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Asymptotic distribution of the eigenvalues of systems of
Navier-Stokes type

S.Z. Levendorskii

In a bounded Lipschitz domain η с R" we consider the eigenvalue problem of the form

(l> \ Fu=0.

We justify a formula for the asymptotic expansion of the positive and negative spectra of (1) with some

estimate of the remainder. In the case В = /, the asymptotic expansion of (1) was established in [1]

without an estimate of the remainder. As in [1], the problem (1) is treated in variational form; we

use a modification of the method of approximate spectral projection in [2] -[6] and some ideas from

[1]·
Suppose that m > r > 0, / > l\ > 0 are integers, mj 6{0, 1, . . ., m}(/ = 1, ..., l\), and that

is a Sobolev space. We put

Wm = Hm(Q)i, Λ'(Ω)= ]"] Я™'(Ω).

Let F — (^f/) i = 1 i b j=i ,, where

Fit = FU (*, D)= V ff. (χ) D « , ff. e C

mi (Q).

Ι α | < т — m;

We put F' = (F{,) i = 1 J b i = 1 § . . . , ρ where

| а 1 = п - т 4

and assume that

(2) V (i, | ) £ Ω"χ ( R " \ 0 ) U 5Ω χ (C"\0) rank F'{x, | ) = i t .

We consider the two forms

Л ( и , v)= 2 {atfiDauit iflvj), B{u,v)= V {b%?D

where <·, ·> is the scalar product in L 2 , and we assume that for all α, β, i, j

(3) aff, b?Pei-(B), °?/ = ̂ , b ^ = bf-

Suppose further that there is a σ ε (0, 1 ] such that for all i, j,

(4) a f / e L i p a ( Q ) , | α | = | β | = τ η , Ь?/ξ Li ρ σ (Ω), | α [ = | β | = г,

(5) ,5γ/?·6 Lipc (Ω), | γ | =m,-, | α | =т-т ;.

We put α' = (α[5), Ъ' = (6^)^ j = = 1 ,, where

| а | = 1 Р 1 = т 1а1=1Р|=г

It follows from (3) that /1 and В are continuous Hermitian forms on Wm. Suppose that W с Wm

is a subspace, CQ(U)1 С И', and that there are Co > 0 and C t > 0 such that for all и е W

(6) Coll"llfym<4(U, u) + C1\\Fu\\jC(a).

We put Fj = {u ζ W, Fu = 0} and denote the closure of Kt in Lin) by Ιχ. Let Л о and
D(AQ) be the positive definite self-adjoint operator in L\ associated with the form A. Since m > 2r,
the form В determines an operator Bo, D(BQ) = D(A0), that is compact with respect to Ao, so that
the problem

(7) Aou = tBou, и ζ D(A0)
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has a discrete spectrum. Let N±(t) be the collection of eigenvalues (taking account of multiplicity) of
(7) lying in [0, t) for + and in (-f, 0] for -.

Theorem. For every e > 0
(8) N±(t) = t " ' ( e ± + 0(ГУ+%

where $ = l/2(m — r), γ = nsa/(a -f- η(3σ + 1)) and the constants c± are defined as follows.

It was shown in [1] that under the condition (6) the form (a'(x, ξ) · , · ) j is positive definite on

Vxi = Ker F'(x, 1) a C1 for all (χ, ξ) ζ Ω" X (R"40) , so that the problem

{a' (x, I) u, v)Q, = t (b' (χ, ξ) и, v)c,, и ζ Vxl, У υ g Vx%,

has the real spectrum {ix, i 2 , . . ., <;_;.}, and we put

j ± (χ, ξ) da; rfg.

Remark. If (5) is discarded and (4) is replaced by the condition that the corresponding coefficients
be continuous, then (8) is valid with o(l) replacing O(t~^+ε). If В = I, this is the result of [1].
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