You may also like
THE METHOD OF APPROXIMATE
SPECTRAL PROJECTION
S Z Levendorski

- ASYMPTOTICS OF THE SPECTRUM OF LINEAR OPERATOR PENCILS S Z Levendorski

ON TYPES OF DEGENERATE ELLIPTIC OPERATORS S Z Levendorski

View the article online for updates and enhancements.

## Asymptotic distribution of the eigenvalues of systems of Navier-Stokes type

## S.Z. Levendorskii

In a bounded Lipschitz domain $\Omega \subset \mathbf{R}^{n}$ we consider the eigenvalue problem of the form

$$
\left\{\begin{align*}
A u+F^{*} p & =t B u  \tag{1}\\
F^{\prime} u & =0
\end{align*}\right.
$$

We justify a formula for the asymptotic expansion of the positive and negative spectra of (1) with some estimate of the remainder. In the case $B=I$, the asymptotic expansion of (1) was established in [1] without an estimate of the remainder. As in [1], the problem (1) is treated in variational form; we use a modification of the method of approximate spectral projection in [2]-[6] and some ideas from [1].

Suppose that $m>r \geqslant 0, l>l_{1}>0$ are integers, $m_{j} \in\{0,1, \ldots, m\}\left(j=1, \ldots, l_{1}\right)$, and that $H^{s}(\Omega)$ is a Sobolev space. We put

$$
L(\Omega)=L_{2}(\Omega)^{l}, \quad W_{m}=H^{m}(\Omega)^{l}, \quad X(\Omega)=\prod_{1 \leqslant j \leqslant l_{1}} H^{m}(\Omega)
$$

Let $F=\left(F_{i} j\right)_{i=1}, \ldots, l_{1}, j=1, \ldots, l$, where

$$
F_{i j}=F_{i j}(x, D)=\sum_{|\alpha| \leqslant m-m_{i}} f_{i j}^{\alpha}(x) D_{x}^{\alpha}, \quad f_{i j}^{\alpha} \in C^{m_{i}}(\bar{\Omega}) .
$$

We put $F^{\prime}=\left(F_{i j}^{\prime}\right)_{i=1}, \ldots, l_{1}, j=1, \ldots, l$, where

$$
F_{i j}^{\prime}(x, \xi)=\sum_{|\alpha|=m-m_{i}} f_{i j}^{\alpha}(x) \xi^{\alpha},
$$

and assume that
(2) $\forall(x, \xi) \in \bar{\Omega} \times\left(\mathbf{R}^{n} \backslash 0\right) \cup \hat{o} \Omega \times\left(\mathbf{C}^{n} \backslash 0\right) \operatorname{rank} F^{\prime}(x, \xi)=l_{1}$.

We consider the two forms

$$
A(u, v)=\sum_{\substack{1 \leqslant i \leqslant j \leqslant l \\|\alpha|,|\beta| \leqslant m}}\left\langle a_{i j}^{\alpha \beta} D^{\alpha} u_{i}, D^{\beta} v_{j}\right\rangle, \quad B(u, v)=\sum_{\substack{1 \leqslant i, j \leqslant l \\|\alpha| 1, i \beta \mid \leqslant r}}\left\langle b_{i j}^{\alpha \beta} D^{\alpha} u_{i}, D^{\beta} v_{j}\right\rangle,
$$

where $\langle\cdot, \cdot\rangle$ is the scalar product in $L_{2}$, and we assume that for all $\alpha, \beta, i, j$

$$
\begin{equation*}
a_{i j}^{\alpha \beta}, \quad b_{i j}^{\alpha \beta} \in L^{\infty}(\Omega), \quad a_{i j}^{\alpha \beta}=\overline{a_{j i}^{\beta \bar{\alpha}}}, \quad b_{i j}^{\alpha \beta}=\overline{b_{j i}^{\beta \alpha}} . \tag{3}
\end{equation*}
$$

Suppose further that there is a $\sigma \in(0,1]$ such that for all $i, j$,
(4) $\quad a_{i j}^{\alpha \beta} \in \operatorname{Lip}(\Omega), \quad|\alpha|=|\beta|=m, \quad b_{i j}^{\alpha \beta} \in \operatorname{Lip}(\bar{\Omega}), \quad|\alpha|=|\beta|=r$,
(5) $\quad \partial^{\gamma} f_{i j}^{\alpha} \in \operatorname{Lip}_{\sigma}(\bar{\Omega}), \quad|\gamma|=m_{i}, \quad|\alpha|=m-m_{i}$.

We put $a^{\prime}=\left(a_{i j}^{\prime}\right), \quad b^{\prime}=\left(b_{i j}^{\prime}\right)_{i, j=1, \ldots, l}$, where

$$
a_{i j}^{\prime}(x, \xi)=\sum_{|\alpha|=|\beta|=m} a_{i j}^{\alpha \beta}(x) \xi^{\alpha+\beta}, \quad b_{i j}^{\prime}(x, \xi)=\sum_{|\alpha|=|\beta|=r} b_{i j}^{\alpha \beta}(x) \xi^{\alpha \alpha+\beta} .
$$

It follows from (3) that $A$ and $B$ are continuous Hermitian forms on $W_{m}$. Suppose that $W \subset W_{m}$ is a subspace, $C_{0}^{\infty}(\Omega)^{l} \subset W$, and that there are $C_{0}>0$ and $C_{1} \geqslant 0$ such that for all $u \in W$

$$
\begin{equation*}
c_{0}\|u\|_{W_{m}}^{2} \leqslant A(u, u)+C_{1}\|F u\|_{X(\Omega)}^{2} . \tag{6}
\end{equation*}
$$

We put $V_{1}=\{u \in W, F u=0\}$ and denote the closure of $V_{1}$ in $L(\Omega)$ by $I_{1}$. Let $A_{0}$ and $D\left(A_{0}\right)$ be the positive definite self-adjoint operator in $L_{1}$ associated with the form $A$. Since $m>2 r$, the form $B$ determines an operator $B_{0}, D\left(B_{0}\right)=D\left(A_{0}\right)$, that is compact with respect to $A_{0}$, so that the problem
(7)

$$
A_{0} u=t B_{0} u, \quad u \in D\left(A_{0}\right)
$$

has a discrete spectrum. Let $N_{ \pm}(t)$ be the collection of eigenvalues (taking account of multiplicity) of (7) lying in $[0, t)$ for + and in $(-t, 0]$ for - .

Theorem. For every $\varepsilon>0$

$$
\begin{equation*}
N_{ \pm}(t)=t^{n s}\left(c_{ \pm}+O\left(t^{-\gamma+\varepsilon}\right)\right) \tag{8}
\end{equation*}
$$

where $s=1 / 2(m-r), \gamma=n s \sigma /(\sigma+n(3 \sigma+1))$ and the constants $c_{ \pm}$are defined as follows.
It was shown in [1] that under the condition (6) the form $\left\langle a^{\prime}(x, \xi) \cdot{ }^{\cdot} \cdot\right\rangle_{\mathbf{C}^{l}}$ is positive definite on $\mathbf{V}_{x \xi}=\operatorname{Ker} F^{\prime}(x, \xi) \subset \mathbf{C}^{l}$ for all $(x, \xi) \in \bar{\Omega} \times\left(\mathbf{R}^{n} \backslash 0\right)$, so that the problem

$$
\left\langle a^{\prime}(x, \xi) u, v\right\rangle_{\mathbf{c}^{l}}=t\left\langle b^{\prime}(x, \xi) u, v\right\rangle_{\mathbf{c}^{l}}, \quad u \in V_{x \xi}, \quad \forall v \in V_{x \xi},
$$

has the real spectrum $\left\{t_{1}, t_{2}, \ldots, t_{l-l_{1}}\right\}$, and we put

$$
\omega_{ \pm}(x, \xi)=\sum_{0 \leqslant \pm t_{k}(x, \xi) \leqslant 1} 1, \quad c_{ \pm}=(2 \pi)^{-n} \int_{\Omega \times \mathbf{R}^{n}} \omega_{ \pm}(x, \xi) d x d \xi
$$

Remark. If (5) is discarded and (4) is replaced by the condition that the corresponding coefficients be continuous, then (8) is valid with $o(1)$ replacing $O\left(t^{\gamma+\varepsilon}\right)$. If $B=I$, this is the result of [1].

## References

[1] G. Métivier, Valeurs propres d'opérateurs définis par la restriction de systèmes variationnels à des sousespaces, J. Math. Pures Appl. 57 (1978), 113-156. MR 81i: 35167.
[2] V.N. Tulovskii and M.A. Shubin, The asymptotic distribution of the eigenvalues of pseudodifferential operators in $\mathbf{R}^{n}$, Mat. Sb .92 (1973), 571-588. MR $48 \# 9465$. $=$ Math. USSR-Sb. 21 (1973), 565-583.
[3] V.I. Feigin, Asymptotic distribution of eigenvalues for hypoelliptic systems in $\mathbf{R}^{n}$, Mat. Sb .99 (1976), 594-614. MR 58 \# 23165. $=$ Math. USSR-Sb. 28 (1976), 533-552.
[4] ——, The spectral asymptotic behaviour for boundary-value problems and the asymptotic expansion of the negative spectrum, Dokl. Akad. Nauk SSSR 232 (1977), 1269-1272. MR 56 \# 890. $=$ Soviet Math. Dokl. 18 (1977), 255-259.
[5] S.Z. Levendorskii, Algebras of pseudodifferential operators with discontinuous symbols, Dokl. Akad. Nauk SSSR 248 (1979), 777-779. MR 81f:47051.
$=$ Soviet Math. Dokl. 20 (1979), 1045-1048.
[6] —_ General calculus of pseudodifferential operators and asymptotic properties of the spectrum, Funktsional. Anal. i Prilozhen. 15:2 (1981), 79-80. MR 82h:47050.
$=$ Functional Anal. Appl. 15 (1981), 140-142.

