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Abstract.  We have studied thermally induced distortions of a beam 
in single cubic syngony crystals of all symmetry groups with an 
anisotropic elastic stiffness tensor. The arithmetic mean and the 
difference between the thermally induced phase incursions of eigen-
polarisations, as well as the angle of incidence of these polarisa-
tions, are calculated for a long rod and a thin disk with radial cool-
ing under uniform volume pumping of the active element. The posi-
tion of the specific crystal orientations unrelated to its symmetry 
elements is investigated. The effective values of the thermo-optical 
constant Q in two specific orientations, as well as the thermo-opti-
cal constant P in an arbitrary orientation, are found.

Keywords: high average power lasers, photoelastic effect, thermally 
induced depolarisation, thermo-optical constants, anisotropy of 
cubic crystals.

1. Introduction

Thermal effects are an important factor limiting the power 
and quality of the output radiation of solid-state lasers 
[1,  2]. The heat release in optical elements leads not only to 
an increase in the volume-average temperature, but also to 
the emergence of temperature gradients, which, in turn, are 
a source of elastic stresses. Due to the photoelastic effect in 
optical elements of any nature (glasses, single crystals of all 
symmetry groups, and ceramics), there appears an aniso-
tropic and volume nonuniform addition to the permittivity 
tensor, causing in the general case both phase and polarisa-
tion distortions of the laser radiation passing through 
them.

Thermally induced anisotropy arises even in initially opti-
cally isotropic media (cubic single crystals, glasses, and 
ceramics). In these media, the process of transferring energy 
from the initial polarisation to the orthogonal one (in the 
sense of the scalar product), called depolarisation, has a dra-
matic effect on the optical quality of the transmitted beam 
[3,  4]. In media with natural birefringence (noncubic single 
crystals and oriented noncubic ceramics), the thermally 
induced change in the polarisation of transmitted radiation is 
usually insignificant, except for the cases of its propagation at 
small angles to the optical axis [2], and astigmatic phase dis-
tortion markedly affect the beam quality. Due to the anisot-

ropy of photoelastic properties of all crystals including cubic 
ones, the nature of thermally induced anisotropy substan-
tially depends on the orientation of the crystallographic axes 
in the optical element [5, 6].

Thermally induced beam distortions in glasses were stud-
ied theoretically and experimentally in the 1960s and 1970s 
[7 – 11]. In the early 1970s, distortions were studied in cubic 
single crystals of the symmetry groups m3m, 432 and`43m, 
which for brevity we will call m3m crystals (the notation is 
explained in Section 2). Initially, the [111] orientation was 
investigated ([3, 4, 12 – 15]), and a few years later, the [001] 
orientation (see Refs [16, 17]) and the critical orientation 
[18, 19] were examined. In the 2000s, the method proposed in 
[20] was used to study thermally induced depolarisation in 
arbitrarily oriented m3m crystals [21, 22], and at the same 
time, special properties of the [011] orientation in them (see 
Refs [22 – 24]) were pointed out. Thermally induced depolari-
sation in the remaining cubic single crystals  –  symmetry 
groups 23 and m3 (for brevity, we will call them m3 crystals, 
see Section 2) – was theoretically considered in [25]. The study 
of phase and polarisation distortions of the beam in cubic 
m3m ceramics began in the 2000s [26 – 32]. Recently, distor-
tions in m3 ceramics have been theoretically investigated 
[33 – 35].

In the vast majority of theoretical works, the elastic 
properties of cubic crystals (tensors of elastic stiffness and 
elastic compliance) were thought to be isotropic, although in 
the early years it was already known that this was only an 
approximation, and a solution to the elasticity problem was 
also found for the parabolic temperature profile [36, 37]. 
Anisotropy of elastic properties was taken into account in 
some works devoted to thermo-optics of both cubic and 
noncubic crystals, but only for the simplest orientations 
[38 – 41].

In the present work, thermally induced distortions of a 
beam in single cubic syngony crystals of all symmetry groups 
are considered taking into account the anisotropy of their 
elastic properties and for an arbitrary orientation of the crys-
tallographic axes. In Section 2, we introduce notations neces-
sary for the statement of the problem. Section 3 discusses the 
expressions used to describe the photoelastic effect in media 
with a nonuniform temperature distribution. Section 4 is 
devoted to a review of existing analytical solutions to the 
problems of heat conduction and elasticity and the choice of 
the most accurate solution for long rod geometry. In Section 5, 
we obtain expressions for thermally induced beam distortions 
in cubic crystals in the form of a long rod and a thin disk. The 
arithmetic mean and the difference between the phase incur-
sions of eigenpolarisations, as well as the angle of incidence of 
eigenpolarisations are found; the specific crystal orientations 
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115Effect of elastic anisotropy on thermally induced distortions of a laser beam

are discussed; and effective values of thermo-optical con-
stants P and Q are determined.

2. Statement of the problem and some notations

In the framework of this paper, we assume that the optical 
element has the shape of a cylinder, and its axis coincides with 
the z axis of the laboratory coordinate system (x, y, z) and 
with the propagation direction of probe radiation. The ele-
ment can be cut from the bulk of the crystal in different direc-
tions. The orientation of the element is uniquely determined 
by the position of its axis in the crystallographic coordinate 
system (a, b, c). This can be done using the first two of the 
three Euler angles, i.e. azimuthal (a) and polar (b) (Figs 1a, 
1b, and 1d). As a result, the coordinate system (x'', y'', z) 
obtained from the crystallographic system due to rotation 
through these two angles will be bound with the optical ele-
ment. In this case, the third Euler angle, F, will be equal, with 
the opposite sign, to the rotation angle of the element around 
its axis relative to the laboratory coordinate system (x, y, z) 
(Figs 1c and 1d). The pair of Euler angles (a, b) defines the 
crystal orientation, also denoted by Miller indices [MNP]. In 
this paper, significant attention is paid to orientations of form 
[M0N] and [MMN] shown in Figs 1e and 1f. In addition, we 
will not distinguish between orientations obtained from each 
other by cyclic permutation of indices ([NPM], [PMN]) and 
changing the signs of indices [ ], [ ]MNP M NP , etc.) and con-
sider them equivalent [25].

In addition to the Cartesian coordinate system, we will 
use cylindrical coordinates. Let the cylindrical coordinate sys-
tem (r, j, z) correspond to the laboratory Cartesian system 

(x, y, z), then the system (x'', y'', z) will correspond to the sys-
tem (r, jF , z), where

jF = j + F.	 (1)

Large heat release and large thermally induced distortions 
in laser systems are characteristic of active elements and 
Faraday cells. In this paper, we will consider media that do 
not rotate the polarisation plane; therefore, we will call for 
definiteness the optical element active in thermo-optics calcu-
lations.

We will also assume, unless explicitly stated otherwise, 
that the length of the active element L is much greater or 
much less than its radius R (a long rod or a thin disk, respec-
tively), its heating is uniform along z, and cooling is carried 
out from the side surface. In these approximations, the tem-
perature and elastic stresses in the disk, as well as the tem-
perature in the rod, are independent of z, and the stresses and 
strains in the rod are almost constant at a distance of more 
than one or two radii from its ends, i.e., along most of the 
rod’s length. Since thermally induced distortions of the beam 
accumulate during its propagation in the medium, we will 
neglect the end effects in the rod following the generally 
accepted approach, with the exception of one of the sections 
of the second part of the paper.

In this paper, as in previous ones, we consider lateral cool-
ing of a thin disk. For this case, there is an exact and simple 
analytical solution to the problem of elasticity, the form of 
which is independent of the material parameters of the 
medium and the parameters of thermal contacts with the 
coolant or heat sink, and the distortions themselves are rela-
tively large. It should be noted that radial cooling in the case 
of a thin disk leads to far from optimal temperature condi-
tions. In the case of face cooling, the temperature differences 
turn out to be significantly lower and, in addition, the tem-
perature gradients are often almost parallel to the z axis. Both 
these factors lead to a significant reduction in thermally 
induced distortions of the probe beam. For such a cooling 
regime in the case of an isotropic elastic stiffness tensor, sev-
eral approximate solutions are known [32, 42, 43], one of 
which [32] requires weak heat removal, which contradicts the 
ideology of a high average power laser, and in the second, as 
well as in the solution from [42], radial heat flux is completely 
neglected. Solution [43] is built on the basis of some approxi-
mation of the radial flux and, as follows from [44] and our 
comparison with the results of numerical simulation by the 
code from [45], does not have high accuracy for all sets of 
input parameters. In turn, the proximity of the directions of 
temperature gradients and the propagation of radiation can 
result in a strong effect of small deviations of the real stress 
field from approximate solutions on the directions of the gra-
dients and, as a consequence, on the magnitude of thermally 
induced distortions of the beam. In this regard, the applicabil-
ity of these solutions for calculating thermo-optics, in con-
trast to the geometry with lateral cooling, depends on the 
parameters of the problem (aspect ratio, quality of thermal 
contacts, shape of the heating beam) and requires a separate 
detailed study, which is advisable to carry out for a specific 
task.

In this paper, we focused on obtaining a general qualita-
tive dependence of the degree of depolarisation on orienta-
tion in the simplest geometry. We believe that the revealed 
distinctive features will be applicable in the case of face heat 
removal, despite the impossibility of a quantitative assess-
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Figure 1.  (Colour online) (a – d) Transition from crystallographic axes 
(a, b, c) through intermediate coordinate systems (x', y', z' ) and 
(x'', y'', z'' ) to the laboratory coordinate system (x, y, z) by sequential 
rotation by the Euler angles (a, b, F); (e) [M0N ] orientations (a = 0) in 
the crystallographic coordinate system; (f) [MMN] orientations (a = p/4). 
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ment of the magnitude of thermally induced distortions of the 
beam.

There are two common forms of writing the expression 
for the photoelastic effect: in the form of a dependence of the 
dielectric impermeability tensor increment ∆B 

B = e–1	 (2)

on either the elastic strain tensor u or on the elastic stress ten-
sor s [5]:

B p uu ij ijkl klD = ,	 (3a)

B ij ijkl klp sD =s ,	 (3b)

where e is the permittivity tensor, and p and p are the elasto-
optic and piezo-optic material tensors of the fourth rank, 
respectively. The last two tensors are related via the elastic 
compliance tensor s:

p sijkl ijmn mnklp = .	 (4)

It is also possible to write the expression using the elastic stiff-
ness tensor c that is the inverse of the tensor s:

p cijmn ijkl klmnp= ,

( )s c
2
1

ijkl klmn im jn in jmd d d d= + .

	 (5)

In a cubic crystal, the fourth-rank tensors s and c are 
determined by three independent nonzero coefficients. Their 
appearance in the two-index Nye notation is shown schemati-
cally in Fig. 2a [5]. These crystals can be divided into two 
types. In the crystals of the symmetry groups m3m, 432 and  

3m4 , which we have agreed to call m3m crystals, the photo-
elastic tensors p and p have the same form. In the remaining 
cubic syngony crystals related to the symmetry groups m3 
and 23, which we call m3 crystals, these two tensors are deter-
mined by four independent coefficients, their general appear-
ance being shown in Fig. 2b.

3. Choice of the form of the photoelastic additive  
to the refractive index for the isotropic elasticity 
problem

The strain and stress tensors in (3) are related by the elasticity 
equation

( )u T T sij ij ijkl kl0Ta s- - = ,	 (6)

where aT is the thermal expansion tensor; T is the tempera-
ture field; and T0 is the initial temperature at which an 
unstressed body is conditionally considered undeformed. It 
follows from equalities (3) – (6) that the increments ∆B (3a) 
and (3b) cannot be made equal to each other in a medium of 
any symmetry even by selecting T0 if the medium temperature 
depends on the coordinates:

( )T TB Bu 0 TcD D D- = -v ,

pij ijkl klT Tc aD = .

	 (7)

By virtue of (2), the tensor ∆cT in the linear approximation is, 
up to a factor, a correction to ¶e/¶T [46, 47]; therefore, in ther-
moelasticity problems it is important which formula from (3) is 
used. It can be shown that ∆cT has the same symmetry as the 
unperturbed (‘cold’) permittivity of the medium, e0 = e(T0). In 
this regard, in the particular case of a cubic crystal, difference 
(7) between formulae (3) influences only the phase distortions 
of the beam, without affecting the polarisation [47]:

ij ijT Tc d cD D= ,	 (8a)

where

( )p p paaaa aabb bbaaT Tc aD = + + ;	 (8b)

dij is the Kronecker symbol (note that the subsequent formu-
lae in Ref. [47] are derived for m3m crystals and are not appli-
cable to m3 crystals).

The total increment of permittivity can be written as

¶ ¶ ¶ ¶( ) ( / ) ( ) ( / ),T T T T u uuij ij ij T u mnu mn0 kl
e e eD = - + ,	 (9a)

¶ ¶ ¶ ¶( ) ( / ) ( ) ( / ),T T T Tij ij ij T mnmn0 kle e e s ssD = - +s s ,	 (9b)

where kl ≠ mn. In this notation, the temperature derivatives of 
permittivity must be determined under different conditions: 
in (9a) at zero strains and in (9b) at zero stresses, and there-
fore their values are generally different, which is indicated by 
subscripts. In the usual notation of (2) and (3), expression (9) 
takes the form

u¶ ¶( ) ( / ) ( ),T T T T Buij ij ik lj ukl0 0 0e e e eD D= - - ,	 (10a)

s¶ ¶( ) ( / ) ( ),T T T T Bij ij ik lj kl0 0 0e e e esD D= - - s .	 (10b)

In a cubic crystal, substitution of (7) into (10) yields

( /2)n u0
3

Tc b bD = - v ,

¶
¶
T
nb =m

m
c m ,

	 (11)

where n is the refractive index; and n0 = n(T0) [46, 47].
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Figure 2.  General appearance of material tensors of the fourth rank of 
cubic syngony crystals in the two-index Nye notation [5]: (a) piezo-optic 
(p) and elasto-optic (p) tensors of crystals of symmetry groups m3m, 
432 and m43 , as well as elastic stiffness (c) and compliance (s) tensors 
of all symmetry groups; (b) tensors p and p of crystals of symmetry 
groups m3 and 23. Identical elements are connected by straight lines.
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It also follows from expressions (9) that the tensors p and 
p must be isothermal, that is, they must be determined at a 
constant temperature [7, 46, 47] (adiabatic tensors deter-
mined at constant entropy are also used in a number of 
problems [5]).

In the light of these relations, we consider the thermo-
optical constant P, a convenient characteristic for describing 
the average thermal lens between two eigenpolarisations (we 
will denote them by I and II) in cubic crystals:

[ ( ) ( )] /2 ( ) [ ( ) (0)]n r n r n T r T P0I II+ = + - .	 (12)

This parameter was first introduced for long glass rods in [10]. 
In disk and rod geometries, P has a different form [16], and in 
addition, in the case of a thin disk, a term that is responsible for 
a change in the length of the active element is sometimes 
included [11, 16] (in Section 5.3.2, the quantity with an addi-
tional term is denoted by Ptot). Soms and Tarasov [16] also 
noted that the half-sum of the intrinsic refractive indices in 
cubic m3 crystals in the general case does not reduce to the 
form of (12) in the [011] orientation. Subsequently, it was found 
that in such crystals, P, in accordance with formula (12), can be 
introduced only for [001] and [111] orientations, as well as for 
statistical average refractive indices in optical ceramics, the obtained 
three values of P being different in each geometry [16, 30, 32] (m3m 
crystals were considered). In this regard, P is often determined 
in the [001] orientation in accordance with expression (12), and 
in other cases, additional terms are introduced into the formula 
(see [30, 32, 33, 35, 48]). Then the value of P depends only on 
the material parameters and geometry (a long rod or a thin 
disk) and, thus, with reservations as to the given geometry, is 
itself a material parameter. We will also stick to this approach, 
and the quantity introduced in accordance with (12) for an 
arbitrary orientation of the crystal is denoted by Peff(see 
Section 5.3.2).

Consider an active element made of a cubic crystal with 
the [001] orientation (a = b = 0) or of an isotropic material. In 
the former case, we additionally, following the tradition (see 
Introduction), consider elastic properties to be isotropic. The 
isotropic elastic compliance tensor in the two-index Nye nota-
tion has the following nonzero components in any Cartesian 
coordinate system [5] (see also Fig. 2a):

s11 = E–1, s12 = –vs11, s66 = 2(s11 – s12),	 (13)

where E and v are Young’s modulus and Poisson’s ratio, 
respectively. Below, we will call for brevity such media elasti-
cally isotropic. Using the expressions for the stress tensor in 
cylindrical bodies from [49], it is easy to show that when using 
formula (10a), the expressions for P have the form

( ) (1 4 )p,P Qu u pdisk diskb b z= - + ,	 (14a)

( ) (1 )p,P Q2rod rodu u pb b z= - + ,	 (14b)

and when using formula (10b) in an equivalent form we have

( ) (1 ),P Q2disk diskb b zp = + +v v r ,	 (15a)

( ) (1 ),P Q4rod rodb b zp = + +v v r ,	 (15b)

where

(1 )Q n E n p
4
1

4
1

0
3

0
3

disk S ST Ta p a n= = + ;

/ (1 )Q Qrod disk n= - ,

	 (16)

and

/p pa
Sp 12z = ;                      /a

S12z p p=p ;

;p p pS
a

S
a

11 12 11 12p p p= - = - ;	 (17)

( );p p p
2
1a

12 12 21= +            ( )
2
1a

12 12 21p p p= +

(in m3m crystals p12
a
 = p12 = p21, p12

a
 = p12 = p21; see Fig. 2a). 

The quantity Q, like P, is also called the thermo-optical con-
stant [10,  11]. Substituting (11) into (14), we can obtain an 
expression via a mixed set of variables:

( ) [ (1 ) (1 3 )]p,P n p p
4
1

11 120
3

disk

a

Tb b a n n= + - + -vv ,

( ) [ (1 ) ( )]p,P n p p
4
1 3 3 5rod 11 120

3 a
Tb b a n n= + - + -vv .

	 (18)

As can be seen from these formulae, the form of the 
expression for the thermal lens substantially depends on the 
choice of variables. The literature review presented in 
Appendix 1, however, shows that there is no generally 
accepted agreement on the choice of a formula for describing 
the photoelastic effect, and the difference between them and 
the related issue of the condition for determining ¶n/¶T are 
usually ignored. In our opinion, from the sources mentioned in 
the review, the increment of the refractive index is correctly, 
unambiguously and fully described in [7, 9, 10, 46, 47, 50] and, 
with a slight caveat, in [4] (in a number of works, attention is 
paid only to birefringence and therefore they are not included 
in this list). The description is carried out by using one of two 
mathematically equivalent ways: using (¶n/¶T )u and (3a) 
[7, 46, 47, 50], and using (¶n/¶T )s and (3b) [4, 7, 9, 10, 46, 47].

We consider the second option to be preferable for the 
following reasons:

1. The value of (¶n/¶T )s is easier to measure than (¶n/¶T )u, 
since for a uniformly heated body the condition for the 
absence of stresses is satisfied automatically [46, 50].

2. The components of the tensor p are also easier to mea-
sure than the components of the tensor p, since it is easier to 
produce and measure a uniaxial load than a small uniaxial 
deformation.

3. As noted in [46], in the approximations of a long rod 
and a thin disk, the formulae for the components of the stress 
tensor [49] are simpler than those for the components of the 
strain tensor [32, 51].

4. In the case of the anisotropic elastic compliance tensor, 
this option is much more convenient, at least for cubic crys-
tals (see Section 4.2).

On the contrary, the advantage of the first option is that 
the calculation of thermally induced distortions of the beam 
does not require for the knowledge of Young’s modulus of 
the medium. However, this is not a very significant factor, 
since this parameter is usually well known. The second advan-
tage is manifested in noncubic crystals, in which, due to the 
asymmetric part of the strain tensor, it is necessary to take 
into account the rotation of the optical axis or axes, for which 
the tensor p, asymmetric over the last pair of indices, is usu-
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ally introduced [52 – 54]. It is impossible to take this effect into 
account through the tensors p and s. This is a very specific 
problem that requires a separate consideration, since the 
asymmetric part of the strain tensor is not found in the cur-
rently known analytical solutions to the elasticity problem 
(see Section 4.2).

Thus, the thermally induced distortions of the beam (see 
Section 5) will be expressed through the piezo-optic tensor.

4. Solution to the problem of thermoelasticity 
in anisotropic media

4.1. Parabolic temperature distribution with anisotropic 
thermal conductivity

The parabolic temperature distribution is one of the simplest 
in the problems of thermoelasticity. It arises in cylindrical 
optical elements under conditions of isotropic heat conduc-
tion, homogeneous lateral cooling and heat release in the vol-
ume of the element. The first of these conditions is satisfied 
only for isotropic media and cubic crystals, and also, due to 
the absence of longitudinal heat fluxes, for uniaxial crystals in 
[001] and [001] orientations.

Sirotin [36] showed that the same temperature distribu-
tion is typical of optical elements with an arbitrary form of 
the thermal conductivity tensor of the medium at a given tem-
perature at the boundary, which corresponds to highly effi-
cient cooling. It is convenient to introduce the dimensionless 
temperature t:

T – T0 = Tint t,	 (19)

where / (4 )T P Lint
ap k= R ; PS is the total heat dissipation power 

in the optical element; and T0 is the temperature of the cool-
ant or the heat sink on the thermal contact surface. In isotro-
pic media, the thermal conductivity coefficient k is used as 
ka. In anisotropic media, the former is a tensor of the second 
rank, and

( ) ( )Sp
2 2

xx yyak
k kk

= =
+= ,	 (20a)

where

xx

xy

xy

yy

k
k

k
k

k == f p.	 (20b)

With uniform heat dissipation, dimensionless temperature 
has the form

t(u) = 1 – u,       u
R
r
2

2

= .	 (21)

Thus, Tint has a sense of the temperature difference inside the 
optical element. In the particular case of the isotropic trans-
verse thermal conductivity tensor k^, taking place for uniaxial 
media with the [001] orientation, cubic crystals, and isotropic 
bodies, under an arbitrary boundary condition the solution 
will take the form

t(u) = 1 + t0 – u,	 (22)

differing from (21) by the presence of a constant component  
/ ( ) 2/BiRH20t k= = , inversely proportional to the Biot num-

ber (Bi), where H characterises the quality of the thermal con-
tact of the element with the coolant or the heat sink and is 
called the heat transfer coefficient or surface conductivity.

From a practical point of view, for the applicability of 
solution (19) – (21) in the case of the anisotropic tensor k^, it is 
necessary that Bi >> 1, and as k for an upper bound estimate 
we take the maximum eigenvalue of the tensor. This condi-
tion means a restriction from below on the value of H and is 
fulfilled in the case of sufficient cooling. Consider, for exam-
ple, an active element of radius R = 1 cm made of a YAG 
crystal with good thermal conductivity (k = 10 W m–1 K–1). 
When cooled using a cold finger through good thermal paste 
or indium foil (H = 2 W cm–2  K–1 [50]), we obtain t0  = 0.1 (Bi 
= 20), and when cooled through indium solder (H = 
20 W cm–2 K–1 [55]), t0 = 0.01 (Bi = 200).

Thus, in cylindrical optical elements, a parabolic tempera-
ture profile is established when heat is uniform in volume. In 
noncubic crystals, high quality of the thermal contact with a 
heat sink, which can be achieved by contact of solids, is also a 
necessary requirement.

4.2. Review of analytical solutions to the problem 
of thermoelasticity

Sirotin [38] and Parfenov et al. [39] obtained solutions to the 
elasticity problem for a long rod and a thin disk with a para-
bolic temperature profile and arbitrary symmetry and orien-
tation of the crystal. The found stress fields have similarities 
with the fields observed in elastically isotropic [see (13)] 
media. These solutions are based on the fact that the equa-
tions of mechanical equilibrium due to their independence 
from the longitudinal coordinate z in these geometries are 
reduced to a two-dimensional form:

¶
¶

¶
¶

x y 0xx xys s
+ = ,

¶
¶

¶
¶

x y 0y yx ys s
+ = .

	 (23a)

Such a system of equations with boundary conditions of the 
free boundary

( )sincos 0xx xy x y R2 2 2s j s j+ =+ =
,

( )sincos 0y yx y x y R2 2 2s j s j+ =+ =

	 (23b)

is automatically satisfied by axially symmetric formulae for 
the in-plane components of the stress tensor (sij for i, j ≠ z)

srr = A(u – 1),

sjj = A(3u – 1),	 (24a)

srj = 0,

which in the Cartesian coordinate system have the form

( ) /A x R Ry3xx
2 2 2 2s = + - ,

( ) /A x y R R3yy
2 2 2 2s = + - ,	 (24b)
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/xyA R2xy
2s =-

and differ from the solution of the isotropic problem by an 
arbitrary coefficient A.

In a thin disk, out-of-plane stresses sjz are considered 
equal to zero. The solution to the elasticity problem for an 
arbitrary elastic compliance tensor s was first published with-
out derivation in [36]. It can be obtained, for example, by the 
methods described in paper [39] devoted to the long rod 
geometry using the equations presented there. Recently, this 
solution was used for the simplest orientations of a tetragonal 
crystal in [40, 41], but in a more cumbersome form, through 
the elastic stiffness tensor.

The coefficient A for the disk, which we will denote by 
Adisk, is determined from a generalisation (6) of Hooke’s law 
and the Saint-Venant deformation compatibility equation

¶
¶

¶

¶
¶ ¶
¶

y
u

x

u
x y
u

2 0xx yy xy

2

2

2

2 2

+ - = ,	 (25)

reduced in the case of a parabolic temperature profile to a 
linear algebraic equation. We rewrite the result from [36] in 
the notation convenient for us:

/4A T aintdisk

a

diskTa= ,     ( ) /xx yy
a
T T Ta a a= + 2 ,

( )a s s s s8 3 3 2 4xxxx yyyy xxyy xyxy
1

disk = + + + - .

	 (26)

Thus, in a thin disk of an arbitrary crystal with a parabolic 
temperature distribution, the stress field is axially symmetric. 
Due to the anisotropy of the material equation (6), the defor-
mation field (as well as the displacement field) does not have 
in the general case this symmetry [40, 41].

In the geometry of a long rod, a solution to the elasticity 
problem for a parabolic radial temperature profile was 
obtained previously by two different methods. The solution 
[37, 39], which we will later call Parfenov’s solution, is con-
structed as follows. First, we consider the problem (u0, s0) of 
a rod with fixed ends (out-of-plane deformations u0jz = 0). It is 
proposed to divide relations (6) into two subsystems, i.e. for 
in-plane and out-of-plane deformations, respectively:
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where the prime indicates that the two-index Nye notation 
was introduced relative to the laboratory coordinate system, 
rather than to the crystallographic one, as in Fig. 2a. Then, it 

is proposed to exclude out-of-plane stresses from (27), and 
then using (24b) and (25) we obtain again a linear algebraic 
equation for A = Arod. Having solved it, we determine the in-
plane stresses, after substituting which into (27b) we also find 
out-of-plane stresses.

After that, an approximate correction of the solution is 
made for the case of a rod that can expand uniformly over the 
cross section in the direction of the z axis: Corrections dsjz = 
sjz – s0jz that are constant over the cross section of the rod are 
introduced, such that the cross section averages from sjz are 
equal to zero. This condition means a change in the boundary 
condition at the ends of the rod, namely the equality of the 
total forces applied to them to zero. The introduced correc-
tions do not affect the differential equilibrium equations 
inside the rod, but lead to the recalculation of the constant 
component of the tensor u, because in accordance with (6)

( )u u sij ij0 0ijkz kz kzs s- = -  .	 (28)

The resulting solution is approximate, because at the ends 
of the rod the condition of a mechanically free boundary is 
not satisfied at individual points of the cross section. Due to 
the fact that the system of forces applied to each end face is 
balanced, in accordance with the Saint-Venant principle, the 
perturbation of the solution introduced by such a substitution 
of the boundary condition is concentrated in a limited region 
(on the order of the rod diameter) [49].

Due to the linearity of the thermoelasticity problem, by 
analogy with a thin disk, it is convenient to introduce the 
notation

/4A T aint prod = u ,

[ ( ) ] /cos sinT d u d u d u
2
1 2 1 2 2 4rodzz int p1 p2 p3s j j= - + +u u u

	 (29)

and similar notations for sxz and syz.
Note that in papers [37, 39] the thermal expansion tensor 

was incorrectly translated into Nye’s notation, which is why 
these works lack coefficients 2 in the temperature terms in 
(27). The transformation rules for the tensors u and aT  must 
be the same so that equation (6) is fulfilled simultaneously in 
both forms. However, in the special cases considered in 
[37,  39], the corresponding components of the tensor aT were 
equal to zero; therefore, the error did not affect the final 
results.

Parfenov’s solution has a significant limitation. It does 
not guarantee the fulfilment of the third equilibrium equation

¶
¶

¶
¶

x y 0yzxzs s
+ = ,	 (30a)

the third boundary condition on the side surface of the rod

( )cos sin 0xz z xy y R2 2 2s j s j+ =+ =
	 (30b)

and two Saint-Venant equations obtained from (25) by a 
cyclic change of the coordinates (x, y, z). If the latter two 
equations are not satisfied in the solution for a thin disk as 
well, which can be attributed to the approximate nature of 
both solutions, then the noncompliance of (30) specific to 
Parfenov’s solution requires special attention.

Another solution to the elasticity problem in a long rod is 
given in [36]; we will call it Sirotin’s solution. The stress func-
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tion method of Lehnitsky was used [56]. The solution is 
obtained in the form

/4A T aint srod = u ,

[ ( ) ] /c c cos sinT u u b u
2
1 2 1 2 2 4rod intxz s s ss j j= - - -u u u ,

[ ( ) ] /4ccos sinT b u b u u
2
1 2 1 2 2rod intyz s s ss j j= - + -u u u ,

	 (31)

[ ( ) ] /4cos sinT d u d u d u
2
1 2 1 2 21 2 3rod intzz s s ss j j= - + +u u u ,

where the expressions for the coefficients , , , anda b c ds s s sju u u u  are 
given in Appendix 2. It is easy to show that this solution satis-
fies Eqns (30) but does not guarantee the axial symmetry of 
the out-of-plane shear deformations urz and ujz, which are 
constant in Parfenov’s solution in accordance with (27b) and 
(28), and the fulfilment of all three compatibility conditions, 
including (25). It can be shown that uzz is constant in the cross 
section of the rod in both solutions.

Thus, in both solutions for a long rod of an arbitrary 
crystal with a parabolic temperature distribution, only the 
in-plane part of the stress field and the deformation uzz con-
stant across the cross section are axially symmetric. In 
Parfenov’s solution, the remaining out-of-plane deforma-
tions are constant over the cross section and, therefore, axi-
ally symmetric. Other components of the solutions do not 
possess axial symmetry in the general case. In addition, it is 
worth noting that in the general case, all three out-of-plane 
deformations in a rod with loose ends are nonzero, and so 
the use of the term ‘plane strain’ as applied to this case for 
crystals of arbitrary symmetry makes sense only after addi-
tional justification.

A quick analysis of the above-considered solutions to 
the elasticity problem suggests that the description of the 
photoelastic effect in the form of (¶n/¶T)s and (3b) is more 
convenient than in the form of (¶n/¶T)u and (3a), not only 
in elastically isotropic media, but, at least, in cubic crys-
tals, for which a theory based on an axially symmetric solu-
tion to the problem of elasticity is well developed (see ref-
erences in the Introduction). Thus, in a thin disk, the stress 
field differs from the elastically isotropic case previously 
studied in detail [22, 25] only by the scalar coefficient, 
which, as shown in Section 5.1, in the calculation of bire-
fringence only renormalises the heat release power. In a 
long rod, in addition to a similar renormalisation, it is 
needed to take into account the changes in the stress szz, as 
well as the nonzero sxz and syz. However, this procedure is 
simpler than substituting into (3a) the non-axially symmet-
ric (in the general case) strain tensor found from the stress 
tensor and (6).

In the case of noncubic media, it is necessary to take into 
account the remark on the asymmetric part of the strain ten-
sor given at the end of Section 3.

4.3. Solution to the elasticity problem for a cubic crystal

Let us consider the stress fields described in Section 4.2 in 
long rod and thin disk cylindrical elements made of cubic 
crystals. Because their elastic compliance tensor (Fig. 2a) is 
generally nonisotropic, the stresses will depend on the orien-
tation of the crystallographic axes.

4.3.1 Solution for a thin disk

In the geometry of a thin disk with an arbitrary orientation 
[MNP], also denoted by Euler angles (a, b) (see Section 2 and 
Fig. 1), the coefficient adisk (26), which determines the stress 
tensor, can be written as

adisk = E[001] /Zdisk,

( ) ( ) (3 1)
Z

f
1

4
1 1[ ] s001

disk
n x

= +
+ - -1 ,	 (32)

sin sin sin
f

4
2 22 2 4b a b

=-
+

1

	
( )M N P

M N M P N P
22

2 2

2 2

2 2 2 2

=-
+ +

+ + ,
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( )s s
s

s s
s

2
2

s
aaaa aabb

abab

11 12

66x =
-

=
-

	 (33)

is the elastic anisotropy parameter introduced, for example, 
in [6, 18]. In media with the anisotropic tensor s, by analogy 
with isotropic media, it is customary to use Young’s modulus 
and Poisson’s ratio, which in this case are functions of direc-
tion (Poisson’s ratio can also be introduced as a function of 
two orthogonal directions) [6, 57, 58]. In formula (32), these 
parameters are used in the [001] direction:

E[001] = s11–1,            n[001] = –s12/s11.	 (34)

In an isotropic medium, (13) holds; therefore, xs = 1 and

a Edisk

iso
= .	 (35)

Thus, under the assumption that the elastic compliance tensor 
of an isotropic medium differs from the anisotropic one only 
by the value of s66,

Z a
a

disk
disk

disk
iso

= .	 (36)

For the [MNP] direction in the crystal, Young’s modulus 
has the form [6, 58]

[1 2(1 )(1 ) ]E E f[ ] [ ] [ ]MNP s001 001 1
1n x= + + - - 	 (37)

and does not coincide with adisk. It should also be noted that 
the positive definiteness of the tensor s imposes the following 
restrictions on the elastic properties of crystals [6]:

E[001] ³ 0,       –1 £ n[001] £ 1/2,        xs ³ 0.	 (38)

In the simplest orientations [001], [011] and [111] of the 
crystal, we have

f1 [001] = 0,        f1 [011] = –1/4,        f1 [111] = –1/3.	 (39)

Orientations [001] and [111] are the points of a global maxi-
mum and minimum of f1 and Zdisk.
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Figure 3 shows the dependences of value of 1/Zdisk on the 
orientation of the crystallographic axes in the active element 
made of CaF2 with significant elastic anisotropy and of YAG 
with weak elastic anisotropy (the xs parameters are given in 
Table 1). The 1/Zdisk variation in CaF2 is approximately 13 %, 
while in YAG it is negligible.

To calculate the thermal lens, we also need the normal 
longitudinal deformation uzz. Calculation by formula (6) 
yields

( ) ( ) ( ) /u T T s s 2zz xxzz yyzz rr0Ta s s= - + + + jj

	 [( ) ] ( ) /cos sins s s2 2 2 2xxzz yyzz xyzz rrj j s s+ - + - jj 	 (40)

and then

( )u T u Z u Z F u1
2
1 1

2
1

int
[ ] [ ]

zz
001 001

disk disk
Ta

n n
= - + - +

+
-1sb bl l:'

	 cos sinF u F u
2

2
2

22 s j j+ +F F3 s D0,	 (41)

where the expressions for Fis, i = 1, ..., 3 are given in Appendix 3, 
and jF is defined in (1).

4.3.2. Solution for a long rod

In a cubic crystal, the stress tensor is proportional to the sca-
lar coefficient of thermal expansion; therefore, for the rod it is 
convenient to introduce into expressions (29) and (31) the 
coefficients 

1-, , , , , , , , , ,a d a b c d a d a b c di i i ip p s s s p p s s ss T sa= u u u u u u" #, - ,	 (42)

independent of it (i = 1, 3). Parfenov’s solution is implicit and 
therefore not amenable to simple analysis. Sirotin’s solution 
(A2.1) – (A2.3), which is very cumbersome in its general form, 
can be significantly simplified in a number of special cases. 
For the convenience of the further discussion, we will con-
sider solutions to the elasticity problem (29) and (31) not in 
the laboratory coordinate system (x, y, z), but in the system 
(x'', y'', z) bound to the active element; rotation through the 
angle F will be taken into account separately. The quantities 
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Figure 3.  (Colour online) Analytically (curves) and numerically (points) calculated stresses for CaF2 as functions of the Euler angle b in (a) [M0N] 
(Euler angle a = 0) and (b) [MMN] (a = p/4) orientations. For a thin disk: (red curve, ○) 1/Zdisk. For a long rod: (dark blue curves) complete and 
(light blue curves) simplified Sirotin’s solutions, (black curves) Parfenov’s solution; 1/Zs 0 p (solid curves, □), ds1 01 p1 (4a rod
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(solid crimson curve) 1/Zdisk, (solid green curve) 1/Zs and (dash and dot green curve) /(4 )d a1s rod
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ap, dp1, as, and ds1 are the same in both coordinate systems, 
and the remaining coefficients (42) are denoted as

{ , , , } , , ,d b c d d b c di i i i 0p s s s p s s s= F=
r r r r " , .	 (43)

Sirotin [36], in addition to the general solution, obtained 
simplified formulae for some simple orientations of crystals 
of various symmetries. For cubic crystals, such orientations 
are [001], [011], and [111], and the corresponding solutions are 
given in (A2.6). In the approximation of the isotropic prob-
lem of elasticity, both the general solution and expressions 
(A2.6) for all three orientations are reduced to the form

/(1 ) ( )a E ssrod
iso

11 12
1n= - = + - ,

d a41rod
iso

rod
iso

= ,	 (44)

0b c d drod
iso

rod
iso

rod
iso

rod
iso

2 3= = = = .

For further consideration, it is convenient to introduce 
coefficients by analogy with the disk

/Z a ap rod
iso

p= ,

/Z a as rod
iso

s= ,	 (45)

{ , , , , } { , , , , } /(4 )D D D D D d d d b c as s s s s sb c1 2 3 1 2 3= r r r r .

The values of 1/Zs p are the magnitudes of the in-plane stresses 
in the rod of arbitrary orientation in Sirotin’s and Parfenov’s 
solutions, normalised to the magnitude of the in-plane stresses 
in the elastically isotropic rod, which differs from the anisotro-
pic one by the value of s66 [see (13), (33), and (34)]. The quanti-
ties Di (i = 1, 2, 3, b, c) are the magnitudes of the various terms 
of the component szz (i = 1, 2, 3), as well as of the components 
sx''z and sy''z (i = b, c) in Sirotin’s solution normalised to the 
magnitude of in-plane stresses in the same orientation. The 
quantities // { , , } (4 )D Z d b c as s s s rod

iso
i i= r r r  are the magnitudes of the 

same stress components, normalised to the magnitude of the 
in-plane stresses in the elastically isotropic rod.

As in the case of a thin disk, in both solutions for a long 
rod, the in-plane stresses differ from elastically isotropic ones 
by the factors 1/Zs p (Fig. 3), which, like for the disk, depend 
on the orientation of the crystal, but much weaker, and espe-
cially weak, in Sirotin’s solution. In addition, out-of-plane 
stresses must be calculated using formulae other than those 
for the elastically isotropic case.

The strain tensor in a long rod made of a cubic crystal has 
the following properties: In Parfenov’s solution, the strains  
urz = ujz = 0, and uzz is also constant over the cross section,

uzz = aTTint /2,	 (46)

that is, such a state of the rod in these media can be consid-
ered as generalised plane-strained, as in the case of isotropic 
elasticity. In Sirotin’s solution, the strain uzz is the same, and 
urz and ujz are nonzero and depend on the coordinates in the 
cross section of the active element.

We studied out-of-plane shear strains and out-of-plane 
shear stresses in Sirotin’s solution in more detail. The maxi-
mum value of the out-of-plane off-diagonal component of an 
arbitrary symmetric tensor X of the second rank at a given 
point is

( )XmaxX X X
z

z rz z
2 2

= = +=
=m

m j ,	 (47)

and the maximum value of the diagonal in-plane component is

( ) | | ( ) 4X X XmaxX X X X
2
1

||
z

rr rr r
2 2

= = + + - +
=m

mm jj jj j8 B .	(48)

We compared with each other the normalised values of  s^ 
and u^ , maximum along the cross section of the optical ele-
ment made of various cubic materials (see Table 1) of differ-
ent orientations (note that the stress components reach a 
maximum on the cylinder generatrix):

( ) / ( ) /( )max maxM b c a2||
S S

s s s1
2 2s s= = += ,

( ) / ( ) 2 /( )max maxM b c d d d2 1 2 3
S S

s s s s szz
2 2 2 2s s= = + + += ,

( ) / ( )max maxN u u||
S S

= =1 ,
	

(49)

( ) / ( )max maxN u u
S S

zz= =2 .

In our calculations, Mi was a few percent, while Ni was in 
the range of 7 % – 15 %, exceeding Mi by 3 – 6 times. From this 
we concluded that, contrary to our intuitive assumptions, the 
solution to the elasticity problem in an anisotropic rod is 
closer to the plane-stressed state characteristic of a thin disk 
than to the plane-strained state, at least in cubic crystals. 
Thus, in our opinion, it is impossible to consider Sirotin’s 
solution to a generalisation of plane deformation.

4.3.3. Simplified Sirotin’s solution for a rod 

An important particular case of Sirotin’s solution is the case 
when xs differs slightly from unity. Analysis of the solution 
showed that for

2
1  < xs < 2,           0 < n[001] < 0.4	 (50)

as is virtually independent of orientation, and bsr  and   csr  are 
small (i.e.,  sx''z and sy''z are small; some of the dependences 
are shown in Fig. 3). Neglecting these small corrections, we 
can simplify formulae (A2.3) [taking into account (42)] to the 
form

{ , }, , , , ,d d d d d d a D D D42 3s1 s s 0 01 02 03. =1 2 30 0 0
r r r r" !, +,

{ , } { , } 0b c b cs s 0 0. =r r r r ,

( )
( ) ( )

D
F

s a F
1 2 1

1

[ ]

[ ] [ ]

001 1

11 001 001 1
1

01
s

0 s

n
n n

=
+ +

+ + +-

, 	 (51)

Table  1.  Material properties of real and model m3m crystals used in 
the calculations.

Medium xp xs n[001]

CaF2 – 0.47 [59, 60] 1.77 [61] 0.212 [61]

SrF2 – 0.284 [60] 1.25 [62] 0.266 [62]

KCl –1.2 [16] 2.69 [62] 0.135 [62]

YAG 3.2 [2] 0.965 [62] 0.25 [62]

1 3.2 1.77 0.212

2 3.2 0.44 0.212
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D02 = –D0F2s,

D03 = –D0F3s,

( )
D

F1 2 1
1

[ ]

[ ]

001 1

001
0

sn
n

=
+ +

+
,

suitable for analytical analysis (see notation in Appendix 3), 
where as a0 one can use any of the expressions for as from 
(A2.6), for example, based on the proximity of the studied 
orientation to the simplest ones. In the present paper, for def-
initeness, we will use the expression for as [001]. For the conve-
nience of further analysis, we introduce, by analogy with the 
full solutions, the factor

/Z a arod
iso

0 0= ,	 (52)

which is constant in this approximation. In the approxima-
tion of the isotropic elasticity problem, Z0 = D01 = 1 and D02 = 
D03 = 0.

4.3.4. Numerical verification of analytical solutions to the elas-
ticity problem

To verify the analytical solutions to the elasticity problem 
considered above, in the particular case of a cubic crystal, 
we calculated the stress fields in a long rod and a thin disk 
using a three-dimensional commercial FEM code for differ-
ent xs and n[001]. The aspect ratio L/2R was increased in the 
rod and decreased in the disk until the numerical solution 
began to coincide with one of the analytical ones. The 
obtained dependences of some stresses in YAG and CaF2 in 
the middle cross section along the longitudinal coordinate z 
for L/2R = 5 and L/2R = 1/40 are shown in Fig. 3 as func-
tions of the Euler angle b for the orientations [M0N ] (a = 0) 
and [MMN ] (a = p/4) in comparison with analytical curves. 
It can be concluded from Fig. 3 that the solution for the disk 
and Sirotin’s solution for the rod are in good agreement 
with the numerical one, while Parfenov’s solution deviates 
noticeably from it except for the neighbourhoods of [001] 
and [101] orientations, in which the two analytical solutions 
for the rod coincide.

It can also be seen from Fig. 3 that the simplified solution 
approximates well the complete Sirotin’s solution, with the 
exception for the stresses sjz, which we neglected during sim-
plification: The difference in solutions does not exceed units 
of percent and is generally less than the difference in 
Parfenov’s and Sirotin’s solutions.

Thus, we will consider below the analytical solution for 
the disk and Sirotin’s solution for the rod sufficiently accu-
rate for practical use. We obtained this result only for cubic 
crystals, but we assume that it is valid for crystals of any 
symmetry.

5. Calculation of thermo-optics in elastically 
anisotropic cubic crystals

The beam distortions induced by the active element with lin-
ear birefringence, independent of the longitudinal coordinate 
z, are determined by three functions of the transverse coordi-
nates (x, y): the arithmetic mean d0 of the phase incursions of 
the eigenpolarisations [subscripts I and II in expression (12)], 
the angle of incidence of these polarisations Y and difference 
in the incursions of their phases d. Consider a beam that is 

initially linearly polarised at an angle q in the xy plane and 
passes through such an active element.

In the absence of circular birefringence, the ratio of the 
field intensity polarised after passing through one or more 
birefringent elements orthogonally to the initial beam polari-
sation to its total intensity is called the local degree of beam 
depolarisation. The integral degree of depolarisation is the 
ratio of the corresponding powers. In the plane wave approx-
imation using the Jones matrix method [63], it is easy to 
obtain that after a beam passes through one active element, 
the resulting permittivity tensor of which (10) is independent 
of z, the local degree of thermally induced depolarisation can 
be calculated by the formula

( , ) ( /2) ( )sin sinx y 22 2d qG Y= - .	 (53)

With weak birefringence, it simplifies to

( , ) ( )sinx y
4
1 22

0
2. d qG Y - 	 (54)

and, as is easy to see, is determined by a linear combination of  
dcos2Y and dsin2Y with coefficients depending on the angle 
of inclination of the input polarisation.

The integral degree of depolarisation, by definition, is the 
local degree of depolarisation averaged over the input probe 
beam:

| | | |S SE Ed d
S S

in in

1
2 2g G=

-

; Ey y y y ,	 (55)

where Ein is the electric field strength (hereinafter, for simplic-
ity, we assume that there is no absorption and amplification 
of probe radiation in the medium). With strong birefringence, 
g tends to the steady-state value

| | | |S SE Ed d
S S

in loc in

1
2 2g g=3 3

-

; Ey y y y ,	 (56)

where

3( , ) 2( )sinx y
2
1

loc
2g qG Y= = -3 	 (57)

(see, for example, [25]). The value of g∞ loc is the local degree 
of depolarisation (53), averaged over a small region of the 
cross section, within the boundaries of which, under condi-
tions of strong birefringence, the phase difference changes by 
a value much larger than 2p, while the temperature and stress 
fields, as well as the intensity profile of the probe beam, 
change weakly.

Using the same method, the phase distortion of the ini-
tially polarised beam component can be found in the form

( ) ( /2) ( ), arctan tan cosx y 20j d d qD Y= + -6 @ .	 (58)

In the approximation of the isotropic elasticity problem, it 
was shown that the dependence of thermally induced distor-
tions of the beam on the orientation of the crystallographic 
axes in m3m crystals is determined by the photoelastic anisot-
ropy parameter x, which, depending on the choice between 
(3a) and (3b), can be written in the form of elasto-optic (xp) or 
piezo-optic (xp) relations [21, 22, 25]:

2 / 2 /p p p pp abab66 S Sx = = ,	 (59a)
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/ 2 /abab66 S Sx p p p p= =p 	 (59b)

[see the notation in (17)]. It is easy to show that [see (4)]

xp = xp xs;	 (60)

therefore, in elastically anisotropic crystals (xs ≠ 1), relations 
(59) differ. In m3 crystals, in addition to the parameter x, it is 
necessary to determine the second parameter of photoelastic 
anisotropy [25], which does not depend on the form of expres-
sion (3):

( ) / ( ) /p p p12 21 12 21d S Sx p p p= - = - .	 (61)

Since we consider the description of the photoelastic effect 
in the form of (3b) to be preferable, and the tensor s in elasti-
cally anisotropic crystals is completely or partially axially 
symmetric (see Section 4.2), the formulae for the thermally 
induced change in the permittivity will be similar to elastically 
isotropic expressions from [21, 22, 25], in which (59b) is used 
for x.

5.1. Beam distortion in elastically anisotropic cylindrical 
active elements

In accordance with formula (10b), the quantities Y, d, and d0 
can be written as

( )cot ,r
B

B B
2

2
x

xy

x yyj D
D D

Y =
-

s

s s ,

( ) ( ),
sin

r k L n n k Ln B
2 2

2 xy
0

0 0
3

I IId j
D

Y= - =-
s

	
( )

cos
k Ln B B

2 2
xx yy0 0

3 D D
Y=-

-s s ,

( ) ( ) [( ) /2 ]u n,r k L n k L n n10 I 0IIzz0 00d j = - + + -

	 (62)

	 [( )k L n u T T1 zz0 00 b= - + -s ] g

	 ( /2)( ) /n B Bxx yy0
3 D D- +s s 2].

Hereinafter, we assume for definiteness that the end faces of 
the element have no antireflective coatings, and the refractive 
index of the environment is equal to unity. Otherwise, the 
term in d0, which is responsible for a change in the length of 
the element [proportional to (n0 – 1)uzz], should be corrected 
accordingly.

Substituting (3b), the stress tensor from Section 4.3.1, and 
the piezo-optic tensor of a cubic crystal (see Fig. 2) with an 
arbitrary orientation of the crystallographic axes into these 
expressions, in the geometry of the thin disk we obtain

( ) ( )u n1 1b a- + -Q
p

20 0
disk

Td = s(

	 ´ ( ) ( 1)u Z u n Z1
2
1 1[ ] [ ]001 001

0
disk disk

T
n

a
n

- + - + -
+` j; E

	 ´ F F Fcos sinu u
2
1

2
2 23 sj j- + +F F1 2s sb ^l h: D1

	 (63)

( ) ( )cos sin
Z
p

F u u F F
2

1 2
2
1

2
2 23

disk
z j j+ + + - + +p F F21 b l: D,

,( cosA 2j= + )sinA 2j+Z
p

A u u
2
1

21 2 3
disk

- F FF F F2cosd Y b l: D

,= B B(sin cos 2d j+2Y B )sin 2j+Z
p

u u
2
1

21 2 3
disk

- F FF F Fb l: D

where

p = QPS  /(lk)	 (64)

is the dimensionless heat release power; the quantity u is 
defined in (21); l is the wavelength in free space, and the 
expressions for Ai F, Bi F, Fi and Fis, i = 1, .., 3 are given in 
Appendix 3. Expressions (63) are given in the form most con-
venient for the case of weak birefringence.

With the same substitution using Sirotin’s solution from 
Section 4.3.2, for a long rod we obtain

( ) ( ) ( )
Q
p

u n
Z
p

u
2

1
2

1
2

1 4
2
1

s
0 0

rod

Td b a z= - + - + + -s p ` j: D &

	 ( ) ( )cos sinD u u D D2 1
2
1

2
2 21 2 3z j j- - - + +p F Fb l: D

	 ( ) ( )D F D F D F u2 1 2
2
1

b c 51+ - - + -1 4 b l6 @

	 ( ) cosF D F D F D F u2 2
2

2c b2 2 1 5 j+ + + - F46 @

	 ( ) sinF D F D F D F u2 2
2

2c b1 j+ + + + F33 4 56 @ 0,	 (65)

( ) ( )cos Z
p

D A D A D A u2 2 1 2
2
1

b c4 5
s

1 1Y = - - + -F FFd b l6 @&

	 ( ) cosA D A D A D A u2 2
2

2c b2 1 5 42 j+ + + - FF F F F6 @

	 ( ) insA D A D A D A u2 2
2

2c b3 1 4 53 j+ + + + FF F F F6 @ .,

sin ( ) ( )B B BZ
p

D D D u2 2 1 2
2
1

b c4 5
s

1 1d Y = - - + -F FF b l6 @&

	 B B B B( ) cosD D D u2 2
2

2c b2 1 5 42 j+ + + - FF F F F6 @

	 B B B B( ) insD D D u2 2
2

2c b3 1 4 53 j+ + + + FF F F F6 @ .,

where the expressions for Ai F , Bi F  and Fi (i = 4, 5) are also 
given in Appendix 3. To preserve the general form of the 
expressions for the elastically isotropic case, we introduced 
the thermo-optical constant Q as follows:

/Q n s n E
4
1

4
1

[ ]0010
3

11 0
3

disk S ST Ta p a p= = ,

/( ) /(1 )Q n s s Q
4
1

rod [ ]disk0
3

11 22 001STa p n= + = - .

	 (66)

It is easy to see that in the elastically isotropic case (13), 
expressions (66) take the form of (16).

Expressions (63) and (65) are similar to the elastically iso-
tropic ones; however, they have a number of important differ-
ences, in addition to defining Q. In a thin disk, the terms for 
the arithmetic mean of the phase incursions d0, responsible 
for a change in the crystal length [proportional to aT  (n0 – 1)], 
now depend on the crystal orientation and, in the general 
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case, are not axially symmetric. In a rod, the corresponding 
term in our approximation is constant over the cross section 
of the active element. The terms in the phase incursions 
caused by the photoelastic effect have a factor of 1/Z, which 
also depends on the crystal orientation (it is easy to show that 
Y is independent of Z). In a thin disk, this is the only differ-
ence in birefringence from the elastically isotropic case. 
Therefore, with weak birefringence, the degree of depolarisa-
tion will change in proportion to the square of the phase dif-
ference d by Zdisk

2-  times. With strong birefringence, when the 
degree of depolarisation g∞ (56) and (57) depends only on the 
angle of inclination of the eigenpolarisations Y, it will remain 
the same. In a long rod, the formulae for the elastically aniso-
tropic case contain new terms that affect both d and Y. 
Therefore, in this case, the dependence of the degree of depo-
larisation on the crystal orientation is a complex function of 
the parameters of photoelastic and elastic anisotropy.

In approximation (51), expressions (65) are simplified to 
the form:

)p( ) ( ) (
p
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u n
Z

u
2

1
2

1
2
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2
1
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0 0
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2
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2
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2
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	 + s3 0 1 F3( ) ]sinF D F F2 2j- 3,

	 (67)

( ) (cos Z
p

D A u A D F2 2 1
2
1 2

0
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0
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2

203 1# j j+ - FF F Fs3 B.

Formulae (63), (65), and (67) can also be written differently: 
They will hold true if we omit the subscript Ф of the coeffi-
cients Ai and Bi and replace Y by

YF = Y + F.	 (68)

In particular, at Ф = 0, these formulae can be simplified by 
omitting the subscript Ф everywhere.

In the particular case of a = 0 (orientations [M0N], see 
Fig. 1e), in a thin disk
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and in a long rod,  Db = D3 = 0, and

p( ) ( ) ( )
p

Q
p

u n
Z

u
2

1
2

1
2

1 4
2
1

s
0 0

rod

Td b a z= - + - + + -s ` j: D &

	 ( ) cosD u u D2 1
2
1

2
21 2z j- - - +p Fb l: D

	 ( )D F D F u2 1 2
2
1

c 51+ - - -1 b l6 @

	 ( ) cosF D F D F u2 2
2

2c2 2 1 5 j+ + + F.,	 (70)
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p u

2s
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To avoid confusion, note that at b = p/2 (orientations [NM0], 
equivalent to [M0N]) Dс F5 = Dс A5 = 0, but Db F4 and Db A4 are 
nonzero; otherwise, the formulae are the same. In approxima-
tion (51), expressions (70) take the form
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(71)
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In m3m crystals with a = p/4 (orientations [MMN], see 
Fig.  1f), in a thin disk

2 2sin sinZ
p

B u
2disk

3d jY =F F ,	 (72)

in a long rod, Db = D3 = 0 again, and

2 ( 2 ) 2sin sinZ
p

B D B u
2s

c3 4d jY = +F F ,	 (73)
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while in approximation (51)

2 2sin sinZ
p

B u
20

3.d jYF F .	 (74)

The values of d0 and dcos2YF in these cases are determined 
by expressions (69), (70), and (71) (the values of all coeffi-
cients should be recalculated taking into account the change 
in the angle a). We also recall that in the simplest orientations 
[001], [011], and [111], further simplification of expressions 
(69) – (74) is possible using formulae (A2.6).

5.2. Specific orientations in elastically anisotropic crystals

Mukhin et al. [22] argue that in an elastically isotropic m3m 
crystal in the absence of a critical [[C]] orientation, the sim-
plest orientations related to symmetry elements of a crystal 
([001], [011], and [111]) are the best and the worst from the 
point of view of minimising the degree of depolarisation (55). 
In the vast majority of cases, this statement is true. In all 
cases, a weaker statement holds: The simplest orientations are 
points of local extrema or saddle points of the degree of depo-
larisation. Due to the coincidence of the symmetries of the 
elastic and photoelastic tensors in m3m crystals (see Fig. 2a), 
allowance for the anisotropy of the elastic properties leaves 
these orientations extreme, although in rare cases the type of 
extremum can change. This case will be considered in the sec-
ond part of the paper.

Unlike the simplest ones, the [[C]] orientation [18, 19] is 
not related to the symmetry elements of a crystal, and its posi-
tion can change. The piezo-optic tensors of m3 crystals have a 
lower symmetry (Fig. 2b); therefore, orientations that are also 
not related to the symmetry elements of a crystal and are 
determined with good accuracy by the analytical estimates 
[[A]] and [[B]] [25] are optimal in most cases for these crystals. 
The position of these orientations can also change when 
anisotropy of the elastic properties of the crystal is taken into 
account. In Section 5.2, we calculated the position of [[A]], 
[[B]] and [[C]] orientations in elastically anisotropic crystals. 
In addition, we found the [[D]], which is also not related to the 
symmetry elements of the crystal and is a local minimum 
point or a saddle point, and in rare cases, a global minimum 
point of the degree of depolarisation under strong birefrin-
gence.

5.2.1. Orientation [[C]] in m3m crystals

Joiner et al. [18] calculated in the elastically isotropic approx-
imation the [[C]] orientation position in m3m crystals for a 
long rod and a thin disk of arbitrary cross section with an 
arbitrary shape of the heating beam. The derivation is based 
on the requirement

∆Bxy = 0	 (75)

for F = 0 and an arbitrary stress tensor within the frame-
work of these geometries. Because  aT xy ≡ 0 in cubic crys-
tals, ∆Bs xy = ∆Bu xy in (3). In this regard, the simultaneous 
use of (3b) for a thin disk (plane-stressed state) and (3a) for 
a long rod (plane-strained state) does not lead to errors. 
Otherwise, the derivation of the formulae in a disk and a 
rod is identical and leads to one of the [MMN] orientations 
(see Fig. 1f)

a = p/4 + pk/2,

tan2 b = –x–1,

	 (76)

where x = xp in a disk and  x = xp in a rod. It follows from this 
expression that with strong anisotropy of the elastic tensor, 
the critical orientations in a disk and in a rod of the same 
material should noticeably differ.

In an elastically anisotropic disk, solution [18] holds. 
However, as we noted in Section 4.3.4, in the case of a rod we 
need to use Sirotin’s solution, which is not a plane strain (see 
Section 4.3.2), and, therefore, expression (76) is not applicable 
in this case. It is easy to obtain that in the set of [MMN] orien-
tations (a = p/4) considered in [18], for F = 0 we have

B xy xyyz yz xyxy xyp s p sD = +s ,

( 1)sin
4

2S
xyyzp

p b x
=

-p ,

( )cos sin
2

S
xyxy

2 2

p
p b x b

=
+ p ,

	 (77)

0xyxx xyyy xyzz xyxzp p p p= = = = .

One can see that pxyxy vanishes only under condition (76) with 
x = xp, but in this case pxyyz ≠ 0. Since in Sirotin’s solution Dc 
≠ 0 for these orientations (see Fig. 3b) and, therefore,  syz ≠ 0, 
in the elastically anisotropic case the existence and position of 
the critical orientation depend on the stress tensor. 
Substituting (24b) and (31) into (77) and requiring the fulfil-
ment of condition (75), we obtain the transcendental equation 
for the angle b:

( )cos sinD2 2 2
1
1

cb b b
x
x

- =
-
+p

p
.	 (78)

The critical orientation in an elastically anisotropic rod, 
defined by this equation, will be denoted by [[Cs]]. Because, 
as follows from our comparison of relations (49), the coef-
ficient Dc is small compared to a similar value obtained from 
the strain tensor, we expect that [[Cs]] is slightly different 
from the critical disk orientation, which coincides with [[C]], 
and is much further from position (76) with x = xp predicted 
in [18] (see the second part of the paper). Since in the simpli-
fied Sirotin’s solution we completely neglected this compo-
nent of the stress tensor, the resulting critical orientation 
coincides with that for a disk. Due to the fact that in the 
specific orientations [001], [111], and [011], Dc = 0 (see 
A2.6)], the orientations [[Cs]] and [[C]] coincide with them 
under the same values of xp (–∞, – 0.5  and 0, respectively). 
Because in the elastically isotropic case two of them ([001] 
and [011]) are marginal for the existence of the critical orien-
tation, the domain of its determination does not change 
when the anisotropy of the elastic properties is taken into 
account.

5.2.2. Orientation [[C]] in m3 crystals

Critical orientation can also exist in m3 crystals, as in m3m 
crystals. In our work [25], we showed that in the elastically 
isotropic approximation, the [[C]] orientation exists for
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x < 0,

(–x – 3)xd2 < 4(1 – x),

	 (79)

and its position is determined by a cumbersome system of 
transcendental equations. For xd ≠ 0 in the notations of 

X = cos2asin2b,

Y = cos2b
	 (80)

we managed to reduce these equations to a system

( ) ( ) ( ) (9 )3Y q Y q Yq q3 2 1 1 42 2
d d d dk k k k- + - = - + -6 6@ @ ,

[ ( ) ] ( )X q Y q q Y2 2 1 1 3d dk+ - = - ,
	 (81)

where

/( ); /( ); 1 3 /4q q q1 1dd d d
2x x x x k= - = - = +p p p .	 (82)

System (81) has three solutions corresponding to physically 
equivalent orientations of the general form [MNP], [NPM] 
and [PMN]. A numerical analysis showed that outside the 
domain (79), the solutions to system (81) are complex, that is, 
the [[C]] orientation does not exist. Note that in the degener-
ate case of the m3m crystal (xd = 0), system (81) allows one to 
find only solution (76), and for the other two roots the values 
of X and, accordingly, the angle a are not determined (these 
solutions are given in [25]) .

As in m3m crystals, the critical orientation in an elasti-
cally anisotropic disk coincides with [[C]]. The critical orien-
tation in an elastically anisotropic rod also coincides with it in 
a simplified solution and slightly deviates ([[Cs]]) in the exact 
one (see the second part of the paper). In the latter case, the 
existence of a critical orientation in the strict sense has not 
been proved; however, for some values of the Euler angles, 
numerical calculations demonstrate a significant decrease in 
the degree of depolarisation, which is characteristic of the 
critical orientation.

5.2.3. Orientation [[A]] in m3 crystals

In our work [25], we determined two more orientations ([[A]] 
and [[B]]) of the form [M0N] (see Fig. 1e) in elastically isotro-
pic m3 crystals. In the [001] orientation of the m3m crystals, 
Y does not depend on r, since in expressions (63), (65), and 
(67) A1 F = B1 F = 0 (see Ref. [22] and (A3.2) – (A3.4)). In m3 
crystals, this condition is not met because of the nonzero coef-
ficient A1, which vanishes in the [[A]] orientation, determined, 
for example, by the Euler angles

0, 2 (1 )cos q q1d d
2a b= = - + - .	 (83)

In the particular case of  xd = 0, the [[A]] orientation coincides 
with [001], and for | xd | >> | xp – 1|, we observe [[A]] ® [101]. In 
elastically anisotropic crystals, this calculation is valid for a 
disk and in approximation (51), for a rod. If approximation 
(51) does not hold in a rod, instead of A1 = 0, it is necessary to 
require that

( ) ( )D A D A D A2 1 2 01 b c4 51- - + = 	 (84)

(in orientations of the form [M0N ], [0MN ], etc. A4 and Db or 
A5 and Dc always vanish). Condition (84) is satisfied in some 
[[As]] orientation also of the form [M0N ], slightly different 
from (83).

In [25], we found that for weak birefringence, and also for 
a large probe beam with strong birefringence, the degree of 
depolarisation in m3 crystals is usually minimal in an orienta-
tion close to [[A]] (see the second part of the paper). For sim-
plicity, unless otherwise specified, we will neglect this distinc-
tion.

5.2.4. Orientation [[B]] in m3 crystals

The [011] orientation of m3m crystals is interesting in that the 
angle of inclination of the eigenpolarisations Y in the central 
region of the active element turns out to be weakly dependent 
on the coordinates, which allows one to obtain relatively 
small depolarisation in the regime of strong birefringence for 
beams of small radii (see Ref. [24] and second part of the 
paper). The degree of depolarisation in this regime is approx-
imated by expressions (56) and (57), which depend on Y and 
do not depend on d.

The angle of inclination of eigenpolarisations Y in cylin-
drical active elements in various approximations (see [22, 25], 
(63), (65), and (67)) has the general form

2 /cot A BY = u u ,	 (85a)

where

( ) ( ) ( )cos sinA A g r A A h r2 21 2 3j j= + +F F
u u u u ;

( ) ( ) ( )B cos sinB g r B B h r2 21 2 3j j= + +F F
u u u u ;

	 (85b)

and at r ® 0, we have h(r) ® 0 and g(r) ® const. To minimise 
the degree of depolarisation, we choose the input polarisation 
so that  q = Y(r = 0), then (57), taking into account (85), will 
have the form:

1 1 )( ) (
( )

A B A B
AB BA

2 2 2 2
1 1

2

 locg =
+ +

-
3 u u u u

u u u u
.	 (86)

Consider the case of a small diameter of the probe beam, 
within which h << g. In the first approximation, the integral 
degree of depolarisation (56) will be as follows:

R
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r r

I
g
h r r

E
E

2 d
d

2

0

2

0
2

2

in

in.g3 3

y
y ,

1 1 )(
( ) ( )

I
A B

A B B A A B B A
2 2 2

2 1 2 1
2

3 1 3 1
2

 =
+

- + -
3 u u

u u u u u u u u
.

	 (87)

Since in this calculation, the change in the angle F is compen-
sated for by the automatic selection of the angle q, the value 
of I∞ depends only on the orientation of the crystal and its 
elastic and photoelastic properties, and we can assume with-
out loss of generality that F = 0. In the critical orientation, I∞, 
by definition, vanishes. A numerical analysis shows that apart 
from this I∞ and, together with it, g∞ have a minimum or a 
saddle point in one of the orientations of the form [M0N] (see 
Fig. 1e). In these orientations at F = 0, the coefficient 
B B 01 2= =u u ; therefore,
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( / )I B A[ 0 ]M N 3
2

1
2

0=3 F=
u u .	 (88)

In particular, in the elastically isotropic approximation and in 
the geometry of a thin disk

/I A[ 0 ]0M N
2

1
2x=3 p .	 (89)

This quantity has a minimum in the sought-for orientation, 
called [[B]], determined, for example, by the Euler angles [25]

a = 0,

cos2b = qd.
	 (90)

In a particular case of xd = 0 (in a m3m crystal), the [[B]] ori-
entation coincides with [101], and if | xd | = | xp – 1|, then [[B]] is 
the same as [001]. For convenience, we will ascertain, in con-
trast to [25], that for | xd | > | xp – 1| this orientation does not 
exist. In this case, the minimum of I∞ [M0N]0 is reached in the 
[001] orientation.

In [25], we found that the degree of depolarisation for a 
thin probe beam with strong birefringence in m3 crystals is 
usually minimal in an orientation close to [[B]] (see the second 
part of the paper). For simplicity, unless otherwise specified, 
we will neglect this distinction.

For a negative xp, small in absolute value, the [[B]] orien-
tation, being close to the critical orientation, is not a mini-
mum point of the dependence of the degree of depolarisation 
on the Euler angles (a, b), but a saddle point. In particular, in 
elastically isotropic m3m crystals this occurs at –1/3 < xp < 0.

In the case of a long rod, expression (88) in compliance 
with (51) takes the form

s ( )I D A2 1[ ]M N0 0 01 1
22

  x= -3 p
-6 @ .	 (91)

Substituting (A3.3) into (91) allows one to convert it into

ss ] /I G J[ ]M N0 0 1
2 2

  [M N0 0=3 ,             W = cos2b,

s
( )

J
W

q W W
2 1

2 1
[ ]M N0 0 2

2

 
d

h
=

- -

+ - ,       h = (1 + n[001])(1 – xs),

	(92)

where the constant G1 is independent of orientation, and due 
to (38)

– ∞ < h ≤ 3/2.	 (93)

As a result of studying the function J [M0N]  s0(W) for an extre-
mum, we obtain a quadratic equation. An analysis of its roots 
shows that I∞ [M0N] s0 is minimal in the orientation, which we 
will call [[B~]], determined, for example, by the Euler angles

a = 0,

2 h( ) {[ ( 2)] 1}cos q q2 1 /1 1 2
d db h h= - - -- ,

	 (94)

which, taking into account (93), exists when

(1 – h)| qd | ≤ 1,	 (95)

and coincides with [001] when (95) turns into equality. Outside 
the domain of [[B~] existence, the value  of I∞ [M0N] s0 is mini-

mal in the [001] orientation. For h = 0 (xs = 1) [[B~] coincides 
with [[B]], and in m3m crystals (for qd = 0) [[B~]] coincides 
with [101].

In the case of strongly anisotropic elastic properties, con-
dition (51) is not met, and among a number of orientations  
([M0N], [0MN], etc.), it is necessary to minimise the quantity

2 ( ) ( )I D A D A D A2 1 2[ ]M N s b c0 1 1 4 5
2

  - - +3 p
-= x 6 @ .	 (96)

It has a minimum in some [[Bs]] orientation, slightly different 
from [[B~]], if one exists. Otherwise, it has a minimum in the 
[001] orientation.

5.2.5. Orientation [[D]] in m3m and m3 crystals

In m3m crystals, the value of I∞ (87) turns into +∞ and, there-
fore, has points of maximum in [001] and [111] orientations. 
Due to the fact that the integral degree of depolarisation in 
the crystals of [M'M''N ] and [M''M' N] orientations is the 
same (see [25]), the value of I∞ must have another point of 
minimum or a saddle point in one of orientations of the 
form [MMN], where M < N. In these orientations, it is similar 
to (88)

( / )I B A[ ] 3m mMMN 3
2

1
2

0=3 F=
u u .	 (97)

In particular, in the elastically isotropic approximation and in 
the geometry of a thin disk

16/I J[ ] 3 0 [ ]0m mMMN MMN
2

=3 ,	 (98a)

where

( ) ( )
J

Y Y1 1 3
[ ]0MMN =

- -
Y q-

,	 (98b)

and the quantity Y is defined in (80). The denominator of J[MMN] 0 
vanishes in the [[C]] orientation. Investigation of the function 
J[MMN] 0(Y) for other extrema, as in the case of J[M0N] s0(W), 
reduces to a quadratic equation. An analysis of its roots 
shows that I∞ [MMN] m3m  0 is minimal in the orientation, which 
we will call the [[D]] orientation, determined by the Euler 
angles

/4 /2ka p p= + ,

( ) /
cos

1
2 1 32

1 2

b
x

x x
=

-

- +

p

p p6 @
.

	 (99)

This orientation exists for xp > –1/2 and is a point of mini-
mum of  I∞(a, b) for xp > x0  [[D]], where x0 [[D]] » 1.65, and for 
lower values, it is a saddle point. The value of I∞ in the [[D]] 
orientation becomes smaller than in [011] for xp > x[[D]], where 
x[[D]] » 10. In this domain, the [[D]] orientation may be better 
than [011] in the case of strong birefringence. In a disk at xp < 
0, in order to minimise the degree of depolarisation, it is bet-
ter to use the [[C]] orientation; in a rod, it is necessary to take 
into account the important limitation considered at the end of 
the second part of the paper.

In a long rod with anisotropic elasticity, expression (97) in 
compliance with (51) takes the form

[ ]I B D A2 1[ ] 3 0m mMMN s 3
2

01 1
2

= -3
-^ h .	 (100)

Substituting (A3.3) into (100) allows one to convert it into
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s s/I G Jm3m[ ]MMN 0 2
2

  [ ]MMN 0 =3
2 ,	 (101a)

where

( ) ( ) /J Y Y J1 1 1 3 2s h= - - + [ ]MMN 0 [ ]MMN 0 6 @ ;	 (101b)

and the constant G2 is independent of orientation. The extre-
mum condition for J[MMN] s0(Y) reduces to an equation of the 
4th degree of general form. The orientation in which this 
quantity has a minimum is called the [[D~]] orientation. Since 
in approximation (51) h << 1, we expect that this orientation 
will be close to [[D]]. Finally, in the case of strongly anisotro-
pic elastic properties, it is necessary to minimise the quantity

sI
D A D A
B D B

2 1 2
2

[ ]MMN
c

c

1 1

3
2

5

4
  =

- -
+

3 ] g; E 	 (102)

among the [MMN] orientations. The numerical calculation 
showed that it has a minimum in some [[Ds]] orientation, dis-
placed relative to [[D]] and [[D~]].

A numerical analysis of the degree of depolarisation g∞ in 
the elastically isotropic approximation showed that the orien-
tation [[D]] is the best in two cases. First, for x > 10 and a very 
small radius of the probe beam (approximately 0.2R or less 
for a flat-top profile), the gain in the degree of depolarisation 
compared with [011] can be significant; as the radius of the 
probe beam increases, the [011] orientation becomes prefera-
ble. Second, there is a narrow range, 1.2 < x < 1.7, in which 
the orientation close to [[D]], but not coinciding with it, is 
slightly better than [011] and [001] orientations for beams 
with a radius of about 0.5R.

Thus, the conditions in which the use of the [[D]] orienta-
tion is advantageous are very specific; therefore, the practical 
use of crystals of this orientation is unlikely. In this connec-
tion, the [[D]] orientation will not be used in the calculations 
in the second part of the paper.

In m3 crystals, the search for the [[D]] orientation is signifi-
cantly complicated by the fact that, like [[C]], it is an orienta-
tion of the general form [MNP], and, due to the low practical 
value of this orientation, the search was not analytically carried 
out. A numerical analysis of the value of I∞ shows that the 
[[D]] orientation, like [[C]], disappears when the parameter 
| xd | exceeds some critical level, merging either with [[B]], or 
with [001].

Thus, in the geometry of a thin disk, [[A]], [[B]], [[C]], 
and [[D]] orientations, not related to the symmetry ele-
ments of the crystal, coincide with orientations in an elasti-
cally isotropic material. In the geometry of a long rod, in 
the approximation of weak anisotropy, [[B]] and [[D]] ori-
entations differ, and in the case of strong anisotropy, all 
four orientations differ. For convenience, the numbers of 
formulae characterising these specific orientations are 
given in Table 2.

5.3. Determination of the effective values of thermo-optical 
constants Q and P in various crystal orientations

In measurements of thermally induced birefringence in opti-
cal media, Q is often used not only and not so much in the 
sense of definition of (16) but as a material constant charac-
terising the degree of depolarisation in single crystals of indi-
vidual orientations and in ceramics [48, 64]. Consider this 
application in more detail.

5.3.1. Thermo-optical constant Q

It follows from (53) that local (G ) and integral (g) degrees of 
depolarisation are periodic functions of the angle of inclina-
tion of the probe beam polarisation q with a period p/2. 
Consequently, g is periodic in the angle of the crystal rotation 
F relative to the z axis and has the same period. The integral 
degree of depolarisation for weak birefringence in the particu-
lar case of q = 0 in an elastically isotropic m3 crystal of [001] 
orientation (a = 0, b = 0) has extrema at F = 0 and p/4, and 
the approximation of the local degree of depolarisation, qua-
dratic in the heat release power, 

( )sin 2
4
1

0
2d YG = 	 (103)

is such that

2( /4) /( )[ ], sinPQ u4001 20
2 22 2

m3m p lk jG F = = S ,

( 0) ( / )[ ], [ ],001 001 40 0
2

m3m m3mx pG F G F= = = .

	 (104)

It depends on the medium parameters Q/k and x (recall that Q 
is different in a disk and in a rod). In order to reduce the 
degree of depolarisation with weak birefringence in the [111] 
orientation to the same form, which for any F is 

2sinu2 j([111])
Q

P
4 3

1 2
0

2
2 2

m3m lk
xG =

+
Sc m ,	 (105)

we introduce the quantities [48]

( )
Q

Q
3

1 2
[ ]111 m3m iso
eff x

=
+ ,

1[ ]111 m3m iso
effx = .

	 (106)

In other orientations of m3m crystals, it is generally impossi-
ble to introduce these quantities, since the degree of depolari-
sation cannot be reduced to (104) for two values of F differ-
ing by 45° (see Theorem 4 in [22]).

In the elastically anisotropic case, in order to reduce the 
degree of depolarisation to (104) in the [001] orientation of a 
m3m crystal, it is necessary to introduce

Table  2.  Specific orientations of cubic crystals, not related to the elements of their symmetry.

Symmetry Isotropic elasticity or a thin disk Long rod with weak anisotropy Long rod with arbitrary anisotropy

m3

[[A]] (83) [[A]] (83) [[As]] (84)

[[B]] (90) [[B~]] (94), (95) [[Bs]] (96)

[[C]] (79), (81) [[C]] (79), (81) [[Cs]]  –

[[D]]       – [[D~]]     – [[Ds]]  –

m3m [[C]] (76), x = xp [[C]] (76), x = xp [[Cs]] (78)

[[D]] (99) [[D~]] (101) [[Ds]] (102)
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/ ([ ])Q Q Z 00100[ ]1 m3m
eff

= ,

00[ ]1 m3m
effx x= p ,

	 (107)

where Q and Z are different in a disk and a rod. The formula 
for a rod was obtained in [65]. In m3 crystals, the orientation 
[[A]], in which

( )[[ ]]Z A/Q A Q[[ ]] [[ ]]2A
eff

A= ,

/A[[ ]] [[ ]]2A
eff

Ax x= p ,	 (108)

1 (1 )( )A q q q
2
1

[[ ]] d d d2
4 2 2

A x= - - + -p

is an analogue of the [001] orientation. In the particular case 
of xd = 0, the [[A]] orientation coincides with [001], and A2[[A]] 
= 1.  If | xd | >>|xp – 1|, then [[A]] ® [101], and A2[[A]] ® (xp + 
3)/4. If approximation (51) is not observed in the rod, the val-
ues of Qeff and  xeff corresponding to the [[As]] orientation will 
differ from those calculated by formula (108).

In the [111] orientation, with weak birefringence and any 
F, the degree of depolarisation has the form

2

([111])
([ ])

Q
Z

P
4 111

0 2

2

lk
G = Sc m

	 ( )sinu
3

1 2
12

2
2

2 2d
d# !

x x j c+
+p

2

b l; E ,	 (109)

where

2 /( )tan 3 2 4d dc x x= + p ,	 (110)

and the choice of sign depends on which of the eight equiva-
lent orientations ([111], [ ], [ ]111 111r r , etc.) is selected. This 
expression cannot be reduced to the form of (104), but it is 
most similar to it when

2

( )[ ]
Q

Z
Q

3
1 2

12 111

/

[ ]111

2 1 2
eff dx x

=
+

+pb l; E ,

1[ ]111
effx = ,

	 (111)

differing only in the nonzero value of cd.
Note that there is no physical difference between two 

opposite xd values, since when a cubic crystal with parameters 
(xp, xd, xs) rotates by ±90° relative to any of [001], [010] and 
[100] directions, after a change of notations of the crystallo-
graphic axes we obtain a crystal with (xp, –xd, xs).

For convenience, all special cases in which Qeff and xeff can 
be introduced are listed in Table 3. Note that it is possible to 

introduce these quantities in an arbitrary orientation, for 
example, in a counter-rotation scheme [66], but they will not 
be reduced to those considered here (in particular, they will 
not depend on xd) and will not make sense for a single active 
element.

5.3.2. Thermo-optical constant P

Due to the factor 1/Z present in the photoelastic terms of the 
phase incursions in (63), (65), and (67), but absent in the 
terms responsible for ¶n/¶T, the thermo-optical constant P 
in the case of anisotropy of elastic properties cannot be 
introduced in a form analogous to (15) as a material param-
eter that allows one to simplify the expressions for d0, as was 
done, for example, in [30, 32, 33, 35, 48]. The orientation-
dependent P eff can be determined by formula (12), but, as in 
elastically isotropic m3m crystals [64], only for two orienta-
tions in which d0 is axially symmetric, i.e. in this case, for 
[111] and [[A' ]]. The latter differs from [[A]] (83) by the sign 
of qd and similarly to it in the case of an m3m crystal is iden-
tical to [001], and in the case of a rod made of an m3 crystal 
it is analytically determined only in approximation (51). To 
determine Peff for an arbitrary orientation, we generalise 
expression (12) by averaging the refractive indices over the 
polar angle:

[ ( ) ( )] /( ) ( ) ( ) ( )n r n r n T r T P4 0 0d
0

2

I II
effpj+ = + -

p
6 @y .	 (112)

The quantity that is obtained upon inclusion of the term 
responsible for a change in the active element length (see 
[11,   16]) into P eff is denoted byP tot. It is defined by the expres-
sion

( ) /( ) ( ) ( ) ( )r k L T r T P2 0 0d tot

0

2

0 0 0pd j d= + -
p

6 @y .	 (113)

In a long rod, neglecting the end effects, P eff and P tot are iden-
tical.

Using (63), (65) and (67), for arbitrary orientation we 
obtain

)(P Z
Q

F1 2 1disk
eff

disk

diskb z= + + +s p ,

( )P P n Z Z F1 1
1[ ] [ ]

0
001 001

1disk
tot

disk
eff

disk disk
sTa

n n
= + - + +

+c m,

[ ( )P Z
Q

D1 4 2 1rod
eff

s

rod
1b z z= + + + -s p p 	 (114)

	 ( ) ( )]D F D F D F2 1 2 b c1 51- - + +4

	 » ][ ( ) ( )Z
Q

D D F1 4 2 1 2 1
0

0 0 1
rod

1 1b z z+ + + - - -s p p .

Note that only coefficients F4 and F5 in this expression 
depend on xd. In the specific orientations, expression (114) 
can be simplified. In particular, in the orientation [001]

Table  3.  Formulae for the parameters Qeff and xeff.

Orientation xs = 1, m3m xs = 1, m3 m3m m3

[001] Q, x – (107) –

[[A]] ≡ [001] (108) при Z = 1 ≡ [001] (108)

[111] (106) (111) при Z = 1 (111) при xd = 0 (111)

Note. In a long rod, formulae for the [[A]] orientation are valid in 
approximation (51).
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( )P Z
Q

1 2disk
eff

disk

diskb z= + +s p ,

( )P P n Z1 1 [ ]
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001
disk
tot

disk
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disk
Ta

n
= + - +c m,	 (115a)
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in the [011] orientation

P Z
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1
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and in the [111] orientation

P Z
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disk
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In these expressions, for calculating Zdisk one needs to use (39), 
and for calculating Zs (A2.6). In [[A]], [[A' ]], [[B]], and [[B~]] ori-
entations, as well as in m3m crystals of [[C]] and [[D]] orienta-
tions, the expressions for P eff and P tot are obtained [approxima-
tion (51) is implied in a rod] by substituting the quantities 

2-( )f f q q
2
1 1 1A[[ ]] [[ ]] d1 1

2
A d= = - +l ,

( )f q
4
1 1B[[ ]] d1

2
=- - ,

[ ( ) ( )] /(2 )f q q q1 1 1 2[[ ]] d d d1
2 2 2 2

B~ h h h h h= - - - - - ,	 (116)

(1 )/f
4
1

[[ ]]1
2

C m3m x x= - -p pb l ,

2(1 )
3 (2 ) /

f
1 3

D

/

[[ ]]1 2

3 2

m3m
x

x x
=

-

- +

p

p p

into (114), respectively. These quantities are used as a factor 
f1 in the functions F1, F1 s, Zdisk and D01.

In elastically isotropic media, (114) simplifies to well-
known expressions [30, 32, 33, 35, 48]

P P Q F1disk
eff

disk disk= + ,

( ) (1 )P P n 1 [ ]0 001disk
tot

disk
eff

Ta n= + - + ,	 (117)

effP P Q Frod rod rod 1= - ,

where Pdisk and Prod are defined in (15).

6. Conclusions

We have studied thermally induced distortions of a beam in 
cylindrical active elements in the form of a long rod and a 
thin disk made of single cubic syngony crystals of all sym-
metry groups with an anisotropic elastic stiffness tensor 
under uniform pumping and lateral heat removal. It is 
shown that the description of the photoelastic effect using 
the piezo-optic tensor is preferable to the description using 
the elasto-optic tensor. Existing analytical solutions to the 
problems of heat conduction and elasticity in anisotropic 
media of arbitrary symmetry are reviewed. In a long rod 
made of a cubic crystal, a choice is made between two solu-
tions to the elasticity problem in favour of a solution that 
does not correspond to plane strain; for weak anisotropy of 
the elastic stiffness tensor, a simplified solution of the elas-
ticity problem is found.

For an arbitrary orientation of the crystallographic axes, 
the arithmetic mean and the difference between thermally 
induced phase incursions of eigenpolarisations, as well as the 
angle of inclination of these polarisations, are calculated. The 
specific orientation [[D]] is introduced. It is shown that the 
specific orientations [[A]], [[B]], [[C]], and [[D]], not related to 
crystal symmetry elements, are the same both in a disk of an 
elastically anisotropic crystal and in the elastically isotropic 
approximation. In a rod, in the approximation of weak 
anisotropy of the elastic stiffness tensor,  [[B]] and [[D]] orien-
tations differ from them, and in the case of strong anisotropy, 
all four orientations differ. Effective values of the thermo-
optical constant Q are found in two specific orientations ([[A]] 
and [111]). The definition of the effective value of the thermo-
optical constant P is generalised; its value is found in an arbi-
trary orientation.
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Appendix 1

This appendix provides an overview of the methods for writing the 
photoelastic additive to the permittivity tensor used in the litera-
ture. Thermo-optics is not considered in book [5], and Hooke’s 
law in the chapters on the elastic properties of crystals and the 
photoelastic effect is written without the temperature term:

uij = sijkl skl	 (A1.1)

[formula (6) is present in the chapter on the thermodynamics 
of equilibrium states in crystals]. In paper [7] devoted to long 
glass rods, both forms of (3) are used, and the transition 
between them is carried out correctly: both derivatives ¶n/¶T 
are introduced. The authors of Refs [9, 10] use (¶n/¶T)s and 
(3b); expression (15b) was obtained in [10], and it directly fol-
lows from the formulae of [9]. Mit’kin and Shchavelev [11] 
also use expression (3b) for a thin glass disk, but do not spec-
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ify ¶n/¶T; expression (15a) can be obtained from the formulae 
given in [11]. Joiner et al. [18, 19], due to the specifics of the 
problem (their result does not depend on ¶n/¶T, see Section 
5.2.1), use (3a) for a rod and (3b) for a disk.

In [4], devoted to Nd : YAG rods in the [111] orientation, 
the concepts of thermal strain (u) and elastic strain (u' = u – 
aT) are distinguished. Hooke’s law (6) with these rather 
unusual notations does not contain the temperature term and 
has the form of (A1.1) up to the replacement of u by u'. Foster 
and Osterink [4] describe the photoelastic effect by the expres-
sion ∆B = pu', which, taking into account (4) and the modified 
formula (A1.1), is equivalent to (3b) up to the constant T0 not 
used by them, but leads to more cumbersome expressions for 
the phase incursion, from which follows (18). For ¶n/¶T, an 
ambiguous characteristic ‘not including any strain effects’ is 
used.

Snitzer [8] used formula (3a) in his review. The value of 
¶n/¶T is not specified, Hooke’s law is written in the form of 
(A1.1), and the tensor u, in contrast to [4], is called simply 
strain without any explanation. Despite this, the expressions 
for phase incursions both in a glass rod and in a glass disk 
correspond to formula (18). The formulae for the radial 
dependence of the tensor u', identical to those given in [4], are 
used for Nd : YAG rods by Koechner [12], who also borrowed 
the value of ¶n/¶T measured in [4]; the tensor is also simply 
called the strain. The same formulae are used by him and his 
coauthor in [3]; moreover, they also call the tensor the elastic 
strain in the appendix to their work and simply the strain in 
its main part. The formulae for the refractive indices of the 
eigenwaves in the rods (see [3, 4, 12]), which can be reduced to 
(18), are given in the classical book [1], where the tensor u' is 
also called simply the strain, and neither expressions nor 
Hooke’s Law (6) nor (A1.1) are given for it (we reviewed all 
six editions from 1976 to 2006). The thesis, presented in the 
appendix to [67] and later repeated in [50] in relation to both 
the book and the paper of the same author [13], that Hooke’s 
law in book [1] is written incorrectly, namely in the form of 
(A1.1) with a missing temperature term, is apparently errone-
ous (Cousins [67] gives specific numbers of formulae suppos-
edly containing errors, but the numbering does not corre-
spond to that adopted in any of the book’s editions). However, 
we believe that the reason for the confusion was the inaccu-
racy of the author of the book in dealing with definitions of 
physical quantities.

Soms and Tarasov [16] use (¶n/¶T)s, but the expressions 
for P both in a rod and in a disk of a cubic crystal are given in 
the form of (14), which is obtained using formula (3a). 
Mezenov et al. [2] give a physical model that describes the 
temperature change in the refractive index in a medium in the 
isotropic approximation. This model contains both the term 
related to a temperature shift of the resonant frequencies of 
the medium [and representing the contribution of (¶n/¶T)u], 
as well as the terms depending on the density and propor-
tional to the thermal expansion coefficient, i.e., forming ∆cT. 
Then, when describing the photoelastic effect, an incorrect 
assertion is made that expression (3b) describes the depen-
dence of the indicatrix of the refractive index on density and 
therefore generalises the corresponding term in the consid-
ered model. (The fallacy of this statement follows, for exam-
ple, from a thought experiment in which a uniformly heated 
body is compressed from all sides by external forces so that its 
dimensions and, therefore, the density are equal to the initial 
ones. In this case, the stress field, and therefore tensor (3b), in 
such a body, obviously, will be nonzero.) As a result, the 

expression for the increment of the refractive index has adja-
cent (¶n/¶T)u and (3b) [2]. Then (3b) is replaced by (3a) [obvi-
ously, using the incorrect formula (A1.1)], as a result of which 
the formula by chance again becomes true and corresponding 
to expression (10a). For the thermo-optical constant P, both 
expressions (14b) and (15b) are given; they have the same val-
ues of ¶n/¶T and, therefore, contradict each other.

Parfenov et al. [39] use (3b) and do not specify the value of  
¶n/¶T. A number of recent works [30, 32, 68] use (3a) and do 
not specify  ¶n/¶T as well. In [22, 27], (3a) is also used, but the 
thermal lens is not studied. In their review, Chenais et al. [50] 
first determine the change in the refractive index through the 
combination of (3a) with   (¶n/¶T)u. Then they notice that 
(¶n/¶T)u is much more difficult to measure than (¶n/¶T)s, and 
they construct a model of a temperature change in the refrac-
tive index, similar to that given in [2], but this model also 
requires a number of assumptions about the symmetry of the 
medium and, as the authors note, it is not possible to reduce 
the difference between the two values of ¶n/¶T to easily mea-
surable physical quantities. We believe that both these models 
in applied problems of thermoelasticity do not have obvious 
advantages over the phenomenological approach proposed in 
[46, 47] [see (7) and (11)]; moreover, Dement’ev [46] argues 
that calculations using the model from Ref. [50] are inade-
quate for YAG.

It should also be noted that of all the above works, ¶n/¶T has 
the form of a partial derivative only in [7, 9, 16, 39, 46, 47, 50, 67]; 
in the remaining papers the full derivative is written, which 
additionally masks the problem of the right choice of the 
form of writing of photoelastic terms.

Appendix 2

In this appendix, we present the expressions found in [36] for 
the coefficients , , , anda b c d js s s su u u u  of formula (31). Similarly to 
this paper, we introduce matrices obtained from elastic com-
pliance and thermal expansion tensors (these quantities are 
not tensors):

1- s sn s sijkl ijkl zzzz ijzz zzkl= - ,

1- s asij ij zzzz ijzzT T T zzg a= - ,
	 (A2.1)

where i, j, k and l take the values x, y and z, and denote

K n2 xzyz= ,

K n n3 yzyz xzxzx = + ,

K n n3y yzyz xzxz= + ,

Q n n n3 2x xxxz xyyz yyxz= + + ,	 (A2.2)

Q n n n3 2y yyy x xxyz xy z z= + + ,

K K Kx y
2D = - ,

3 2 4D n n n n3 x y y xx xxxx yy yy xy y= + + + .

Then

4=a
KQ Q K Q K Q

KQ K Q KQ K Q

2 x y x y

xx yy y x x xz x y yz

x y
2 2s

� � � �T T T Tg g g g

D + - -

+ + - + - yD
D

u
^ ^ ^h h h

,
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b KQ K Q a K K4 4x y y xz y yz
1

s s � �T Tg gD= - - +-u u^ h6 @,

c KQ K Q a K K4 4yx x z x xzy
1

s � �T Tg gD= - - +-
su u^ h6 @,

	 (A2.3)

d s a s s b s c s2 2zzzz zz xxzz yyzz yzzz xzzz
1

s1 s s sTa= - + - --u u u u^ h7 A ,

d s a s s b s c s22 zzzz xxzz yyzz yzzz xzzz
1

s s s s= - - +-u u u u^ h7 A,

2d s a s b s c s23 x yzzzz xyzz zzz zzz
1

s s s s= + +-u u u u7 A .

Unfortunately, in the particular case of a cubic crystal, 
expressions (A2.1) – (A2.3) cannot be significantly simplified 
for arbitrary orientation, despite the significant simplification 
of the material tensors in the crystallographic coordinate sys-
tem. In the orientations [M0N] (a = 0) and [MMN] (a = p/4), 
the tensor s in the coordinate system (x'', y'', z) has a simpli-
fied form, due to which

K = 0,      D = KxKy,

Qy = 0,     gT yz = 0,

	 (A2.4)

and (A2.3) can be reduced: in particular, taking into account 
the change in the notations in (42), (43) and (45)

D3 = Db = 0.	 (A2.5)

However, the solution still remains cumbersome for an ana-
lytical analysis of its dependence on orientation.

In the simplest orientations, i.e. [001] (a = 0, b = 0), [011] 
(a = p/2, b = –p/4) and [111] (a = p/4, tan2b = 2), the coeffi-
cients in (A2.3) are reduced to the form

D3 = Db = Dc = 0,

( )
( )

a s s
s

4
1s

001 11 12
11

1

s
x

= + +
- -

:5 D? ,

3D
4[ ]

s
1 001

x
=

+ ,

D 0[ ]2 001 = ,

a
s s s s15 1 8 1 2 1

4 1 3

s s s

s
011

11 12
2

11 12
s

x x x
x

=
+ + + + - -

+

] ] ] ]
]

g g g g
g

5 ? ,

/D
s s s

s s1
1 3
1

2 2
2

s

s
1 011

11 12 66

12 66

x
x

= +
+
-

+ +
+

5 ? ,

	 (A2.6)

( ) ( )
D

s s s
s s

2 2
1

2
s

011
11 12 66

11 12x
=

+ +
- -

5 ? ,

3 20
a

s s s s s s4 1 2
18

s s

s
111 2

11 12 11 12 11 12
s

x x
x

=
- + + + +] ]g g5 ? ,

D1[111] = (5 + xs
–1)/6,

D2[111] = 0

(the expressions for as, Db and Dc were obtained directly from 
the formulae of [36]). Note that the coefficient D2  [011] can 
appear in expressions (65) and (70) with a different sign: in the 
[101] orientation (a = 0, b = –p/4 or a = p, b = p/4) D2 =
D2 [011], and in the [110] orientation [110] (a = p/4, b = –p/2 or 
a = 5p/4, b = p/2) D2 = –D2 [011].

Appendix 3

Here are the coefficients used in formulae (41), (51), (63), (65) 
and (67):

bF f a1 1 13 3x x x= - = - + -11] ] ] ]g g g g,

,F a a1 21x x x= - -2 xl l] ]g g ,	 (A3.1)

,F b b1 21x x x= - -3 xl l] ]g g ,

cos sinA A B2 2i i iF F= +F ,

B cos sinB A2 2i i iF F= -F ,

	 (A3.2)

, ,( ) (1 ) ( ) (1 )A a a B b b1 2 1 21 1x x x x x x x x= - + = - +,l l l l ,

( ) (1 ) , ( , ) (1 )A a B c c3 12 2 2x x x x x x x= + - = - +l l ,	 (A3.3)

,( ) (1 ) , ( ) (1 )A c c B b1 23 3 3x x x x x x x= - - = + -l l ,

the coefficients with an additional subscript ‘s’ being calcu-
lated at  x = xs, x' = 0, and the coefficients without this sub-
script, at  x = xp, x' = xd. In these expressions

[ ]sin cos sina
4
1 2 1 21

2 24a b b= - -^ h ,

cos cosa
2
1 2 22 a b= ,

sin sin cos cosa 1
4
1 2 23

2 2 24a b a b= - +b l ,

sin sin sinb
8
1 2 41 b b a= ,

( )sin cos cosb
4
1 2 1 32

2a b b= - ,

	 (A3.4)

b sin cos22
3

2a b= ,

( )sin cos cosc
4
1 4 11

2a b b=- + ,

sin cos sinc 22
2

4
3 a b b= ,

and f1 is introduced in (32). Note that

A1s = F2s,

B1s = F3s.
	 (A3.5)
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To calculate thermally induced distortions of a beam in an 
elastically anisotropic long rod [see (65)], we also need the 
coefficients

tanF b b14 1 2dx x b= - - +p] g6 @ ,

(1 )F c c4 5dx x=- - +p5 ,

 c tanA c1 1 24 dx x b= - - +p] g6 @ ,	 (A3.6)

(1 ) 3A c c3 55 dx x= - -p ,

B tanb1 34 x b=- - p] g ,

(1 ) cotB b c25 1 2dx x b= - +p6 @ ,

where

sin cos sin sinc 2 1 2 43
2 2

4
1 a b b b= + -^ h7 A ,

sin sin sin sinc 2 2 44
22

4
1 a b b b= +^ h,	 (A3.7)

2cos sin
c

4
2

5
a b

= .

Note that, despite the presence of tangent and cotangent, 
functions (A3.6) have no singularities at b = ip/2  (where i is 
an integer) due to the fact that the corresponding coefficients  
bj and cj vanish.
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