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SOURCES OF CURVATURE OF A VECTOR FIELD

Ju. A. AMINOV UDC 513.736.35

Abstract. It is known that for a vector field in three-dimensional space we can introduce the con-
cepts of curvature and mean curvature. In the present article we derive integral formulas for these con-
cepts; these formulas allow us to decide whether a vector field has, for example, singularities in a
domain. We explain the influence of the modulus of the curvature of a vector field on the magnitude of
its nonholonomity.

We also consider the question of the influence of the curvature of a family of surfaces on the dis-
tortion of the enveloping space for a given size of domain.

Bibliography 5 items.

Introduction

The present article is concerned with the theory of families of surfaces and vector fields. It is

well known (see, for example, [ l ] or [ 2 ]) that for a vector field η in three-dimensional space we can

introduce the analogs of the gaussian curvature and the mean curvature of a surface; we denote them

by Κ and Η respectively; and the magnitude of Κ will be called the total curvature. Under the

assumption that there are no singular points of η in the interior of a three-dimensional domain V, we

established in [ 5 ] that

jj Kdv = <j (xn) da, (D
ν *(<no

where φ is the mapping of dV onto the unit sphere σ by the unit vector field η (da is understood to

have a sign), and χ is the radius vector of a point of V. In §1 of the present article we use (1) to

introduce, in a natural way, sources of curvature and their strength. We prove (§2) an analog of (1)

that is a generalization to higher dimensions and, in addition, is constructed for all symmetric func-

tions of the principal curvatures; we then derive bounds for the integrals, over an re-dimensional do-

main, of symmetric functions of the principal curvatures of algebraic fields. In §3 we consider the

influence of \K\ on the size of the (three-dimensional) domain of existence of the field and on the

magnitude ρ = % (η curl η) of its nonholonomity by taking Κ < 0 and by assuming that the field is con-

stant along a fixed direction. In §4 and §5 we study the influence of the curvature of a family of

surfaces φ(ιιι, u2, it3) - const on the distortion of the space when the size of the domain of defini-

tion is fixed. The point is that we can intuitively regard the curvature of a family of surfaces (or of

a vector field) as a loading on a domain in three-dimensional space K; under the action of this load-

ing the metric of the enveloping space will be changed to some large, critical metric; that is, the

euclidean space becomes distorted, and the magnitude of the distortion will be determined to some
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extent by the loading. This influence can be compared with the distortion of a disc. Under the influ-

ence of internal stresses in the disc the relative positions of points and the distances between them

are altered; the external result of this is that the disc is bent and leaves the shape of a three-dimen-

sional plane. We characterize the distortion of 5ft by QQ. Let R be the scalar Ricci curvature and

let K^ be the curvature of a two-dimensional element of area in Si. Then QQ = max \R/2 + Κ<ΐβ\, where

the maximum is taken over all two-dimensional elements of area at a point and then over all points of

a sphere of unit radius. We shall find a lower bound for the amount of distortion of the space. To do

this we establish: 1) a generalized-divergent form of the mean curvature of a hyperplane of the family

φ{χι , · · ', li™ ) = const lying in a Riemannian space; it will follow from this, for example, that for

any compact, orientable Riemannian space 5ft" + 1 without a boundary, and for any family of level

hypersurfaces in 5Rn + l, we have

J Η do = 0

under the assumption that the set of singular points has zero hypersurface measure; 2) an upper bound

for the ratio S/v of the surface area of the unit sphere (without apolar points) to its volume in terms

of the curvature of two-dimensional elements of area and scalar Ricci curvature in SR (see (21)). An

estimate of the distortion Q. of Si is given by the inequalities (22) of Theorem 3.

In conclusion I express my sincere thanks to N. V. Efimov, under whose supervision the present

article was written.

§1. Sources of curvature

Let Μ be the set of singular points of the vector field η contained in the domain of definition of

n, let F be an e-neighborhood of Μ and let dF be its boundary, oriented so that for each connected

component the normal is directed into the interior of F Suppose that the following limit exists:

lim C (xn) da = Q.

If Q > 0 (Q < 0) we shall say that Μ is a source (sink) of curvature and shall call Q the strength

of the source or sink. Let us show that Q is independent of the choice of origin of the coordinate

system. Let ζχ) ζ2 and ζ^ be components of n. When the origin is translated by a vector a, Q is

changed by ^ιΐη
€^0Ιφίβρ Λ&α)άσ. Hence it is sufficient to show that, for any surface dF(,

hdo=0.

But this obviously follows from the fact that dF is closed and that ζ. is an odd function relative to

the plane ξ. = 0 in {ξχ, ξ2, £3)-space.

With regard for the singular points in the interior of V we now rewrite (1) as (the integral on the

left-hand side is improper)

[ Kdv = \ (xn) da + Q.

Thus, when the field on dV is fixed, the greater the strength of the sources, the more the large inte-

gral curvature is confined to the interior of V.

Consider an isolated singular point of M. If for any sufficiently small e we have
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ip(dFe)

where C is a positive constant, then the strength of the point source of curvature Μ is zero. In fact,

since Q is independent of the choice of origin we can locate it at the point of M. Because |(xn)| <e

on the sphere dF(J we have

[ (xn)da eC,

and, when we take the limit as e —• 0, we find that Q = 0. Hence, for example, it follows that the

isolated singular points of an algebraic field have zero strength.

We next consider the question of an extremum of

J = [ (xn) da (2)

where dV is a fixed closed surface. In viewof (1) this problem is related to that of extremizing the

integral of the complete curvature K. Note that for any Κ > 0 we can construct, in a given domain

V, a regular field η (see §3) whose complete curvature Κ is such that \K\ >_ Κ • that is, (2) cannot

be bounded from above or from below. However, we have

Theorem 1. Let dV be a sphere. In the class of fields homotopic to the normals to dV, the

field of normals gives an extreme value of (2).

Let us find those fields for which the first variation of (2) vanishes. Suppose that the variation

is given by the vector field ew. Since we are varying in a class of unit vectors, we have that

2(nw) =-((ww). We split dV into domains D^ and D2 with a common curve Γ, and in each of D^

and D we introduce its parameters (u, v). When we use

do -~. (nnnvn) dudv,

we easily find that the coefficient of e in the integrand for / is equal to

(xw) (n«nDn) -}- (xn) {(wunc.n) -f- (nuwDn) - (n«now)}.

We have

(xn) (wunon) u (xn) (n^Wj.n) ^ — (xn) (wnyn)
au

— (xn) (wnun) — (xun) (wnDn) f (xyn) (wnun) — (xnu) (wnon)

-i- (xn0) (wnun) ;- 2 (xn) (wnunc). (3)

If we integrate by parts we reduce the integrals over D and D of the first two terms on the right-

hand side of (3) to contour integrals of the form /_ (xn) (w (inn) which depend on the orientation of

Γ. Because the same orientations of D and D induce opposite orientations on Γ, the sum of these

contour integrals is zero.

We set

v = [xonu] —[x u n p ] .

When we use the relation [[ab]c] = (ac)b - a(bc), we have that

— (x«n) (wnon) -j- (xvn) (wnun) = — ([[[xun0] n] n] w)

+ ([[[xunu] n] n] w) = ([[vn] n] w) = (vn) (nw) — (vw). ( 4)
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Similarly we obtain that

(xtic) (wnun) — (xnu) (wnan) = ((xn0) nu — (xnu) nv, n, w)

= — ([[nBn0] x] n] w) = (nBnow) (xn) — (nBnun) (xw). (5)

When we use (3), (4) and (5), we find that for the first variation

6J = Ϊ {(vn) (nw) — (vw) + 4 (xn) (nBnow)} du dv.
dV

Because, with accuracy up to e, (nw) = 0 and [n^n^] = λη, we can assume that the integrand in 8J is

equal to — (vw). If [η η ] Φ 0 then w can be represented as
w = anu + βΠί).

where a and β are arbitrary functions of (u, v). We obtain that

(vw) = (χ,,η^) β — (xu n t,nu) a.

Hence for an extremal field η we have (χ η η ) = (χ η η ) = 0; that is, either n is orthogonal to
v u u υ' ν ν u v' ' ' °

dV or [η ο ] = 0, If [η η ] = 0 at a point, then the set of points where η I dV does not contain in-

terior points, and in this case η is not homotopic to the field of normals to dV. Hence everywhere

[n u nj £ 0 and η 1 dV.

We next show that, if a normal to dV is directed outwards, then δ / < 0 in a neighborhood of

the field of normals. For simplicity we take the origin of the coordinate system to be at the center

of the sphere dV. When we write out the terms in e we establish that the integrand in the expression

for δ/ contains terms in e, because we have that 2(nw) = — e (ww). Then we obtain that
δ 2 / = ^ (xw) {(wun^n) + (riuW n̂) f ( n ^ w ) } du dv

dV

\ ( x n ) {(w«wBn)+ (nuwyw) -{- (wunow) —2 (ww) (nunon)} du dv.
dV

Because, with accuracy up to e, (nw) = 0 and χ is parallel to n, we have that (xw) = 0, and so the

first integral vanishes. We transform the second integral. We have

(xn) (WuŴ n) = (xn) (wwBn) + (xn) (wuwn)
du 2 dv 2

(xn) (wwt,nu) (xn) (wuwn0). (6)

Since [η η ] Φ- 0, when we neglect the terms containing e we find that

w = an u -|- βη0, wu = aunu -j- an u u + [iBn0 + βη^,

vrv = ayn« + anBD + βΰηε -f βη^,

where a and β are arbitrary functions of (u, v). Hence

(nuW^w) + (wunt,w) = a2 (nu unDnu) + 2 α β (ηΒηΒΟην) + β2 (nBnront,). (7)

Let L, Μ and Ν be the coefficients in the second fundamental form of the unit sphere σ, oriented so

that the normal is directed outwards, and let da be the element of area of σ. Then, when we take

(6) and (7) into account, we obtain that

&J = _ C (χη) I - (La2 +2Λίαβ + Λφ2) + 2 (ww)) da.

Ψ(δν) I· )

Hence φ is the gaussian spherical mapping of dV. Because La2 + 2Μαβ + Νβ2 = —(ww) (with

accuracy up to e2), we have that δ 2 / < 0, and so the field of normals gives a maximum of (2)
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(provided the normal to dV is directed outwards).

Corollary 1. If the field η on a sphere is homotopic to the field of inward drawn normals of this

sphere, then

$ (xn)d(T>

where R is the radius of the sphere.

Corollary 2. // the index of a singular point of the field is unity, then the strength of the point

source of curvature at this point is greater than or equal to zero.

In fact, if dF( is the sphere of radius e with center at the singular point, then, by Corollary 1 to

Theorem 1, the integral (2) is bounded from below by — 4en. When we take the limit as e —• 0 we

find that Q >_ 0.

Remark to Theorem 1. If dV is a smooth convex surface with nonzero gaussian curvature, then,

in the class of fields homotopic to the field of normals to dV, 8J = 0 only for the field of normals.

§2. The integral curvatures of an re-dimensional field

We are going to consider an re-dimensional vector field η in re-dimensional euclidean space; in

particular it can be the field of normals to a family of hypersurfaces. Let λχ, · · • , λ^ be the principal

curvatures of the field; that is, the eigenvalues of the equation dn = \dx. Since η is a unit vector,

one of these eigenvalues, for example λ , is zero. When we use the equation dn - Xdx we obtain the

following expression for the symmetric functions of λ · · · , λ
:

= Σ Κ •••

"**'*

(8)

that is, S is equal to the sum of the principal minors of the kth order matrix \\£. | | . If we substi-

tute Aj · · · λπ_ j = Sn~ x for Κ in (1), it is easy to establish that (1) holds for the product of all the

principal curvatures.

We next prove a formula which concerns all the symmetric functions Sk. We write

dti2 Λ dli3 Λ · · · Λ dhk+l - dat,...lk+1,

dxik+, A · · · Λ dxin = dvik+2...in,

(ι· · · η _ f ^ l s ^ e Kronecker symbol and ν = (i · · · ί ). Then, if we assume that there are no singu-

lar points of the field in the interior of V, we have that

^ Skdv = ^ ^ ev-v«1doi;!...i/i_i_1 Λ dvik+i...in;, (9)
V dV ν

that is, the value of the integral of S over the volume is given in terms of the boundary values of n.

Equation (9) is a natural generalization of (1); for simplicity we shall prove (9) for the second

symmetric function of the principal curvatures of a field in four-dimensional euclidean space. Accord-

ing to (8), in this case we have

6 %

S2=2

and (9) can be written as
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\ (άς2 ί=3 Λ dx4 -r dl, f\ dx-, /\ dl4 -4-

dxs dxt £3X 3

dxt

where on the right-hand side we have not written out the terms that would be obtained if we were to replace χχ

by x2, χ and χ4. Consider the integral over dV. Let us take, for example, the first term in the

integrand. We have that
xidl-, Λ dca /\ dxi ^ x.L [(ί2.νιΞ3Λ; — =2χ2ΐ3Α,) dxx dx., dxt

— (?2.v,&3l3 — |2A-3=3A·,) dxx άχ.Λ dxt -,- (=2.ν2ξ3Α·:, — ΙΪΧ,ΙΛΧ.) dx., dx3 d.v.,].

We transform the integral over the boundary into a volume integral by using the Gauss-Ostrogradskii

Theorem. The expression we have written out gives the following contribution to the integral over V:

£2.v2 £2x3

Ε S
£3X2 £3x 3

It is easy to see that the coefficient of x. in this expression is zero. We similarly treat all the terms

in the integrand of the integral over the boundary; when we combine them we find that each principal

minor (£. ζ. -ξ. ζ. ) occurs twice in the integral over V; that is, the integrand of this integral
l x i >*j lxj Ι χ ί

is equal to S , as we were required to prove.

We next derive an estimate for the integral of S for an algebraic field defined in a cube with

side a. A field η is said to be algebraic of order m if for some function λ φ 0 the components

(A , · · · , A ) of λη are polynomials in χ , · · · , χ of degree not higher than m. For simplicity we

consider the estimate of the integral of S for a regular field in four-dimensional space. For this, in

view of (9), it is sufficient to estimate integrals of the form

£2x3

£3xa

dV

where dV is the boundary of the cube, arranged so that its edges are along the axes χχ, χ2, χ^ and

χ,. To be specific we put a. = 2, β = 3 and y = 4. We take a face of the cube with the coordinates

(χ., χ., χ ) in it, i 4- j Φ 4 ^ i, and denote it by Τ... We consider another three-dimensional space

with the coordinates (£ 2, ζ γ x^ and the mapping φ: (,χ., χ., χ^) —» (ζ2, ζ\, χ^) defined by

, ζ],, x. ) € ψ(Τ..). We can

0 is a polynomial of degree not great-

W e a r e g o i n g t o f i n d t h e m a x i m u m n u m b e r o f i n v e r s e i m a g e s o f a p o i n t ( f i , ζ],, x . ) ψ ( . .

where λ2 = Α2

χ + A* + A2
write A2 = ξ°2λ and A = £°

er than 2m. Hence we have the equation

Al — (It)2 λ2 = 0, A\ - λ2 = 0,

in which the variables other than x. and x. are fixed. We denote the left-hand sides of these equa-

tions by Ρ (,χ., x.) and Q(x., x.). By a well-known theorem the number of points at which Ρ = Q = 0

and /(—'• j ^ 0 is not greater than (2m) . By a straightforward calculation we find that, at the

points where Ρ = Q = 0,

Χι

Hence the image of the points where Ρ = Q = /(—'•—J = 0 has measure zero in the space of

points (ζ2, ζ,, χ^). Thus, except for a set of measure zero, the number of inverse images of points

of ψ(Τ..) is not greater than (2m) . Since ζ + ζ\ <_ 1 and \x.\ <^ a, we have that
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When we use (9) we obtain that

,S2dv < Ca2m2,

where C is an absolute constant. For an arbitrary symmetric function S of the principal curvatures

and a regular algebraic field of order m in the rc-dimensional cube V of side a we obtain that

S· < C (n, k) rnd
kn—k

then

Corollary. If for an algebraic field of order m defined in a cube of side a we have |5^ | >_ S > 0,

it

n ^ mYC(n,k)

§3. The complete curvature of a field and the magnitude of nonholonomity

In what follows we put ρ = Vi (n curl n). This quantity characterizes the nonholonomity of the

family of elements of area orthogonal to the field η = (ζ {, ζ2' £J- F ° r * t s geometrical interpretation

see [4].

Let us consider the asymptotic lines of the field. We can define the asymptotic directions by the

equation [ηώ] = μάχ, where dx is the displacement of a point of the space. If we take the coordinate

axes at a point so that the % -axis is in the direction of n, then it is easy to prove that μ is defined

by

μ2-2ρμ f tf =0.
The line along which [ηώι] = μάχ is an asymptotic line of the field; here η turns out to be its binorm-

al and μ its torsion. Thus along an asymptotic line we have

-13 άξ2 ^ (ρ ±

(10)

Let us put ξ2 = rcos<£ and ξ^ = r s in^; then we can write the first of the equations (10) as

r2d(f = (p ± Υψ^ΐζ) dxv (Π)
Next we give an example of a field, regular in its bounded domain of definition, for which | ^ | is

arbitrarily large uniformly over all the domain. It is sufficient to take the domain of definition to be

a cube. Let 1 £ x. < 2, i = 1, 2, 3. We put

η || (Alt A2, A3), Ax = χλ cos λ χ.,, Α2 = xx sin λχ2 / 4 3 = 1 ,
where λ is a parameter. Then, by (2) of [ 5 ] , we have that

τ, _

If λ > 0, then Κ >_ λ/25; if λ < 0, then Κ <̂  — |λ| /25. Our assertion follows since |λ| is arbitrary.

We next establish
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Theorem 2. Let a regular field n, constant along a fixed direction v, be defined in a ball of

radius R. Suppose that Κ <^ - KQ < 0 and \p\ <_ pQ. Then

V2 (VKo+Po - P O )
This theorem generalizes a theorem of N. V. Efimov [3] concerning the projection onto a square

of a surface of negative curvature; it is proved by the same methods as Efimov's theorem and so we

give, in the main, only an outline of the proof. The theorem shows that if we increase \K\ the modulus

of the magnitude of nonholonomity is also increased, at least at separate points.

Proof. We show that (nv) φ 0. Let Ρ = Κη η η), (η η η), (η η η)!.
Χ2 χ 3 " 3 * 1 χ \ Χ2

As was shown in ['],• the curvature Κ of the field i s given by

Κ = (ηΡ).

Let us indicate the geometrical significance of P . We choose the coordinate axes so that at some

point of Μ the χ -axis is in the direction of n. Then ξ^ = ξ2 = ζ^χ. = 0. In these coordinates Ρ has

the form

P =
*, Si

We determine a direction tangential to the line η = const through the point of M. For the displace-

ment dx = (dx., dx^, dx,) along the line η = const we have

Si*t dxl + | w , dx2 + l1X3 dx3=0, ia*, dxl + l2X, dx2 + liX3 dx3 = 0 .

Hence we obtain that dr = λΡ, λ Φ- 0; that is, Ρ is the tangent vector (but, in general, not a unit vec-

tor) to the line η = const. Thus, because Κ ̂  0 and P| |v, we have (ην) Φ 0. We draw the great

circle orthogonal to ν on the sphere. We now choose the coordinate axes so that the %,-axis is di-

rected along ν and take the origin of the coordinate system at the center of the sphere. Since

(nv) 4- 0 we can write η as

where the functions ρ = ζ./ζ, and q = ζ /ζ only depend on χ, and x2, because η is independent

of x,. From the formula for the total curvature of the field (see [5]) we have that
„ „ __„ „ Px,-fXl

P = (12)

In what follows all lines will be considered in the square Τ: χ^ = 0, - R/\/2 <_ xi <_ R/\[2, i = 1, 2.

Since Κ Φ 0, when we use (12) we obtain that q varies monotonically along the line ρ = const. As

in [ 3 ] we consider "chains" ; that is, lines formed in a definite way from parts of asymptotic lines.

Along the chain constructed with respect to the Xj-axis, φ (and hence φ = arctg q) varies monotonic-

ally. When we use (11) in the same way as in [3] we obtain that the absolute value of the projec-

tion of the ac£th chain onto the a^-axis is less than 2n/{yp^ + KQ - pQ). We prove our theorem by

contradiction. Let R > 38/\/2(\/PQ + ̂ 0 ~ P<) ̂ t n e n t h e sl^e o i ^ i s g r e a t e r t n a n 19/(yp^ + &n - p^,

and let Τ ̂  be a square in the interior of Τ whose sides are at a distance (2π + e)/(ypQ + KQ - pQ),

0. 01 >_ e > 0, from those of T. We consider the mapping οί Τ onto the unit sphere by the vector

field n. If we bear in mind that \JK >_ \/KQ + p* - p 0 , for the area σ of the image of Τχ we have
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σ = >\\[K\dxldx2

dxl dx, = (19—4π —2ε)2 > 6 · 2π.

It follows from here that on the unit sphere we can find a point that is covered by the image of Τ at

least six times, and hence in Τ there are at least six points at which (p, q) takes the same value

(ρ , q0). We then develop the discussion with the lines ρ = Po and q = q and "chains" , and, as

in [3], we arrive at a contradiction.

Remark. According to the theorem, when the modulus of the curvature of the field under consid-

eration is large and its nonholonomity is small, singularities of the field are inevitable in each sphere

of radius R >̂  /?., where R is a constant.

§4. A generalized-divergent form of the mean curvature

Suppose that a family of level hypersurfaces φ(ιι^, · · ·, un + l) = const is defined in a Riemann-

ian space with the metric ds2 = g .duldu) (i, j = 1,

hypersurface we have

, η + 1). Then for the mean curvature Η of a

(13)

where g = det | | g . .|| and η is the normal vector. The expression (13) is similar to the expression for

the geodesic curvature of a line on a surface.

For simplicity we shall prove (13) in the three-dimensional case. Let e , e 2 and e be basis

vectors, let (du1, du2, du^) be the tangent vector to the surface and let ds. = e Au1 be the displace-

ment vector of a point of the space. The half-sum of the eigenvalues of the equation Da = λαίχ is

equal to H. It is easy to check that the vector with components φ' = ζ'αφ α> /= 1, 2, 3, is orthog-

onal to the tangent plane of the surface. Suppose that the normalized unit vector has components £*;

that is, that η = <f'e.. Then

k (dl·1 ι \ k I dl·! ι ι \ k
D (ξ e,·) = (Dkl ei) du = I —V tt + lDk e,· du --- - ^ - -j- ξ Γ'Μ tjdu .

\duk I \duk )
Hence we can write Da = \dx as

duk
— Xejdu' =0.

We obtain the characteristic equation

\dul λ ( . . . ) _ d e t r
duk

= 0.

This is of the third degree, but, since η is a unit vector, det \\d£l/duh +

to a quadratic equation. Hence

Next we express ζ1 in terms of the derivatives of φ. We consider the vector

= 0, and it reduces

Its norm is equal

to
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Hence

When we multiply ζ1 by \/g and divide by \Jg we obtain that

2 H _

As is well known, Γί = (dg/dita)/2g; therefore the last two terms cancel and we have proved (13).

It is obvious that the condition that the field η be holonomic is not essential.

Let μ be the unit outward drawn normal to dV. If we integrate (13) over the volume V, we ob-

tain

= | 5 (μη) dS.
Γ dV

Exactly as in §1, by using (14) we can define the strength of sources of mean curvature. If η is

defined in a compact orientable Riemannian space ffi1 + without a boundary, then the integral of the

mean curvature of the field over $" + is equal to the strength Q of these sources:

In particular, when the surface measure of the singular points is zero, Q = 0. If the field is de-

fined in a compact orientable space K3 without a boundary, then, by using (15) and the inequality

Η + ρ >_ Κ — ρ , where Κ = λ λ is the outer curvature of the field and ρ = /^(ncurln), we ob-

tain that, for any field for which the strength of the sources of mean curvature is zero,

e — P 2 )<0.
5R3

95. The influence of the curvature of a family of level surfaces

on the distortion of the enveloping space

Suppose that a family of surfaces φ{χ , 'χ , χ ) = const, with outer curvature Κ >_ Κ > 0, is

defined in a sphere of unit radius in three-dimensional Riemannian space. First of all note that in

Riemannian space it is impossible, in general, to derive an upper bound for the radius of a sphere in

which such a family exists for an arbitrary Κ since this holds for a family of surfaces in euclidean

space. In fact, in Lobacevskii space, a family of geodesically parallel spheres whose outer curva-

ture Κ is greater than unity is regular everywhere except for a single point. Hence we can take a

sphere of arbitrarily large radius that is filled regularly by a family of surfaces with Κ > 1. At the

same time we can show that a bound on the radius of a sphere in Lobacevskii space is possible if

Κ > 1 + f (f > 0 is a constant). By taking this remark into account we come to the problem under

consideration from another point of view: we fix the radius of the sphere and study the influence of

the outer curvature of the family of surfaces on the distortion of the enveloping space. Since H2 >_

K^ >̂  KQJ by using (14) we obtain that
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where S (υ) is the surface area (volume) of the sphere.

Next we find a bound for the ratio S/v for the unit sphere in Riemannian space in terms of the

maximum modulus of the scalar Ricci curvature and of the curvature of two-dimensional elements of

area. We have
D

§ ~ = §11 °3232 ' §12°1323 §13^1232 ~ ~ §12"?1323
Δ

+ §22^1313 §23^3121 §13^1232 §23^3121 ~f" §33^2121·

Suppose that there is a family of geodesically parallel surfaces with the help of which we can define

semigeodesic coordinates in the space. The line element is written as

ds2 = gtjdx'dx1 + (dx3)2, t, / = 1 , 2 .

We take the coordinates so that on a fixed surface χ = const of the family we have g12 = 0. Then,

on this surface,
" 117 _ £ u ρ ι S22 ρ \_ D
Γ" ψ ^3232 "Γ — A 1 3 i3 ~\~ — A2121»

where W = ν§,ι§22 ~ &12 ' ^2 1 21^^ = ^3i * s r ^ e c u r v a t u r e °f t n e two-dimensional element of area
tangential to our fixed surface. We put

By a straightforward calculation we find that

R 1
3 2 3 2

2 dx3dx3 4 [gn \ dx3 J g 2 2

1 d 2 g u 1

2 djr3dx3 4

g 2 2 V ^ 3 / J

2ft7 dx3dx3 Wg22 { dx3

-±_
dg

4«7gn \ dx3 J 2W dx3 dx3 W I dx3 dx3 \ dx3 ) J -

When we note that Kg = (2W)~2[dg^/dx3 • dg22/dx3 - (dg 12/dx3)2], we obtain that

Τ dW - 2KW

Hence for the scalar Ricci curvature we have

Ρ /92Π7 Λ2Π7
W = Zt\ eW IXcaW "

2

where K. is the inner curvature of the surface x3 = const. Because the formula is written in an in-

variant form, the assumption that g = 0 on the surface is not essential. We denote the displace-

ment along the normal to the surface by τ and write our result as

. (π,

Now suppose that the family of surfaces r = const is a family of closed surfaces of spherical

type, contracting to a point, and that the family covers a domain of three-dimensional space simply.

We integrate both sides of (17) over the surface of a sphere of radius τ. Let S(r) (v(r)) be the
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surface area (volume) of the sphere; then

d2S (r)
l - \

r- coiM

We put Q = max\R/2 + ^ J J | , where the maximum is taken over all the two-dimensional elements of

area at a point and then over all points of a sphere of unit radius. We can rewrite the equation for

S(r) as
d-S

ir-dr
• 8 π [ QS,

where Q = — f{(R/2 + K^)/S)dS. Obviously \Q\ <^ Q . As in the case of a family of parallel spheres

in euclidean space, the initial conditions for S(r) are S(0) = S '(0) = 0. We compare the solution of

(18) with the solutions of the equations
d-^L=Q0S^8n, (19)

(20)Q0Sl8n.

Let γx(r) and y2(r) be a fundamental system for (18) such that 7^0)7^(0) — yi(0)y2(0) = 1. We

put K(r, τ) = γλ{τ)γ2{Γ) - γ^r)y2{f) and similarly form the functions Κ +(r, r) for (19) and K_(r, τ)

for (20). Since with respect to τ these functions satisfy (18), (19) and (20), and they have the same

initial data at τ = r, when τ <_ r we have

/L(r, τΚΚ(Γ, τ)<^+(Γ,τ).
It is easy to find that, when r <_ r,

2 vo7
By using the method of variation of parameters we find that, for the solution of (18),

r

S (r) - 8n \ Κ (r, τ) dr.
0

Thus we have the following bound for S(l)/v(l):
ι
\ K+ (1, τ) άχ _

s(i) ^ J < VQoJil!!+ g~ Vg° -2)

Κ. (ι·, χ)

By expanding e , e~ and s i n y ^ 0 as power series in Q~ we establish that for QQ < 20 the

following must hold:
•S(l) ^ 3 r l+Q0e

20/12

1 - Qo/20

From here and from (16) we find that when Κ > 3/2 the enveloping space must be distorted; that is,

QQ > 0. More precisely, for QQ > 20 we have that
3

20
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When Q >_ 77/2 we see that

^ Τ
Thus we have proved

Theorem 3. Suppose that a family of surfaces φ{^ζ u2, u ) = const, with outer curvature Κ >_

Κ > 0, is defined in a sphere of unit radius in the metric of a Riemannian space; further, suppose

that the set of points where φ = φ = φ , = 0 has zero surface measure. Let Qn = max \R/2+K<ii\

over all two-dimensional elements of area and all points of the sphere. Then

3

20

Ch YQ, > ~^-4- ̂ 0 + 1 when Qo > - • (22)

2

Remark. Consider (17) when the family of parallel surfaces lies in euclidean space; let the

surfaces be closed and have genus p. By integrating both sides of (17) over a fixed surface we

obtain that

that is, the second derivative of the area depends only on the genus of the surface. It is clear from

this that for torus-type surfaces the change in area is proprotional to the displacement along the normal.
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