L\RN). From (3.23) it follows immediately that

dx, | | | 2 - ( 0 l k ^ ) < 0 (3.24)

(these inequalities are derived under the natural assumptions Δ|ζ|(/, ·) e Li(RN), ζ e

C1(R\; RN)). From (3.22) on the basis of the maximum principle we conclude that

u < AvA in R\ X RN, and from the first estimate (3.24) we then obtain

d „ M

V ) . i > 0- (3·25)
Using (3.17) it is not hard to verify that for any α > 1/(β — 1) and all β satisfying (3.20)

we have fa <= L^{RN\ Then (3.25) implies that

^ | | * + ( 0 I U ' ( * ' ) < const -{Τ+ί)Ν/1-αβ, t>0. (3.26)

From the second estimate of (3.24) we obtain

| | z - (0 |U ' ( «">< const, t>0. (3.27)

( 3 ) An estimate of the rate of convergence will be obtained in the proof.
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Finally, noting that

^= (Τ + ΐΓ+Ν/2^τ(ί,η) -fa(v)\\L^h (3.28)

from (3.27) and (3.28) under the condition α < N/2 we obtain

, α<(Ν+2)/2β,

lnt), α = {Ν+2)/2β,

α>(Ν+2)/2β.

Hence, if α e (ϊ/(β - 1), N/2), then \\fT - fa\\Li(R») ~» ° a s l "» + °°-
REMARK 1. This theorem is not altogether "optimal" with regard to the admissible

values of the parameter β (this refers to condition (3.20)). However, if (3.20) is not
satisfied, then it is convenient to carry out the proof of convergence fT -»fa as / -> + oo,
in the norm of LP+1(RN), choosing the quantity ρ > 0 from the condition ρ > Ν/2αβ
- 1. Assuming that wo(x) - vA(0, x; T) e LP+\RN), it is then not difficult to show in a
similar way that \\fT - / J l ^ i , ^ , -> 0 as t -» + oo for α e (l/(/J - 1), iV/2) (here the
conditions ζ = υΛ - u e C ^ l ; L'"1"1^*)) and z ( i ! + 1 > / 2 e / f 1 ^ ) are required).

REMARK 2. In Theorem 9 we obtained the asymptotics of solutions u(t,x) correspond-
ing to initial functions of the form (this follows from (3.21))

uo(x) ~ \x\~2a, | x | - » + o o , (3.29)

for α e (1/(β - 1), N/2). The restriction α > 1/(β - 1) is indeed essential, since for
α = 1/(β — 1) the corresponding e.f. are to be sought in the class of self-similar solutions
(3.1). If α e (O,l/(jS-1)), then, as shown in [14], θτ(ί,ξ) tends to the spatially
homogeneous solution θΑ(ζ) = ΘΗ =•• (β — l)-1/(/?~i)> a n c i this conclusion is valid for any
β > 1. For α e (1/(β - 1), N/2) all functions of (3.29) have infinite initial "energy":
u0 € ϋ(ΚΝ). This also holds for a = N/2, but here the e.f. does not have "self-similar"
structure as in (3.1) and (3.14). This is manifest, for example, in the fact that the heat
equation (3.13) with initial function

v(0, x) = vo{x) ~ \x\~N, \x\ -> +oo, (3.30)

has, as is not difficult to show, the non-self-similar asymptotics

v(t, x) -» ct'N/2In texp(~\x\2/4t), t -» + oo, c = const > 0. (3.31)

Thus, the case α = N/2 in (3.29) is "critical" in the sense that here problem (1.1), (1.2),
β > 1 + 2/N, has a nontrivial ap.s.-s.s. compatible with the asymptotics (3.31) of the
corresponding linear problem (3.13), (3.30) without a sink.

The case u0 e U(RN), u0 Φ 0, is considered in [14], where a theorem is formulated on
the convergence as / -» + oo of the self-similar representation (3.19) corresponding to the
value α = N/2 to the function c*f*{t\), where c* > 0 is a constant depending on the
initial function. We note that with certain additional conditions on uo(x) this result can
be obtained in another way without invoking the integral equation for the function u(t, x)
which is apparently used in [14]. Thus, an analogous assertion for β > σ + 1 + 2/N is
valid for the quasilinear equation (1.11). Without considering this in detail, we note only
that the main problem here consists in the following: it is necessary to prove that the limit
function fa(t]) to which the function fT(t, η) converges as / = /,-> + oo (it satisfies (3.13)
because of relatively easily derived estimates of the solution of problem (1.1), (1.2))

1) is unique, i.e., does not depend on the choice of the sequence {/,}, and
2) is nonzero.
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Under these conditions we immediately obtain /α(η) = c*/a*(ij) > 0 in RN (at least this

will hold for the functions w0 = MO( |X|)).

The first follows directly from the monotonicity of \\u(t, x)\\i}^R"^ = ||/r( i;'»j)llLUR")

(here we take into account that distinct curves (3.18) cannot intersect). The second is

obtained without difficulty by constructing a special type of lower solution of equation

(1.1). Namely, we set

u_{t,x) = ψ(0(Γ + tyN/2exV[-\x\2/4(T + t)], (3.32)

where the function ψ(/) > 0 will be indicated below. Then u_ will be a lower solution of

(1.1), i.e., B ( t O ^ 0 in R\x RN if

It is not hard to see that for β > 1 + 2/N we can take for ψ(ί) a function bounded away

from zero uniformly with respect to all t > 0, for example, of the form

t)~\ t > 0; ψ 0 > 0, A > 0, (3.32')

where γ = (Ν/2)(β - 1) - 1 > 0 and yA > (ψ 0 + ΑΤ'Ύ)β. Therefore, under the corre-

sponding conditions on uo(x) we have u(i, x ) > u_(t,x) in RN, i.e., fT(t, η) >

ψ ο εχρ(- |η | 2 /4) for any t > 0 and η e RN. We note that it is not possible to simply set

ψ(ί) = Ψο ( t m s i s easily verified, because then (3.32) will not be a lower solution); a small

"correction" has therefore been introduced in (3.32') which nevertheless "compensates"

the nonlinear term ut in the inequality B ( M _ ) < 0 which the lower solution must satisfy.

This actually means that this term of the equation is inconsequential as t -* + oo by

comparison with the diffusion term.

REMARK 3. The family of self-similar solutions (3.14) used in Theorem 9 is a two-param-

eter family: each function fa is characterized, first, by the value of the parameter α in

problem (3.15), (3.16) and, second, as any solution of a linear equation, by the magnitude

of the constant factor Μ in (3.17). It follows from condition (3.21) that the last parameter

is also essential. From this we can conclude that for β > 1 + 2/N the dimension of the

attractor of the parabolic equation in question is not less than two.

2. The case β e (1,1 + 2/N]. Stability of self-similar e.f. Some of the results obtained

below are valid for any β > 1. Here the investigation is broken into several steps.

For convenience we first formulate the following simple lemma, which follows from the

maximum principle.

LEMMA 5. Let 0 + ( | ) e C2(RN) be any upper solution (2.12) or (2.16) of equation (2.1).

Suppose that for some Τ > 0

, x^RN. (3.33)

Then for the solution of problem (1.1), (1.2) there is the estimate

/2), t>0,x^RN, (3.34)

REMARK. The lemma remains valid if θ+ is replaced by a corresponding lower solution

θ of (2.1) and the inequality signs in (3.33) and (3.34) are reversed. Here the function θ _

is not required to be C2-smooth in the entire space RN; it suffices that 0_e C2

everywhere where θ_> 0, i.e., #_(£) can here also be a compactly supported function.
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2.1. An auxiliary assertion. At the first stage we use an approach to investigating the

asymptotic behavior of solutions of parabolic equations proposed for investigating other

problems in [64] and [65] (it was applied in [14]).

We consider the one-parameter family of functions(4)

uk{t,x) = kl^-Vu{kt,kl/2x), t>0,x^RN, (3.35)

where k > 0 is an arbitrary constant. Each of the functions uk satisfies the original

equation (1.1):

B ( M J = 0, (t, x) e R\x RN, (3.36)

uk(0,x) = W-Vuoik^x), x e RN. (3.37)

LEMMA 6. Let β e (1,1 + 2/N], and suppose condition (3.33) holds. Then for all

sufficiently large k

uk{t, x) <cu t > τ > 0, χ e RN, (3.38)

IM')lt(«">< c2, Γ \\vuk(s)\\2

L2ds^c3, (3.39)

l l ( « * ) / ( * ) I U * ( * ' ' ) < c 4 , I | V « * ( T ) | | £ 2 < C 5 , (3.40)

where the positive constants c, do not depend on k.

The first two estimates follow directly from (3.33); the remaining estimates are easily

derived from (3.36) and the preceding estimates (see, for example, [64]).

On the basis of the Sobolev imbedding theorems [66], from Lemma 6 we obtain the

following assertion.

THEOREM 10. From any monotone sequence kj -» + oo it is possible to select a subse-

quence A:,- —> +oo such that

uk(t,x)-*w(t,x), k = k,^+cv, (3.41)

the convergence is uniform on any compact set in [τ, + oo) X RN, and the limit function

w(t, x) satisfies equation (1.1).

If in (3.41) we set t = 1, kt = Τ + ti for sufficiently large / and χ = ξ, we obtain the

COROLLARY. Under the above assumptions,

uniformly on each compact set in RN.

Here θτ is the self-similar representation (3.2) of the solution u(t, x). The function w in

(3.41) and (3.42) may, generally speaking, depend on the choice of sequence k} in

Theorem 10 (we note that it is so far unknown whether w is a self-similar solution of

(1.1)). However, for β e (1,1 + 2/N) all possible functions w have a common property

which emerges on the basis of the analysis of solutions of the "self-similar" equation (1.4)

carried out in §2.

( 4 ) T h e family (3.35) actually makes it possible to determine the self-similar representation (3.2) in another
way. although, of course, the methods used below are applicable for a direct analysis of the asymptotic behavior
of the self-similar representation (3.2) as t —> + oo.
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THEOREM 11. Let β e (1,1 + 2/N). Ifuo(x) Φ 0, then w(l, ξ) Φ 0.

PROOF. We assume with no loss of generality that wo(O) > 0. It is then not hard to see

that there exist sufficiently small Τ > 0 and μ ι > 0 such that

where θ{£; μ.λ) is a solution of (2.1). Therefore (see the remark to Lemma 5),

u(t,x)>(T+ty^-^{\x\/(T+tY/2;H),

ί>θ, \x\ <{T+t)l/1- s u p p 0 ( | ; μι),

and hence

oT(t,0 > θ(£;μι) > ο, \ξ\ < supp0(^^J

for all t > 0.

REMARK. For β > 1 + 2/N (see Theorem 9) and also in the case β = 1 + 2/JV

Theorem 11 ceases to hold. This can be related to the absence for β > 1 + 2/N of

"compactly supported" solutions θ(ξ; μ) of problem (2.1) (Theorem 1).

2.2. Stability of self-similar solutions. We first show that independence of the limit

function w in (3.41) from the choice of sequence kj guarantees its "self-similarity".

LEMMA 7. Let

uk(t,x) -> w(t,x) ask-^+oo. (3.43)

Then

ν(ί,χ) = ί-1Αβ-1)θ{ζ), ξ = χ/ί^2, (3.44)

where θ(£) = w(l, ξ).

Indeed, from (3.43) it follows immediately that

γ1/^~1 )νν(γί,γ1 / 2Λ) = w(t,x)

for any γ > 0. Setting γ = t~l, we arrive at (3.44).

Thus, if (3.43) holds, then w is self-similar, and 0(£) satisfies the elliptic equation

A(fl) - Δ£0 + \ Σ ^ , + - ^ θ - θ? = 0, { ε R», (3.45)

which in the radially symmetric case coincides with equation (1.4) considered in §2.

It is now necessary to proceed to an investigation which would make it possible to

specify the form of the radially symmetric, "self-similar" limit function θ = ̂ ( | | | ) in

(3.44) and also the set of attraction Ψ~μ (μ = ̂ (Ο)) corresponding to it in the space of

initial functions. For this it is convenient to go over to the equation for the self-similar

representation (3.2). Introducing a new "time" by the formula τ = ln(l + t/T), we find

that the function θτ = θτ(τ, ξ) satisfies the following parabolic problem:

30Γ/3τ = Α(θτ), (t, ξ) e R\x RN, (3.46)

θτ(0,ξ)=Τϊ^β-1^0(Τ1/2ξ), ^ R N . (3.47)

Comparing (3.46) and (2.1), we see that in the new notation the question of asymptotic

stability of the self-similar solutions (3.1) reduces to the problem of the stability and

construction of regions of attraction of steady-state solutions of (3.46). Starting from
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Lemma 7, it is here convenient to determine conditions for "monotonicity in A;" of the

function sequences uk(t, x) in (3.35) which is equivalent to a condition of monotonicity in

τ of the self-similar representation θτ(τ, ξ). These conditions are given by

LEMMA 8. Let θ + (£) (respectively, #_(£)) o e any upper (lower) solution of equation (2.1)

(see (2.12) and (2.16)), i.e., Α Λ ( 0 + ) < Ο (Ακ(θ_) > 0) everywhere in RN. Then the

solution of equation (3.46) with initial function θτ(Ο,ξ) = θ+(ξ) (respectively, θτ(Ο,ξ) =

θ_(ξ)) is nonincreasing (nondecreasing) in τ in RN:

Θ0 τ(τ, £)/3τ < 0 ( 3 0 T / 9 T > 0) in R\x RN. (3.48)

The lemma follows from the maximum principle. Indeed, the function ζ = (θτ)τ

satisfies the following "linear" parabolic equation:

^ = At* + \ Σ ^ + ( ^ Γ Ϊ - β*"-1)* i n Rl

+

X RN>

where z(0, £) = Ακ(θ+(£)) < 0 in RN. Hence, ζ < 0 everywhere in R\x RN. Assertions

similar to Lemma 8 were established for a special type of parabolic equations in [61] and

[67], and in the general case in [68] and [69], where they were used to prove theorems for

comparing solutions of parabolic equations with different nonlinear operators. We note

that the smoothness condition on the function θ_(ξ) ensuring the critical property of the

solution (ΘΓ)Τ > 0 in Rl

+X RN can be relaxed; it suffices that the inequality AR(6_) ^ 0

be satisfied only where θ_> 0 (see [68] and [69]). Therefore, for θ__(ξ) it is possible to

take, for example, a compactly supported function whose smoothness may be violated at

those points where θ_= 0.

From Lemmas 7 and 8 we obtain

THEOREM 12. Suppose that β > 1 and the radially symmetric function uo(x) in (1.2) is

such that

is an upper or lower solution of equation (2.1). Then there exists a radially symmetric

"self-similar" function 0<(|£|) satisfying (1.4) and (1.6) such that

θτ(τ,ξ)^θΑ(\ξ\) a i r - +oo,

uniformly on each compact set in RN.

REMARK. Of course, the entire set of upper and lower solutions of (2.1) is not exhausted

by those functions θ± indicated in §2 (see (2.12) and (2.16)). For example, to each

" self-similar" function there corresponds an entire family of such functions

where A + > 1 and A _ < 1 are constants. Indeed, in this case

i.e.,

We now proceed to the construction of the set of attraction Ψ~μ corresponding to the

given function 9A = 0(|£|;μ). This can be done by means of the next assertion, which

follows from Lemma 8.
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LEMMA 9. Let θ+, #_e C2(RN), respectively, be upper and lower radially symmetric

solutions of equation (2.1) to which there corresponds one unique "self-similar" function

ΘΑ =• 0(|£|;μ) such that

Then the set

3?μ = {"ο > ° l t h e r e e x i s t s T> 0 such that

M l i l ) < Tl^-^u0(T^) < θ + (\ξ\), ξ e RN}

belongs to Ψ~μ.

Thus, the problem of distinguishing the sets Ψ~μ is closely related to the problem of the

uniqueness classes for solutions ^( |ξ |) of problem (1.4), (1.6).

Below we shall investigate in more detail the set WA* corresponding to the " minimal"

function 0J* (| | |) = 0(|£|; μ*) indicated in Theorem 4 (§2).

THEOREM 13. Let ^ ε ( 1 , 1 + 2/N). Suppose the initial function uo(x) Ψ 0 is such that

uo(x) < Τ-ι^-νβ*(\χ\/Τ1/2), xeRN. (3.49)

Then θτ(τ, ξ) -* θχ(\ξ\) as τ -> + oo uniformly on each compact set in RN.

PROOF. From the corollary to Theorem 10 it follows that θτ(τ, ξ) -> w(l, ξ) as

τ = τ, -» +oo, and by (3.49) w(l,£) < θχ(\ξ\) in RN. Proceeding as in the proof of

Theorem 11, it is then not hard to find constants μι e (0, μ*) and τ0 > 0 such that

θ_(ξ) = 0(1*1; Mi) < θτ(τ0, ξ) < ^*( | ί | ) , ξ e Λ \

However, by Lemma 8 the solution i f (τ, ξ) radially symmetric in ξ of (3.46) correspond-

ing to the initial distribution θ^(το,ξ) = θ(\ξ\; μχ) is nondecreasing in τ, and hence it

follows from Theorem 4 (§2) that θ^(τ,ξ) -> 0/(|ξ|) as τ -» +oo. Hence θτ(τ,0 also

stabilizes to θ£(\ξ\) as τ -» + oo.

REMARK. Thus, the "self-similar" function θ£(\ξ\) is stable below. If θ χ is the unique

solution of (1.4) with "exponential" asymptotics, then it is also stable above, and the set of

attraction WA* in this case can be defined, for example, in the following manner (see

Remark 2 to Theorem 12):

#7* = { uo(x) > 0| there exist Τ > 0 and A > 1 such that

0 < uo(x) < T-xW-xUe*{\x\/TV2), x^RN}.

We note that from Theorem 13 we immediately obtain the following assertion, which

completes the proof of Theorem 4 in §2.

COROLLARY. For β e (1,1 + 2/N) the "•self-similar" function θ = 0jf(|£D is the minimal

solution in RN among all nonnegative solutions {including radially symmetric solutions) of

the elliptic equation (3.45).

3. The "critical" case β = 1 4- 2/N, u0 e V^iR1*). An approximate self-similar solution.

The stability of nontrivial self-similar solutions (3.1) for β = 1 + 2/N was studied in the

preceding subsection. We recall that by Theorem 5 to these solutions there corresponds

infinite "energy". Below we consider the question of the evolution of initial perturbations

uo(x) G LX(RN), and we restrict ourselves to the analysis of the case where

uQ(x) = o{exP{-y\x\2)}, | x | - » + o o , (3.50)
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for some constant γ > 0. It will be shown that here the following self-similar representa-

tion of the solution u(t, x) is "stabilizing":

gT(t,i) = QT(u) - [(T + t)\n(T + t)] N/1u{t, ξ(Τ + t ) 1 / 2 ) , (3.51)

where Τ > 1 is a constant. This implies that in the case where gT(t, ξ) stabilizes as

/ —» + oo to some bounded function g*(£) Φ 0, the asymptotic properties of u(t, x) are

described by an ap.s.-s.s. ua(t, x) of the form

u(t,x) - ua(t,x) = [(T+t)\n(T+t)]-N/2g.{x/{T+t)1/2). (3.52)

As compared with (3.1) there is an additional logarithmic factor in (3.52).

We shall first show that for large t the solution u(t, x) is bounded below in RN by a

function having the structure of the ap.s.-s.s. in (3.52). This assertion refines one of the

results of [14].

LEMMA 10. Suppose β = 1 + 2/N and u0 Φ 0. Then for any Τ > 1 there exist τ > 0 and

A e (0, (N/2)N/2) such that everywhere in [τ, + oo) X RN

u(t,x) > u_(t,x)=A[(T+ t)\n(T+ t)YN/2exp[-\x\2/A(T + t)]. (3.53)

Because of the estimate (3.4), for the proof it suffices to show that the function u_ in

(3.53) is a lower solution of (1.1). This follows directly from the form of the equation for

the function gT which will be obtained below.

We shall now bound u(t, x) above by a function close in form for large t to the

ap.s.-s.s. (3.52).

LEMMA 11. Suppose β = 1 + 2/N and the initial function u0 satisfies condition (3.50).

Then for any Τ > e2 there exist constants a > 0 and Η > 0 such that

u(t, x) < u + (t,x)

= H[(T+ t)HT+ O r ^ e x p f - - , r

 | X | 2 ,, — I (3.54)
V 4(Τ + t)[l + α\η-\Τ + ή}21

everywhere in R\x RN.

PROOF. We shall show that u+ in (3.54) is an upper solution of (1.1) if the constant

Η = H(a, T) > 0 is sufficiently large. Choosing a and Η large, with (3.50) taken into

account we then arrive at (3.54). Thus, we shall determine conditions under which

B(w + ) > 0 in R\x RN. (3.55)

We introduce the notation τ = (Τ + t) and φ(τ) = τ 1 / 2 [1 + aln'h]. It is then not hard

to verify that (3.55) is equivalent to the inequality

x e RN, (3.56)

where we have introduced the notation |£ | 2 = | * | 2 / τ · We have

φ(τ)φ'(τ) = χ
a
 \ΙΛ

 a 2a \ 11 + — ^-1 + ^ + ;
In τ / \ In τ In T / ^ m T

Ν Φ 2 (τ) / 1 \ Ν I, a2 2a\L 1 \ Ν a
^_L_i h + — = h + + — 1 + -— < — + —Ιητ/ 2 ι η 2 τ ' Ι η τ Η Ι η τ / " 2 In τ
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where

ax = ax{a,T) = (a/2)(l - 2/lnT) > 0,

a2 = a2{a,T) = (N/2){\ + 2a+{a2 + 2a)/\nT + α2/\ηΤ).

Using these estimates, we find that (3.56) is clearly satisfied if

-a^\2/2 + a2- Η2/Νεχρ(-\ξ\2/2Ν) < 0.

This inequality is obvious for sufficiently large Η > 0, for example, if

H2/N > Na1max{l,exp(a2/Na1 - 1)}.

The lemma is proved.

From the last two lemmas it follows that if (3.50) holds and u0 Ψ 0, then the

"self-similar" representation (3.51) (T is large) for all large t is bounded above and below:

8τ(ί,ξ) < //exp|-|^|2/4(l + l n ( / + ? ) ) } • (3-57)

Hence, the same holds also for the possible limit function g*(O> a n d the estimates here

have the form

,4exp(-|£|2/4)<g«U)<ffexp(-|£|2/4) i n R". (3.57')

Setting τ = ln(l + t/T), it is not hard to derive the parabolic equation for the function

ST= gr( T '£):

^ = ^+\Σ(8τ)^, + ̂ Τ + ^ { ^ τ - ^ ή . (3-58)

From this equation on the basis of the pointwise estimates (3.57) and also other integral

estimates of gT (to derive them it is necessary to first bring the differential terms on the

right side of (3.58) to divergence form) we find that the function gT(T,$) stabilizes as

τ = τ, —> +oo (τ,· is a subsequence of an arbitrary sequence ry• -» +oo, j' —> + oo),

uniformly on each compact set in i * ' t o a solution of the steady-state equation corre-

sponding to τ = +oo, i.e., g*(£) satisfies the equation

Δ{&, + \ Σ (g*)f£- + y g * = 0, ^ RN. (3.59)
1 = 1

In the radially symmetric case (u0 = WO(|JC|)) it has the form (3.14), a = N/2, and hence

gm(i) = M e x p ( - | | | 2 / 4 ) , Μ = const, (3.60)

where because of (3.57') Μ e [A, / / ] ; here the constants A and Η indicated in Lemmas

10 and 11 depend on the form of the initial function u0.

We note that Lemma 10 follows immediately from the form of equation (3.58), since the

function q(£) = QT(u_(t,x)) = Λεχρ(-|£| 2/4) satisfies (3.59), and, since (N/2)q-

qi + 2/N > O i n RN ί ο τ Α e (ο,(ΛΓ/2)"/2], qU) is a lower solution of (3.58).

The mere fact of the stabilization of gT(r, ζ) as τ = τ,• -> + oo is not hard to prove by

the same method as in §3.2.1. Namely, defining the family of functions

uk(t,x) = (k\nk)N/2u(kt,k1/2x), t > 0, χ e RN, k > 1, (3.61)

in accordance with (3.51), each of which satisfies the equation

{uk)t = \uk-{\KkyluY2SN, (3.62)
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by means of estimates analogous to those in Lemma 6 we can establish that for the

function sequence {uk} an assertion of the type of Theorem 10 holds, i.e.

uk(t, x) -» w(t, x), k = kj -* +oo,

uniformly on each compact set in RN, where the function w satisfies (3.62) for k = + oo,

i.e.,

w, = Aw, t > 0, χ e RN. (3.63)

Hence,

gT(t,, ξ) - w(l, ζ), ζ = x/(T + t,)1/2, as *,. ̂  + oo.

It is curious that the "logarithmic" deviation in the ap.s.-s.s. (3.52) (or in (3.62)) from the

self-similar dependence (3.1) does not change the property of invariance of the limit

function w(t, x), i.e., just as before, the following result holds here (see Lemma 7).

LEMMA 12. Let

uk(t,x) -> w(t,x) ask -H> +oo. (3.64)

Then the function w is a self-similar solution of equation (3.63):

*>(/,*) = / - ^ ( ί ) , £ = *Λ1/2- (3-65)
PROOF. Condition (3.64) implies that

(klak)N/2u(kt,k1/2x)^w(t,x) ask->+oo. (3.66)

We multiply both sides of (3.66) by 8N/1, δ = const > 0, make the substitution t -» δί,

χ -» 8l/2x, and set k' = Α:δ. We then obtain

(\nk/lnk')N/\k'lnk')N/2u(k't,(kf/2x) -» 8Ν^{8ί,8ι/2χ).

However, by (3.64) the left side converges as k' -> + oo to w(t, x), i.e., w(t, x) =

8N/2w(St, 81/2x) for any δ > 0, whence we obtain (3.65).

In conclusion we show that under the conditions of Lemma 12 the limit function g*(£)

does not depend on the initial function uo(|x|) and is unique in the following sense.

THEOREM 14. Suppose β = 1 + 2/N and u0 = uo(|x|) # 0 satisfies (3.50). Suppose that

uniformly on each compact set in RN

gT{r,i) -> g*(£) as τ-̂ > +oo.

Then

Ui) = (N/2)N/\l + 2/^) A ' 2 / 4 exp(- | | |V4), ξ e R». (3.67)

PROOF. AS shown earlier, under these assumptions only functions of the form (3.60)

where M e [A, H] can be limit functions, i.e., it remains to prove that in the present case

only one value of the constant Μ is possible, namely,

Μ = {N/2)N/\l + 2/N)Nl/\ (3.68)

which thus does not depend on the initial function. Integrating (3.58) over RN, which is

possible because of (3.57), we get

0. (3.69)
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Because of the uniform boundedness of | |^7·(τ)| |ζ.ι ( Λίν ) in τ (see (3.57)), from (3.69) there

follows the condition of convergence of the integral

G(gT)(r)dr

/
•~t~°° Lr\,gr)\r) ατ

, τΛηΤ < + " <3·7°)
for all τ0 > 0. However, under the conditions of the theorem G(gT)(r) -» G{g*) as

τ —» + oo. From this we necessarily obtain the condition

(otherwise the integral in (3.70) diverges). Substituting the function g* of (3.60) into

(3.71), we arrive at (3.68) and hence at (3.67), which completes the proof.

We note that under the conditions of Theorem 14 the ap.s.-s.s. (3.52)

ua(t,x) = [(T + t)ln(T + t)]-N/2(N/2)N/2{l + 2/N)N2/*exp[-\x\2/4(T + / ) ] ,

which describes the behavior of solutions of the problem for large t, satisfies the equation

dua Ν ua N

which differs in an essential way from the original equation (1.1).

4. Concluding remarks. We emphasize that in many of the cases considered the evolution

properties of solutions of problem (1.1), (1.2) can in a certain sense be predicted and

explained by analyzing the structure of the family { uA} of its self-similar solutions of the

type (3.1) or, equivalently, the family of solutions {θ(ξ; μ), Ο < μ < ΘΗ) of the "self-simi-

lar" equation (1.4); this structure is shown schematically in Figures 1 and 2. As we

mentioned earlier, the functions #(£; μ) are either steady-state solutions of equation (3.46)

which the self-similar representation of the solution u(t, x) satisfies or critical functions if

θ (ζ; μ) vanishes somewhere (we note that the latter is a general property of a large class of

quasilinear parabolic equations; see [68] and [69]). Thus, the presence in the family

{θ(ξ; μ)} of "compactly supported" functions (the case β e (1,1 + 2/N)) guarantees

that the limit distribution θτ(+οο,ξ) is nontrivial and thus belongs to the class of

self-similar functions being considered (Theorem 11). Conversely, if there are no "com-

pactly supported" functions in the family {θ(ξ; μ)} (β > 1 + 2/N), then this indicates

that from sufficiently small initial functions lying as \ξ\ -» + oo "below" any steady-state

solution θ (ξ; μ) stabilization takes place to the trivial solution (Theorem 8 for uA = 0;

Lemma 11). This means that here there exist e.f. not belonging to the family [θ(ξ;μ)}

which should therefore be sought in another set of "non-self-similar" limit functions

(subsections 1.2 and 3). Thus, the structure of the continuous "field" of particular

solutions {uA} of equation (1.1) makes it possible to distinguish some very general

asymptotic properties of all its possible solutions.

These ideas are close in meaning to the conclusions obtained on the basis of the method

of stationary states [70]-[72], within whose framework the most general property of

localization of unbounded solutions (regimes with peaking) of nonlinear parabolic prob-

lems was determined by means of a similar analysis of a continuous "field" of functions

consisting of solutions constructed of the corresponding steady-state problem. In this

connection we also mention [73] and [74], where an approach is presented for investigating

the effect of localization of the action of boundary regimes with peaking on a medium

with nonlinear thermal conductivity which is actually equivalent to a kind of "approxima-

tion" of the boundary LS-regime with peaking on a continuous "field" of localized
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S-regimes to each of which there corresponds its own very simple self-similar solution.

Here the LS-regime has no such simple solution demonstrating the property of localiza-

tion.

The generality of these considerations makes it possible to conclude that the construc-

tion of a complete continuous family ("field") of any particular, sufficiently simple (for

example, self-similar or invariant) solutions of a nonlinear parabolic equation makes it

possible by the "approximation" indicated above to make a well-grounded judgement

about many important evolution properties of the process in question.

In conclusion we note that by means of the self-similar solutions (1.3) constructed in §2

it is possible to illustrate the results of [75] where, in particular, conditions for the

solvability of the Cauchy problem for (1.1) with initial condition w(0, χ) = δ(χ), δ the

delta function, were studied. It was established that for β > 1 + 2/N it has no solution;

more precisely, its "solution" is u(t,x) = 0, so that l im,^ 0 + u(t,x) = 0 Φ δ(χ) in RN.

All positive self-similar solutions (1.3), Τ = 0, in this case have an initial function of the

form

u A ( 0 + , x ) = C\x\-2Af3-l\ χ Φ Ο ; C = c o n s t > 0 , (3.72)

so that wo(0+, x) £ Ll(RN) which correctly agrees with the conclusion of [75].

In the case β e (1,1 + 2/N) the self-similar solutions (1.3), Τ = 0, satisfy either (3.72)

if θΑ(ξ) is a function with the "power" asymptotics (2.2), or the initial condition

uA{0 + ,x) =Α0δ
/(χ), χ e RN; 1= 2/(β - l)N > 1 (3.73)

(in particular, uA(Q+, x) = 0 in RN\ {0}) if the function ΘΑ = 0<*(|) has the "exponen-

tial" asymptotics (2.3). In (3.73) the constant Ao is equal to

For β e (1,1 + 2/N), in both cases uA(0+, x) £ L\RN).

Thus, (3.72) and (3.73) characterize the degree of singularity at the point χ = 0 of the

initial function for which the Cauchy problem for (1.1) has a classical (and nontrivial)

solution in R\x RN.

REMARK. After the present paper was submitted, we learned of the existence of [76], in

which some results of §§2 and 3 pertaining to the analysis of the case β > 1 + 2/N (the

case β < 1 + 2/N was not considered) were obtained by a somewhat different method.

The new result of [76] is mainly the proof of the existence of an infinite-dimensional set of

asymptotically stable self-similar solutions of equation (1.1) of the form (1.3) which are

not radially symmetric, where the functions θΑ(ξ) > 0 satisfy the elliptic equation Α(ΘΑ)

= 0 in RN (the operator A is defined in (3.45)). We note that the methods used in §3 (the

case β > 1 + 2/N) are applicable for the proof of stability of such self-similar solutions.

We also mention [77], in which the results of [75] are generalized to the case of the

quasilinear equation (1.11), and, moreover, f o r l < / ? < o + l + 2/N the asymptotics of

the solution of the Cauchy problem w(0, χ) = δ(χ) as / -> 0 is studied. The results of [14]

are presented in more detail in [78].

The authors are grateful to L. A. Peletier for sending the preprints of [76] and [77].

Keldysh Institute of Applied Mathematics

Academy of Sciences of the USSR Received 23/JULY/84

Moscow



T H E C A U C H Y P R O B L E M F O R A P A R A B O L I C E Q U A T I O N 4 5 3

B I B L I O G R A P H Y

1. Avner Friedman, Partial differentia! equations of parabolic type, Prentice-Hall, Englewood Cliffs, N. J.,
1964.

2. S. P. Kurdyumov, Eigenfunctions of combustion of a nonlinear medium and constructive laws for constructing
its organization, Current Problems in Math. Phys. and Numer. Math. (A. N. Tikhonov, editor), "Nauka",
Moscow, 1982, pp. 217-243; English transl.. Optimization Software, Inc., New York (distributed by Springer-
Verlag) (to appear).

3. A. A. Samarskil et al., The burning of a nonlinear medium in the form of complex structures, Dokl. Akad.
Nauk SSSR 237 (1977), 1330-1333; English transl. in Soviet Phys. Dokl. 22 (1977).

4. S. P. Kurdyumov and G. G. Malinetskil, Synergetics—the theory of self-organization. Ideas, methods,
prospects, "Znanie", Moscow, 1983. (Russian)

5. V. A. Galaktionov, S. P. Kurdyumov and A. A. Samarsku, A parabolic system of quasitinear equations. I,
Differentsial'nye Uravneniya 19 (1983), 2123-2140; English transl. in Differential Equations 19 (1983).

6. V. A. Galaktionov and A. A. Samarskn, Methods of constructing approximate self-similar solutions of
nonlinear heat equations. I, Mat. Sb. 118(160) (1982), 291-322; English transl. in Math. USSR Sb. 46 (1983).

7. V. A. Galaktionov, S. P. Kurdyumov and A. A. Samarskil, On approximate self-similar solutions of a class of
quasilinear heat equations with a source. Mat. Sb. 124(166) (1984), 163-188; English transl. in Math. USSR Sb. 52
(1985).

8. , On the asymptotic stability of invariant solutions of nonlinear heat equations with a source,
Differentsial'nye Uravneniya 20 (1984), 614-632; English transl. in Differential Equations 20 (1984).

9. A. A. Samarskil, On new methods of studying the asymptotic properties of parabolic equations, Trudy Mat.

Inst. Steklov. 158 (1981), 153-162; English transl. in Proc. Steklov Inst. Math. 1983, no. 4 (158).

10. V. A. Galaktionov and A. A. Samarskil, Methods of constructing approximate self-similar solutions of

nonlinear heat equations. II, Mat. Sb. 118(160) (1982), 435-455; English transl. in Math. USSR Sb. 46 (1983).
11. , Methods of constructing approximate self-similar solutions of nonlinear heat equations. Ill, Mat. Sb.

120(162) (1983), 3-21; English transl. in Math. USSR Sb. 48 (1984).

12. , Methods of constructing approximate self-similar solutions of nonlinear heat equations. IV, Mat. Sb.

121(163) (1983), 131-155; English transl. in Math. USSR Sb. 49 (1984).

13. B. Gidas, Wei Ming Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,
Comm. Math. Phys. 68 (1979), 209-243.

14. Abdelilah Gmira and Laurent Veron, Comportement asymptotique de la solution d'une equation nonlineaire
de la chaleur dans RN, C. R. Acad. Sci. Paris Ser. I. Math. 295 (1982), 727-730.

15. G. G. Elenin, S. P. Kurdyumov and A. A. Samarskn, Nonstationary dissipative structures in a nonlinear
heat-conducting medium, Zh. Vychisl. Mat. i Mat. Fiz. 23 (1983), 380-390; English transl. in USSR Comput.
Math, and Math. Phys. 23 (1983).

16. V. A. Galaktionov et al., On unbounded solutions of the Cauchy problem for the parabolic equation
u, = v ( u"vu) + ι Λ Dokl. Akad. Nauk SSSR 252 (1980), 1362-1364; English transl. in Soviet Phys. Dokl. 25
(1980).

17. M. M. Ad"yutov, Yu. A. Klokov [J. Klokovs] and A. P. Mikhailov, Self-similar heat structures with reduced
half width, Differentsial'nye Uravneniya 19 (1983), 1107-1114; English transl. in Differential Equations 19
(1983).

18. Alain Haraux and Fred B. Weissler, Nonuniqueness for a semilinear initial value problem, Indiana Univ.
Math. J. 31 (1982), 167-189.

19. P. Glansdorff and I. Prigogine, Thermodynamic theory of structure, stability and fluctuations, Wiley, 1971.
20. G. Nicolis and I. Prigogine, Self-organization in nonequilibrium systems, Wiley, 1977.

21. Hermann Haken, Synergetics—an introduction. Springer-Verlag, 1977.
22. V. A. Vasil'ev, Yu. M. Romanovskil and V. G. Yakhno, Autowaveprocesses in distributed kinetic systems,

Uspekhi Fiz. Nauk 128 (1979), 625-666; English transl. in Soviet Phys. Uspekhi 22 (1979).

23. Nonlinear waves. Self-organization, "Nauka", Moscow, 1983. (Russian)

24. S. P. Kurdyumov et al., Dissipative structures in flip-flop media, Differentsial'nye Uravneniya 17 (1981),
1875-1885; English transl. in Differential Equations 17 (1981).

25. G. G. Elenin, Formation of quasistationary travelling waves with periodic structure from unstable flows of a
barotropic gas that moves under the action of nonlinear volume forces, Preprint No. 126, Keldysh Inst. Appl. Math.
Acad. Sci. USSR, Moscow, 1977. (Russian) MR 58 #14374.

26. Louis Nirenberg, Topics in nonlinear functional analysis. Lecture Notes, Courant Inst. Math. Sci., New
York Univ., New York, 1974.

27. Ya. G. Sinai and L. P. Shil'nikov (editors), Strange attractors, "Mir", Moscow, 1981. (Russian)*

*Editor's note. This is a collection of Russian translations of papers originally published in English. For the
contents, see MR 82f: 58065.



454 V. A. GALAKTIONOV, S. P. KURDYUMOV AND A. A. SAMARSKII

28. H. L. Swinney and J. P. Gollub (editors), Hydrodynamic instabilities and the transition to turbulence,
Springer-Verlag, 1981.

29. S. P. Kurdyumov et al.. The architecture of multidimensional thermal structures, Dokl. Akad. Nauk SSSR
274 (1984), 1071-1075; English transl. in Soviet Phys. Dokl. 29 (1984).

30. V. A. Galaktionov et al., Localization of heat in nonlinear media, Differentsial'nye Uravneniya 17 (1981),
1826-1841; English transl. in Differential Equations 17 (1981).

31. H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I, II, Arch. Rational Mech. Anal. 82 (1983),
313-345, 347-375.

32. L. K. Martinson and Κ. Β. Pavlov, The problem of three-dimensional localization of thermal perturbations in
the theory of nonlinear heat conduction, Zh. Vychisl. Mat. i Mat. Fiz. 12 (1972), 1048-1054; English transl. in
USSR Comput. Math, and Math. Phys. 12 (1972).

33. S. I. Golaldo, L. K. Martinson and Κ. Β. Pavlov, Time-dependent problems of nonlinear heat conduction with
volume heat absorption, Zh. Vychisl. Mat. i Mat. Fiz. 13 (1973), 1351-1356; English transl. in USSR Comput.
Math, and Math. Phys. 13 (1973).

34. A. S. Kalashnikov, Nature of the propagation of perturbations in problems of nonlinear heat conduction with
absorption, Zh. Vychisl. Mat. i Mat. Fiz. 14 (1974), 891-905; English transl. in USSR Comput. Math, and Math.
Phys. 14 (1974).

35. , The influence of absorption on heat propagation in a medium with heat conductivity thai depends on

the temperature, Zh. Vychisl. Mat. i Mat. Fiz. 16 (1976), 689-696; English transl. in USSR Comput. Math, and
Math. Phys. 16 (1976).

36. R. Kershner [Kersner], On some properties of generalized solutions of quasilinear degenerate parabolic-
equations. Candidate's Dissertation, Moscow State Univ., Moscow, 1976. (Russian)

37. A. S. Kalashnikov, The differential properties of the generalized solutions of equations of the type of
nonstationary filtration, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1974, no. 1, 62-68; English transl. in Moscow
Univ. Math. Bull. 29 (1974).

38. R. Kershner [Kersner], Behavior of temperature fronts in media with nonlinear heat conduction under
absorption, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1978, no. 5, 44-51; English transl. in Moscow Univ. Math.
Bull. 33 (1978).

39. Barry F. Knerr, The behavior of the support of solutions of the equation of nonlinear heat conduction with
absorption in one dimension, Trans. Amer. Math. Soc. 249 (1979), 409-424.

40. L. K. Martinson, Propagation of a thermal wave in a nonlinear absorbing medium, Zh. Prikl. Mekh. i Tekhn.
Fiz. 1979, no. 4, 36-39; English transl. in J. Appl. Mech. Tech. Phys. 20 (1979).

41. R. Kershner [Kersner], Behavior of temperature fronts in media with nonlinear heat conduction under
absorption. II, Acta Math. Acad. Sci. Hungar. 35 (1980), 13-22. (Russian)

42. A. S. Kalashnikov, Nature of the propagation of perturbations in processes that can be described by quasilinear
degenerate parabolic equations, Trudy Sem. Petrovsk. Vyp. 1 (1975), 135-144. (Russian)

43. R. Kershner [Kersner], Some properties of generalized solutions of quasilinear degenerate parabolic equations,
Acta Math. Acad. Sci. Hungar. 32 (1978), 301-330. (Russian)

44. L. K. Martinson and Κ. Β. Pavlov, Unsteady shear flows of a conducting fluid with a rheological power law,
Magnit. Gidrodinamika 1971, no. 2, 50-58; English transl. in Magnetohydrodynamics 7 (1971).

45. S. I. Golaldo, L. K. Martinson and Κ. Β. Pavlov, Magnetohydrodynamic shear fluid flows with a rheological
power law under conditions of transverse drift, Magnit. Gidrodinamika 1974, no. 2, 58-62; English transl. in
Magnetohydrodynamics 10 (1974).

46. I. S. Granik and L. K. Martinson, Motion of the boundary of the support of a generalized solution in magnetic
rheology problems, Magnit. Gidrodinamika 1978, no. 1, 13-16; English transl. in Magnetohydrodynamics 14
(1978).

47. , The motion of a thermal wave front in a nonlinear medium with absorption, Inzh.-Fiz. Zh. 39 (1980),
728-731; English transl. in J. Engrg. Phys. 39 (1980).

48. L. D. Pokrovskil and S. N. Taranenko, Conditions for spatial localization of solutions of a nonlinear heat
equation, Zh. Vychisl. Mat. i Mat. Fiz. 22 (1982), 747-751; English transl. in USSR Comput. Math, and Math.
Phys. 22 (1982).

49. K. A. Volosov and I. A. Fedotov, Asymptotic representations of the solutions of a quasilinear parabolic-
equation in the vicinity of a front, Zh. Vychisl. Mat. i Mat. Fiz. 23 (1983), 1249-1253; English transl. in USSR
Comput. Math, and Math. Phys. 23 (1983).

50. R. Kersner, Filtration with absorption: necessary and sufficient condition for the propagation of perturbations
to have finite velocity. Preprint MN/8, Computer and Automation Inst. Hungarian Acad. Sci., Budapest, 1983.

51. , Nonlinear heat conduction with absorption: space localization and extinction infinite time, SIAM J.
Appl. Math. 43 (1983), 1274-1285.

52. Paul E. Sacks, The initial and boundary value problem for a class of degenerate parabolic equations, Comm.
Partial Differential Equations 8 (1983), 693-733.



THE CAUCHY PROBLEM FOR A PARABOLIC EQUATION 455

53. M. Bertsch, A class of degenerate diffusion equations with a singular nonlinear term. Nonlinear Anal. 7
(1983), 117-127.

54. Emmanuele di Benedetto, Continuity of weak solutions to a general porous medium equation, Indiana Univ.
Math. J. 32(1983), 83-118.

55. Lawrence C. Evans and Barry F. Knerr, Instantaneous shrinking of the support of nonnegative solutions to
certain nonlinear parabolic equations and variational inequalities, Illinois J. Math. 23 (1979), 153-166.

56. Nicholas D. Alikakos and Rouben Rostamian, Stabilization of solutions of the equation du/dt = Δφ(«) -
β( u). Nonlinear Anal. 6 (1982), 637-647.

57. M. Bertsch, T. Nanbu and L. A. Peletier, Decay of solutions of a degenerate nonlinear diffusion equation,
Nonlinear Anal. 6 (1982), 539-554.

58. R. Kershner [Kersner], The behavior of the solutions of degenerate quasilinear parabolic equations as t -» oo,
Acta Math. Acad. Sci. Hungar. 34 (1979), 157-163. (Russian)

59. Michiel Bertsch, Robert Kersner and Lambertus Adrianus Peletier, Sur le comportement de lafronliere libre
dans une equation en theorie de la filtration, C. R. Acad. Sci. Paris. Ser. I Math. 295 (1982), 63-66.

60. E. Erdelyi et al., Higher transcendental functions. Vol. I, McGraw-Hill, 1953.

61. A. I. Vol'pert and S. I. Khudyaev, Analysis in classes of discontinuous functions and equations of
mathematical physics, "Nauka", Moscow, 1975. (Russian)

62. A. B. Bartman, Decay of a plasma under optical breakdown of gases, Fifth All-Union Congr. Ordinary
Interactions of Optical Radiation with Matter, Abstracts of Reports, Vavilov State Institute of Optics,
Leningrad, 1981, pp. 264-265. (Russian)

63. Donald G. Aronson and Philippe Benilan, Regularite des solutions de I'equation des milieuxporeux dans
R v , C. R. Acad. Sci. Paris Ser. A-B 288 (1979), A1O3-A1O5.

64. S. Kamin, Similar solutions and the asymptotics of filtration equations, Arch. Rational Mech. Anal. 60
(1975/76), 171-183.

65. Avner Friedman and Shoshana Kamin, The asymptotic behavior of gas in an η-dimensional porous medium,
Trans. Amer. Math. Soc. 262 (1980), 551-563.

66. S. L. Sobolev, Applications of functional analysis in mathematical physics, Izdat. Leningrad. Gos. Univ.,
Leningrad, 1950; English transl., Amer. Math. Soc, Providence, R. I., 1963.

67. Μ, Κ. Likht, Propagation of a perturbation in problems connected with degenerate quasilinear parabolic
equations, Differentsial'nye Uravneniya 2 (1966), 953-957; English transl. in Differential Equations 2 (1966).

68. V. A. Galaktionov et al., An approach to the comparison of solutions of parabolic equations, Zh. Vychisl.
Mat. i Mat. Fiz. 19 (1979), 1451-1461; English transl. in USSR Comput. Math, and Math. Phys. 19 (1979).

69. V. A. Galaktionov, Two methods for comparing solutions of parabolic equations, Dokl. Akad. Nauk SSSR
251 (1980), 832-835; English transl. in Soviet Phys. Dokl. 25 (1980).

70. V. A. Galaktionov, S. P. Kurdyumov and A. A. Samarskil, On the method of stationary states for nonlinear
evolution parabolic problems, Dokl. Akad. Nauk SSSR 278 (1984), 1296-1300; English transl. in Soviet Math.
Dokl. 30(1984).

71. V. A. Galaktionov, On localization conditions for unbounded solutions of quasilinear parabolic equations,
Dokl. Akad. Nauk SSSR 264 (1982), 1035-1040; English transl. in Soviet Math. Dokl. 25 (1982).

72. , Conditions for nonexistence in the large and localization of solutions of the Cauchy problem for a class

of nonlinear parabolic equations, Zh. Vychisl. Mat. i Mat. Fiz. 23 (1983), 1341-1354; English transl. in USSR
Comput. Math, and Math. Phys. 23 (1983).

73. A. A. Samarskil et al., Effect of metastable localization of heat in a medium with nonlinear thermal
conduction, Dokl. Akad. Nauk SSSR 223 (1975), 1344-1347; English transl. in Soviet Phys. Dokl. 20 (1975).

74. N. V. Zmitrenko et al., Metastable localization of heat in a medium with nonlinear thermal conductivity and
conditions that it occur in experiment, Preprint No. 103, Keldysh Inst. Appl. Math. Acad. Sci. USSR, Moscow,
1977. (Russian)

75. Hauni Brezis and Avner Friedman, Nonlinear parabolic equations involving measures as initial conditions, J.
Math. Pures Appl. (9) 62 (1983), 73-97.

76. S. Kamin and L. A. Peletier, Large time behaviour of solutions of the heat equation with absorption, Ann.
Scuola Norm. Sup. Pisa (to appear).

77. , Source-type solutions of degenerate diffusion equations with absorption, Israel J. Math. 50 (1985),

219-230.
78. Abdelilah Gmira and Laurent Veron, Large time behaviour of the solutions of a semilinear parabolic equation

in RN, J. Differential Equations 53 (1984), 258-276.

Translated by J. R. SCHULENBERGER


