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Abstract. Based on the notion of the resolvent and on the Hilbert iden-
tities, this paper presents a number of classical results in the theory of
differential operators and some of their applications to the theory of auto-
morphic functions and number theory from a unified point of view. For
instance, for the Sturm–Liouville operator there is a derivation of the
Gelfand–Levitan trace formula, and for the one-dimensional Schrödinger
operator a derivation of Faddeev’s formula for the characteristic determi-
nant and the Zakharov–Faddeev trace identities. Recent results on the
spectral theory of a certain functional-difference operator arising in con-
formal field theory are then presented. The last section of the survey is
devoted to the Laplace operator on a fundamental domain of a Fuchsian
group of the first kind on the Lobachevsky plane. An algebraic scheme is
given for proving analytic continuation of the integral kernel of the resol-
vent of the Laplace operator and the Eisenstein–Maass series. In con-
clusion there is a discussion of the relationship between the values of the
Eisenstein–Maass series at Heegner points and the Dedekind zeta-functions
of imaginary quadratic fields, and it is explained why pseudo-cusp forms
for the case of the modular group do not provide any information about
the zeros of the Riemann zeta-function.
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1. Introduction

This survey is an extended and revised version of my talk at the meeting of
the Moscow Mathematical Society on April 1, 2014. The reader is presented with
a collage of classical results in the theory of differential operators, written from
a single viewpoint, together with some applications to automorphic functions and
number theory. The relationship between these topics reflects the unity of mathe-
matics, and their choice reflects the tastes and interests of the author, influenced by
the traditions of the Leningrad–St. Petersburg mathematical school. The survey is
intended for a broad readership, from specialists in operator theory and functional
analysis to algebraic geometers and theoretical physicists. To convey to the mod-
ern reader the elegance and beauty of the results, the achievements of the Soviet
mathematical school, we chose a neoclassical style of presentation.

Let us describe the contents of this survey in more detail. In § 2 we recall
the notion of the resolvent, which plays a main role in the theory of self-adjoint
operators acting in a Hilbert space. In § 2.2 we present the Hilbert identities for
the resolvent of a self-adjoint operator A, and in § 2.3 we give the definition of the
regularized determinant detA. Section 3 is devoted to the classical Sturm–Liouville
theory. Thus, in § 3.1 we briefly recall well-known facts, and in § 3.2 we derive the
celebrated Gelfand–Levitan trace formula. Section 4 is devoted to the presentation
of the main results for the one-dimensional Schrödinger operator H. In particular,
in § 4.1 we introduce the Jost solutions and recall the formula for the resolvent of
the operatorH, in § 4.2 we derive Faddeev’s formula for the regularized determinant
det(H − λI), and in § 4.3 we present the derivation of the Zakharov–Faddeev trace
identities.

Section 5 is based on [43] and is devoted to the spectral analysis of a certain
functional-difference operator, a special pseudodifferential operator H of infinite
order which arises in conformal field theory and in the representation theory of
quantum groups. Thus, in § 5.1 we introduce the self-adjoint Weyl operators U and
V in the definition of the operator H = U +U−1 + V , and in § 5.2 we consider the
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‘unperturbed’ operatorH0 = U+U−1. In § 5.3 we define a solution to the scattering
problem and the Jost functions, and we give an explicit formula for the resolvent
of the self-adjoint operator H acting in the Hilbert space L2(R), together with the
eigenfunction expansion theorem. Finally, in § 5.4 we describe functional-difference
operators for mirror curves.

The last section, § 6, is devoted to the spectral theory of the Laplace opera-
tor A on a fundamental domain of a Fuchsian group of the first kind Γ on the
Lobachevsky plane H. Of particular interest here is the case of a non-compact
fundamental domain, when A has a continuous spectrum (considered in Faddeev’s
classical paper [14]). Thus, in § 6.1 we follow [14] and give an algebraic scheme
for proving a fundamental result on meromorphic continuation with respect to the
variable s of the integral kernel of the resolvent (A − s(1 − s)I)−1 of the operator
A and that of the Eisenstein–Maass series E(z, s), to the domain 0 < Re s ⩽ 1.
Moreover, in the half-plane Re s ⩾ 1/2, the resolvent kernel can have only simple
poles and only poles on the line Re s = 1/2 and on the interval [1/2, 1], while the
Eisenstein–Maass series can have only poles on the interval [1/2, 1], which immedi-
ately gives the eigenfunction expansion theorem for the operator A. As explained in
[45], it follows from the celebrated Selberg trace formula that the regularized deter-
minant of the operator A can be expressed in terms of the Selberg zeta-function.

The arithmetic case Γ = PSL(2,Z) — the modular group — is considered in §§ 6.2
and 6.3. Thus, in § 6.2 we discuss as a curiosity the ‘sensation’ at the end of the
1970s about the connection of the eigenvalues of the Laplace operator with the zeros
of the Riemann zeta-function and the L-series by means of so-called pseudo-cusp
forms. Using the first Hilbert identity, we explain why pseudo-cusp forms do not
provide any information about the location of these zeros.

Finally, § 6.3 contains a discussion of the relationship between the values of
the Eisenstein–Maass series at Heegner points and the Dedekind zeta-functions of
imaginary quadratic fields. Using the uniform distribution of the Heegner points in
a fundamental domain of the modular group — the Linnik asymptotics— we naively
‘prove’ the Riemann hypothesis. Of course, such an application of Linnik’s asymp-
totics is unacceptable, as is confirmed by an analogue of the classical Vinogradov–
Gauss formula in the critical strip, obtained in the paper [48] by A. I. Vinogradov
and the author. Nevertheless, attempts to relate the Laplace operator, pseudo-cusp
forms, and the Heegner points to zeros of Dedekind zeta-functions of imaginary
quadratic fields continue to this day. Evidence of this can be found in the papers
of Zagier [49] and Colin de Verdière [7], [8] in the early 1980s, as well as in recent
studies by Bombieri and Garrett (see the conference talks [3], [18]).

2. Main definitions

In response to questions in quantum mechanics, von Neumann developed a theory
of unbounded self-adjoint operators acting in a Hilbert space. According to the
Dirac–von Neumann axioms (see [41], for instance), it is self-adjoint operators that
correspond to quantum observables, and the simplest of them —the position and
the momentum of a particle — are described by unbounded operators.
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For the convenience of the reader, we follow the classical monograph [2] and
briefly recall the standard notation and basic facts from the theory of self-adjoint
operators.

2.1. Self-adjoint operators. An operator A with dense domain D(A) in a Hil-
bert space H is said to be symmetric if

(Af, g) = (f,Ag)

for all elements f, g ∈ D(A), where ( · , · ) is the inner product in H . The adjoint
operator A∗ to the densely defined operator A is defined as follows: g ∈ D(A∗) if
there is a g∗ ∈ H such that

(Af, g) = (f, g∗)

for all f ∈ D(A), and then g∗ = A∗g. The operator A is said to be self-adjoint if
A = A∗. Clearly, every self-adjoint operator is symmetric. An operator A is said to
be closed if its graph Γ(A) — the set of pairs {f,Af} for all f ∈ D(A) — is a closed
subset of H ⊕H ; A admits a closure if the closure of Γ(A) in H ⊕H is the graph
of an operator, that is, there is an operator A such that Γ(A) = Γ(A). A closed
operator defined on the whole of H is bounded.

A symmetric operator A is said to be essentially self-adjoint if its closure A is
a self-adjoint operator. A typical example is the operator A = id/dx acting in the
Hilbert space L2(R) and defined on the linear space C∞0 (R) of smooth functions with
compact support. Its closure A is a self-adjoint operator with the domain D(A) =
W 1

2 (R), the Sobolev space of absolutely continuous square-integrable functions with
square-integrable derivative.

2.2. The resolvent and the spectral theorem. Let A be a closed operator.
The values λ ∈ C for which the operator1

Rλ(A) = (A− λI)−1

(the resolvent2 ofA) exists and is defined everywhere on H are called regular values.
The set ρ(A) ⊆ C of regular values is open and is called the resolvent set. The
spectrum of an operator A is the complement to the regular set: σ(A) = C \ ρ(A).
For a self-adjoint operator, σ(A) ⊆ R.

The resolvent of an operator A satisfies the relation

Rλ(A)−Rµ(A) = (λ− µ)Rλ(A)Rµ(A), λ, µ ∈ ρ(A), (2.1)

which generalizes the elementary algebraic formula

1
a− λ

− 1
a− µ

=
λ− µ

(a− λ)(a− µ)

and is called the first Hilbert identity. It follows from (2.1) that Rλ(A) is a holo-
morphic function on ρ(A) with values in the Banach algebra L (H ) of bounded

1Here I is the identity operator on H .
2The notation R(λ, A) is also used.
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operators on H . Let A and B be closed operators with a common domain. Then
their resolvents satisfy the so-called Hilbert second identity

Rλ(A)−Rλ(B) = Rλ(A)(B −A)Rλ(B), λ ∈ ρ(A) ∩ ρ(B), (2.2)

which generalizes the algebraic formula

1
a− λ

− 1
b− λ

=
b− a

(a− λ)(b− λ)
.

The spectral theorem of von Neumann is a fundamental fact in the theory of
self-adjoint operators acting in a Hilbert space. In particular, for each self-adjoint
operator A there is unique projection-valued countably additive measure E, defined
on the σ-algebra B of Borel subsets of the real line, such that E(∅) = 0, E(R) = I,

D(A) =
{
f ∈ H :

∫ ∞

−∞
λ2 d(Eλf, f) <∞

}
,

and for f ∈ D(A)

Af =
∫ ∞

−∞
λ dEλf,

where Eλ = E((−∞, λ)) and the integral is taken as a limit of Riemann–Stieltjes
sums in the strong topology on H . The relationship between the projection-valued
measure E and the resolvent Rλ of A is given by the formula

lim
ε→0+

1
2πi

∫ b

a

(Rλ+iε −Rλ−iε) dλ = E((a, b)) +
1
2
(E({a}) + E({b})), (2.3)

sometimes called Stone’s formula. This formula is an operator version of the clas-
sical Sokhotski–Plemelj formula

1
λ− i0

− 1
λ+ i0

= 2πiδ(λ)

in the theory of distributions, and is a basis of the eigenfunction expansion theorem
for differential operators.

2.3. The determinant of an operator. Here we briefly recall the notion of
the characteristic determinant of a self-adjoint operator (see [22]). In the simplest
case, when K is a compact self-adjoint operator with trace (a trace-class or nuclear
operator), the Fredholm determinant is given by the simple formula

det(I − λK) =
∏

i

(1− λiλ), (2.4)

where the λi are the eigenvalues of the operator K, and this is an entire function.3

If the operator K is invertible, then from (2.4) we easily obtain

d

dλ
log det(I − λK) = −TrRλ(A), where A = K−1.

3Since Tr |K| =
∑

i |λi| < ∞.
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This formula can be generalized to a wider class of operators. Namely, if the
resolvent Rλ(A) is of trace class, then the characteristic determinant det(A − λI)
of A is determined (up to a multiplicative constant) from the relation

d

dλ
log det(A− λI) = −TrRλ(A). (2.5)

As we shall see below, this formula makes sense if we understand Tr to be a properly
regularized trace of the resolvent. If, in addition, Rλ(A) is an integral operator
acting in L2(X) with integral kernel Rλ(x, y) that is continuous on X ×X, where
the subset X ⊂ R is bounded, then by a well-known theorem4

TrRλ(A) =
∫

X

Rλ(x, x) dx. (2.6)

In the case X = R the following formula holds:5

TrRλ(A) = lim
n→∞

∫ n

−n

Rλ(x, x) dx. (2.7)

A more general way of introducing a regularized determinant is based on the
notion of the zeta-function of an elliptic operator (see the survey [39], as well as
[41] and references there). For simplicity, we assume that A is an elliptic operator
with a purely discrete spectrum consisting of non-negative eigenvalues λn of finite
multiplicity accumulating at infinity. The zeta-function of A is defined by

ζA(s) =
∑

λn>0

1
λs

n

,

where it is assumed that the series converges absolutely for Re s > a for some
a > 0. Under fairly general assumptions (for example, for the Sturm–Liouville
operator considered below), ζA(s) admits an analytic (meromorphic) continuation
to a domain containing the half-plane Re s ⩾ 0 and is regular for s = 0. Then the
regularized determinant detA of A is defined by

detA = exp{−ζ ′A(0)},

where the prime indicates the derivative with respect to s. The characteristic
determinant det(A − λI) is defined in a similar way, and in many examples this
definition is consistent with the formula (2.5).

3. Sturm–Liouville problem

3.1. The resolvent and the eigenfunction expansion. Following the classical
monograph [33], we consider the simplest problem of finding all non-trivial solutions
of the Sturm–Liouville equation

− y′′ + v(x)y = λy, 0 ⩽ x ⩽ π, (3.1)
4See the monograph [22], § III.10, as well as [31], § 30.5, Theorem 12.
5It is sufficient to approximate Rλ(A) by the operators PnRλ(A)Pn, where the Pn are the

orthogonal projections onto L2(−n, n) ⊂ L2(R), and to use Theorem 6.3 in Chap. III in [22].
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with zero boundary conditions

y(0) = y(π) = 0,

where v(x) is a continuous real-valued function on the interval [0, π]. The differential
operator

L = − d2

dx2
+ v(x)

is symmetric6 on the subspace C∞0 (0, π) of smooth functions with compact support.
Its Friedrichs extension is a self-adjoint Sturm–Liouville operator L in L2(0, π) with
the domain

D(L) = {y ∈W 2
2 (0, π) : y(0) = y(π) = 0},

where W 2
2 (0, π) is the Sobolev space of square-integrable functions on (0, π) with

square-integrable generalized derivatives up to second order.
Let y1(x, λ) and y2(x, λ) be solutions of equation (3.1) with the boundary con-

ditions

y1(0, λ) = 0, y′1(0, λ) = 1 and y2(π, λ) = 0, y′2(π, λ) = 1,

and let d(λ) = y1(π, λ). The function d(λ) is entire of order 1/2 with simple zeros λn

corresponding to the simple eigenvalues of the operator L and tending to infinity.
When v(x) ∈ C1(0, π), the following asymptotics hold:

λn = n2 + c+O

(
1
n

)
, where c =

1
π

∫ π

0

v(x) dx. (3.2)

The operator L has a purely discrete spectrum and the corresponding eigen-
function expansion theorem follows from (2.3). Specifically, the resolvent Rλ =
(L − λI)−1 of L is an operator-valued meromorphic function with simple poles at
λ = λn and with residues that are projection operators onto the one-dimensional
subspaces corresponding to the eigenfunctions. For λ ̸= λn the resolvent Rλ is
a bounded integral operator on L2(0, π) with integral kernel

Rλ(x, ξ) =
1

W (y1, y2)(λ)
(y1(x, λ)y2(ξ, λ)θ(ξ − x) + y1(ξ, λ)y2(x, λ)θ(x− ξ)), (3.3)

where W (f, g) = f ′g − fg′ is the Wronskian of functions f and g, so that the
Wronskian of two solutions of (3.1) does not depend on x and W (y1, y2)(x, λ) =
−d(λ), and θ(x) is the Heaviside function: θ(x) = 0 for x < 0 and θ(x) = 1 for
x ⩾ 0.

Indeed, the kernel Rλ(x, ξ) satisfies the equation(
− ∂2

∂x2
+ v(x)− λ

)
Rλ(x, ξ) = δ(x− ξ), 0 < x, ξ < π (3.4)

6The symmetric operator L acting in L2(0, π) has defect indices (2, 2), and its self-adjoint
extensions are described by the Sturm–Liouville boundary conditions.



154 L.A. Takhtajan

(where δ(x) is the Dirac delta function), which follows from (3.1) and the elementary
formula

θ′(x) = δ(x)

in the theory of distributions. Using (3.4), we easily show that the range of Rλ is
D(L) and (L− λI)Rλ = I.

3.2. Characteristic determinant and trace identities. It follows from (3.2)
that the operator Rλ is of trace class when λ ̸= λn, so that by using the definition
of det(L−λI) in terms of the operator zeta-function, it is not difficult to prove the
formula (2.5) (see [41], § 5.5.1, for example). Since the integral kernel Rλ(x, ξ) of
the trace-class operator Rλ is continuous on [0, π]× [0, π], we get from (2.6) that

TrRλ =
∫ π

0

Rλ(x, x) dx = − 1
d(λ)

∫ π

0

y1(x, λ)y2(x, λ) dx. (3.5)

It is easy to compute the integral in (3.5) using the following classical trick [13].
Specifically, we differentiate (3.1) for y1(x, λ) with respect to λ:

−ẏ′′1 + v(x)ẏ1 = λẏ1 + y1,

where the dot means the λ-derivative. We multiply this equation by y2(x, λ) and
subtract the equation for y2(x, λ), multiplied by ẏ1(x, λ). As a result, we obtain
the identity

y1y2 = ẏ1y
′′
2 − ẏ′′1 y2 = −W (ẏ1, y2)′. (3.6)

Recalling the definition of the solutions y1 and y2, we get from this that∫ π

0

y1(x, λ)y2(x, λ) dx = ẏ1(π, λ) = ḋ(λ),

and comparing (2.5) with (3.5), we obtain

det(L− λI) = Cd(λ)

with some constant C. By computing the asymptotics as λ→ −∞ in this formula
it is easy to get that C = 2 (see [41], § 5.5.1). For example,

det
(
− d2

dx2
− λI

)
= 2

sinπ
√
λ√

λ
.

Summarizing, we obtain the following Hadamard product representation for the
entire function d(λ):

d(λ) =
detL

2
(−λ)δ

∏
λn ̸=0

(
1− λ

λn

)
, (3.7)

where δ = 1 if λ = 0 is an eigenvalue for L, and δ = 0 otherwise.
When v(x) ∈ C2(0, π), one can thoroughly investigate the asymptotics of the

function d(λ) as λ → −∞ both with the help of the differential equation (3.1)
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and with the help of a Hadamard product and the asymptotics (3.2) of the eigen-
values with the remainder term O(n−2). Specifically, put λ = −k2, where k > 0.
The differential equation (3.1) with respect to y1 is equivalent to the Liouville
integral equation

y1(x, λ) =
sinh kx
k

+
1
k

∫ x

0

sinh{k(x− t)}v(t)y1(t, λ) dt.

Solving it by the method of successive approximations and integrating by parts, we
get after simple calculations that as k →∞

d(λ) =
eπk

2k

{
1 +

πc

2k
+

1
8k2

(
π2c2 − 2(v(0) + v(π))

)
+O

(
1
k3

)}
. (3.8)

On the other hand, using the Euler formula for the function sinhπk, we rewrite the
right-hand side of (3.7) as7

Φ(λ) =
detL

2
sinhπk
πk

∞∏
n=1

n2

λn

∞∏
n=1

k2 + λn

k2 + n2
= C1

sinhπk
πk

φ(k),

where

C1 =
detL

2

∞∏
n=1

n2

λn
and φ(k) =

sinhπk
πk

∞∏
n=1

(
1 +

λ2
n − n2

k2 + n2

)
.

Put sλ =
∑∞

n=1(λn−n2−c). It follows from (3.2) with the remainder term O(n−2)
that

∞∑
n=1

λ2
n − n2

k2 + n2
= c

∞∑
n=1

1
k2 + n2

+
1
k2
sλ +O

(
1
k3

)
=
πc cothπk

2k
− c

2k2
+

1
k2
sλ +O

(
1
k3

)
.

From this it is now simple to show (see [33]) that as k → +∞

Φ(λ) =
C1e

πk

2πk

{
1 +

πc

2k
+

1
8k2

(
π2c2 − 4c+ 8sλ

)
+O

(
1
k3

)}
. (3.9)

Comparing the coefficients in the asymptotic formulae (3.8) and (3.9), we obtain

C1 = π and sλ −
c

2
= −v(0) + v(π)

4
.

The first of these formulae gives the expression

detA = 2π
∞∏

n=1

λn

n2
= 2π

∞∏
n=1

(
1 +

λn − n2

n2

)
7Here we assume that δ = 0 in (3.7), which can always be achieved by shifting v(x).
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for the regularized determinant of the Sturm–Liouville operator, while the second
formula, written in the form8

∞∑
n=1

(
λn − n2 − 1

π

∫ π

0

v(x) dx
)

=
1
2π

∫ π

0

v(x) dx− v(0) + v(π)
4

,

is the celebrated Gelfand–Levitan trace formula [21] for the regularized trace of the
operator L! In the case where v(x) ∈ C∞(0, π), the formulae for the regularized
traces of all positive-integer powers of the operator L were obtained in Dikii’s9

classical paper [10] (see also the survey [37] and references there).

4. One-dimensional Schrödinger operator

Leaving aside the case of the radial Schrödinger equation (see the survey [12],
the monograph [35], and references there), we consider the Schrödinger equation
on the whole of the real line

− y′′ + v(x)y = λy, −∞ < x <∞. (4.1)

Here the potential — a measurable, real-valued function v(x) — is assumed to be
rapidly decaying: ∫ ∞

−∞
(1 + |x|)|v(x)| dx <∞. (4.2)

Without loss of generality, we assume v(x) to be continuous. Under condition (4.2),
the Schrödinger operator

H = − d2

dx2
+ v(x)

is defined on the functions ψ ∈ L2(R) that are twice differentiable on R and such
that −ψ′′+ v(x)ψ ∈ L2(R), and it is self-adjoint in L2(R). It is convenient to write

H = H0 + V,

where H0 = −d2/dx2 is the free Schrödinger operator with D(H0) = W 2
2 (R), and

V is the operator of multiplication by v(x) in L2(R). The operator H has an
absolutely continuous spectrum of multiplicity 2 filling the semi-axis [0,∞), and
finitely many simple negative eigenvalues λ1, . . . , λn. Let us examine this more
carefully (see [13], [15], [35], and [41] for details).

4.1. Jost solutions and the resolvent. It is convenient to use the parametriza-
tion λ = k2, in which the complex λ-plane cut along [0,∞) corresponds to the
upper half-plane of the variable k, the so-called ‘physical sheet’ of the Riemann
surface of the function k =

√
λ. Under the condition (4.2) the Jost solutions are

8We take the opportunity to note that this formula corrects a typing error in the corresponding
formula in § 2.2 of [42].

9Editor’s note. In his translation, the author refers to Дикий as ‘Dikii’, and this is indeed how
his name was transliterated in the translations of his Russian papers. However, later he always
wrote ‘Dickey’, and this is also reflected in some more recent references.
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defined, namely, the functions f1(x, k) and f2(x, k) satisfying (4.1) and having the
asymptotics

f1(x, k) = eikx + o(1) as x→∞
and

f2(x, k) = e−ikx + o(1) as x→ −∞.

The proof is based on the integral equation of Volterra type

f1(x, k) = eikx −
∫ ∞

x

sin k(x− t)
k

v(t)f1(t, k) dt,

and the analogous equation for f2(x, k). The following estimate holds for k ̸= 0:

|e−ikxf1(x, k)− 1| ⩽ σ(x)
k

exp
{

1
|k|
σ(x)

}
, where σ(x) =

∫ ∞

x

|v(t)| dt, (4.3)

and moreover σ ∈ L1(a,∞) for each a ∈ R and limx→∞ σ(x) = 0. Similarly,

|eikxf2(x, k)− 1| ⩽ σ̃(x)
k

exp
{

1
|k|
σ̃(x)

}
, where σ̃(x) =

∫ x

−∞
|v(t)| dt, (4.4)

and moreover σ̃ ∈ L1(−∞, a) for each a ∈ R and limx→−∞ σ̃(x) = 0.
For fixed x the Jost solutions f1(x, k) and f2(x, k) admit analytic continuation

to the half-plane Im k > 0, and for fixed k they satisfy the estimates (4.3) and (4.4).
For real k

f2(x, k) = a(k)f1(x,−k) + b(k)f1(x, k), (4.5)

where a(k) = a(−k), b(k) = b(−k), and

|a(k)|2 = 1 + |b(k)|2.

The functions a(k) and b(k) are called the transition coefficients.10 For the coeffi-
cient a(k) we have the formula

a(k) =
1

2ik
W (f1(x, k), f2(x, k)), (4.6)

implying that a(k) admits analytic continuation to the upper half-plane Im k > 0
and satisfies

a(k) = 1 +O

(
1
|k|

)
as k →∞.

The function a(k) in the upper half-plane Im k > 0 has finitely many simple zeros
iκj on the imaginary semi-axis, and the λj = −κ2

j are the eigenvalues of the oper-
ator H with the eigenfunctions ψj(x) = f1(x, iκj), j = 1, . . . , n. Furthermore, it
follows from the Poisson–Schwarz formula that a(k) satisfies the so-called dispersion
relation

a(k) = exp
{

1
πi

∫ ∞

−∞

log |a(q)|
q − k

dq

} n∏
j=1

k − iκj

k + iκj
, Im k > 0. (4.7)

10In quantum mechanics the functions t(k) = 1/|a(k)|2 and r(k) = |b(k)|2/|a(k)|2 are called
the transmission and reflection coefficients, respectively.
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The resolvent Rλ = (H − λI)−1 of the Schrödinger operator H is defined on

ρ(H) = C \ {[0,∞) ∪ {λ1, . . . , λn}}

and is an integral operator acting in L2(R) with the integral kernel

Rλ(x, y) = − 1
2ika(k)

(f1(x, k)f2(y, k)θ(x− y) + f1(y, k)f2(x, k)θ(y − x)), (4.8)

where k =
√
λ. In particular, the integral kernel of the resolvent R0

λ of the free
operator H0 takes the form

R0
λ(x, y) = −e

ik|x−y|

2ik
, Im k > 0. (4.9)

As in the case of the Sturm–Liouville operator, the integral kernel Rλ(x, y) satisfies
the same equation (3.4),(

− ∂2

∂x2
+ v(x)− λ

)
Rλ(x, y) = δ(x− y), (4.10)

where now −∞ < x, y <∞.
The eigenfunction expansion for the operator H follows from the formulae

(2.3) and (4.5)–(4.8). In particular, denote by P the orthogonal projection from
H = L2(R) onto the subspace spanned by ψ1, . . . , ψn, and denote by H0 the
Hilbert space L2

(
[0,∞),C2; |a(k)|−2 dk

)
. The operator U : H → H0 defined by

the formula

(U f)l(k) =
1√
2π

∫ ∞

−∞
f(x)fl(x, k) dx, l = 1, 2,

is a partial isometry of the Hilbert spaces H and H0:

U ∗U = I − P, U U ∗ = I0,

where I0 is the identity operator on H0. The operator U HU ∗ is the operator of
multiplication by k2 in H0. The eigenfunction expansion for the free Schrödinger
operator is the Fourier transform.

4.2. The characteristic determinant. Since the operator H has an absolutely
continuous spectrum, the formula (2.5) no longer makes sense, and there now arises
the problem of defining det(H−λI). In the case of the radial Schrödinger operator,
this problem was solved by Buslaev and Faddeev in [5], which subsequently led to
the concept of the perturbation determinant [22]. Here we consider the case of the
one-dimensional Schrödinger operator and, for simplicity of presentation, instead
of (4.2) we impose a stronger condition on the potential v(x).

Namely, suppose that v(x) is a bounded function on the real axis and v(x) =
O(|x|−3−ε) as |x| → ∞ for some ε > 0. It follows from the first condition that
V is a bounded operator on L2(R), and the second condition means that in the
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estimates (4.3), (4.4) we can replace σ(x) and σ̃(x) by O(|x|−2−ε). By analogy
with (2.5), the regularized determinant of the operator H − λI is given by

− d

dλ
log det(H − λI) = Tr(Rλ −R0

λ), λ ∈ ρ(H), (4.11)

where Rλ − R0
λ is a trace-class operator. Indeed, from the second Hilbert iden-

tity (2.2) we obtain
Rλ −R0

λ = RλV R
0
λ. (4.12)

Denote by
√
V the operator of multiplication by the function

√
v(x), where√

v(x) =
√
|v(x)| eiδ,

δ = 0 if v(x) ⩾ 0, and δ = iπ/2 if v(x) < 0. Since
√
v(x) ∈ L2(R), it follows

from (4.8) and (4.9) that the operators Rλ

√
V and

√
V R0

λ are Hilbert–Schmidt
operators, and therefore the operator Rλ −R0

λ is of trace class.
Remarkably, the trace on the right-hand side of (4.11) can be calculated explic-

itly. In the case of the radial Schrödinger equation the corresponding formula was
given by Buslaev and Faddeev in [5], and in the case of the whole axis this is the last
formula in § 1.1 of Faddeev’s survey [15] (see also Problem 2.6 in § 3.2.2 of Chap. 3
in [41]). In particular, the following relation holds:

Tr(Rλ −R0
λ) = − d

dλ
log a(

√
λ ). (4.13)

As far as we know, no complete derivation of this beautiful formula exists in the
literature. For the convenience of the reader, we present it here.

Proof of (4.13). Recall that k =
√
λ . For Im k > 0 the Jost solution f1(x, k) decays

exponentially for large x. For such k a solution g(x, k) of (4.1) linearly independent
from f1(x, k) is found from the relation W (f1, g) = 2ik, and it grows exponentially
for large x:

eikxg(x, k) = 1 +O(x−1−ε) and eikxg′(x, k) = −ik +O(x−1−ε) as x→∞.

The functions f1(x, k) and g(x, k) form a basis in the solution space, and from the
condition W (f1, g) = 2ik and (4.6) we get that

f2(x, k) = a(k)g(x, k) + c(k)f1(x, k).

Therefore, as x→∞ we have

eikxf2(x, k) = a(k)+O(x−1−ε) and eikxf ′2(x, k) = −ika(k)+O(x−1−ε). (4.14)

Similarly, as x→ −∞,

e−ikxf1(x, k) = a(k) +O(|x|−1−ε) and e−ikxf ′1(x, k) = ika(k) +O(|x|−1−ε).
(4.15)
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The trace-class operator Rλ −R0
λ has an integral kernel R̃λ(x, y) that is contin-

uous on R× R, and

R̃λ(x, x) = − 1
2ika(k)

(f1(x, k)f2(x, k)− a(k)).

Thus, using formula (2.7), we obtain

Tr(Rλ −R0
λ) =

i

2ka(k)
lim

n→∞

∫ n

−n

(f1(x, k)f2(x, k)− a(k)) dx. (4.16)

As in the case of a Sturm–Liouville operator, the integral in (4.16) can be evaluated
explicitly. Namely, write (3.6) in the form

f1(x, k)f2(x, k) = − 1
2k
W (ḟ1(x, k), f2(x, k))′ =

1
2k
W (f1(x, k), ḟ2(x, k))′, (4.17)

where the dot now stands for the k-derivative. From the integral equation for
f1(x, k) we obtain

e−ikxḟ1(x, k) = ix+O(x−ε) and e−ikxḟ ′1(x, k) = i− kx+O(x−ε) as x→∞,

and therefore for such x we get by using (4.14) that

W (ḟ1(x, k), f2(x, k)) = (i− 2kx)a(k) +O(x−ε).

Similarly, as x→ −∞,

W (f1(x, k), ḟ2(x, k)) = (i+ 2kx)a(k) +O(|x|−ε).

Using these formulae and (4.17), we obtain∫ n

0

f1(x, k)f2(x, k) dx =
(
− i

2k
+ n

)
a(k) +

1
2k
W (ḟ1(0, k), f2(0, k)) +O(n−ε)

and∫ 0

−n

f1(x, k)f2(x, k) dx =
(
− i

2k
− n

)
a(k) +

1
2k
W (f1(0, k), ḟ2(0, k)) +O(n−ε).

Adding the last two formulae and using the relation

ȧ(k) = −a(k)
k

+
1

2ik
W (ḟ1(0, k), f2(0, k)) +

1
2ik

W (f1(0, k), ḟ2(0, k))

following from (4.6), we have

lim
n→∞

∫ n

−n

(f1(x, k)f2(x, k)− a(k)) dx = iȧ(k).

Substitution of this relation into (4.16) gives us the desired formula (4.13). □
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4.3. Trace identities. It follows from (4.13) that the regularized determinant of
the Schrödinger operator is given by the formula

det(H − λI) = a(
√
λ ),

is a holomorphic function on the complex λ-plane cut along the non-negative
semi-axis, and has zeros at the eigenvalues of the operator H. Under the assump-
tion that the potential v(x) is a function in the Schwartz class,11 we easily obtain
from (4.13) (as in § 3) the trace identities for the one-dimensional Schrödinger oper-
ator H.

Namely, for such v(x) the coefficient b(k) is a Schwartz-class function, and there-
fore from (4.7) we immediately obtain an asymptotic expansion as k →∞:

log a(k) =
∞∑

l=1

cl
kl

+O(|k|−∞), Im k > 0, (4.18)

which is an analogue of the expansion (3.9) for the characteristic determinant of
the Sturm–Liouville operator. Moreover, c2l = 0 and

c2l+1 = − 1
πi

∫ ∞

−∞
k2l log |a(k)| dk − 2

2l + 1

n∑
j=1

(iκj)2l+1. (4.19)

An analogue of the asymptotic expression (3.8) is obtained by means of the
following beautiful argument (here we follow the famous paper [50] by Zakharov
and Faddeev). From (4.3) it follows that the function χ(x, k) = log f1(x, k) is well
defined for large k with Im k > 0, and

χ(x, k) = ikx+ o(1), x→∞,

and
χ(x, k) = log a(k) + ikx+ o(1), x→ −∞.

As follows from (4.1), the function

σ(x, k) =
d

dx
χ(x, k)− ik

is a solution of the Riccati equation

σ′ + σ2 − v + 2ikσ = 0,

decays as |x| → ∞, and satisfies

log a(k) = −
∫ ∞

−∞
σ(x, k) dx. (4.20)

Now it is not difficult to verify the asymptotic expansion

σ(x, k) =
∞∑

l=1

σl(x)
(2ik)l

+O(|k|−∞). (4.21)

11That is, it is smooth and rapidly decaying with all derivatives as |x| → ∞.
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The coefficients σl(x) are polynomials in the function v(x) and its derivatives at x
and are determined by the recurrence relation

σl(x) = −σ′l−1(x)−
l−1∑
j=1

σl−j−1(x)σj(x), σ1(x) = v(x);

moreover, the σ2l(x) are total x-derivatives. Comparing the formulae (4.18), (4.19)
with (4.20), (4.21), we obtain the Zakharov–Faddeev trace identities

1
πi

∫ ∞

−∞
k2l log |a(k)| dk +

2
2l + 1

n∑
j=1

(iκj)2l+1 =
(

1
2i

)2l+1 ∫ ∞

−∞
σ2l+1(x) dx.

In [50], the reader can find a remarkable application of these formulae to the proof
of the complete integrability of the Korteweg–de Vries equation.

Comparing (4.13) with (4.18), (4.19), we see that Tr(Rλ−R0
λ) can be expanded as

λ→ −∞ in an asymptotic series in inverse odd powers of
√
λ. In the Gelfand–Dikii

paper [19] this was proved directly, in both the rapidly decreasing case and the
periodic case. Namely, rewriting the second Hilbert identity (4.12) in the form

Rλ(I − V R0
λ) = R0

λ,

we obtain

Rλ = R0
λ +

∞∑
n=1

R0
λ(V R0

λ)n,

where the infinite series is understood as an asymptotic series as λ → −∞. By
using the explicit formula (4.9) for the free resolvent, it is not difficult to obtain
the asymptotic expansion

Rλ(x, x) =
∞∑

l=1

Rl(x)
λl+1/2

+O(|
√
λ|−∞).

The coefficients Rl(x) are easily found from the third-order differential equation(
− d3

dx3
+ 4(v(x)− λ)

d

dx
+ 2v′(x)

)
Rλ(x, x) = 0,

for the product of two solutions of the second-order equation (4.1). Details of these
beautiful calculations can be found in [19].

5. A certain functional-difference operator

Consider the functional-difference equation

ψ(x+ ib) + ψ(x− ib) + e2πbxψ(x) = λψ(x),

where
b > 0 and −∞ < x <∞,
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and the function ψ(x) admits analytic continuation into the strip

Πb = {z = x+ iy ∈ C : |y| < b}.

A functional-difference operator

H = U + U−1 + V

is associated with this equation, where U and V are the self-adjoint Weyl opera-
tors acting in L2(R). The operator H arises in conformal field theory and in the
representation theory of the quantum group SLq(2,R). In [43] there is a spectral
analysis of this unbounded self-adjoint operator acting in L2(R). We give a detailed
presentation of these results.

5.1. Weyl operators. The quantum mechanical Weyl operators are unitary oper-
ators U(u) and V (v) on L2(R), u, v ∈ R, defined by the formulae

(U(u)ψ)(x) = ψ(x− u) and (V (v)ψ)(x) = e−ivxψ(x), ψ ∈ L2(R)

(for example, see [41], Chap. 2, where the Planck constant ℏ is set to be 1). The
operators U(u) and V (v) satisfy the Weyl commutation relations

U(u)V (v) = eiuvV (v)U(u).

In the representation theory of the quantum group SLq(2,R) one uses complex
values of u and v, for which the Weyl operators U(u) and V (v) become unbounded
self-adjoint operators acting in L2(R).

Namely, consider the operators U and V given formally by

(Uψ)(x) = ψ(x+ ib), (V ψ)(x) = e2πbxψ(x) (5.1)

and satisfying the relation

UV = q2V U, q = eπib2 , (5.2)

on the common domain of U and V . The operators U and V defined by (5.1) are
unbounded self-adjoint operators acting in L2(R). Specifically, U is a self-adjoint
operator acting in L2(R) with the domain

D(U) = {ψ(x) ∈ L2(R) : e−2πbpψ̂(p) ∈ L2(R)},

where
ψ̂(p) = F (ψ)(p) =

∫ ∞

−∞
ψ(x)e−2πipx dx

is the Fourier transform12 in L2(R). Equivalently, the domain D(U) consists of the
functions ψ(x) which admit analytic continuation into the strip

Π+
b = {z = x+ iy ∈ C : 0 < y < b}

12We are using the normalization of the Fourier transform that is customary in analytic number
theory.
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with the property that ψ(x+ iy) ∈ L2(R) for all 0 ⩽ y < b and that the limit

ψ(x+ ib− i0) = lim
ε→0+

ψ(x+ ib− iε)

exists in the sense of convergence in L2(R). Furthermore, for ψ ∈ D(U) we have

(Uψ)(x) = ψ(x+ ib− i0).

The domain D(U−1) of the inverse operator U−1 is defined similarly, and we
have (U−1ψ)(x) = ψ(x − ib + i0). The domain D(V ) of the self-adjoint operator
V consists of the functions ψ(x) ∈ L2(R) for which e2πbxψ(x) ∈ L2(R). Thus, we
have

U−1 = F−1VF ,

where the inverse Fourier transform is given by the formula

ψ(x) =
∫ ∞

−∞
ψ̂(p)e2πipx dp.

5.2. The operator H0. The free operator H0 = U + U−1 is an unbounded
self-adjoint operator acting in L2(R) and defined on D(H0) = D(U) ∩D(U−1) by
the formula

(H0ψ)(x) = ψ(x+ ib− i0) + ψ(x− ib+ i0), ψ ∈ D(H0).

Obviously, for b → 0 the operator b−2(H0 − 2I) turns into the operator −d2/dx2.
In terms of the Fourier transform the operator Ĥ0 = FH0F−1 is the operator of
multiplication by 2 cosh(2πbp), and thus the domain D(H0) admits an equivalent
description:

D(H0) =
{
ψ(x) ∈ L2(R) :

∫ ∞

−∞
cosh2(2πbp)|ψ̂(p)|2 dp <∞

}
,

and it is a ‘hyperbolic analogue’ of the Sobolev space W 2
2 (R).

For λ ∈ C \ [2,∞) the resolvent of the operator Ĥ0,

R̂0
λ = (Ĥ0 − λI)−1,

is the operator of multiplication by the function (2 cosh(2πbp) − λ)−1, and it is
bounded on L2(R). Because the function 2 cosh(2πbp) is a two-to-one map of the
real axis −∞ < p < ∞ onto [2,∞), the spectrum of Ĥ0 is absolutely continuous
and fills the semi-infinite interval [2,∞) with multiplicity 2. Correspondingly, for
λ ∈ C \ [2,∞) the resolvent

R0
λ = (H0 − λI)−1

of H0 is an integral operator acting in L2(R) with integral kernel depending on the
difference of the arguments,

(R0
λψ)(x) =

∫ ∞

−∞
R0

λ(x− y)ψ(y) dy, (5.3)
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where

R0
λ(x) =

∫ ∞

−∞

e2πipx

2 cosh(2πbp)− λ
dp. (5.4)

It is convenient to use the parametrization (cf. § 4.1)

λ = 2 cosh(2πbk),

in which the resolvent set C \ [2,∞) becomes the ‘physical sheet’ — the strip 0 <
Im k ⩽ 1/(2b) — and the continuous spectrum [2,∞) is doubly covered by the real
axis −∞ < k <∞. The integral (5.4) is easily calculated, and we obtain

R0
λ(x) =

i

2b sinh(2πbk)

(
e−2πikx

1− e2πx/b
+

e2πikx

1− e−2πx/b

)
, λ = 2 cosh(2πbk). (5.5)

The function R0
λ(x) is regular at x = 0, and for 0 < Im k ⩽ 1/(2b) the following

estimate holds:
|R0

λ(x)| ⩽ Ce−2π Im k|x|,

where C > 0 is a constant,13 so that for λ /∈ [2,∞) the formulae (5.3) and (5.5) do
indeed define a bounded operator on L2(R).

It is instructive to rewrite (5.5) in terms of the solutions of the equation

ψ(x+ ib− i0, k) + ψ(x− ib+ i0, k) = 2 cosh(2πbk)ψ(x, k) (5.6)

for the continuous-spectrum eigenfunctions of the operator H0, that is, in terms of
the solutions f±(x, k) = e±2πikx, which are analogues of the Jost solutions in the
theory of the one-dimensional Schrödinger operator (see § 4.1). Namely,

R0
λ(x− y) =

i

bC(f−, f+)(k)

(
f−(x, k)f+(y, k)
1− e2π(x−y)/b

+
f−(y, k)f+(x, k)
1− e−2π(x−y)/b

)
, (5.7)

where
C(f, g)(x, k) = f(x+ ib, k)g(x, k)− f(x, k)g(x+ ib, k)

is the so-called Casorati determinant, which is an analogue of the Wronskian for
solutions of the functional-difference equation (5.6). It is a periodic function of x
with period ib, and in the case of the Jost solutions

C(f−, f+)(x, k) = 2 sinh(2πbk).

There is a remarkable similarity between (5.7) and the formulae (3.3) and (4.8),
where instead of the Heaviside function θ(x) a smoothed analogue of it is involved,
namely, the function θb(x) defined by the formula14

θb(x) =
1

1− e−2πx/b
.

13Here and below we use C to denote various constants.
14As noted by A.M. Polyakov, the function θb(x), after identification of x with the energy ϵ

and identification of 2π/b with the inverse temperature 1/(kT ), coincides with the one-particle
partition function Z = (1− e−ϵ/(kT ))−1 in the Bose–Einstein statistics.
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In this case, the analogue of the relation θ′(x) = δ(x) is the formula

1
ib

(θb(x− i0)− θb(x+ i0)) = δ(x)

for real x, which is equivalent to the Sokhotski–Plemelj formula. The following
simple formula also holds:

1
ib
θb(x± i0) =

1
ib

p. v. θb(x)∓
1
2
δ(x), (5.8)

where the distribution θb(x) is understood as the Cauchy principal value. From
this we obtain for R0

λ(x− y) the equation

R0
λ(x− y + ib− i0) +R0

λ(x− y − ib+ i0)− λR0
λ(x− y) = δ(x− y). (5.9)

Indeed, setting y = 0 and using (5.6), (5.8), and the regularity of R0
λ(x) at x = 0,

we have

R0
λ(x+ ib− i0) +R0

λ(x− ib+ i0)− λR0
λ(x)

=
i

2b sinh(2πbk)
[
f−(x+ ib, k)θb(−x+ i0) + f+(x+ ib, k)θb(x− i0)

+ f−(x− ib, k)θb(−x− i0) + f+(x− ib, k)θb(x+ i0)
]

− i

b
coth(2πbk)(f−(x, k)θb(−x) + f+(x, k)θb(x))

=
1

4 sinh(2πbk)
[
f−(ib, k)− f+(ib, k)− f−(−ib, k) + f+(−ib, k)

]
δ(x) = δ(x).

By using the representation (5.7) and equation (5.9), it is easy to verify directly
that for λ ∈ C \ [2,∞) the integral operator (5.3) is the inverse of the operator
H0 − λI (see §§ 3 and 4).

5.3. The operator H. Here we consider the equation

ψ(x+ ib− i0) + ψ(x− ib+ i0) + e2πbxψ(x) = 2 cosh(2πbk)ψ(x), (5.10)

which is the q-analogue of the equation

−ψ′′ + e2xψ = k2ψ

for the Bessel functions. As is well known, the last equation has a solution that
is decreasing as x → ∞, the modified Bessel function of the second kind Kik(ex)
given by the inverse Mellin transform of the product of two gamma functions.
The equation (5.10) also has a solution that is decreasing as x → ∞, the Fourier
transform of a product involving another wonderful special function, Faddeev’s
quantum dilogarithm. This function was introduced by Faddeev in [16] and has the
integral representation15

Φb(z) = exp
{

1
4

∫ ∞

−∞

e2itz

sinh bt sinh b−1t

dt

t

}
, (5.11)

15The function Φb(z) has an interesting history (see [43], where the notation γ(z) was used).
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where the contour of integration passes above the singularity at t = 0. The repre-
sentation (5.11) is valid for | Im z| < cb = (b + b−1)/2 and defines a meromorphic
function with poles z = −icb −mib − nib−1 for integers m,n ⩾ 0, which satisfies
the functional equations

Φb(z + ib) = (1 + q−1e−2πbz)Φb(z), q = eπib2 ,

Φb(z + ib−1) = (1 + q̃−1e−2πb−1z)Φb(z), q̃ = eπib−2
.

Let

φ̂(p, k) = exp
{
−iβ − πik2 − πi(p− icb)2

}
Φb(p− k − icb)Φb(p+ k − icb),

where β =
π

12
(b2 + b−2). By using the analytic properties of Φb(z) (see [43], for

example) it is easy to verify that the function

φ(x, k) =
∫ ∞

−∞
φ̂(p, k)e2πipx dp

is a solution of (5.10), where the contour of integration passes above the singularities
at p = ±k. Namely, the following statements hold.

1. For real k the function φ(x, k) is an even real-valued function of k, having
the asymptotics

φ(x, k) = M(k)e2πikx +M(−k)e−2πikx + o(1)

as real x→ −∞, where

M(k) = exp
{
i

(
β +

π

4

)
− 2πik(k − icb)

}
Φb(2k − icb), M(k) = M(−k),

and
1

|M(k)|2
= 4 sinh(2πbk) sinh(2πb−1k).

Thus, φ(x, k) is a scattering solution for (5.10).
2. For real x the function φ(x, k) admits analytic continuation into the strip

0 < Im k ⩽ 1/(2b) and satisfies the reality condition

φ(x, k) = φ(x,−k).

3. For fixed k in the physical strip, the function φ(x, k) extends to an entire
function of the complex variable x and satisfies (5.10).

4. The following estimates hold:

|φ(x, k)| ⩽ C exp{−2π Im k x}

uniformly for −∞ < x ⩽ a, and

|φ(x, k)| ⩽ C exp{−π(b+ b−1)x}, |φ(x± ib, k)| ⩽ C exp{π(b− b−1)x}

uniformly for a ⩽ x <∞.
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As x → −∞, equation (5.10) takes on the free form (5.6), so it is natural to
assume that (5.10) has Jost solutions, that is, solutions f±(x, k) with the asymp-
totics

f±(x, k) = e±2πikx + o(1) as x→ −∞. (5.12)

Namely, let

f+(x, k) =
1

4 sinh(2πb−1k)M(k)
×

(
φ(x− ib−1, k)− φ(x+ ib−1, k) + 2 sinh(2πb−1k)φ(x, k)

)
and f−(x, k) = f+(x,−k). From properties 1 and 3 of the function φ(x, k) we
immediately get that for real x the functions f±(x, k) are solutions of (5.10) and

φ(x, k) = M(k)f+(x, k) +M(−k)f−(x, k). (5.13)

From the properties of the solution φ(x, k) listed above it is not difficult to derive
the following properties of the Jost solutions.

1′. For real x and k the functions f±(x, k) have the asymptotics (5.12).
2′. For real x the functions f±(x, k) admit analytic continuation to the physical

strip 0 < Im k ⩽ 1/(2b) and satisfy the condition

f±(x, k) = f±(x,−k).

3′. For fixed k in the physical strip, the functions f±(x, k) are entire functions
of the variable x and satisfy equation (5.10) and condition (5.13). Moreover, the
asymptotics in 1′ remain valid for 0 ⩽ Imx ⩽ b.

4′. The estimates
|f±(x, k)| ⩽ Ce∓2π Im k x

hold uniformly for −∞ < x ⩽ a, and

|f±(x, k)| ⩽ Ceπ(b−1−b)x, |f±(x+ ib, k)| ⩽ Ceπ(b+b−1)x

uniformly for a ⩽ x <∞.

Using these analytic properties and the Phragmén–Lindelöf theorem, one can
prove that the Casorati determinant of the Jost solutions does not depend on x,
and therefore

C(f−, f+)(x, k) = 2 sinh(2πbk).

Arguing as in case of the free operator H0, from this we get that for λ ∈ C \ [2,∞)
the integral operator Rλ acting in L2(R) with the symmetric kernel

Rλ(x, y) =
i

2b sinh(2πbk)M(k)
×

(
f−(x, k)φ(y, k)θb(y − x) + f−(y, k)φ(x, k)θb(x− y)

)
(5.14)

is the resolvent of the operator H. Indeed, since the functions φ(x, k) and f−(x, k)
satisfy (5.10), we get from (5.8) the equation

Rλ(x+ ib− i0, y) +Rλ(x− ib+ i0, y) + (e2πbx − λ)Rλ(x, y) = δ(x− y), (5.15)
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and we get from the analytic properties of these functions the estimate

|Rλ(x, y)| ⩽ Ce−2π Im k |x−y|,

so that for λ ∈ C \ [2,∞) the operator Rλ is bounded on L2(R). Using (5.15) and
the identity

C(f−, φ)(x, k) = 2 sinh(2πbk)M(k),

we obtain the desired statement that Rλ = (H − λI)−1.
Finally, the eigenfunction expansion theorem for the operator H is obtained

from (2.3). Namely, by computing the jump of the resolvent kernel Rλ(x, y) on the
branch cut [2,∞) using (5.13), we get that the operator U given by the formula

(U ψ)(k) =
∫ ∞

−∞
ψ(x)φ(x, k) dx, ψ(x) ∈ L2(R),

maps L2(R) isometrically onto the Hilbert space H0 = L2([0,∞), |M(k)|−2 dk),
that is,

U ∗U = I and U U ∗ = I0,

where I0 is the identity operator on H0. Moreover, the operator U HU −1 is the
operator of multiplication by the function 2 cosh(2πbk) on H0, so H has a simple
absolutely continuous spectrum filling [2,∞). As was noted in [43], the eigenfunc-
tion expansion theorem for H is a q-analogue of the classical Kontorovich–Lebedev
transform in the theory of special functions.

5.4. Operators for mirror curves. In [1] a remarkable connection was found
between the functional-difference operators constructed from the Weyl operators U
and V and the quantization of algebraic curves that are the images of toric Calabi–
Yau threefolds under the mirror symmetry. A typical example of such varieties is
the total space of the canonical bundle of a toric del Pezzo surface S. The spectral
properties of such operators were studied in [23]. In the simplest case, when S is
the Hirzebruch surface S = P1 × P1, we obtain the operator

H(ζ) = U + U−1 + V + ζV −1,

where the parameter ζ > 0 plays the role of a physical mass. Thus, the operator H
considered above corresponds to the massless case H = H(0). When S = P(1,m, n)
is a weighted projective space with m,n ∈ N, the corresponding operator has the
form

Hm,n = U + V + q−mnU−mV −n.

In [30] the spectral properties of the self-adjoint operators H(ζ) and Hm,n in
L2(R) were investigated. In particular, there it was proved that these operators
have a purely discrete spectrum, and an asymptotic expression for the eigen-
values was obtained which implies that H(ζ)−1 and H−1

m,n are trace-class opera-
tors. Furthermore, an analogue of Weyl’s asymptotic law was obtained for the
eigenvalue-counting function N(λ): it was proved that

lim
λ→∞

N(λ)
log2 λ

=
1

(πb)2
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for the operator H(ζ) and

lim
λ→∞

N(λ)
log2 λ

=
cm,n

(2πb)2
, where cm,n =

(m+ n+ 1)2

2mn
,

for Hm,n. Hence for the eigenvalues λk we get that

λk = eα
√

k (1 + o(1))

as k →∞, where α = πb for H(ζ) and α = 2πb/√cm,n for Hm,n (see (3.2) in § 3.1).
A detailed proof of these formulae was given in [30]. We note here that it would be

quite interesting to obtain more accurate asymptotic formulae for the eigenvalues
of the operators H(ζ) and Hm,n. As we saw in § 3.2, it is very instructive to
compare the asymptotics of the eigenvalues with the asymptotics of the Fredholm
determinants of the operators H(ζ)−1 and H−1

m,n. In [23] a remarkable connection
was pointed out between these determinants and the enumerative invariants of the
corresponding Calabi–Yau manifolds. We leave it to the reader to reflect on these
intriguing connections and associations.

6. Laplace operator on a fundamental domain
of a discrete group on the Lobachevsky plane

Let H = {z ∈ C : Im z > 0} be the Poincaré model of the Lobachevsky plane

with the metric ds2 =
|dz|2

y2
and the area form dµ(z) =

dx ∧ dy
y2

, z = x + iy. The

group of motions of the Lobachevsky plane is the Lie group G = PSL(2,R), which
acts on H by linear-fractional transformations,

H ∋ z 7→ gz =
az + b

cz + d
∈ H, where g =

(
a b
c d

)
∈ G.

Denote by A the Laplace operator of the Poincaré metric,

A = −y2∆, where ∆ =
∂2

∂x2
+

∂2

∂y2
, (6.1)

defined on the space C∞0 (H) of smooth functions with compact support. The oper-
ator A commutes with the action of G on H and is essentially self-adjoint on the
Hilbert space H0 = L2(H, dµ). Its closure, a self-adjoint operator A0 = A, has an
absolutely continuous spectrum of infinite multiplicity, filling the interval [1/4,∞).
It is convenient to use the parametrization λ = s(1− s), in which the resolvent set
C \ [1/4,∞) corresponds to the half-plane Re s > 1/2.

The operator A0 is invariant under the action of G on H, so its resolvent R0
λ =

(A0 − s(1− s)I)−1 is the integral operator with kernel

R0
λ(z, z′) = r0(z, z′; s) = φ(u(z, z′), s),

where

u(z, z′) =
|z − z′|2

4yy′
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is a point-pair which is invariant in the Lobachevsky geometry (u(gz, gz′) = u(z, z′)
for all g ∈ G), and φ(u, s) is given by the classical integral

φ(u, s) =
1
4π

∫ 1

0

[t(1− t)]s−1(t+ u)−s dt

and can be expressed explicitly in terms of a hypergeometric function. For fixed s
the function φ(u, s) has the asymptotics

φ(u, s) = − 1
4π

log u+O(1) as u→ 0 (6.2)

and
φ(u, s) = O(u−σ) as u→∞ (here σ = Re s). (6.3)

Moreover,
r0(z, z′; s) = r0(z, z′; s). (6.4)

Using these formulae, it is easy to check directly that if f ∈ H0, then

(R0
λf)(z) =

∫∫
H
r0(z, z′; s)f(z′) dµ(z′) ∈ D(A0), where λ = s(1− s),

and (A0 − λI)R0
λf = f (see [14] and also the monographs [26] and [29]).

6.1. The resolvent and the eigenfunction expansion. Let Γ denote a Fuch-
sian group of the first kind, that is, a discrete subgroup of G = PSL(2,R) such that
the quotient Γ\H has finite area

µ(F ) =
∫∫

F

dx dy

y2
<∞,

where F is a fundamental domain of Γ in H. Recall that F is an open subset of H
such that γ1F ∩ γ2F = ∅ when γ1 ̸= γ2, and the union

⋃
γF over all γ ∈ Γ is H.

Equivalently, a Fuchsian group of the first kind is a discrete subgroup Γ of G which
is finitely generated by hyperbolic generators α1, β1, . . . , αg, βg, elliptic generators
σ1, . . . , σm of orders k1, . . . , km ⩾ 2, and parabolic generators τ1, . . . , τn. They
satisfy the relations

[α1, β1] · · · [αg, βg]σ1 · · ·σmτ1 · · · τn = 1 and σk1
1 = · · · = σkm

m = 1,

where [α, β] = αβα−1β−1, and the condition

χ(Γ) = 2− 2g − n−
m∑

j=1

(
1− 1

kj

)
< 0,

wherein µ(F ) = −2πχ(Γ). In the case n > 0 the closure F of the fundamental
domain F is non-compact in H and contains n cusps, fixed points of the parabolic
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transformations τ1, . . . , τn, which lie on R∪{∞}. The simplest example (which was
already known to Gauss; see [28]), is the fundamental domain F of the modular
group PSL(2,Z),

F =
{
z ∈ H : |x| < 1

2
and x2 + y2 > 1

}
.

We have PSL(2,Z)\H ≃ F̃ , where F̃ is the so-called modular figure

F̃ =
{
z ∈ H : − 1

2
< x < 0 and x2+y2 > 1

}
∪

{
z ∈ H : 0 ⩽ x ⩽

1
2

and x2+y2 ⩾ 1
}
.

A measurable function f on H is said to be Γ-automorphic if

f(γz) = f(z)

for all z ∈ H and γ ∈ Γ. Let H = L2(F, dµ) be the Hilbert space of Γ-automorphic
functions that are square integrable on F with respect to the measure dµ, with

∥f∥2 =
∫∫

H
|f(z)|2 dx dy

y2
<∞.

It is not difficult to show that the differential expression (6.1), defined on the space
C∞0 (F ) of smooth functions on F with compact support, is an essentially self-adjoint
operator in H . Denote its closure by A.

Since the Laplace operator in the spaces H0 and H is given by the same differ-
ential expression (6.1), it is natural to assume that the resolvent of A in H , that
is, the operator

Rλ = (A− s(1− s)I)−1, where λ = s(1− s),

is still an integral operator with the integral kernel Rλ(z, z′) = r(z, z′; s) obtained
from r0(z, z′; s) by the classical method of images. Using a simple criterion for the
convergence over a discrete group (see [14] and [29]) and the estimate (6.3), we can
easily prove that if z ̸= γz′ for all γ ∈ Γ, then for σ > 1 the series

r(z, z′; s) =
∑
γ∈Γ

r0(z, γz′; s) (6.5)

is absolutely convergent, uniformly with respect to z, z′ on every compact subset,
and it satisfies the reality condition (6.4). The further analysis depends essentially
on whether the closure F of the fundamental domain in H is compact (the case
n = 0) or non-compact (the case n ⩾ 1).

The case n = 0 is elementary. Indeed, for σ > 1 the kernel r(z, z′; s) has a weak
singularity on the diagonal in F × F and defines a compact operator on H , the
resolvent Rλ of the operator A. The eigenfunction expansion theorem immediately
follows from the first Hilbert identity

Rλ −Rµ = (λ− µ)RµRλ

(see (2.1)) and the Hilbert–Schmidt decomposition for the compact operator.
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Indeed, choose κ > 1 and put R = Rµ, where µ = κ(1−κ) < 0. The self-adjoint
compact operator R is positive, so

R =
∞∑

n=1

µnΠn,

where the Πn are the orthogonal projections from H onto the finite-dimensional
eigenspaces of R corresponding to the eigenvalues µn > 0, and µ1 = −µ−1. Here

∞∑
n=1

Πn = I and lim
n→∞

µn = 0.

Rewriting the Hilbert identity as an equation for Rλ,

(I − (λ− µ)R)Rλ = R, (6.6)

we obtain the eigenfunction expansion theorem for A:

Rλ =
∞∑

n=1

Πn

λn − λ
, where λn = µ+

1
µn

.

In the case n ⩾ 1 the derivation of the eigenfunction expansion theorem for A
is rather complicated. Namely, the spectrum of the Laplace operator now con-
sists of the n-fold absolutely continuous spectrum [1/4,∞) and finite-multiplicity
eigenvalues lying on 0 ⩽ λ < ∞ without accumulation points on a finite interval.
Moreover, the so-called Eisenstein–Maass series defined by series over cosets of Γ
which are absolutely convergent for σ = Re s > 1 admit meromorphic continuation
to the whole of the complex s-plane, with poles for σ < 1/2 and on the interval
[1/2, 1], and the eigenfunctions of the continuous spectrum of A are given by ana-
lytic continuation of the Eisenstein–Maass series to the line σ = 1/2. These results
were announced16 in Selberg’s famous paper [38], and were first proved by Faddeev
[14]. The monograph [29] of Lang is devoted to a detailed presentation of Faddeev’s
method.

It is easy to show [14] that the series (6.5) still converges for σ > 1, and for
σ > 2 it is the integral kernel of the resolvent Rλ of A. Nevertheless, equation (6.6)
is no longer suitable for an investigation of the resolvent Rλ for all λ = s(1− s) ∈
C\[1/4,∞). The fact is that for µ = κ(1−κ) with κ > 2 the operator R = Rµ is no
longer compact, but rather has an absolutely continuous spectrum. A remarkable
observation made by Faddeev in [14] is that the main part of R generating this
spectrum can be identified and explicitly inverted! The paper [14] is based on
a virtuoso use of the resolvent technique, the spectral theory of Sturm–Liouville
operators, and the Fredholm theory. Here we present only the main steps of the
algebraic scheme of calculations; a detailed derivation of all the necessary estimates
can be found in [14] and [29].

16A proof based on potential theory was presented in Selberg’s then unpublished 1954 lectures
at the University of Göttingen.
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In particular, for simplicity consider the case of one cusp17 i∞ and choose a fun-
damental domain F in the form

F = F0 ∪ F1,

where F 0 is compact and F1 is a strip {z = x + iy : − 1/2 ⩽ x ⩽ 1/2, y ⩾ a} for
some a > 0. Denote by P0 and P1 = I − P0 the orthogonal projection operators
on H corresponding to multiplication by the indicator functions of the regions F0

and F1, and write the operator R as

R = R00 +R10 +R01 +R11,

where R00 = P0RP0, R01 = P0RP1, R10 = P1RP0, and R11 = P1RP1.
By using (6.5) it is not difficult to show that for κ > 2 the operators R00, R01,

and R10 are compact. It follows from the representation (6.5) that the ‘cusp part’
of R, that is, the operator R11 = P1RP1, is the integral operator with kernel

R11(z, z′) =
∑

γ∈Γ∞

R0
κ(z, γz′),

where Γ∞ =
{(

1 n
0 1

)
, n ∈ Z

}
is the stabilizer of the cusp i∞ in the group Γ.

Rewriting this formula as

R11(z, z′) =
∞∑

n=−∞
φ

(
|z − z′ − n|2

4yy′
,κ

)
,

we see that the kernel R11(z, z′) is an even periodic function of the variable x− x′

with period 1, and it can be expanded in a Fourier series

R11(z, z′) = t0(y, y′) +
∞∑

m=1

tm(y, y′) cos
(
2πm(x− x′)

)
. (6.7)

The constant term, that is, the function t0(y, y′), is easily computable:

t0(y, y′) =
1

2κ − 1

{
yκy′1−κ , y ⩽ y′,

y1−κy′κ , y > y′,

and for the functions tm(y, y′) it is not difficult to obtain expressions in terms of
the modified Bessel functions.

The operator R11 acts in the Hilbert space P1H , which has a natural subspace
L2([a,∞); y−2 dy) consisting of functions independent of x, and the orthogonal
projection operator P from P1H onto L2([a,∞); y−2 dy) is given by integration:

f(z) 7→ P (f)(y) =
∫ 1/2

−1/2

f(x+ iy) dx, y ⩾ a. (6.8)

17The case of several cusps is considered in the same way.
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We write the kernel R11(z, z′) in the form

R11 = T +R′11,

where T = PR11P is the integral operator acting in L2([a,∞); y−2 dy) with kernel
t0(y, y′), and R′11 is the integral operator with kernel R11(z, z′)−t0(y, y′). Using the
Fourier expansion (6.7) and standard estimates for the modified Bessel functions,
we can easily prove (for details, see [29]) that the operator R′11 is compact. By
recalling formulae in § 3.1 it is easy to verify that

T = (B − κ(1− κ)I)−1,

where B is a self-adjoint operator acting in L2([a,∞); y−2 dy) and given by the
differential expression Bφ = −y2 d2φ/dy2 and the boundary condition18

κφ(a) = aφ′(a).

For σ > 1/2 the resolvent Qλ =
(
B − s(1 − s)I

)−1 is the integral operator with
kernel

q(y, y′; s) =
1

2s− 1
(
φ(y, s)y′1−sθ(y′ − y) + y1−sφ(y′, s)θ(y − y′)

)
,

where
φ(y, s) = ys + a2s−1 s− κ

s+ κ − 1
y1−s.

For σ = 1/2 the functions φ(y, s) form a complete system of continuous-spectrum
eigenfunctions for the operator B in the space L2([a,∞); y−2 dy).

Summing up, for κ > 2 we have

R = T + V,

where V is a compact operator. Therefore, A can be regarded as a perturbation
of B with the same absolutely continuous spectrum! Namely, we now write (6.6)
in the form

(I − (λ− µ)T )Rλ = R+ (λ− µ)V Rλ, (6.9)

where λ = s(1− s) and µ = κ(1− κ). It follows from the first Hilbert identity for
B that

I − (λ− µ)T =
(
I + (λ− µ)Qλ

)−1
,

so (6.9) can be rewritten as

Rλ = (I + (λ− µ)Qλ)(T + V ) + (λ− µ)(I + (λ− µ)Qλ)V Rλ,

or
Rλ = Qλ + (I + (λ− µ)Qλ)V + (λ− µ)

(
I + (λ− µ)Qλ

)
V Rλ (6.10)

18Here we correct the typing error in [14] after (3.7) and also in the corresponding place in
[42], § 3.1.
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if one uses the Hilbert identity once again. Putting

Rλ = Qλ +
(
I + (λ− µ)Qλ

)
Uλ

(
I + (λ− µ)Qλ

)
, (6.11)

we obtain for Uλ the equation

Uλ = V +HλUλ, where Hλ = (λ− µ)V
(
I + (λ− µ)Qλ

)
. (6.12)

Equation (6.12), Faddeev’s equation in the theory of automorphic functions, has
the following remarkable properties [14].

1) The operator Hλ is a Fredholm operator acting in the Banach space B of
continuous functions f(z) on F with the norm

∥f∥B = sup
z∈F0

|f(z)|+ sup
z∈F1

y|f(z)|

and depends analytically on s in the strip 0 < σ < 2.
2) The singular points of the operator I −Hλ, that is, the values of s for which

the homogeneous equation
v = Hλv

has a non-trivial solution in the space B, are discrete in the strip 0 < σ < 2.
3) The singular points with σ ⩾ 1/2, s ̸= 1/2, correspond to non-negative

eigenvalues λ = s(1− s) of A of finite multiplicity, so that σ = 1/2 or 1/2 < s ⩽ 1.
The corresponding eigenfunctions ψ ∈ H have the form

ψ = (I + (λ− µ)Qλ)v,

where v ∈ B is a solution of the homogeneous equation. Eigenfunctions corres-
ponding to the case σ = 1/2 are cusp forms,19 that is, P (ψ)(y) = 0 for all y > 0.

4) The resolvent kernel r(z, z′; s) of A for fixed z ̸= z′ and σ > 1 admits meromor-
phic continuation to the strip 0 < σ < 2, with discrete poles of finite multiplicity.
For σ ⩾ 1/2 these poles lie only on the line σ = 1/2 and on the interval 1/2 ⩽ s ⩽ 1
and are simple, with the possible exception of s = 1/2.

5) The resolvent (A − λI)−1 of A, where λ = s(1 − s) ∈ C \ [1/4,∞) with
non-singular s and σ > 1/2, is the operator Rλ in (6.11), constructed from the
solution Uλ of Faddeev’s equation (6.12). The operator Rλ is an integral operator
acting in H with integral kernel r(z, z′; s).

Equation (6.12) is also used for analytic continuation of the continuous-spectrum
eigenfunctions of A. In particular, consider the decomposition F = F0 ∪ F1 and
define the function ψ(z, s) on F by ψ(z, s) = φ(z, s) for z ∈ F1 and ψ(z, s) = 0 for
z ∈ F0. Clearly, if a is large enough, then ψ(z, s) determines a piecewise smooth
Γ-automorphic function on H. We put

Ψ(z, s) =
(
I + (λ− µ)

(
I + (λ− µ)Qλ

)
Uλ

)
ψ(z, s)

and list the properties of Ψ(z, s) [14].
19In general, the space H (0) of cusp forms is an invariant subspace of H consisting of functions

with zero integrals over all horocycles in Γ\H. It is not difficult to show [20] that the spectrum of
A in H (0) is discrete.
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(i) For fixed z the function Ψ(z, s) is analytic in the strip 0 < σ < 2, except for
the singular points for which σ < 1/2 or 1/2 ⩽ s ⩽ 1, and Ψ(z, s) is analytic in
a neighbourhood of the line σ = 1/2, with the possible exception of s = 1/2.

(ii) For non-singular s in the strip 0 < σ < 2 the function Ψ(z, s) is a smooth
Γ-automorphic function on H satisfying the equation

− y2

(
∂2

∂x2
+

∂2

∂y2

)
Ψ(z, s) = s(1− s)Ψ(z, s). (6.13)

For σ > 1 the solution of (6.13) can be found ‘explicitly’ as the Eisenstein–Maass
series E(z, s):

E(z, s) =
∑

γ∈Γ∞\Γ

ys(γz). (6.14)

Namely, it is easy to show that for σ > 1 the series converges absolutely and
uniformly on compact subsets of H, and defines a Γ-automorphic function satisfying
(6.13). For σ > 1 it is not difficult to prove the equality Ψ(z, s) = E(z, s), which
gives a meromorphic continuation of E(z, s) to the strip 0 < σ ⩽ 1, and on the
line σ = 1/2 the function E(z, s) has no singularities, except, possibly, at the point
s = 1/2.

Finally, the eigenfunction expansion theorem for A is obtained from the above
results using (2.3). The reader can find detailed proofs in Faddeev’s paper [14],
the indicated book by Lang [29], and Venkov’s monograph [44], which generalizes
Faddeev’s method to vector-valued functions. The characteristic determinant of the
operator A is defined using an appropriate regularization of the formula (2.5) and
M. G. Krein’s method of the spectral shift function. Moreover, the characteristic
determinant of A is expressed in terms of the Selberg zeta-function of the Fuchsian
group Γ, and the calculation of the regularized trace in (2.5) reduces to the famous
Selberg trace formula! We refer the reader to [45] for details of these non-trivial
calculations. This completes our exposition of Faddeev’s method.

As an interesting example, consider the case of the modular group Γ = PSL(2,Z).
The corresponding Eisenstein–Maass series E(z, s) admits a simple expression in
terms of the Epstein zeta-function of the positive-definite binary quadratic form
Q(m,n) = am2 + bmn + cn2 with discriminant b2 − 4ac = d < 0, where a = 1,
b = −2x, and c = x2 + y2, so that d = −4y2. Furthermore, z = x+ iy ∈ H is the
root of Q,

z =
−b+

√
d

2a
.

In particular, from (6.14) we easily obtain

2ζ(2s)y−sE(z, s) =
∞∑′

m,n=−∞

1
Q(m,n)s

, (6.15)

where ζ(s) is the Riemann zeta-function, and the prime on the summation sign
indicates that the term with m = n = 0 is omitted. The Fourier series expansion
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of the function E(z, s) is given by the beautiful formula20

E(z, s) = ys+c(s)y1−s+
4
√
y

ξ(2s)

∞∑
n=1

σ1−2s(n)ns−1/2Ks−1/2(2πny) cos(2πnx), (6.16)

where Ks(y) is the modified Bessel function of the second kind and

σs(n) =
∑
d|n

ds, c(s) =
ξ(2s− 1)
ξ(2s)

, ξ(s) = π−s/2Γ
(
s

2

)
ζ(s).

It follows from Faddeev’s method described above that for fixed z the Eisenstein–
Maass series E(z, s) is a holomorphic function on the ‘physical sheet’ σ = Re s >
1/2, and it is regular on the line σ = 1/2. From this it immediately follows that
the zeta-function ζ(s) does not vanish on the line σ = 1, which implies the asymp-
totic law of prime numbers! However, this method does not give any information
about the poles of E(z, s) on the ‘non-physical sheet’ σ < 1/2. One can only
say that the non-trivial zeros of ζ(s) are related to the so-called resonances of the
Laplace operator on the modular figure.

6.2. Pseudo-cusp forms and zeros of L-series. In 1977, in H. Hass’s diploma
work at the University of Heidelberg under the direction of H. Neuenhöffer, sev-
eral of the first eigenvalues of the discrete spectrum of the Laplace operator on
the modular figure were calculated. Stark and Hejhal soon noticed that if one
writes λk = 1/4 + t2k, then the values sk = 1/2 + itk correspond to the first
non-trivial zeros of the Riemann zeta-function and the Dirichlet L-series L(s, χ)
with the quadratic character modulo 3! This unexpected observation caused a
sensation and was actively discussed in correspondence between Cartier and Weil
in 1979 [6], as well as by Venkov, A. I. Vinogradov, Faddeev, and the author at the
Leningrad Branch of the Steklov Mathematical Institute of the USSR Academy of
Sciences. Hejhal decided to independently verify Haas’s calculations and did not
find these zeros among the eigenvalues of the Laplace operator.

What was the reason for this discrepancy? As Hejhal explained in [25], Haas was
using the standard collocation method for the Neumann problem on the modular
figure, and he did not notice the appearance of a logarithmic singularity at the
corners z = ρ and z = i of the modular figure, where ρ = (1 +

√
−3 )/2. In

particular, the function f(z) = r(z, z0; s) for z ̸= z0 satisfies the equation

Af = λf, where λ = s(1− s), (6.17)

and if z0 = ρ or z0 = i, then with discrete approximation it is easy to miss the
logarithmic singularity (6.2) at z → z0. As y →∞ for fixed z0, the resolvent kernel
has the asymptotics [17]

r(z, z0; s) =
y1−s

2s− 1
E(z0, s) +O(e−2πy),

20(6.16) is sometimes called the Selberg–Chowla formula.
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and therefore if E(z0, s) = 0, then f(z) ∈ L2(F, dµ). It is remarkable that for z0 = i
and z0 = ρ the function ζ(2s)E(z0, s) is proportional to the Dedekind zeta-function
of the imaginary quadratic fields Q(

√
−1 ) and Q(

√
−3 ), so λ = s(1 − s) can be

expressed in terms of zeros of ζ(s) and the corresponding L-series. However, f(z)
is not an eigenfunction of the Laplace operator, since it is not a cusp form. Namely,
the condition ∫ 1/2

−1/2

f(x+ iy) dx = 0

holds only for y > Im z0; such functions are called pseudo-cusp forms. Moreover,
for z0 one can take any point on the modular figure, for example, z0 =

√
−5 . It is

well known that the function ζ(2s)E(
√
−5, s) has zeros outside the line Re s = 1/2,

so the corresponding values of λ will not even be real. Thus, the pseudo-cusp forms
have no relation to the discrete spectrum of the Laplace operator, and equation
(6.17) does not impose any restrictions on λ.

Indeed, if f ∈ L2(F, dµ) satisfies (6.17) and f ∈ D(A), then from the self-adjoint
property of the operator A we obtain

(λ− λ)∥f∥2 = (Af, f)− (f,Af) = 0.

However, although f(z) = r(z, z0; s) ∈ L2(F, dµ) when ζ(2s)E(z0, s) = 0, f /∈ D(A)
and the integral (Af, f) is divergent, hence the previous argument does not apply.
Specifically,

(Af, f) =
∫∫

F

Af(z)f(z) dµ(z) = λ∥f∥2 + r(z0, z0; s),

where the second term is obviously divergent. By using the reality condition (6.4),
the difference (Af, f)−(f,Af) can be defined as a limit, which one easily computes
via the first Hilbert identity:

lim
z→z0

(r(z, z0; s)− r(z, z0; s)) = (λ− λ)∥f∥2.

The last formula does not impose any restriction on λ = s(1 − s), except for the
assumption that ζ(2s)E(z0, s) = 0.

Nevertheless, it makes sense to consider Hilbert spaces of pseudo-cusp forms

Ha =
{
f ∈ H :

∫ 1/2

−1/2

f(x+ iy) dx = 0 for y ⩾ a

}
for a fixed a > 0. In particular, denote by ∆a the Friedrichs extension of the opera-
tor ∆ restricted to the subspace of smooth functions with compact support in Ha.
Lax and Philips proved [32] that the self-adjoint operator ∆a in Ha has a purely
discrete spectrum, which was studied by Colin de Verdière [7], [8]. Furthermore, it
was suggested in [8] that the discrete spectrum of the operator ∆a for a =

√
3/2

is related to zeros of the Dedekind zeta-function of the imaginary quadratic field
Q(
√
−3 ).



180 L.A. Takhtajan

6.3. Heegner points and Linnik asymptotics. The formula (6.15) provides an
explicit expression for the Dedekind zeta-function ζK(s) of the imaginary quadratic
field K = Q(

√
d ) of the fundamental discriminant d < 0 in terms of the Eisenstein–

Maass series. As is well known (for example, see [4]), the ideal class group of
the field K is isomorphic to the group of classes of properly equivalent primitive,
positive-definite, integral binary quadratic forms with discriminant d. Each such
quadratic form can be written as Q(m,n) = am2 + bmn+ cn2 with integer coeffi-
cients a, b, and c satisfying the conditions

a > 0, (a, b, c) = 1, and b2 − 4ac = d.

The root zQ of the quadratic form Q is given by

zQ =
−b+

√
d

2a
∈ H,

and the proper equivalence class of Q is completely determined by the condition
zQ ∈ F̃ , where F̃ is the modular figure. Points zQ ∈ F̃ are called Heegner points
for the discriminant d. From this we obtain21

ζK(s) =
2
wd

(
|d|
4

)−s/2

ζ(2s)
h(d)∑
i=1

E(zi, s), (6.18)

where h(d) is the ideal class number of the field K, wd is the number of units in K,
and the zi run over all Heegner points zQ of the discriminant d.

Siegel’s celebrated theorem [40] states that for any 0 < ε < 1/2

h(d) > c(ε)|d|1/2−ε

with a non-explicit constant c(ε) > 0. Before the classical paper [40], the only
known result was Hecke’s theorem that the generalized Riemann hypothesis for all
Dirichlet L-series with quadratic characters implies that h(d) → ∞ as d → −∞.
Surprisingly, in 1933 Deuring [9] proved an unexpected result that the condition
h(d) = 1 for infinitely many negative fundamental discriminants implies the Rie-
mann hypothesis!

Indeed, if h(d) = 1, then

zQ =


1 +

√
d

2
if d ≡ 1 (mod 4),

√
D if d = 4D and D ≡ 2, 3 (mod 4).

In the latter case, we get immediately from (6.16) and (6.18) that for such d

ζK(s) = |D|−s/2ζ(2s)E(
√
D , s) = ζ(2s)(1 + c(s)|D|1/2−s) +O(e−2π|D|). (6.19)

Suppose now that ζ(ρ) = 0 and Re ρ > 1/2. Because ζK(s) = ζ(s)L(s, χd), where
χd is a quadratic character modulo d given by the Kronecker symbol, by passing to

21For details see [48], for example, where zeta-functions of orders in imaginary quadratic fields
are also considered.
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the limit d→ −∞ in (6.19) we get that ζ(2ρ) = 0, a contradiction. The case d ≡ 1
(mod 4) is considered similarly.

Mordell [36] soon generalized Deuring’s result and proved that if the class num-
ber takes a fixed value for infinitely many fundamental negative discriminants, then
the Riemann hypothesis is true. His proof also used the formulae (6.16) and (6.18).
Finally, Heilbronn [24] used the same assumption to deduce the generalized Rie-
mann hypothesis for all Dirichlet L-series with quadratic characters. From this and
the aforementioned theorem of Hecke, it follows that h(d) →∞ as d→ −∞.

However, in the same year of 1934, Siegel proved his famous theorem, which
naturally moved the Deuring–Mordell–Heilbronn method to the background. It
was only in the 1960s that some of their arguments were used to solve the
celebrated tenth discriminant problem of Gauss, in which Heegner points played
a prominent role.

Since h(d) → ∞ as d → −∞, the question arises as to the distribution of the
Heegner points on the modular figure. The equivalent problem of the distribution of
the integer points on the reduction domain of a two-sheeted hyperboloid b2−4ac =
d < 0 was solved by Linnik [34] using his ergodic method. Here the condition(

d

p

)
= 1

was also assumed for some prime p, where
(
n

p

)
is the Legendre symbol. In partic-

ular, Linnik proved that as d→ −∞ the Heegner points are uniformly distributed
on the modular figure with respect to the measure

dµ∗ =
3
π

dx dy

y2
, so that µ∗(F ) = 1.

In [47] the uniform distribution was proved on average over d, that is, for those
values of d for which so-called Salié sums admit a good estimate. Finally, Duke
[11] proved the uniform distribution of the Heegner points as d → −∞ using
a non-trivial estimate for the Fourier coefficients of modular forms of half-integer
weight obtained by Iwaniec [27]. Specifically, let Ω be a convex domain with piece-
wise smooth boundary in the modular figure, and let N(Ω) be the number of Heeg-
ner points in Ω. Then the Linnik asymptotic expression

N(Ω)
h(d)

= µ∗(Ω) +O(|d|−δ) (6.20)

is valid for some δ > 0 (possibly dependent on Ω).
We now return to the representation (6.18) for ζK(s) and, as proposed in [47],

we use the uniform distribution of the Heegner points on F̃d, the modular figure
F̃ with the restriction Im z ⩽

√
|d|/2. More precisely, assuming that the δ > 0

in (6.20) does not depend on the domain Ω, we replace the sum in (6.18) by an
integral! As a result, as d→ −∞ we get that

ζK(s) =
(
|d|
4

)−s/2

ζ(2s)h(d)
∫∫

F̃d

E(z, s) dµ∗(z) +O(h(d)|d|−δ−σ/2), (6.21)
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where σ = Re s. The integral in (6.21) can be evaluated explicitly. Namely, by
using (6.13), the integral Green’s formula, the invariance of E(z, s) with respect to
the modular group, and the Fourier expansion (6.16), we obtain∫∫

F̃d

E(z, s) dµ(z) =
1

s(s− 1)

∫∫
F̃d

∆E(z, s) dx dy

=
1

s(s− 1)

∫ 1/2

−1/2

∂E

∂y
(z, s)

∣∣∣∣
y=
√
|d|/2

dx

=
1

s− 1

(
|d|
4

)(s−1)/2

− c(s)
s

(
|d|
4

)−s/2

.

Thus, for fixed s we have

ζK(s) =
6h(d)
π
√
|d|

ζ(2s)
(

1
s− 1

− c(s)
s

(
|d|
4

)1/2−s)
+O(h(d)|d|−δ−σ/2). (6.22)

Suppose now that for some sequence of fundamental discriminants d, we can
choose δ = 1/4 + ε with arbitrary ε > 0 in the Linnik asymptotics (see the cor-
responding arguments in [47]). Let ζ(ρ) = 0, where Re ρ > 1/2. Since ζK(s) =
ζ(s)L(s, χd), by letting d → −∞ we get from (6.22) that ζ(2ρ) = 0. This con-
tradiction ‘proves’ the Riemann hypothesis, as in the Deuring–Mordell–Heilbronn
approach.

Of course, the starting formula (6.21) needs to be proved, since for domains Ω
lying on the very ‘top’ of the truncated modular figure F̃d, the Linnik asymptotic
expression (6.20) loses its meaning, and the Heegner points are no longer uniformly
distributed as d→ −∞. The easiest way to see this is to average the representation
(6.18) of a zeta-function ζD(s) of order OD with discriminant D = df2 in the
imaginary quadratic field Q(

√
d ), over all −D ⩽ X. The corresponding formula,

an analogue of the classical Vinogradov–Gauss formula [46] in the critical strip, was
obtained in [48] and has the form

∑
−D⩽X

(
|D|
4

)s/2

ζD(s) = ζ(2s)(Φ(s)X1+s/2 + c(s)Φ(1− s)X1+(1−s)/2) +Rs(X).

(6.23)
Here

Φ(s) =
2−sζ(s)

(s+ 2)ζ(s+ 2)
and Rs(X) = O

(
X3/4 log3X

|s− 1|(|s− 1/2|+ log−1X)

)
,

and the estimate of the remainder is uniform with respect to s on compact subsets
of the critical strip. The leading term of the asymptotics in (6.23) is proportional to
ζ(s), which makes the previous argument inapplicable. Thus if Linnik’s asymptotic
expression can hold up to the very top of the truncated modular figure F̃d, then it
is only for very special values of d.

In the above arguments the formula (6.18) played the key role. It was also
used by Zagier [49] to construct a non-trivial representation of SL(2,R) connected
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with the zeros of the Riemann zeta-function. We should also mention recent
works of Bombieri and Garrett on the spectrum of the Laplace operator on the
space of pseudo-cusp forms in connection with the zeros of ζK(s) (see the talks [3]
and [18]). We leave the reader alone with these intriguing works and the literature
cited there.

Note added in proof: results of the talks [3] and [18] have now appeared in
the preprint of Enrico Bombieri and Paul Garrett, “Designed pseudo-Laplacians”,
https://arxiv.org/abs/2002.07929.
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