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SOURCES OF CURVATURE OF A VECTOR FIELD

Ju. A. AMINOV UDC 513.736.35

Abstract. It is known that for a vector field in three-dimensional space we can introduce the con-
cepts of curvature and mean curvature. In the present article we derive integral formulas for these con-
cepts; these formulas allow us to decide whether a vector field has, for example, singularities in a
domain. We explain the influence of the modulus of the curvature of a vector field on the magnitude of
its nonholonomity.

We also consider the question of the influence of the curvature of a family of surfaces on the dis-
tortion of the enveloping space for a given size of domain.

Bibliography 5 items.

Introduction

The present article is concerned with the theory of families of surfaces and vector fields. It is
well known (see, for example, [1] or [2]) that for a vector field n in three-dimensional space we can
introduce the analogs of the gaussian curvature and the mean curvature of a surface; we denote them
by K and H respectively; and the magnitude of K will be called the total curvature. Under the
assumption that there are no singular points of n in the interior of a three-dimensional domain V, we
established in [5] that

SKdv = g (xn) do, (1)

v b{ov)
where ¥ is the mapping of dV onto the unit sphere o by the unit vector field n (do is understood to
have a sign), and x is the radius vector of a point of V. In $1 of the present article we use (1) to
introduce, in a natural way, sources of curvature and their strength, We prove ($2) an analog of (1)
that is a generalization to higher dimensions and, in addition, is constructed for all symmetric func-
tions of the principal curvatures; we then derive bounds for the integrals, over an n-dimensional do-
main, of symmetric functions of the principal curvatures of algebraic fields. In 33 we consider the
influence of |K| on the size of the (three-dimensional) domain of existence of the field and on the
magnitude p =14 (n curl n) of its nonholonomity by taking K <0 and by assuming that the field is con-
stant along a fixed direction. In §4 and §5 we study the influence of the curvature of a family of

2, u%) = const on the distortion of the space when the size of the domain of defini-

surfaces d)(ul, u
tion is fixed. The point is that we can intuitively regard the curvature of a family of surfaces (or of
a vector field) as a loading on a domain in three-dimensional space R; under the action of this load-
ing the metric of the enveloping space will be changed to some large, critical metric; that is, the

euclidean space becomes distorted, and the magnitude of the distortion will be determined to some

199



200 Ju. A. AMINOV

extent by the loading. This influence can be compared with the distortion of a disc. Under the influ-
ence of internal stresses in the disc the relative positions of points and the distances between them
are altered; the external result of this is that the disc is bent and leaves the shape of a three-dimen-
sional plane. We characterize the distortion of ® by Qo’ Let R be the scalar Ricci curvature and

let Ky be the curvature of a two-dimensional element of area in R. Then Q, = max|R/2 + Ky|, where

0
the maximum is taken over all two-dimensional elements of area at a point and then over all points of
a sphere of unit radius. We shall find a lower bound for the amount of distortion of the space. To do
this we establish: 1) a generalized-divergent form of the mean curvature of a hyperplane of the family
¢(u1, cee, utt 1) = const lying in a Riemannian space; it will follow from this, for example, that for
any compact, orientable Riemannian space R"*! without a boundary, and for any family of level

hypersurfaces in R"*! we have

Hdy =0
;Rn—{rl
under the assumption that the set of singular points has zero hypersurface measure; 2) an upper bound
for the ratio S/v of the surface area of the unit sphere (without apolar points) to its volume in terms
of the curvature of two-dimensional elements of area and scalar Ricci curvature in R3 (see (21)). An
estimate of the distortion Qo of R3 is given by the inequalities (22) of Theorem 3.
In conclusion I express my sincere thanks to N. V. Efimov, under whose supervision the present

article was written.

$1. Sources of curvature

Let M be the set of singular points of the vector field n contained in the domain of definition of
n, let F, be an e-neighborhood of M and let JF, be its boundary, oriented so that for each connected
component the normal is directed into the interior of Fe Suppose that the following limit exists:
lim S (xn)do = Q.
T p(oFe)
If Q>0 (Q<0) we shall say that M is a source (sink) of curvature and shall call Q the strength
of the source or sink. Let us show that () is independent of the choice of origin of the coordinate
system. Let 'fl’ rfz and 53 be components of n. When the origin is translated by a vector a, Q is
changed by limf_.of\/j(aFe)(an)da.' Hence it is sufficient to show that, for any surface JF,
E;do =0.
P(0Fg)
But this obviously follows from the fact that aFE is closed and that fi is an odd function relative to
the plane {"i =0 in (fl, rfz, fa)—space.
With regard for the singular points in the interior of V we now rewrite (1) as (the integral on the
left-hand side is improper)

SKdv = 5 (xn) do + Q.

\4 P(ov)
Thus, when the field on 0V is fixed, the greater the strength of the sources, the more the large inte-.
gral curvature is confined to the interior of V.

Consider an isolated singular point of M. If for any sufficiently small ¢ we have
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\ ldo]<C,
W(OFe)
where C is a positive constant, then the strength of the point source of curvawre ¥ is zero. In fact,

since Q is independent of the choice of origin we can locate it at the point of M. Because |(xn)| <¢
on the sphere JF, we have

(xn)do | < eC,

]waFS)
|
and, when we take the limit as ¢ — 0, we find that Q = 0. Hence, for example, it follows that the

isolated singular points of an algebraic field have zero strength.

We next consider the question of an extremum of

J = R (xn) do (2)
biav)
where 9V is a fixed closed surface. In viewof (1) this problem is related to that of extremizing the
integral of the complete curvature K. Note that for any Ko > 0 we can construct, in a given domain

V, a regular field n (see §3) whose complete curvature K is such that [K| > K ; that is, (2) cannot

07
be bounded from above or from below. However, we have
Theorem 1. Let 9V be a sphere. In the class of fields homotopic to the normals to dV, the

field of normals gives an extreme value of (2).

Let us find those fields for which the first variation of (2) vanishes. Suppose that the variation
is given by the vector field ew. Since we are varying in a class of unit vectors, we have that
2(aw) = — e(ww). We split 0V into domains Dl and D2 with a common curve I, and in each of D1
and D2 we introduce its parameters (u, v). When we use
do = (nn.n)du do,
we easily find that the coefficient of ¢ in the integrand for J is equal to
(xw) (n,nen) -+ (xn) {(w,n.n) - (n,wyn) -~ (n,n,w)}.
We have

(xn) (w,n,n) - (xn) (n,wen) = *ba (xn) (wnyn)

u

av, (xn) (wn,n) — (x,n) (Wngn) - (X,n) (Wn,n) — (xn,) (wnyn)
-+ (xny) (wngn) - - 2 (xn) (wn,ny). (3)

If we integrate by parts we reduce the integrals over D1 and D2 of the first two terms on the right-
hand side of (3) to contour integrals of the form fI‘ (xn) (w dnn) which depend on the orientation of
I". Because the same orientations of D1 and 02 induce opposite orientations on I, the sum of these
contour integrals is zero.
We set
vV = |Xohy} — [Xun,].

When we use the relation [[ablc] = (ac)b —:a(bc), we have that

— (x41) (Wnpn) -+ (Xp1) (Wnun) = — ({[{X,n,] n} n] w)

-+ ([[[X.nu) n} n] w) = ([[vn] n] w) = (vn) (nw) — (V). 4
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Similarly we obtain that
(xn) (wn,n) — (xn,) (Whyn) = ((xny) n, — (XN) Ny, N, W)

= — ([[nyn,] X] n] W) = (nunew) (xn) — (RuNLM) (XW). (5)
When we use (3), (4) and (5), we find that for the first variation

8J == 5 {(vn) (nw) — (vw) -4 (xn) (n,n,w)} du dv.
av

Because, with accuracy up to ¢, (nw) =0 and [nunv] = An, we can assume that the integrand in 8/ is

equal to —(vw). If [nunv] # 0 then w can be represented as
W = an, | 3n,.
where @ and 3 are arbitrary functions of (u, v). We obtain that

(VW) = (xgnn,) B — (x4nyn,) @

Hence for an extremal field n we have (xununv) = (xvnunv) = 0; that is, either n is orthogonal to
dV or [nunv] =0. If [nunv] = 0 at a point, then the set of points where n _]_ dV does not contain in-

terior points, and in this case n is not homotopic to the field of normals to dV. Hence everywhere

[e,n]1#0 and n 1 av.

We next show that, if a normal to 9V is directed outwards, then 82/ <0 in a neighborhood of

the field of normals. For simplicity we take the origin of the coordinate system to be at the center

2

of the sphere dV. When we write out the terms in € we establish that the integrand in the expression

for 8] contains terms in ¢, because we have that 2(nw) =~ ¢(ww). Then we obtain that
& = g (xw) {(w.n,n) 4 (n.w,n) —+ (nun,w)} du dv
aVv

+ g (xn) {(wW,Won)-+ (n,wW,w) -+ (Wun,w) —2 (ww) (n,nyn)} du do.
av
Because, with accuracy up to ¢, (aw) = 0 and x is parallel to n, we have that (xw) = 0, and so the

first integral vanishes. We transform the second integral. We have

(xn) (W,won) = :%%(xn) (wwgn) -+ %%(xn) (w.wn)
1 1
-3 (xn) (wwyn,) — r (xn) (w.wny). 6)
Since [n n ]# 0, when we neglect the terms containing ¢ we find that
w = an, - an, W, = Oufly - Gy, 4 B0y -+ anu,
Wy = Ofly 4~ g + Bofty -+ Bige,
where a and f3 are arbitrary functions of (u, v). Hence
(NuWoW) ++ (WanoW) = 02 (n,,Npn,,) 4-2aB (M) -+ B2 (NuNets). 7N
Let L, M and N be the coefficients in the second fundamental form of the unit sphere o, oriented so
that the normal is directed outwards, and let do be the element of area of . Then, when we take

(6) and (7) into account, we obtain that

8 = S (xn) {% (Lo® +-2MoB -+ NB?) +2 (ww)} do.
w(av)
Hence i is the gaussian spherical mapping of V. Because La?+ 2Maf + NB? = —(ww) (with

accuracy up to €2), we have that 82] <0, and so the field of normals gives a maximum of (2)
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(provided the normal to dV is directed outwards).

Corollary 1. If the field n on a sphere is homotopic to the field of inward drawn normals of this
sphere, then
Q (xn) do > —4nR,
biov)
where R is the radius of the sphere.
Corollary 2. If the index of a singular point of the field is unity, then the strength of the point

source of curvature at this point is greater than or equal to zero.

In fact, if <9F€ is the sphere of radius ¢ with center at the singular point, then, by Corollary 1 to
Theorem 1, the integral (2) is bounded from below by — 4¢7. When we take the limit as ¢ —» 0 we
find that Q> 0.

Remark to Theorem 1. If dV is a smooth convex surface with nonzero gaussian curvature, then,

in the class of fields homotopic to the field of normals to d¥, 8] = 0 oaly for the field of normals.

32. The integral curvatures of an n-dimensional field

We are going to consider an n-dimensional vector field n in n-dimensional euclidean space; in
particular it can be the field of normals to a family of hypersurfaces. Let A, ---, A be the principal
curvatures of the field; that is, the eigenvalues of the equation dn = Adz. Since n is a unit vector,
one of these eigenvalues, for example A , is zero. When we use the equation dn = Adx we obtain the

following expression for the symmetric functions of A, -+, A _

X n—1 n gi‘xh s E‘l"‘ik
= S A= L , (8)
bg...lp =1 ir...ip =1 gthil gikxik

that is, S* is equal to the sum of the principal minors of the kth order matrix 1€, Il- 1f we substi-
j

tute )\1 e A 1= S5*=1 for K in (1), it is easy to establish that (1) holds for the product of all the

n
principal curvatures.

We next prove a formula which concerns all the symmetric functions Sk, We write
dgi, /\ d&ia /\ ce /\ dgik_;._l = dciz.-.ika,lv
dxik+—2 /\ e /\ dxi” = dvfk+g~--i,l9

L.li . "i = ¢, is the Kronecker symbol and v = (il- *+1 ). Then, if we assume that there are no singu-
eeeip
lar points of the field in the interior of V, we have that
k . -
SS dv = S 2 €y ixdo‘ia---ik-gl /\ dUik;}'z"“n" (9)
v dv v

thatis, the value of the integral of S* over the volume is given in terms of the boundary values of n.

Equation (9) is a natural generalization of (1); for simplicity we shall prove (9) for the second

symmetric function of the principal curvatures of a field in four-dimensional euclidean space. Accord-

ing to (8), in this case we have

SPRIP%
§2X|§‘3.\'2

PRI

+
Sax,8ox,

52:2{

and (9) can be written as
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| S*do = \ (e A\ g A\ dixg -+ dE /\dy N dE - dxy N dEs [ d2) - -
v dv

where on the right-hand side we have not written out the terms that would be obtained if we were to replace x,

by x,, %y and x Consider the integral over dV. Let us take, for example, the first term in the

4
integrand. We have that

YdZ, N dEy S\ dxy = X (G S, — Sax,Bay,) dXy dxa diy

— (Zax,E3x, t \)d,\ dx,dy, - (Za0,85v, — Eav,Cax,) dXadxg dxyl.

We transform the integral over the boundary into a volume integral by using the Gauss-Ostrogradskif

_E\

Theorem. The expression we have written out gives the following contribution to the integral over V:

o, Eax, +ox {i Eax, Eav, Eax, ox, l
1
v, Caxg Oxy §3X1 Eax; Eax, I

It is easy to see that the coefficient of x. in this expression is zero. We similarly treat all the terms

9
Oxs

9
le

.
Eavy Eax,

ove
¢
(RAY
1)
pos

-
E:}Xl S35

in the integrand of the integral over the bciundary; when we combine them we find that each principal
minor (f f - f vf ) occurs twice in the integral over V; that is, the integrand of this integral
is equal to S , as we were required to prove.

We next derive an estimate for the integral of S* for an algebraic field defined in a cube with
side a. A field n is said to be algebraic of order m if for some function A £ 0 the components
Ay,

consider the estimate of the integral of S? for a regular field in four-dimensional space. For this, in

A ) of Aa are polynomials in %, **+, % of degree not higher than m. For simplicity we

view of (9), it is sufficient to estimate integrals of the form

{ ldta Adig Adx.|, asBkr1a,
av

where dV is the boundary of the cube, arranged so that its edges are along the axes X, % %3 and

%, To be specific we put a =2, B =3 and y = 4. We take a face of the cube with the coordinates
(%, X X g in it i #]#4#1i, and denote it by T We consider another three-dimensional space
w1th the coordmates (fz, 53’ x ) and the mapping l/l (x X x4) — (fz, 53’ x ) defined by

§2—§2 (xl) X, x4) g - g‘; (xl’ x], 4) x4 = Xy
We are going to find the maximum number of inverse images of a point (fg, rfg, xzo) € l,/I(TL.].). We can
write A2 = fg)\ and /‘13 = f A, where A% = A2 + A2 + A2 + A2 # 0 is a polynomial of degree not great-
er than 2m. Hence we have the equation

A —(E@FM =0, A—(EPN =0,

in which the variables other than x, and x; are fixed. We denote the left-hand sides of these equa-

tions by P(xi, x].) and Q(xi, x].). By a well-known theorem the number of points at which P = Q=0
P, Q
and J(2

) # 0 is not greater than (2m) 2, By a straightforward calculation we find that, at the
s Aj

points where P = (Q =0,
J(2L) =g (),
Xp Xg Xy Xjy Xy

P, Q
Xis x]
points (fz, {:3’ x4). Thus, except for a set of measure zero, the number of inverse images of points
of l/l(Ti],) is not greater than (2m)?. Since {:g + é‘_g <1 and |x}| < a, we have that

Hence the image of the points where P = Q = ]( ) = (0 has measure zero in the space of
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{ 1de A\ des A\ dx,| < 4 mane.
T

When we use (9) we obtain that

{ s*dv | < Ca*ne?,

14

where C is an absolute constant. For an arbitrary symmetric function S* of the principal curvatures
and a regular algebraic field of order m in the n-dimensional cube V of side a we obtain that
SSkdU < Cn, kymta*™*.

1%
Corollary. If for an algebraic field of order m defined in a cube of side a we have |S*| > 5,>0,

then

a<C rer—kC(n,kj .
VS,
$3. The complete curvature of a field and the magnitude of nonholonomity

In what follows we put p =Y%(ncurln). This quantity characterizes the nonholonomity of the
family of elements of area orthogonal to the field n = ({"1, rfz, 53). For its geometrical interpretation
see [4].

Let us consider the asymptotic lines of the field. We can define the asymptotic directions by the
equation [ndn] = pdx, where dx isthe displacement of a point of the space. If we take the coordinate
axes at a point so that the x
by

j-axis is in the direction of n, then it is easy to prove that p is defined

W —2pu + K =0.
The line along which [ndn] = udx is an asymptotic line of the field; here n turns out to be its binorm-

al and p its torsion. Thus along an asymptotic line we have

ydE,—E,dEy = (o = VP —K)dx,,
EadEy — & dE = (o + V-Pz — K) dx,,

gl dgz _EZ dgl = (P + “ PZ —‘K) dxs- (10)

Let us put ‘fz =rcos ¢ and 53 = rsin¢; then we can write the first of the equations (10) as

ride = (p + Vp* —K) dx,. (11)

Next we give an example of a field, regular in its bounded domain of definition, for which |K| is
arbitrarily large uniformly over all the domain. It is sufficient to take the domain of definition to be
acube. Let 1<x,<2,i=1,2,3. We put
n|| (A, Ag Ag), Ap = x,c08h Xy, Ay = x;sindkx, A;=1,

where A is a parameter, Then, by (2) of [5], we have that

AL A, —ALA

1x, 9%, 1x,7 axy Xl}“

U+ a4 apr @

If A> 0, then K> A/25; if A <0, then K < —|A|/25. Our assertion follows since |A| is arbitrary.

We next establish
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Theorem 2. Let a regular field n, constant along a fixed direction v, be defined in a ball of
radius R. Suppose that K < —K <0 and |p| < p . Then

R< . 38 )
V2 (VKO =+ Pz — fo)

This theorem generalizes a theorem of N, V. Efimov [3] concerning the projection onto a square

of a surface of negative curvature; it is proved by the same methods as Efimov’'s theorem and so we
give, in the main, only an outline of the proof. The theorem shows that if we increase |K| the modulus

of the magnitude of nonholonomity is also increased, at least at separate points.

Proof. We show that (nv)£0. Let P={(n_n_n), (o n 1n), (nx1nx2n)§'

As was shown in [5], the curvature K of the field is given by
K = (aP).

Let us indicate the geometrical significance of P. We choose the coordinate axes so that at some

point of M the x_-axis is in the direction of n. Then fl = 62 = fax_ = 0. In these coordinates P has
! 12
the form

glx2 Elxs glx, §1x2

3
P— { } .
Eax, Eoxs Eax, Eox,

We determine a direction tangential to the line n = const through the point of M. For the displace-

‘élx; Eul

’ (é £
2X3 DAy

’

ment dr = (dxl, dxz, dx3) along the line n = const we have

glxl dx, -+ Eux, dxy -+ Eix, dx3 ==0, gzx, dx, + E,x, dx, + Eox, dx3 =0.
Hence we obtain that dr = AP, A #£ 0; that is, P is the tangent vector (but, in general, not a unit vec-
tor) to the line n = const. Thus, because K # 0 and P}|v, we have (nv) # 0. We draw the great
circle orthogonal to v on the sphere. We now choose the coordinate axes so that the x,-axis is di-
rected along v and take the origin of the coordinate system at the center of the sphere. Since
(nv) # 0 we can write n as

n={p(l ) T gt =R ),

where the functions p = 51/53 and ¢ = fz/rf3 only depend on x, and x,, because n is independent

1 1 2
2 N 2

of X5 From the formula for the total curvature of the field (see [5]) we have that

Py9x, — Px,9x, , p= Py, — A, . (12)
(+p*+¢°)? 2(1+r2+9)

In what follows all lines will be considered in the square T: xy=0,~ RA2 < x, < RA2,i=1, 2.

Since K # 0, when we use (12) we obtain that g varies monotonically along the line p = const. As

K:

in {3] we consider ‘‘chains’’; that is, lines formed in a definite way from parts of asymptotic lines.

Along the chain constructed with respect to the x -axis, g(and hence ¢ = arctg ¢) varies monotonic-

1
ally. When we use (11) in the same way as in [3] we obtain that the absolute value of the projec-
tion of the x.th chain onto the x-axis is less than 27/(y/p2 + K, - p.). We prove our theorem by

i 0 0 1]
contradiction. Let R > 38/\/2—( py+ K, —p,) (then the side of T is greater than 19/(\/p2 + K, ~p)
and let T1 be a square in the interior of 7 whose sides are at a distance (27 + e)/(\/pg + KO - po),
0. 01 > € > 0, from those of 7. We consider the mapping of T1 onto the unit sphere by the vector

field n. If we bear in mind that \/KZ \/KO + po2 ~:pg, for the area o of the image of Tl we have
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>QS1K|dxldx2

Py Gy, — Py 9
o= SS——"' i B 'x‘ dx, dx,
(14 p? + g7

> (Vi — Ko—eo \{ iy dws = (19—47 —202 >6.2x

Ty

Ty

1

It follows from here that on the unit sphere we can find a point that is covered by the image of T1 at
least six times, and hence in Tl there are at least six points at which (p, ¢) takes the same value
(e q,). We then develop the discussion with the lines p = p, and ¢= 9, and ‘‘chains’’, and, as
in [3], we arrive at a contradiction.

Remark. According to the theorem, when the modulus of the curvature of the field under consid-
eration is large and its nonholonomity is small, singularities of the field are inevitable in each sphere
of radius R > Ro, where RO is a constant.

$4. A generalized-divergent form of the mean curvature

Suppose that a family of level hypersurfaces ¢(ul, +++, u"*1) = const is defined in a Riemann-

ian space with the metric ds? = giiduiduf (i, j=1, «++, n+1). Then for the mean curvature H of a

hypersurface we have

n—+1 io P
Bty o f 2 helf L R (13)
n b

- — T _—
n Vg =1 ou VgaB(Pua(P,,B

where g = detHgin and n is the normal vector. The expression (13) is similar to the expression for

the geodesic curvature of a line on a surface.

For simplicity we shall prove (13) in the three-dimensional case. Let e, e, and e, be basis
vectors, let (du!, du?, du’) be the tangent vector to the surface and let dx = eidui be the displace-
ment vector of a point of the space. The half-sum of the eigenvalues of the equation Dn = Mx is
equal to H. It is easy to check that the vector with components ¢ =g % 2 J=1,2,3, is orthog-
onal to the tangent plane of the surface. Suppose that the normalized unit v':zctor has components &
that is, that n = fiei. Then
o e+ ED, e;) du® — (—ai - g"r,’e,-) ejdu” .

k duk

D (& e) = (DiE' &) du* = (

du

Hence we can write Dn = Adx as
I .
(-a’é- + g‘r{“) epdu — hej dud —0.
ouk
We obtain the characteristic equation

xa—xZ(-‘;iiJrg“ fa)—{—x(...)——det —o0.
U

i .
- 4Tt
ou

This is of the third degree, but, since n is a unit vector, det||d&%/du* + F;;anfaH =0, and it reduces

to a quadratic equation. Hence

ot It o
~ + Tk

du

Next we express ¢' in terms of the derivatives of ¢. We consider the vector gb’e].. Its norm is equal

2H =

to
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Veuw'e' = v 208" 0,80 = v 27005

Hence
ia
gi — g (Pua
5B
%0 0% 8
When we multiply &° by \/gT and divide by \/g_ we obtain that
ia 0B ia -
o _ L a‘ g% Ve N %94 : g% . Ve o
f [} 3/, i
Ve ou ]/ga 400 Vg'Y 9, %0 } ]/gaﬂcPua‘Puﬁ 2g’/s Ou

As is well known, F§a= (0g/du®)/2g; therefore the last two terms cancel and we have proved (13).
It is obvious that the condition that the field n be holonomic is not essential.

Let p be the unit outward drawn normal to dV. If we integrate (13) over the volume V, we ob-

tain

¥ 1
SHdU:—Z-S (wn) dS. (14)
v v

Exactly as in ¢, by using (14) we can define the strength of sources of mean curvature. If n is

defined in a compact orientable Riemannian space R"*! without a boundary, then the integral of the

mean curvature of the field over R"*1! is equal to the strength Qme of these sources:

Hdv = Qme :
mn«}—l

(15)

In particular, when the surface measure of the singular points is zero, Qme = 0. If the field is de-
fined in a compact orientable space 3 without a boundary, then, by using (15) and the inequality
H? 4 p2> Ke - p?, where Ke = )\1)\2 is the outer curvature of the field and p = ¥ (ncurln), we ob-

tain that, for any field for which the strength of the sources of mean curvature is zero,

min (K, — %) < 0.
mB

§5. The influence of the curvature of a family of level surfaces
on the distortion of the enveloping space

Suppose that a family of surfaces ¢(x!, x?

, 1) = const, with outer curvature Ke > KO >0, is
defined in a sphere of unit radius in three-dimensional Riemannian space. First of all note that in
Riemannian space it is impossible, in general, to derive an upper bound for the radius of a sphere in
which such a family exists for an arbitrary KO’ since this holds for a family of surfaces in euclidean
space. In fact, in Lobafevskil space, a family of geodesically parallel spheres whose outer curva-
ture Ke is greater than unity is regular everywhere except for a single point. Hence we can take a
sphere of arbitrarily large radius that is filled regularly by a family of surfaces with Ke > 1. At the
same time we can show that a bound on the radius of a sphere in Lobafevskii space is possible if
Ke >1+¢(e>0 is a constant). By taking this remark into account we come to the problem under
consideration from another point of view: we fix the radius of the sphere and study the influence of
the outer curvature of the family of surfaces on the distortion of the enveloping space. Since H?>

Ke > KO, by using (14) we obtain that
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S
Kog"z_g’

where S (v) is the surface area (volume) of the sphere.

(16)

Next we find a bound for the ratio S/v for the unit sphere in Riemannian space in terms of the
maximum modulus of the scalar Ricci curvature and of the curvature of two-dimensional elements of

area. We have

R
—g 5 = 811R3230 — &12R 1308 — G13R 1232 — Z12R 1903
+ 829R1313 — B2gRa12n — — E15R 1232 — 23R 5101 + EasRonan-

Suppose that there is a family of geodesically parallel surfaces with the help of which we can define
semigeodesic coordinates in the space. The line element is written as
ds* = gudd'dx’ 4+ (dx®)?, i, j=1,2.

3

We take the coordinates so that on a fixed surface x” = const of the family we have g1,= 0. Then,

on this surface, R ¢ e 1
__.?.W = ‘;; R3232 + jvf—sz:; + §R2121,

- 2 2 _ . . .
where W =v/g,,8,, — 87, R;,,1/W*=Kg is the curvawre of the two-dimensional element of area

tangential to our fixed surface. We put
& n goa
W [\32:;‘.‘ 4= R1313 =T.

By a straightforward calculation we find that

R 1 a2g22 1 1 ag{n 2 . 1 6g22 2
3232 — ——( fw*(———)],

E Ox30x3 4 | gy \ 043 gag \ O3
R 1 9%y 171 (dgn\° 1 /3gn\®
1313 T T T T ('__ tail Eowre :
2 Jx3 0x3 4 gy \ 043 8oz \ Ox3
——_62W __ &u 0%goq . Boo 0*gn __En Ogas \2
9x3 ox? 2W 0x30x3 | AW 0x% 9x3 4Wegee \ 0x3

I

_ 82 <?&1)2 1 9gse Ognn | 11 9gn 9g2s (0810 :
2W 0x®  Oxd Wl

gy \oxs ) T ow ) ox®  9x ax®

When we note that K_ = (ZW)_Z[&g1 1/8x3- ag22/6x3 - (8g12/8x3) 2], we obtain that

oW
T — =—2 K.W.
dx3 gx3 Ke
Hence for the scalar Ricci curvature we have
R oW W
— =W = —2K.W — W= ——2"__9KW I W,
2 Ax3 9x3 K. Kg Ax3 950 KW |- Kg

3

where Ki is the inner curvature of the surface x” = const. Because the formula is written in an in-
variant form, the assumption that g, , =0 on the surface is not essential. We denote the displace-
ment along the normal to the surface by r and write our result as
2w R ’
—oKWw— (R L 17
ar? KW g K‘ER (17)

Now suppose that the family of surfaces r= const is a family of closed surfaces of spherical

type, contracting to a point, and that the family covers a domain of three-dimensional space simply.

We integrate both sides of (17) over the surface of a sphere of radius r. Let S(r) (7)) be the



210 Ju. A. AMINOV

surface area (volume) of the sphere; then

PSS o R S

r--con~t

We put Qo = max|R/2 + K%!, where the maximum is taken over all the two-dimensional elements of
area at a point and then over all points of a sphere of unit radius. We can rewrite the equation for
S(r) as
d*S
drﬂi
where Q =— [((R/2 + Kg)/S)dS. Obviously {Q < Q, As in the case of a family of parallel spheres

in euclidean space, the initial conditions for S(r) are S(0) =S "(0)=0. We compare the solution of

81 QS,

(18) with the solutions of the equations
d:S

ar? :QOS‘i—SJT’ (19)
d:S
QS 8 20

Let yl(r) and ¥ (N be a fundamental system for (18) such that yl(O)yZ'(O) - yll(O)yz(O) =1, We
put K(r, 7) = YDy (1) — ¥ ,(Ny(7) and similarly form the functions K (r, 7) for (19) and K_(r, 7)
for (20). Since with respect to 7 these functions satisfy (18), (19) and (20), and they have the same
initial data at 7 =r, when 7 < r we have

K_(r, 0 <K(r, D)< K. (r, ).
It is easy to find that, when 7 < r,

eVQ—u (r—1) e VQ—o (r—m) -9

K (9= SYQUZD =
VQ 2VQ
By using the method of variation of parameters we find that, for the solution of (18),

S(r)-- SnSK(r, 1) dr.

0

Thus we have the following bound for S(1)/v(1):

1

\ Ks (4, 1) dr R _
S < % < VQo (eVQo + e va '—2)' . (21)

v (1) i 2V Q, — sin VQ,)
o
Vory

By expanding e "%, e~ L and sin \/60 as power series in Qo we establish that for QO <20 the
following must hold:

K_(r,)drdr

S ™

S{) 3 [ 14 Que*0/12
v(1)<2( 1— Q,/20 )

From here and from (16) we find that when KO > 3/2 the enveloping space must be distorted; that is,
QO > 0. More precisely, for QO > 20 we have that

3

o> 2
O/KO £20
20 T8
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When Q> 7/2 we see that

ch V@, >-12 K, +1.

T

2

Thus we have proved

Theorem 3. Suppose that a family of surfaces ¢(u's u?

, u?) = const, with outer curvature Ke >
Ko > 0, is defined in a sphere of unit radius in the metric of a Riemannian space; further, suppose
that the set of points where q,')ul = ¢)u2 = ¢u3 = 0 has zero surface measure. Let Q= max|R/2+Kg)

over all two-dimensional elements of area and all points of the sphere. Then

3
Ko_?
Q0>E0_-“62_° when Q, <20
20 7 8
ch /———QO > n‘“; KO -1 when Qo >% (22)
2

Remark. Consider (17) when the family of parallel surfaces lies in euclidean space; let the
surfaces be closed and have genus p. By integrating both sides of (17) over a fixed surface we

obtain that
d2S
-8n (1— p);
dr® ( P

that is, the second derivative of the area depends only on the genus of the surface. It is clear from

this that for torus-type surfaces the change in area is proprotional to the displacement along the normal.
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