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REVIEWS OF TOPICAL PROBLEMS

Topological phases in quantum mechanics and polarization optics
S. 1. Vinitskii, V. L. Derbov, V.N. Dubovik, B. L. Markovski, and Yu. P. Stepanovskii

Joint Institute for Nuclear Research, Dubna; N. G. Chernyshevskii State Un lversity, Saratov;
Physicotechnical Institute, Academy of Sciences of the Ukrainian SSR, Kharkov

Usp. Fiz. Nauk. 160, 149 (June 1990)

A mathematical treatment is presented of the known Berry, Wilczek-Zee, Aharonov-Anandan,
and Pancharatnam topological phases, and simple illustrative examples of their quantum
mechanics are presented. The continuity and connection is traced among the various phases,
while filling the gap involved with the forgotten works of S. M. Rytov and V. V. Vladimirskii in
polarization optics. A set of current experiments in polarization optics where the topological
phases are measured is discussed in detail. Additional information on recently obtained results
involving manifestations of geometrical phases in quantum mechanics and other fields of physics
is contained in the A ppendix and in the studies cited there.

1.INTRODUCTION

Recently M. Berry was able to pose sharply the ques-
tion, with a number of examples of quantum mechanics, of
the conditions for appearance of a topological phase of the
wave function describing the Schrédinger evolution with a
time-dependent Hamiltonian. This aroused great interest of
both theoreticians and experimentalists working in the most
varied fields of physics. The given problematics has deep
roots in our century (see the historical section of the Appen-
dix to this review) and is associated with contemporary
mathematical methods (see Secs. 2.9, 2.10, and the discus-
sion jn the Conclusion-Sec. 4). It turned out that the conse-
quences of the existence of topological phases in quantum-
mechanical systems were experimentally observed long ago.
In this connection it suffices to recall the half-integral orbital
momenta of molecules (Van Vleck, 1929) and the phases of
the wave function of a charged particle in the field of a mono-
pole or a solenoid (Dirac, 1931; Aharonov-Bohm, 1959).
However, only recently has the purposeful study of geomet-
rical (topological) phases begun.

Let us try to trace the logic and chronology of the dis-
cussions that have led to the current understanding of topo-
logical phases in quantum mechanics and polarization op-
tics. As is well known, quantum-mechanical systems are
described by state vectors or density matrices that respec-
tively satisfy the Schrddinger and Liouville equations. The
evolution of an initial state is very simple when the Hamilto-
nian operator does not depend explicitly on the time, since
the equations of motion give rise to a phase that depends
linearly on the time. However, for Hamiltonians of general
form, the pattern does not become simpler than for general
linear dynamical systems. In this case the solution acquires a
phase that contains information of nondynamical character
(see Sec. 2.6). For example, if we examine the class of Ham-
iltonian evolutions H(A), AeR", of the state vectors of the
quantum system while assigning the explicit time depen-
dence {A(7)}, it turns out that the phase of the wave func-
tion is the sum of two terms y + §. One component y of the
phase owes its existence to the fact that the parameter space
A is not simply connected. In other words, there are con-
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tours in parameter space that cannot be contracted continu-
ously into a point. This component ¥ of the phase is of geo-
metrical character, since it does not depend on the details of
the time dependence of the parameters. That is, it does not
depend on the dynamics fixed by the individual Hamilto-
nian, but reflects the properties of a family of Hamiltonians.
This construction, within the framework of the adiabatic
approximation, leads to the so-called Abelian phase of Berry
(see Secs. 2.1-2.4). A more general situation arises when the
parametrically assigned family of Hamiltonians possesses a
degenerate discrete spectrum. Then the geometrical phase
factors, which are incremented in the time of evolution of the
state vectors corresponding to a degenerate eigenvalue, fix
the non-Abelian phase of Berry or the Wilczek-Zee phase
(see Secs. 2.5-2.6). We easily note that, in essence, a time-
dependent family of Hamiltonians is not necessarily fixed
parametrically, since in deriving the geometrical phase one
uses only the fact of existence of suitable closed contours
= {A(T. )} in the parameter space A. This circum-
stance enabled Aharonov and Anandan to proceed further
and to isolate the topological phase of the wave function
without assuming adiabaticity, and with weaker restrictions
on the family of Hamiltonians. For these purposes they treat
a class of time-dependent Hamiltonians upon which they
impose the condition of cyclic evolution. That is, the state
vectors must transform into themselves within the time of
evolution apart from a unitary arbitrary factor. The geomet-
rical phase obtained here (the Aharonov-Anandan phase) is
discussed in Secs. 2.7-2.11. It was further noted that the
state space itself possesses a Kiahler metric and that trans-
port of states along a geodesic in this metric gives rise to a
phase of topological character-the Pancharatnam phase of
Sec. 2.13. Similar properties of phases in quantum mechan-
ics can be discerned also in its “algebraic formulation”, i.e.,
if we fix in a self-consistent way the time-dependent algebra
of the observables and characterize the state vectors with
quantum numbers that correspond to a commuting subalge-
bra. We shall mention one model of this type in Sec. 2.14.
Section 2.12 also presents a model of a topological phase that
isincremented in a nonlinear system describing the propaga-
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tion of light in a Kerr medium (see also Sec. 3.10). Here the
reason for appearance of the phase involves the existence of
invariants of the evolution.

Since, as we have already noted, the appearance of topo-
logical phases is a property of any dynamical system, then
polarization optics in the appropriate parametrization offers
a new field for seeking these objects. The phases associated
with the rotation of the polarization vector upon displace-
ment along bent light rays—a phenomenon predicted already
by S. M. Rytov (1938) and V. V. Vladimirskii (1941), is a
prototype of the phases of Berry and Pancharatnam. Sec-
tions 3.1 and 3.2 are devoted to this problem.

This review will pay special attention to the overall pat-
tern of topological phases in problems of quantum mechan-
ics and optics. In our presentation the quantum-mechanical
examples are methodological and illustrative in type as com-
pared with the problems from polarization optics (Secs. 3.3—
3.11). The latter have independent value, and also serve as a
source of deep analogies and graphic models. In this review
we have examined far from all aspects of the problematics of
topological phases. We have tried to present additional in-
formation on recently published studies containing new re-
sults in the Appendix (see Sec. 5).

2. TOPOLOGICAL PHASES IN QUANTUM MECHANICS

In going from the theory of Planck and Einstein to the
quantum mechanics of de Broglie, Heisenberg, Born, Schro-
dinger, and Dirac, a large role was played by the adiabatic
hypothesis of P. Ehrenfest (1913); any state defined from
the standpoint of quantum mechanics transforms under an
adiabatic change in the parameters of the system again into a
definite state with the same quantum numbers, which thus
are adiabatic invariants. Within the framework of quantum
mechanics the adiabatic hypothesis of Ehrenfest was proved
for nondegenerate quantum-mechanical systems in 1928 by
M. Born and V. A. Fock.' Since then this problem seemed
exhausted. However, in 1984 M. Berry? again drew attention
to the adiabatic theorem. He pointed out that the wave func-
tion of a system under a cyclic variation of the parameters in
the general case acquires a phase factor that contains, be-
sides the dynamical phase, also an additional topological
phase.

2.1. The adiabatic approach of Born and Fock

In their study' Born and Fock, in solving the Schro-

dinger equation (fi=1)
th=H@®b

with the Hamiltonian H(7), which varies slowly with time,
introduced the complete set of orthonormalized eigenfunc-
tions @, (¢) of the Hamiltonian

(2.1)

H (1) @n (1) = Ex (1) 9u (7) (2.2)

under the assumption that the spectrum E,, () is not degen-
erate. They chose the phases of the functions @, () so that

the condition was satisfied that
(. Ps) = 0. (2.3)

Further they represented the solution of the Schrodinger
equation (2.1) with the initial condition ¥(0) = ¢, (0) in
the form
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T \
¥ (1) = D¢ (V) 9m (1) €xp (— i Em (v & ) (2.4)

Upon taking account of (2.3), they obtained the following

equation for determining the quantities c,, =c\:

ba= S tn @ c‘pm)exp[,- { Eals) —En (‘l:'))d'c']. (2.5)

men 0

Upon using Eq. (2.2), the expression for (@,,.p,, ) for m#n
can be rewritten in the form

. (9 HAY, . ©,)
(P, cpmATnm) = ’

.6
E,—E, (2.6)

Here A7, is the time of transition between states. The evo-
lution of the wave function of (2.4) is considered adiabatic if
the right-hand side of (2.6) is much smaller in modulus than
unity. Then the system of equations (2.5) implies that in the
adiabatic limit we havec,, =c!” = §,,,. That s, the function

@n (1) €Xp (~ i { Ea(v) dr')

nm*

satisfies the Schrodinger equation (2.1), while the remain-
ing arbitrariness in the phase g, () is fixed by the condition
(2.3).

2.2.The adiabatic phase of Berry

The study of Born and Fock presupposed an explicit
dependence of the Hamiltonian H on the time . Following
Berry, we shall assume that the Hamiltonian H depends on
the time 7 via a set of functions {17 () j’-": .

= A(7),7€[0,7.]. Let us introduce the basis of the orthon-
ormalized eigenfunctions y, (1) of the instantaneous Ham-

iltonian H = H(A):
H (K) e (M) = E, (A) %n (M),

with arbitrary, yet fixed phases. Under the assumption that
the spectrum E, (A1) is not degenerate, these functions at
each instant of time 7€[0,7, ] coincide, apart from a gauge
transformation, with the eigenfunctions of (2.2):

@ (T) = U (W) % (M) =exp (10" (&) % ().

2.7)

(2.8)

The condition (2.3) gives rise to the equation for the phase

0" =i(tn ¥) = AW, (2.9)
Here
n_ %%,
A= (x e ) (2.10)
ar!

has the meaning of the “‘induced gauge field”, since in gauge
transformations

Y == EXP(Eatn(A))Yn (2.11)

the quantity A / transforms like the vector potential in elec-
trodynamics:
aan
a
The solution of Eq. (2.9) has the form
Te
8" (1) = g 8'dt = g AN = 8" (A (o)) — 8" (x(0)). (2.13)
0 ¢

]

Al - A} 4

(2.12)
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Now let us examine the closed contour C in the space of the
parameters 4, i.e., A(7.) = A(0). Then the change in phase
®"(7) in the time 7, characterizes the evolution of the func-
tion @, (7) with respect to the initial condition ¢, (0):

@ (Tc) = exp (i8" (o)) @, (0). (2.14)
Asisimplied by (2.13), the phase @"(r, ), which is equal to

8" (1) = 8¢ = gsA';- dr,
[

(2.15)

does not depend on the time of evolution, but is determined
only by the closed contour C along which the quantum sys-
tem having the Hamiltonian H(A) evolves.

Upon using the Stokes theorem, we can write the
expression for the phase @7, which is customarily called the
Berry phase:

0"=6;= g Flidsi®,

z

(2.16)

Here &% is an element of the orientable surface = extended
along the contour C, while the quantity
A
on/ or*
is the ““gauge-field tensor™ of (2.10). The gauge invariance
of the tensor F with respect to (2.12) explicitly implies that
the Berry phase does not depend on the choice of the basis of
(2.7), and is unambiguously defined by the relationship
(2.16).

We note that we can treat the Born-Fock condition
(2.3), which fixes the phases of the basis (2.7) as the condi-
tion of horizontality in the projective Hilbert fibration over
the space of rays employed in the study of B. Kostant.? Thus,
with account taken of the parametric dependence of the
function y(A4), a natural topological interpretation of the
Berry phase arises as the element of the holonomy group
% (1) of the connectivity of (2.10) (see B. Simon*).

2.17)

2.3.The Berry phase in the evolution of spin 1/2 in amagnetic
field

Let us illustrate the concepts introduced above with the
model, which has already become classic, of the evolution of
spin 1/2 in a magnetic field that depends on the time 7. Here
the Hamiltonian is a 2 X2 matrix depending on the three
parameters {4 '.1 %1} = 1(r). Letus writeitinamore gen-
eral form:’

H = (B}) + (AGo). (2.18)

Here G is a certain nondegenerate 3 X 3 matrix, and the o are
the standard Pauli matrices, BeR.
Let us make the replacement in the parameter space
A-p:
A=Gp. (2.19)

The eigenvalues £, of the instantaneous Hamiltonian
H = H(p), which as usual we find from the equation

det (H—s) =0, (2.20)
and the eigenvectors ¢, are respectively equal to
e. =BG p £1p|, (2.21)
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P
1 + =
@tzm( (!pl+pa)"’). (2.22)

(p]F po)*®

Here we havep, = p, + ip,. Let us introduce the standard
spherical coordinates {|p|,9,¢} in the parameter space
peR®. Then the eigenvectors will acquire the form

] .
cos -e7®
@, = o _9. ’
)

0 i
— 5in —-¢~i®
)

D¢
[

(2.23)

cos =
2

The components of the induced gauge field (2.10) in this
case equals

A, =i{e.Voo,) = (47, AY, A?f) = (0, — {fﬁ.ctg —20—, O) ,

Al =i(pN,0) = (A, A° A — (0, —ﬁtg%, o).

(2.24)

The corresponding form of the curvature (2.17) has the
form

F.=rotA, = F —2_ |
* + PP (2.25)
According to the definition (2.16), the Berry phase equals

Q, = ( rot A ds.
z

(2.26)

The final expression for @ , stems from the known formula®

on the Gaussian mapping induced by replacing the variables
of (2.19):

6. = F - sign (et 6) Qc; (2.27)
Here . is the solid angle:
Q =f L (2.28)
o3 [pP

The latter is subtended by the contour C lying on the sphere
#? of radius | p| with its center at the origin of coordinates of
the parameter space peR>, which coincides with the starting
origin in the parameter space AeR*. In particular, for the
contour C lying in the plane A, = 0, we find the solid angle
Q. =27, ie,

8.= Fsign (det G)x. (2.29)

Let us go to the particular parametrization of the Hamilto-
nian of (2.18)

H = xHs, (2.30)

which describes the evolution of the wave function of a parti-
cle of spin 1/2 in an external slowly varying magnetic field
H(7), where s is the spin operator, and « is a constant that
includes the gyromagnetic ratio. At the initial instant of time
let the projection of the spin m = + 1/2 on the direction of

the magnetic field t = H/|H| be fixed:
ih = xHsyp. (2.31)

Under a cyclic variation of the magnetic field
H(r.) = H(0) the function ¢, (1), according to (2.14),
acquires a geometrical factor:
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Pm (Tc) = exp (iem) P (0). (2.32)

Here the topological phase @™ is calculated from Eq. (2.16).
In line with (2.27) and (2.28) (for B=0,G=xH1) it
equals

8" = —mQ(C), m=x. (2.33)
Here Q(C) is the solid angle that the vector t describes on
the unit sphere while passing along the closed contour Cin
the parameter space te*. Bitter and Dubbers’ have experi-
mentally measured the phase of (2.33) for m = 1/2 for po-
larized neutrons in a helical magnetic field.

2.4. The Berry phase in the evolution of an arbitrary spinina
magnetic field

Let us study a generalization of Eq. (2.33) for a particle
having a general spin in the slowly varying magnetic field
H (7). Here we shall use the method of the movable Frenet
reference system {t,n,b} for calculating the Berry phase ®”.
The equations for the eigenfunctions of the instantaneous
Hamiltonian H(7) have the form

(st) @n = mQPm. (2.34)

Here the projection of the spin m is an adiabatic invariant,
while the phases @, are fixed by the Born-Fock-Simon con-
dition (2.3). Upon differentiating (2.34) with respect to the
time 7, we have the identity

(1) Pm + (st —m) @ = 0. (2.35)

We find from (2.35), owing to the properties of the spin
operator, that @,, is a superposition of the form

Cn = OPms1 + BPm + VPmer, (2.36)

since (tt) = 0. Then Eq. (2.3) implies that 8 =0, i.e.,

(bm = 0Pm+1 + VPm-1. (2.37)

Further, as a result of identity transformations, we obtain

P = — (st — m) (st) Q. (2.38)

Finally, with account taken of the commutation relation-
ships of the spin operator

(st) (st) — (st) (st} = i [t} s
we find the evolution equation in the customary notation

Om = — i3 [t] Pm. (2.39)

Now let us introduce the contour 4 = A(s) in the pa-
rameter space 4 = {4,,4,,4;} on which the instantaneous
Hamiltonian H(4) depends, such that the tangential vector

_dn

=4 (2.40)

coincides with H/|H]|, while the vectors of the normal n and
the binormal b are defined in the standard way for the curve
A(s) with the natural parametrization along the arc length s.

Upon replacing the differentiation with respect to 7 in
(2.39) with differentiation with respect to the arc length s
and using the Frenet formulas

dt

ds

(2.41)

A
R v
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where R and T are the curvature and torsion of the curve
A(s), we obtain the equation

dg,, . (sb) .

T=—l?¢m. (2.39")
Here b/R is the angular velocity of precession of the spin
with respect to the stationary system of coordinates. The
angular velocity of precession of the Frenet trihedron with
respect to this stationary system is (b/R) — (t/T). There-
fore in the stationary system associated with the Frenet tri-
hedron, the spin precesses with the angular velocity t/T.
Hence we have

de,, . (st) . m
= iy = — i — P
3 T Pm T Pm

(2.42)

Upon assuming by analogy with (2.32) that

Pm (5) = exp (18 (s)) @ (0),
we find from (2.42) the equation for the phase @ (s):

do™ m
=TT (2.43)

Then we have the following expression for the Berry phase of
(2.15):

¢

Sm(Tc)EO'"(sc)=—mf I

- (2.44)

Upon using the known Gauss-Bonnet result (see, e.g., Ref.
6),

S? ds
5 = =90,

[}

(2.45)

we obtain the generalization of the Berry formula (2.33) for
an arbitrary spin s having the projection m (cf. the results of
Ref. 8):

8" = —mQ(C). (2.33")

We note that the presented derivation remains in force
also when treating the motion of a massless particle having
an arbitrary spin, and having the helicity m, if the helicity is
an adiabatic invariant.

2.5. The non-Abelian adiabatic phase of Wilczek and Zee

Born and Fock proved the adiabatic theorem under the
condition that the spectrum of the Hamiltonian is not degen-
erate and does not become degenerate in the process of evo-
lution. Their proof can be generalized also to the case in
which the spectrum of the Hamiltonian is degenerate, but in
the process of evolution the states pertaining to different en-
ergy levels do not mix."” According to the adiabatic
theorem, the additional quantum numbers a that character-
ize the degenerate state ¢,, do not vary. Here the system
does not necessarily return to the initial state, but is subject-
ed to a certain unitary transformation that generalizes the
Abelian U(1) transformation of Berry in (2.14). Thus, for
example, if the state is degenerate in angular momentum,
then the projection of the angular momentum in adiabatic
evolution does not vary, but the axis of quantization can
change in direction. A non-Abelian generalization of the
Berry phase was found by F. Wilczek and A. Zee,® who
showed how non-Abelian gauge fields that generalize the
vector potential of (2.10) arise in describing the adiabatic
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evolution of simple quantum systems.

As Fock!® showed, the orthonormalized eigenfunc-
tions @,, always can be made subject to a condition that
generalizes the condition (2.3):

(Pray Prp) =0 (2.46)

for any a and &. Observance of the condition (2.46) has the
result that in the adiabatic evolution the eigenfunctions

@ra (T) €XP {— ifEn (t') dt’) (2.47)

satisfy the Schrddinger equation. Upon introducing the basis
set of orthonormalized eigenfunctions y,, (4) of the instan-
taneous Hamiltonian H(A1), one can determine the non-
Abelian gauge potential

a
(Aay = i (xnb, g ) :
oAt

that generalizes the vector potential of (2.10). Transforma-
tion to another basis in (2.48)

(2.48)

Yna = Napdnb (2.49)

leads to a non-Abelian gauge transformation (for simplicity
of notation we shall omit the matrix indices)

AY = AN+ -z—’x‘— AL (2.50)
Now the solutions of the Schrodinger equation @, (7) are
associated with the basis functions by the unitary transfor-
mation

®ra (7) = Uab (A (7)) Lo (A (7). (2.51)
As a result Eq. (2.9) is generalized as follows:
gy = —Uis (A7)cah’. (299

Yet instead of (2.13) we obtain the non-Abelian generaliza-
tion of the Berry factor in the form of the P-exponential

W' (Ce) = Pexp(i § AT dN) . (2.52)
The stress tensor F; corresponding to the vector potential
(2.48) is derived in the usual way as in gauge theories:

F® = 04" — ;AT +1AA)” G, j=T, N). (2.53)

At present there is an extensive literature pertaining to
non-Abelian generalizations of the Berry phase (see, e.g.,
Refs. 11-16).

Spin 1/2 and isospin 1/2 in an external field. As an ex-
ample illustrating the general theory presented in this sec-
tion, let us study the Hamiltonian'

H = B;,6! & o=, (2.54)

Here we shall assume the matrix B,, to be parametrized by
the three-dimensional vector of the adiabatic parameters
B, = €4 Ay. Upon rewriting the Hamiltonian explicitly as
a4X 4 matrix, we find its eigenvalues: E, = —~2|A |, E, =0
(doubly degenerate), and E, = 2|4 |. The degeneracy of the
levels is constant in parameter space except for the point
A =0, and thus we have A ~R3\ {0}.
The eigenvectors are respectively equal to
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<Ellzg‘ﬁ<m.—lx|+p, |A+ 0, @),

<E's.\‘ = ¢y (— 20, 0, ©, 0),

(E!.!I = \;:]‘ (_' (Dzr — PO, — pw, AP +;":)r (255)
<E3l: _2—llx'—l(m' l}‘l+pv _“}“l-}—pu 6):

where we have
=120 + M p=1ikg, © =Ay— ik,

The existence of a global basis (i.e., fixed at each point of the
manifold A) is guaranteed (see Ref. 5) by the fact that the
homotopic group 7,[U(4)/U(2)] is trivial. For the degen-
erate Jevel E, the calculations of the connectivity 4 and the
curvature F{’ are performed by the standard formulas
(2.48) and (2.53). Consequently the “components of the

curvature” are defined as
—eFl =) (@ b=1,2.

Direct calculations yield the following expressions for the
vector quantities bh:

. o, (A — iny)?
b= —t I 2.56
[& | (2 23) (o i (2.36)
— “‘*[ N kg

We see that the curvature is regular evérywhere in A. As
|4 | o0, b, behaves as 1/|4 |2, which corresponds to a non-
Abelian magnetic monopole (see, e.g., Ref. 17). It is inter-
esting to calculate the topological invariant that “reads out”
the monopole charge. For this purpose we shall denote the
matrix part of Eq. (2.56) as A(n) and introduce the para-
metrization 7 = So:
o aAm g,
h N T TR

In the case of a monopole we have 8 *—const. Then we can
introduce the coordinates e(4) = /|3 | on the unit sphere
and determine the regular mapping .2 — .#2. Let us calcu-
late its degree of mapping® by the standard formula:

o de* oe!

1
mie] =Eg‘f Einte' — é;dedcp. (2.57)

Upon substituting the unit vector

ke
o)) = (4 + 2 (xf—xg)
2| alAg

into the formula (2.57) for the topological charge and trans-
forming to spherical coordinates in the integral for m[e], we
find m{e] = — 2, which corresponds to the two-monopole
case.'®

2.6. Factorization of the solutions of linear evolution systems
and the geometrical phase of Berry

Up to now we have been treating the Berry phase that
arises within the framework of the adiabatic approach.”’ In
line with the existence of a geometrical phase that accompa-
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nies the cyclic evolution of isolated systems,'® the question
arises of how to distinguish the Berry factor in the overall
solution of the evolution equations. We shall assume that the
continuous time derivative exists of the set of functions that
we have chosen {|n,k(7))}, which form a complete ortho-
normalized basis in the Hilbert space of solutions of the arbi-
trary linear evolution equation i@, ¢ = Hy with self-conju-
gate H. Then we can isolate from the Cauchy operator for
this equation a component of geometrical origin in the form
of an operator coefficient. This part of the Cauchy operator
in the cyclic evolution of the basis |{n,k(7)) acquires the
form of an Abelian (2.14) or non-Abelian (2.52) phase fac-
tor.

Let us introduce the complete orthonormal basis of
functions {n,k ) and represent the solution of the evolution
equation i@, ¢ = Hy in general form:

V() = Dca(t) | nk, T = D |M@E).
Here n is the principal quantum number. The formal solu-
tion of the systems of equations for the coefficients of the
expansions ¢, is given by the expression

k| Texp (— ifH(r’)dr’) (2.58)

\
4 YOS

Let us introduce the evolution operators Uand T,
which satisfy the equations

(009 _ g 6066, a),
db
8D G nHE, U@ a=U@ b=t

Here U and U are respectively the left and right evolution
operators written in the form of ordered exponentials.

The following statements are proved:

1) One can represent the solution (2.58) of the Cauchy
problem for the evolution equation with the initial condition
#(0) = @(x) in the form

Y(t, x) =U_a(x, 00U _p (x, Owm (M (%, 0) | 9 (2)) | N (x, 7)),
where the matrices 4 and £ are fixed by the relationships

A=tuu= (N,
E=Usa (Or Vosmj (mi | H mjy T-a(t, Oy

In the language of ordered exponentials one can write the
solution in the usual form

1p(x,1:)=[Pexp(-—§A)J (Pexpff:‘)
.6 NM o /ML

% (L©O)|9)|N (z,x)). (2.58)

2) Let the Hamiltonian H be such that the transition
probabilities (N(7)|M(7'))=Qxy can be represented in
quasidiagonal form:

'\’Nanm + 8n_1,man + O, maibw.

Here the nondiagonal terms are small in comparison with
the diagonal terms: |a,/¥n|,|bx/¥n| €1,YN. Then we can

408 Sov. Phys. Usp. 33 (6), June 1990

expand the expression (2.58') in a series according to pertur-
bation theory in the order of smallness of the terms contain-
ing a, and b, (for details see Ref. 20).

Now let us examine the evolution of a system for which
the Hamiltonian A and the basis |n,k(7)) associated with
this Hamiltonian depend on the time via the parameters
A(7) so that in the time 7€[0,7, ] the state vector returns to
its initial position. Then, in solving the Cauchy problem
(2.58") for the evolution equation, the first factor acquires
the form of the non-Abelian Berry phase of (2.52). If we can
neglect the nondiagonal terms in Q,,,, then we obtain the
Abelian phase. As we see, for the probabilities of transitions
Quy Of general form, the evolution of a mixed initial state
will include nonadiabatic processes.

The results of this section generalize the postadiabatic
approximation proposed in Ref. 21, and agree with the re-
sults of Ref. 22.

2.7. The geometrical phase of Aharonov and Anandan

After the publication of the studies of Berry”® and Si-
mon* the problem immediately arose of studying topological
phases outside the framework of the adiabatic approxima-
tion. In the mathematical formulation of Simon, where the
natural structure is a Hilbert fiber space with a basis of adia-
batic parameters of finite dimension, the gauge transforma-
tion (2.11) and the connectivity of (2.10) are described by
operators in the Hilbert fibers. This circumstance compli-
cates the analysis of the topological structure of the solution
space. Therefore, by using the method of induced fibrations
(see, e.g., Ref. 6, Sec. 27), we can reduce Simon’s formula-
tion to studying universal fiber spaces of the type of complex
projective spaces, where one uses a space of rays as the basis.
The properties of these spaces enabled deriving classification
theorems® and led to a generalization of the Berry phase,
which consists in the following.

Let us study an isolated quantum system that is de-
scribed by the state vector ¢(7) and the Hamiltonian H(r)
in the time interval {0,7, ]. Let us introduce the new state
@ (7), while separating out the dynamical phase

P (1) = exp (— i {' Q (T')d‘l.") O (v) =exp (— ) © (). (2.59)

When account is taken of the identity Re{¢d¢) = 0, the lat-
ter equals
T T
§ = j' — j' COHY)Y ’
) Q \ Re o dr’. (2.60)

Then the Schrédinger equation for the state vector |®) ac-
quires the form

, d@
i =H—QO. (2.61)

Averaging with respect to {(®| leads us to the equation
im @ %‘TB>=0, (2.62)
which coincides in form with the condition of paraliel trans-
port (2.3) that appears in the adiabatic pattern, but is writ-
ten for state vectors having the “mixed spectrum” (2.61).
Let us introduce the concept of cyclic evolution of the
quantum system on the interval [0,7, ], while understand-
ing thereby the following: during the time of evolution 7,
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along the curve s in the state space &, the vector ¥(7,)
returns to the initial state apart from the phase ¢. That is, we
have

[P (1)) = e (0)),

I @) =l O]},

(2.63)

if the curve s is projected on the closed contour C in the ray
space. Here the phase ¢ characterizes the gauge transforma-
tion necessary for closing s in #°. Let us define the gauge
Y~ye """ =4 such that the periodicity condition is
obeyed for ¢ in the interval [0,7,]: ¥(7.) = ¥(0). Then we
obtain the following expression for the gauge transformation
generated by the function f;

[(we) —[(0) = ¢ (mod 2nvm),

Upon using Eqs. (2.60) and (2.61), we write the condition
of cyclicity (2.63) in the form

m=%. (2.64)

P (vc) = exp (i) exp (—~ i S Qdf) ¥ (0) = exp (ip) ¥ (0),

(2.65)
where we have

v=1i [ b9y dv=id (bldb). (2.66)
0 [

We note that the total phase ¢ of the wave function (2.65) is

determined by the sum of the geometrical phase ¥ and the

dynamical phase §:

p=y—34

Here, at first glance, the geometrical phase 7 introduced by
Aharonov and Anandan'’® coincides in form with the adia-
batic phase of Berry in (2.15). However, it has been derived
without the assumption of adiabaticity and is realized in pro-
jective fibrations over the basis of rays # = #°/ ~,” whereas
the adiabatic phase of Berry is interpreted as an element of
the holonomy group of a Hilbert fibration with the basis of
the parametric space A that defines the Hamiltonian of an
open quantum system. In the following three sections we
shall convince ourselves that the existence of a Kahler met-
ric in the projective space leads to a natural parallel trans-
port along a geodesic, and this transport does not involve the
dynamics.

(2.67)

2.8. A model example of the complex projective space ¢*
~direct approach

Let us take up in greater detail a model quantum-me-
chanical example”* having a self-conjugate matrix Hamilto-
nian H and a vector state {z, }" _,€% , . ,. The Schrodinger
equation has the standard form

izg = Hhza, 1[0, 7o, 2% (1) = 2 (0). (2.68)

Let us require the condition of cyclic evolution of the state
vector z(7) in the form (2.63). According to Eq. (2.60), the
dynamical phase equals

TC_

Hﬁ
6——j i dz.
|z

¢
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We shall find the geometrical phase y according to (2.66).
To do this, let us construct ¥ and  explicitly. Let the state
vector ¥ be given in the form

I %
“">=W('~>‘
z!l

Let us transform to projective coordinates, while assuming,
e.g., that Y7e€{0,7. ]. In these coordinates the state vector
looks as follows:

1
__ exp(largz) w,
|1P>—(——l+\w\,)l/a ( ,: ) (2.69)
n

w

where w; = z,/z,. The arbitrary phase arg z, reflects the ex-
plicit U(1)-gauge freedom in transforming to projective co-
ordinates. We note that the condition of cyclicity (2.63) as
applied to the non-normalized state |¢) implies that
(0| = l¥(r.}||. However, in the language of projective
coordinates w, the condition (2.63) does not lead to addi-
tional restrictions.

The condition of periodicity for the wave function
yields an equation for the phases
Zy (T¢) i % )]

i
— 4 —
2nzo() flr = =51 2 (0)

—F{0),

or, if we take account of the restrictions on the gauge func-
tion f'in (2.64),
i 2 (17 ()

A (2.70)
We have the following expression from Eq. (2.67) for the
geometrical phase

i 0 (Te) 2, (0) 242
et b= — Lp 2B ER 22 g (271)
Y ¢ + 2 zo (Te) 20 ©) Tono

Upon using the identity Re(ZHz) = (i/2)(Zdz — zdZ),
which is fulfilled by the solutions of Eq. (2.68) for y, we
obtain the expression
T
y=—Lin zf(rc);(,(O) i } idz—zdz i
2 2,1 2,(0) zo2 412

Upon assuming the existence of derivatives of |#/(7)) in the
neighborhood of 7., we find the 1-form that gives rise to the
phase y:
pdT= — i(gz_“_@) i zd —zdz,
2 2 {nPU+wh
i zdef— 22t
"2 nP+lwp

Now let us contract on the sphere 2"+ ' :|z{*> = 1 of nor-
malized solutions of Eq. (2.68). Upon taking account of the
rules of calculations with dependent differentials for the
form ydr, we obtain

i wde’ — wde’

!
L 2.7
2 I4(wp 272

ydr =
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The electromagnetic tensor corresponding to the potential
¥(-) has the form**

0 _ { wWRwW

I+ jwl (4 wpe

1 wRw
PH{wE (L | wpp

F=i

0

(2.73)

2.9. Geometrical construction of the Aharonov-Anandan
phase

Now let us perform, following Ref.25, the geometrical
construction of the Aharonov-Anandan phase in terms of
projective spaces, and then proceed to concrete parametriza-
tions. ‘

Let us study an initial Hilbert space of states 5% as a
linear vector fiber space E(, , 7) having a basis of a space of
rays % and a standard scalar product (-, -). Locally any
element of the fiber space |¢) is parametrized in the form

[$>=§|w). (2.74)

Here £€%, is the coordinate of the fiber, while |w) is an
element of the basis % (Fig. 1). Let us isolate in the tangen-
tial space TE the vertical subspace T'y E, which realizes the
partitioning 7E = Ty E + T'y E, where T E isthe horizon-
tal subspace of TE. To do this, we introduce the *vertical”
variation of the vector |dy ¥) according to

dvly) = o|w);

Here the 1-form w, as usual, is fixed by the condition of
orthogonality of the horizontal subspace Ty E to the fiber
(see Fig. 1). That is, we have

(bduypy = 0.

Upon introducing the local coordinates of (2.74) into the
condition (2.76), we obtain the two equations:”

t(w)| & +Edw|— o (w])w) =0,
E(dt (w| @) + & (w|de) —o (@] w))=0,

(2.75)

(2.76)

(2.77)

which are coordinated and which determine the form w as
follows:
o=df+ §

(w dw)
{ww)

= d§ + 6L (2.78)

g> iy>

dylg>

- ad

Jw>

FIG. 1. Separation of the horizontal subspaces in a linear vector fibration.
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Hence the parallel transport is determined by the condition

@ = 0. Correspondingly the components of the horizontal
vectors |dy ¥) equal:

(wdw)

dny = &|dw) —'E—(w—w;lw>-

(2.79)

In the gauge transformation G, the form dy 1 transforms
covariantly, i.e., as an extended derivative

Gn | duyp) = n{dup).

In other words, the horizontal subspace is determined by the
vanishing of the form @ or by the fact that the vertical varia-
tions are expressed in terms of the horizontal ones:

(2.80)

(2.81)

Thus we obtain from the geometrical construction the rule of
parallel transport (2.76) or (2.81).

The linear complex vector fiber space that we have in-
troduced admits a Hermitian metric k in the fiber, which is
given in the form

k=|EPh(o, w). (2.82)

Here h #0isareal function of the complex arguments Wand
w.

The introduced metric &£ must be coordinated with the
partitioning of the tangential space into Ty E and TykE,
which reduces to the condition of covariant constancy

dk =0, (2.83)

Here d amounts to outer differentiation:d = d + J. The con-
dition (2.83) in the local coordinates of (2.74) acquires the
form

Edt 4+ EdB) A+ [EFdh =0.

Here the substitution of the vertical differentials from
(2.81) yields an equation that expresses the condition of co-
variant constancy of the function

(2.84)

dh—®+8)h =0 (2.85)

Here, under the assumption that the complex form @ is a
(1,0)-form, we obtain the following expressions for the 8-
form:

6=0lnh, 6=0Inh. (2.86)

The form of the connectivity, which corresponds to the real
vector potential, is usually chosen in the form of the differ-
ence between the forms 4 and 6:

A=—2‘;-(0—5)=—Im9=i9—3id]nh. (2.87)

It corresponds to the 2-form of the curvature F obtained by
the standard rule:

F=dA.
If we express F in terms of the metric 4, then we have

p=m=i(§/\ah_5h/\6h) (2.89)
h A A :

The equation for the geodesics in the metric & by definition?*
has the form

| dududp) = 0.

(2.88)

(2.90)
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2.10. A model example of the complex projective space ¢ 7,
~canonical approach

Let us turn again to the example of a linear fibration
over ¥ %, from the previous section. We shall show how,
independently of the dynamics defined by the Hamiltonian
H, one can derive the Aharonov-Anandan phase. To do this
we shall study the metric & = (¢¢)) and TE~% . ,. It in-
duces the metric in the horizontal subspaces {dy ¥dy ¥). Ac-
cording to Eq. (2.68) it is defined in local coordinates (the
map U,, for example) in the form

k= |EP(1+|wp).
Hence we have & = 1 + |w|” and we obtain from Eq. (2.86)
the following expression for 4:*

i Wdw— wdw

2 I+|wp

(2.72)

L)

which coincides with that found earlier (2.72). Direct calcu-
lation of the 2-form of the curvature dA yields the quantity

X wdw, A\ X w;dw; )

i S i i
_——— ] i d i
F 1+\w\=(2dw/\ “ [+ wp

(2.73")

If we isolate the coefficients of the 2-form F in the *basis”
dw Adw then the coincidence of (2.73) with (2.73") be-
comes obvious. We note that the form (2.73') determines
the so-called Fubini-Study metric (see, e.g., Ref. 24). This
metric in the local coordinates from U, determines the ele-
ment of length of the form

ds’=[ ! . _¥Bw ]d—“’-@;i’-‘idﬂ.

T+ |wp U+ |wpe | d &

The form that we have found of the connectivity 4 (or of the
curvature F) allows us to conclude that, in the discussed
model of a linear vector fiber space, the canonical connecti-
vity completely determines the Aharonov-Anandan
phase.*®

(2.91)

2.11. Parametrization of rays in terms of the density matrix.
Example: spin 1/2

In a number of cases it is convenient to make use of an
explicit parametrization of the ray space by using the ele-
ments of the density matrix of pure states

p=l¥) | or p=—E-.

(2.92)

Evidently p does not vary upon gauge transformation, while
p is invariant also upon multiplying # by a function of the
time. In the parametrization (2.92) the metric in the space
of density matrices differs from the induced metric
(dy ¥d, ¢) by an inessential coefficient and is defined, ac-
cording to Ref. 27, by the formula

(trp) ™ tr (dp dp) — — tridp = . (2.93)

We can convince ourselves by direct substitution of (2.92)
into (2.93) that one obtains as a result an expression propor-
tional to (2.73").

Let us return to the classical example of evolution of
spin 1/2 in a magnetic field in a formulation using the projec-
tive fibration € 2 . As a typical representative of a ray ()
we shall choose (for the projection m = 1/2):
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|) = e®BU (R (6, 9) |55 > -

Here R(8,p) defines the rotation by the angle & with respect
to the y axis and by the angle ¢ with respect to the z axis. We
shall parametrize the density matrix p as follows:

(2.94)

p= 5 (1+po). (2.95)

Here

p = Sp(po) = (wow)

is the polarization vector.
Upon using the parametrization (2.94) we find that for
spin 1.2 we have

. 0 .0 .
2 :cos?, 2y = sm? - o9,

Upon using the general formula (2.81) for calculating
the form of the connectivity 6, with account taken of the
normalization, we have

8 =z,dz; +2,dz, (z[P = 1),

sin? L do =L (1 —

i sin 2 de > (1 — cos 6) do,
while @ is fixed.
If the closed contour C in ray space (or in the polarization
space p) realizes a cyclic evolution, the integral of the 1-form

of the connectivity 8 leads to the following Aharonov-Anan-
dan phase:

1
v= _?Qf“ —cos 6) de.

(2.96)

Then, using again (2.81), we obtain a formula that expresses
the geometrical phase ¢ of Aharonov and Anandan in terms
of the solid angle described by the end of the polarization
vector on the sphere %" subtended by the contour C:

. (1) i

iy =log o 2 Q).
We recall the condition of cyclicity (2.63). It implies that
£(r,) = €%£(0) and [£(7.)| = |£(0)|. Hence the total
phase equals the geometrical phase

E(z)
£

(2.97)

(2.98)

= ip = iy.

2.12. The geometrical phase for nonlinear evolution
equations

In certain cases the methods involved in determining
the Aharonov/Anandan phase are applicable to nonlinear
evolution equations. One can introduce the class of such
equations, as in Ref. 28, by the method of Lagrange func-
tions. In order not to complicate the understanding of the
mechanism of origin of the geometrical phase, let us restrict
the treatment here to nonlinearities of rational form.

1) Let the equation

idep = 6 (9, ¥, YV, V) (2.99)
be invariant with respect to a global gauge:
¥ ey (2.100)

2) Let the solution of Eq. (2.99) satisfy the condition of
cyclicity over the time of evolution

¥ (te) = ey (0).
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Just as in (2.63), we shall reduce by the gauge transforma-
tion the cyclicity for ¢ to periodicity for the function
¥ =e " "Y:p(7.) = #(0). We can derive from Eq. (2.99)
the invariant ¢ = { ¢ydv. In fact, from the equation

(id‘!“—Pv ‘p) = ("pl %) —(”1 ¢)9

while taking account of the rationality of the Hamiltonian
7 and its global gauge invariance:

(2.101)

%(e"‘"q), E_la\_’i equ" e—iGVE) = g% (‘P: $l V\P» V%)'

we can easily convince ourselves that the right-hand side of
Eg. (2.101) vanishes, as was to be proved. Now, upon choos-
ing the local gauge

B () = o (),

we arrive at the equation
— Sbdd> (s 1
v=e <Py Y fdv+ <Py 5 (b, %) dv
=@ =0+ o= & B v

i ~

= _— , 96) dv.
p+ <P 5 9, %) d

That is, we reproduce the Aharonov-Anandan formula

(2.67) for the total phase ¢:¢ = ¥ — 8, where the dynamical

phase 8, in accordance with Egs. (2.59) and (2.60), is de-

fined by the integral

l o~
) =W§(\p, ) dr.

2.13. The geometrical phase of Pancharatnam

Up to now we have been treating situations of adiabatic
or cyclic evolutions corresponding to return to the initial ray
in the time of evolution. However, we can pose the question
of comparing the relative phase of two different rays (¢,)
and (1,), which corresponds to rejecting the assumption of
cyclic evolution. Pancharatnam?®® defined the phase differ-
ence between the states |1/,) and |i,) as follows:

ot — P> )
| Ceba) |
Now let us denote w{|#,)) and 7 (|#,) ) respectively as (i/,)
and (¥,), where 7 is the projection on the basis of the projec-
tive vector fiber space. Following the authors of Refs. 27 and
30, let us determine the phase difference y » obtained by par-
allel transport of the state vector |¢,) along the geodesic that
connects (¥,) with (¢,) in the basis of the fiber space. We

(2.102)

E@

5>

FIG. 2. Generalized closed contour in linear vector fibrations. ! ,-—dy-
namical path, /, —segment of the shortest geodesic, £(7)—lift.
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note the proof that the phase y, so defined coincides with the
phase difference of the state vectors {¢,) and |¢,). In other
words, if the contour of evolution is not closed in state space
and in projective space, then we are studying a ‘“‘contour”
consisting of broken lines, including the contour of the dy-
namic evolution /,, the contour of the shortest geodesic /, in
the basis between (¢,) and (¢,), and the vertical lift £(,)
(Fig. 2). The proof is conducted in several steps. The first
step consists in proving that the parallel transport of the
vector field (7)) along the dynamical contour does not
contribute to the geometrical phase. The second step con-
sists in calculating the parallel transport on the shortest geo-
desic. The third step consists in closing the contours with the
vertical lift. Finally, the proof is concluded by calculating
the contribution from the transport along the contour C
while using the explicit form of the equations (2.90) for the
geodesic.

We note that the Pancharatnam phase finds application
in describing the procedure of measuring in agreement with
the Copenhagen interpretation of quantum mechanics and,
more concretely, in measurements performed by the filtra-
tion method. If there is a mixture of two or more pure states,
then to select one of them, it suffices to absorb the rest of the
states (e.g., by using a polarizer having a fixed polarizing
plate). In other words, if

[¥) = Pil¥) + Pa| ),

where P, and P, are projectors on the states |£,) and |£,),
respectively, to arrive at the state |£,), the filtering instru-

ment of the experimentalist must absorb the state |£,). The
phase of the amplitude of the obtained state

[0 =18) G |$) = L&D { Gl W) | e,

evidently is expressed in terms of the Pancharatnam phase y
of (2.102).

2.14. The geometrical phase in the presence of invariants

The existence of invariants in an evolving quantum sys-
tem enables one to solve the equations of motion if one
knows the eigenfunctions of the invariants, and thus to iso-
late in explicit form the dynamical from the geometrical
phase. We recall that the dynamical equation for any invar-
iant operator J(7) in the Heisenberg representation has the
form*!

df _or . _ ,

E-——a—r+ i, Hl=0 (*=1).
If we introduce the complete orthonormatl set of eigenfunc-
tions {g,, } for the fixed quantum numbers a and eigenval-
ues A, for the operator 7, then the solution of the Schro-
dinger equation (i3, — H)y = 0 with the initial condition
#(0) = ¢, (x) differs in phase from @, (7):*?

(2.103)

¥ (V) =€ s (1), (2.104)
Here the phase ¢ is defined by the expression
T
B = S’ Prz (1) (i0; — H) @g (v') dt” (2.105)

To

and is the difference between the geometrical and the dy-
namical phases.
Thus the Schrédinger equation for the function ¥, {7)
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is replaced by Eq. (2.103). Let us seek the solution of the
latter under the assumption that H and I are constructed of a
set of N operators {Q, }_, in the form of linear combina-
tions*?

l(t)= Dm0, H=ho. (2.106)
For the parameters a; (7), Ref. 103 yields a system of first-
order differential equations

&'i+ iZg;,a,- = 0.

Here the g, are defined functions of the time such that the
evolution of the algebra generated by {Q, } is closed

[HO] = 2 &:0;.

Let us study again the academic example of a particle of
spin 1/2 in the constant magnetic field ¥ = const. The
Hamiltonian is H = — us0,. Evidently the topological
phase is not of adiabatic type, since the external field can be
arbitrarily large. According to the general formula (2.106)
we shall seek the invariant 7 in the form

(2.107)

I(T) =0Ty + 0120, 0y Cs.

For the functions {a; } we have the following equations
of motion:

ag =0, o= 2udboy, @ =— 2poy 6. (2.107)

From this we find the combinations constant in time
ag, o1 + .

Let us transform to the spherical parametrization
ay=c0s 0, a,=sinf-cosg, a,=sinfh -sing

(where @ is the integral of motion) and select
@(7) = 2u7 7;7€(0,7/u7°). Then the eigenvectors of the
invariant I have the form

] . 0
cos— sin—
2
lo,) = o v e =
in—.e'® — —.¢'®
sin e cos e

Then, upon calculating the geometrical phase
OF = i Lg (@209,

we obtain
0 = — x(1 FcosH).

The dynamical phase is ¢ = F 7cosd.

Evidently the condition 3 /37 =0 corresponds to tran-
sition to the adiabatic case. That is,  becomes an adiabatic
invariant. Here the equation of motion (2.103) implies that
the eigenfunctions of the operators I and H coincide. Then
the geometrical phase

i b((wtax«m dr
coincides also in meaning with the adiabatic Berry phase of
(2.16). The example that we have studied again illustrates
the fact noted in Sec. 2 of the “independence” of the geomet-
rical phase from the dynamics.

We note that an algebraic construction of (2.106) of
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special form was recently proposed in which the configura-
tion space itself is the homogeneous space G /H. Here the
invariants I are constructed as elements of the Cartan subal-
gebra K, while the eigenfunctions of the invariants are ex-
pressed in terms of coherent states (the corresponding refer-
ences are given in Sec. 5).

3. TOPOLOGICAL PHASES INPOLARIZATION OPTICS

3.1. The Berry phase of helical photons and parallel transport
of the linear-polarization vector in a sequence of glancing
reflections

One can speak of circularly polarized electromagnetic
waves as a set of photons of definite helicity. Asis known, the
helicity of a photon is the eigenvalue of the projection of the
spin of the photon on its momentum, and it can acquire the
values + 1. The corresponding problem for the eigenvalues
has the form

sp

—u,=tu, usel? 3.D
P

Here {8} = — €4 is the spin operator of the photon,
while £, is the completely antisymmetric tensor £,,, = 1.
Thus, on the one hand, the complete wave function of a free
photon

P = u, exp [F7l(ipx — i%7)], &=|p|,

with a definite helicity satisfies the following equation,
which stems from (3.1):

O
[ —==Lroty.. (3.2)

On the other hand, if we stay completely within the
framework of classical electrodynamics, we can represent
Maxwell’s equations for electromagnetic waves in a medium
with a constant permittivity £ and magnetic susceptibility u
in a form analogous to (3.2):

.0, 1

H —%— = 4+ @)1—/2 rot P,
Here we have ¥, = ¢'’E + iu'’H. The equations (3.3)
describe the propagation of circularly polarized electromag-
netic waves. If the medium is inhomogeneous, these equa-
tions must be supplemented with terms that do not conserve
circular polarization and which contain the gradients of ¢
and . Under the condition of smallness of these gradients
we can consider the circular polarization (or respectively
the helicity of the photons) to be approximately conserved.
In this sense the helicity is an adiabatic invariant of the given
process.

Moreover, the helicity of photons, just like the helicity
of any massless particle, is a relativistic invariant. As is
known, the state of a massless particle with a definite helicity
is fully determined by the momentum of the particle.” If the
momentum of the particle is subjected to a sequence of in-
trinsic Lorentz transformations and returns to its initial val-
ue, then the particle also returns to the initial state, whose
wave function is determined apart from a phase factor. It
was shown in Ref. 35 that in the case of continuous transfor-
mations this geometrical phase coincides with the Berry
phase.’® In contrast to these studies, we shall now study a
discrete sequence of Lorentz transformations that trans-
forms p, into p,, p, into p;, ..., and p, again into p,. Each
transformation p,—»p,,, amounts to a Lorentz boost

diV"Pi :0’ (3.3)
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%,—%,,, and a rotation k, —»kH y» Where k= p/ &, while
# is the energy of the particle. A Lorentz boost does not alter
the phase of the wave function. Hence it suffices to study the
sequence of rotations k —~k - k —»k In the rotation
k —-k, 41 any vector a, orthogonal to k is transformed ac-
cording to the formula

Ei + ?‘l+1

(e ki

We can put the discrete Lorentz transformations of
(3.4) into correspondence with the transformation of the
polarization vector of the electromagnetic wave upon glanc-
ing reflection at the boundary of two media
btk
(ky+ ko

34)

A, = a;,—2(ay, Ein)

e =€ —2 (e, k) (3.5)

Here k, and k2 are unit vectors in the direction of the inci-
dent and the reflected waves. The relationship (3.5) isa con-
sequence of the Fresnel formulas,*® which in the case of total
internal reflection at the boundary of two dielectrics or re-
flection from an ideal metallic mirror can be written in the
form

e, =—e — (e, ks) (aﬁx + 5722) (t— (121: Ez)”l“.

(3.6)

(kAh Ea): p=1—e* (Elv Ez)

= e —
In glancing incidence at which the angle of incidence ap-
proaches 7/2, the quantity x approaches zero, and we obtain
(3.5) from (3.6).

Thus we have shown that the sequence of Lorentz trans-
formations finds an analogy in optics in the case of a se-
quence of glancing reflections of rays. Equation (3.5) hasa
simple geometrical meaning involving parallel transport of
the vector e along the contour formed by the points k,A on the
unit sphere and the arcs of the great circles that connect
these points (Fig. 3).

As an example let us examine three successive reflec-
tions k, -»kz—»k3—»k Then Eq. (3.5) defines a parallel
transport of the polarization vector e along the contour of
the spherical trihedron with angles a, a5, and a,. The angle
of rotation ® of the vector e here equals 2, where

Q =Zs:(ﬂi—~ai)-

i=1

Apart from a term 27 we have Q=7 —a, —a, —a,
= —.5,, where S, is the area of the spherical triangle. This
implies that the polarization vector has rotated counter-
clockwise by the angle ®, which equals the solid angle )
bounded by the spherical triangle that the end of the vector k

FIG. 3. Parallel trangport of the polarization vector e along the contour
that the wave vector k describes on the unit sphere upon triple reflection.
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describes on the unit sphere. Now we shall replace the trian-
gle with a polygon with an arbitrarily large number of sides.
Evidently the parallel transport of the vector e along the
sides of this polygon is determined by the formula, which
stems from (3.5):

=—(e, SR) & . 3.7)

It is accompanied by rotation of the polarization vector
by the angle ® = (). This rotation of the linear-polarization
vector, which can be observed experimentally, enables one
actually to measure the Berry phase acquired by the helical
photon owing to the sequence of glancing reflections of cir-
cularly polarized light.

Actually, let the wave vector k at the instant of time
7 = 0 be directed along the z axis, while the linear-polariza-
tion vector e(0) = e is directed along the x axis:

e0) = 5 (e, +e),
where
€. = ey 3¢,

are the circular-polarization vectors. For a cyclic variation
of the wave vector k: k(r,) = k(0),

e(t) = é—(e;’m + e eP) =e,cosQ + e, 5in Q.

Thus the topological Berry phase that appears for circularly
polarized photons corresponds to rotation of the linear-po-
larization vector by the angle

0=_Q. (3.8)

As we have seen, by measuring the rotation of the polar-
ization vector of the light after a sequence of glancing reflec-
tions, we can observe the corresponding Berry phase. Thus,
in the frequently mentioned paper*® a sequence of three re-
flections of light at an angle of incidence of 45° is treated. In
this case the rotation of the angle of polarization by 90° is
fortuitous, and there is no relation to the Berry phase, since
in this case the Fresnel formulas (3.6) do not lead to the rule
of parallel transport (3.5). If the polarization vector of the
initial ray studied in Ref. 39 is rotated by 45° with respect to
that discussed there, then no rotation of the polarization vec-
tor owing to three reflections will be observed.

3.2. The law of parallel transport of Rytov and the phase of
Viadimirskii in the geometrical optics of inhomogeneous
media

The discovery of the law of parallel transport of the
vectors e = E/E and h = H/H of the electric and the mag-
netic field that characterize the polarization of an electro-
magnetic wave in a medium having a slowly varying refrac-
tive index goes back to the study of S. M. Rytov “On the
transition from wave to geometrical optics” published in
1938.“° S. M. Rytov showed that, for a light ray having the
form of a nonplanar curve, a rotation of the vector e and h
occurs with respect to the natural trihedron t, n, b formed by
the vectors of the tangent t, the normal n, and the binormal b
to the curved ray:

=ncosq¢ -+ bsing,
h = —nsing + bcos .
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Here the derivative of the angle of rotation @ with respect to

the arc length s equals the torsion of the curve
@ .. (3.9
ds T )
Here T is the radius of torsion of the ray. This formula is
known as “Rytov’s law”*' and can be derived from the con-

dition of transverseness of the light wave:

(ef) =0, e*=1. (3.10)
Upon differentiating this relationship we have
(et) + (ef) =0, (ee) = 0. (3.11)

Let us expand ¢é in the complete set of vectors orthogonal to
€,

e =at + Blte). (3.12)

We shall assume that the medium is not gyrotropic, i.e., that
B = 0. Upon using (3.11) we obtain “Rytov’s law”

e=—(et)t, (3.13)

which coincides with the law of parallel transport (3.7) of
the vector Se. Upon differentiating with respect to the arc
length s and using the Frenet formulas (3.6), we arrive at
Eq. (3.9).

As was noted in a subsequent study by V. V. Viadimirs-
kii;* (Ref. 30) “although the instantaneous angular veloc-
ity of the trihedron t, e, and h is always directed perpendicu-
lar to the ray, and hence no rotation of the field vectors about
the ray occurs, the plane of polarization will not in the gen-
eral case return to its initial position every time that the tan-
gent ray coincides with its initial direction, since the axis of
rotation b all the time changes its orientation in space if the
ray possesses torsion” (Fig. 4). The study of V. V. Vladi-
mirskii “On the rotation of the plane of polarization in a
curved light ray” was completed in 1941 and remained prac-
tically unknown. However, it was precisely there that a glo-
bal (topological) effect was predicted on the basis of Rytov’s
law: “the angle of rotation @ of the plane of polarization of a
light ray whose path in an optically inhomogeneous medium
amounts to a nonplanar curve equals the integral of the
Gaussian curvature over the region bounded by the contour
C that the end of the vector t describes on the unit sphere
(Fig.5). The angle O equals the solid angle (2 enclosed with-
in the cone described by the vector t; the sign of @ is deter-
mined by the direction of passage of the solid angle

FIG. 4. The trihedron {t,e,4} moving along a bent light ray; t-tangent
vector; e and h—unit vectors of the electric and magnetic fields.
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FIG. 5. The spherical segment cut out by the unit tangent vector { when its
end describes the contour C on the sphere .%",.

8=.. (3.8")

Thus, when the tangent to the ray returns to its original
direction, the plane of polarization rotates by an angle equal
to the solid angle described by the tangent. If the ray
amounts to a plane curve, then ® = 0, and upon return of the
ray to its original direction, the field vectors acquire their
former position. Then angle between the electric field and
the tangent plane in this case will be conserved along the
entire ray, since the curve here coincides with a geodesic
line-an arc of a great circle lying in the plane of the ray...”

“If the tangents to the ray at the initial and final points
have different directions, then the vectors e and h for these
points lie in different planes, and the polarization state can-
not be compared directly. It is expedient to agree to bring the
ray to its former direction for comparison of its polarization
by using a plane curve or by reflection from an ideal mirror
that does not alter the polarization. Here the curve is closed
by an arc of a great circle, and the angle of rotation of the
plane of polarization can again be obtained by the formula
6=0"

Thus, the cited study of Vladimirskii’® contains not
only a correct expression for the angle of rotation of the
plane of polarization of a bent ray, but also a rule for closure
of contours corresponding to noncyclic evolutions. Rotation
of the plane of polarization is equivalent to a differing phase
increment for the two circular components of the field rotat-
ing against one another. Therefore it is valid to call the addi-
tional phase acquired by circularly polarized light in propa-
gating along a nonplanar curve the Rytov-Viadimirskii
phase.

To demonstrate the analogy between the Rytov-Vladi-
mirskii phase in the optics of curved rays and the Berry
phase in quantum mechanics, it is convenient to reproduce
the discussions of S. M Rytov starting with Egs. (3.3),
which describe circularly polarized waves. We shall seek a
solution of these equations in the form

P = e, exp(— (ot 4 (R). (3.14)
Substitution of (3.14) into (3.3) yields
(ep)/2we,. = - i[grad R, e.] 4 rote.. (3.15)
Let us introduce the notation
_ gradR
_m(sp)lh (3.16)
and rewrite (3.15) in the form
e, Fifte.]= rote.. (3.17)

® (eu)lh

In the first approximation we can neglect the right-hand side
of Eq. (3.17), which yields
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e. Fifte.]=0. (3.18)

Equation (3.18) implies that

t2 = 1. (3.19)

Hence, according to (3.16), the eikonal equation holds

(grad R)*—epaw*=0. (3.20)

Taking account of the next approximation treated by
Rytov in the expansion in 1/@ leads to the relationship
(€, =e, /(ete, )"

(tV) e = —t(es, (t, V1. (3.21)

Upon scalar multiplication of both parts of Eq. (3.21) by
&% , we obtain

~e A

(esex) =0, (3.22)

where the dot denotes differentiation along the direction
e = (tV)e.,

i.e., along the arc length measured along the ray.
The relationship (3.18) is nothing other than the condi-
tion (2.34) for spin 1:

(stye. = =+ e.. (3.23)

Here the spin operator s is defined by Eq. (3.1). At the same
time Eq. (3.22) can be considered as the Born-Fock-Simon
condition (2.3). Thus we have arrived at the problem of
motion of spin 1 in a magnetic field as presented in Sec. 2.4.

3.3. Experimental observations of the Rytov-Viadimirskii
phase

The studies of S. M. Rytov*® and V. V. Vladimirskii*®
antedated the development of the experimental technique,
and as often happens, they proved to be practically forgot-
ten. Interest in the polarization properties of bent light
beams was revived with the appearance of fiber optics. A
number of recent studies (see, e.g., Refs. 42 and 43) have
reported observation of a rotation of the plane of polariza-
tion in bent light guides.

Thus the discovery of the Berry phase in quantum me-
chanics was an impetus toward a repeated “discovery” of the
Rytov-Vladimirskii phase in polarization optics. The basis
here was the analogy between the adiabatic variation of the
wave vector of a photon in a bent light beam and the adiaba-
tic variation of the direction of the spin of a particle in a
slowly varying magnetic field. Having noted this analogy,
Chiao and Wu** proposed an extremely simple experiment
to test the relationship = (1(C), which was soon realized
in the study of Tomita and Chiao.*

Thereby the phenomenon of rotation of the plane of
polarization in a bent ray was converted from a special prob-
lem of the optics of inhomogeneous media into an example of
a graphic interpretation of the fundamental geometrical
aspects of field theory. A number of publications***® ap-
peared popularizing the experiment of Ref. 45 and its con-
nection with general problems. A discussion arose*’ on the
need for a quantum (or photon) treatment of the phenome-
non. In a number of studies®®>> individual variants ap-
peared of the classical theory of the experiments of Tomita
and Chiao. In particular, Segert®® noted that a rotation of
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FIG. 6. Diagram of the apparatus of Tomita and Chiao.** 1—He-Ne
laser, P, , —polarizers; 2—single-mode fiber light guide wound on a cylin-
der of length p.

the plane of polarization occurs for any transverse wave un-
der the condition that its direction of propagation varies adi-
abatically, e.g., for the transverse vibrations of a bent metal
rod.

The generalization of the Berry phase to the nonadiaba-
tic evolutions of quantum systems provided by Aharonov
and Anandan'® stimulated experiments in which nonplanar
trajectories of rays are formed with a series of successive
reflections.’>>*

Quantitative measurements of the corresponding addi-
tional phases were performed in a nonplanar Mach-Zehnder
interferometer.”* Here we shall take up a more detailed
treatment of the experiment of Ref. 45, which corresponds to
conditions of adiabatic evolution.

3.4. Rotation of the plane of polarization of radiationina
helical fiber light guide

The fundamental scheme of the experiment of Tomita
and Chiao* includes two polarizers between which a bent
fiber light guide exists, which plays the role of an optically
active medium (Fig. 6). The light guide lies on the surface of
a circular cylinder of length p and radius r in the form of
helices of different forms. Here the ends of the light guide
remain parallel. By using polarizers one measures the angle
of rotation of the plane of polarization of the radiation. On
the other hand, for each complex helix one can calculate the
solid angle described by the tangent vector k. Let us study
the plane developed surface of a turn of the nonuniform helix
shown in Fig. 7a. If we denote by ¢ the angle of rotation
about the axis of the cylinder, and by 9(¢) the angle between
the tangent to the helix and the generator of the cylinder,

then we can find the solid angle by the formula
L4

Q) = f (1 — cos 6 (¢)) d¢. (3.24)

Here, as we see from Fig. 7a, we have
8 (¢) = arctg (r di) i
dz

The function z(#), which determines the form of the devel-

re re
2rr - 2nr >

1 o) ] H

a §

FIG. 7. 1—Development of the cylinder in a plane, which allows one to
calculate the solid angle described by the vector k, with nonuniform wind-
ing (a) and with uniform winding for a light guide of length L (b).
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opment of the helix in Fig. 7a, was defined in the form of
sums of varying numbers of harmonics, after which the solid
angle of (3.24) was easily calculated. In the special case of a
uniform helix in Fig. 7b, we have z(#) = (p/27r)¢ and evi-
dently Q(C)=27[1— (p/L)], where L =[p?
+ (2mr)?]""? is the length of the helix. Along with the ex-
pected effect, a rotation of the plane of polarization can be
caused by torsional stresses and intrinsic optical activity of
the fiber. To diminish the torsional stresses, the fiber was
placed in a Teflon tube so that its output end could freely
rotate when wound on the cylinder. The intrinsic optical
activity of the fiber in the experiment of Tomita and Chiao
was rather large (Qu/L = (w/2c)(n, —n_)=0.436
rad/m, where . are the refractive indices for the right and
left circular components). It was taken into account in pro-
cessing the results, so that

Q(C)=8,—8, (3.25)

where O, is the observed angle of rotation.

Each form of the helical light guide corresponds to a
closed curve C described on the unit sphere by the vector &
subtended by the solid angle Q(C) (Fig. 8). A uniform helix
corresponds to a horizontal circle. Plane contours of the
light guide correspond to motion along the equator; the solid
angle Q(C) here equals 27, so that the added phase is trivial.

We note that the fundamental purpose of Tomita and
Chiao’s experiment was not to verify Eq. (3.25) upon vary-
ing the pitch of a uniform helix (this had already been done
in Refs. 42 and 43), but to demonstrate the invariance of this
relationship with respect to deformations of the helix that do
not alter the solid angle. The results of the measurements
(Fig. 9) confirmed the prediction of the theory. Actually the
dots, squares, and triangles corresponding to helices of dif-
ferent shapes fit well the straight line ®,,, — ®, = €}.

The experiments of Tomita and Chiao employed a sin-
gle-mode light guide with a step profile of the refractive in-
dex. As is known, geometrical optics is inapplicable for de-
scribing the propagation of an electromagnetic wave in such
a light guide. Moreover, the Rytov-Vladimirskii theory pre-
sented above was constructed in the limit of geometrical op-
tics. Intuitively it seems clear that the nature of the geometri-
cal phase involves only the change in direction of
propagation of the transverse wave, so that taking the limit
A -0, which is inherent to geometrical optics, does not alter
the essence of the problem. This also follows from a purely

FIG. 8. Motion of the vector k = k/k on the unit sphere .*°*(6,®) in the
propagation of radiation along the filament of a light guide of complex
form.
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FIG. 9. Results of measuring the angle of rotation of the plane of polariza-
tion ® — O, for different solid angles £2.** The symbols correspond to
helices of different forms, and the straight line to the predictions of theory.

geometrical treatment (see Ref. 50). In this case the law
® = N(C) must be derived also directly from Maxwell’s
equations, which describe the propagation of the light beam
in the light guide. Berry** showed this to be actually so.

Upon using the ideas of bound local modes and the ap-
proximation of a weakly directing light guide,> Berry writes
the electric field of the light wave in the form

E (p, s) = €®5f (p} (Ca (5) n (5) + Cs (5) b (5)).

Here p is the radial coordinate (distance from the axis), s is
the longitudinal coordinate measured along the axis of the
light guide; /3 is the propagation constant; f{p) is the radial
distribution function of the field amplitude; n(s) and b(s)
are the vectors of the normal and the binormal to the axis of
the light guide (Fig. 10).

The smoothness of the bending of the light guide en-
ables one to choose the quantities f and f(p) to be the same
as for a straight light guide. Upon substituting (3.26) into
Maxwell’s equations, Berry arrives at the fundamental equa-
tion of evolution for the coefficients ¢, (s) and ¢, (s) analo-
gous to the Schrodinger equation:

;0 ( i (s)) ~ %" i () ( s (s))
Os \ ¢y () (s 0 ¢, (5) .
Here 7(s) and k(s) are the torsion and the curvature of the
light guide. In the derivation of (3.27) the radiation loss, the
coupling with reflected modes, and elastooptic effects were
not taken into account.

Since we have 8 = 27/4, while k ~'and 7~ 'are of the
order of the bending radius, the term & 2/2f is small in com-

(3.26)

(3.27)

FIG. 10. The accompanying Frenet trihedron for a helically bent optical
light guide.
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parison with the torsion 7. Neglect of the term k /28 corre-
sponds to an adiabatic character of the evolution (conserva-
tion of the type of circular polarization). If the original light
had a linear polarization and the vector E formed the angle
@, with the normal n, then we have

o, (9)
cn (S)

(3.28)

=mm@=m(%—jﬂﬂmj.

Such a law of parallel transport for E leads, after a complete
turn of the helix, to rotation of the plane of polarization by
the angle ®, which equals the solid angle

L
Q=S'd_‘.'
)
[1]

Here T'= 7~ ! is the radius of torsion of the light guide. As
we see, this same result was derived by V. V. Vladimirskii
(3.8") with the aid of Rytov’s law (3.9).

Taking account of the term k ?/28in Eq.(3.27) enables
us to describe nonadiabatic transformations.” In the first
order of smallness it leads to the following expression for the
probability P( + — — ) of change of the character of the
circular polarization:

(3.29)

2
P(+—>—)= (1667

’fdsk‘z (s) exp (Qi f T(s") ds')

¢ ]

(3.30)

For a helix uniformly wound on a cylinder of radius » we
have

g } sin® @ (16p%r%)71,
o [2 — (Q/2m)] 1 —(Q/25)

Pi+——)={
even when r~ 1 mm, the magnitude of P ( + — — ) does not
exceed ~ 10>, We note that for planar bends of the fiber,
7 =0, a rotation of the plane of polarization does not arise.

3.5.Features of thé descriptldn of geometrical phases upon
rejecting the requirement of adiabaticity

When we reject the adiabatic restrictions, we must treat
the cyclic evolution of the system, not in parameter space,
but in projective Hilbert space (see Secs. 2.7 and 2.11). A
convenient model is obtained in the language of the density
matrix p, = |¢) (¢ of the pure states . Then cyclicity
implies return to the initial values of all the mean values of
the physical quantities

(A = Sp (pyA),

that characterize the system being treated. Each element p,,
of the “‘projective space” corresponds to a set of pure states ¢
differing in phase—a ray in Hilbert space.

Just as in the adiabatic case, the geometrical phase
proves to be equal to the integral of the Gaussian curvature
over the surface bounded by the closed contour, but not in
parameter space, but in the space of rays. Naturally the prac-
tical calculation of this integral includes a certain concrete
parametrization of the abstract space {p, }.
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3.6. The geometrical phase in multiple reflection of light by a
nonplanar system of ideal mirrors

In the examples of the Rytov-Vladimirskii phase dis-
cussed up to now (bent light guide, sequence of glancing
reflections), the helicity of the photons amounts to an adia-
batic invariant. A nonplanar path of a light ray can be real-
ized by a series of reflections, which seems far simpler, both
in the sense of practical realization and in the sense of explic-
it theoretical description. However, for demonstrating the
geometrical phase, this case is more complex. As is well
known,*® in reflection, either from a metal or from a dielec-
tric a change generally occurs in the polarization that de-
pends on the complex refractive index of the reflecting medi-
um, the angle of incidence, and the state of polarization of
the incident ray. This means that, e.g., a photon that had a
definite helicity, transforms after reflection into a state de-
scribable by a linear combination of the eigenfunctions of the
projection of the spin with coefficients depending on the
cited factors. The helicity of such a photon no longer has a
definite value.

What we have said implies that, as a result of a series of
reflections of general type, complicated changes in the polar-
ization can occur (in particular, rotations of the plane or the
ellipse of polarization), the contribution to which yields
both a change in the direction of the ray and a polarizing
action of the reflectors, which has no relation to the geomet-
rical phase being discussed.

A considerably simpler case-reflection from the surface
of ideally conductive mirrors—was studied by a number of
authors.’>*>***" In each ideal reflection the helicity of the
photon simply changes sign, while remaining fully definite.
Berry™ calls such an evolution “antiadiabatic”. In classical
language this implies that the ellipse of polarization con-
serves its shape, while changing only the direction of rota-
tion of the electric vector with respect to the direction of the
ray.

The principle result of the experimental and theoretical
studies conducted by Chiao and associates®>*’ consists in
the following: the fundamental relationship for the Berry-
Rytov-Vladimirskii phase

O" = —mQ(C)(m = =+ 1 is the helicity), (3.31)
remains valid in the presence of ideal reflections if the fol-
lowing rules are obeyed: 1) the contour Cand the solid angle
Q(C) are not constructed on the sphere of directions of
propagation k, but on the unit sphere of spin directions {§)
(see Sec. 2.11); 2) the points mapping the discrete sequence
of positions of the spin on the (3) sphere are joined with
geodesics, i.e., arcs of great circles. In adiabatic evolution th;
direction of the spin is rigidly fixed by the direction of k.
Hence the treatments on the £ and the (3) spheres in this
case are equivalent. The sphere of spin directions, according
to Refs. 53 and 57, is the surface on which one must treat the
cyclic evolution according to Aharonov and Anandan'® for
photons that change their direction of propagation.

The experiment®**>’ was performed in a nonplanar
Mach-Zehnder interferometer (Fig. 11). The bold dots
show the vertical regions of the rays passing along the arms
a = <1» and = «2> in the form of nonplanar broken
lines that are symmetric to one another about the center O.
In an arm the unit vector of the spin direction acquires the
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FIG. 11. Diagram of the nonplanar Mach-Zehnder interferometer used in
the experiment of Ref. 53 (to view). L—laser, D—receiver for radiation.

following sequence of values:

(S =(1,0,0),
@g:mwﬁﬁwmx
(S =1(0,0,1),

(8 =100, ~1,0),

Sy =1(1,0,0).

(3.32)

This result can be seen directly from Fig. 11 if we take ac-
count of the rotation of the spin in each of the four reflections
from the total-reflection mirrors M, — M, and the semi-
transparent mirror B,. The corresponding contour on the
sphere of spin directions (Fig. 12) has the form of the broken
line ABCDA. The solid angle subtended by this contour is
shown by the hatching in Fig. 12 and equals 2 = (7/2) — 6.

In the B arm the photon passes through the same path
on the spin-direction sphere, but in the opposite direction.
The phases acquired by photons with right (7) and left (/)
polarizations in passing through the arms @ and B are re-
spectively equal to

or =Q+6m
q)ﬂrzh'g"l-ﬁﬂv

(Dul=_g+6m
Oar = Q -+ 8,

(3.33)

Here 5., are the dynamic phases and we have
Q = (7/2) — 6. The interference pattern created at the out-
put by right-polarized photons will be determined by the
phase difference

AQ, = Doy — Dp = 20 + (8 — p), (3.34)
and that by left-polarized photons by the phase difference

Ay = Dy — Dy = -— 2Q + (8o — 4. (3.35)

FIG. 12. Unit sphere of directions of the spin vector (s) of a photon.
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FIG. 13. Interferogram for left and right circular polarization of radiation
for 8 = 45°.

To eliminate the dynamical phases, it suffices to measure the
shift of the interference pattern upon replacing right-polar-
ized by left-polarized radiation, as determined by the phase
difference

AD = AD. — AD; = 4Q, (3.36)

In the real experiment®**” ynpolarized radiation was

applied at the input of the interferometer, while the right and
left circular components were isolated at the output by using
two filters consisting of a A /4 plate and a polaroid. Both
interference patterns were observed simultaneously in the
two alves of the field of vision, and the shift of the fringes was
determined directly (Fig. 13). This method of recording was
chosen to diminish the systematic errors involving the noni-
deality of the system. As was noted above, in real reflections
the resulting phase increment depends on the initial state of
polarization. The use of natural light implies averaging over
the initial polarization states. Consequently the manifesta-
tion of nonideality of the reflections is reduced in consider-
able measure to reduction of the contrast of the interference
pattern, while weakly affecting the position of the fringes.

In closing this section we note some important points of
the theory of this experiment. If the direction of the incident
ray and its polarization are fixed, as well as the material and
the arrangement of all the mirrors in space, then evidently
the direction and polarization of the output ray are deter-
mined unambiguously and can be found directly from the
law of reflection and the Fresnel formulas. Such a calcula-
tion, which in this situation plays the same role as the explic-
it calculations of Rytov and Vladimirskii in the situation
with bent rays, was performed by the authors.*” A conven-
ient apparatus for this purpose is offered by the Jones matri-
ces,”® which transform the two-component vectors of the
polarization states

£,

[2!):

In ideal reflections the component E,, which lies in the plane
of incidence, is not altered, while the component £, perpen-
dicular to it changes sign. One also takes account of the rota-
tion of the local s and p axes associated with the ray upon
passing from one mirror to another by an angle equal to the
angle between the planes of incidence. Multiplication of the
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corresponding Jones matrices, whose explicit form is taken
from Ref. 58, leads to authors of Ref. 57 to an expression for
the geometrical phase which agrees exactly with (3.31).

3.7. The geometrical phase in a cyclic variation of the
polarization state of rectilinear light beams (the
Pancharatnam phase)

Let us study a plane light wave whose polarization state
is varied cyclically by a series of optical elements (1 /4 and
A /2 plates, polaroids, optically active media, etc.). Here let
the direction of propagation of the wave remain constant.
Numerous theoretical and experimental studies* ¢33
show that here the wave acquires an additional phase analo-
gous to the Berry phase. This phase equals half the solid
angle subtended by the closed contour that depicts the cyclic
evolution of the polarization state of the wave on the Poin-
caré sphere. The topologically invariant character of this
phase is manifested in the fact that it, just like the Berry
phase, is not altered by deformations of the evolution con-
tour that leave the magnitude of the solid angle unchanged.

References 59 and 64 first noted the close connection
between the Berry phase in quantum mechanics and the ex-
tra phase found in the 50s by Pancharatnam®® in studying
the interference of polarized light waves. At present the term
“Pancharatnam phase” is used widely in the literature to
denote the geometrical phase that arises when the polariza-
tion state of a wave varies cyclically, while the direction of
propagation is invariant.?’

3.8. Representation of polarization states on the Poincaré
sphere and calculation of Pancharatnam phases

Following Aharonov and Anandan,' we shall study
the cyclic evolution in projective Hilbert space. The pure
polarization states of a plane electromagnetic wave are de-
scribed by the two-component Jones vectors

{E)= (:::) (E| = (£, E3). (3.37)

Here E ¥ and E ¥ are the complex components of the elec-
tric-field vector along two mutually orthogonal transverse
directions x, , . In this case

E\E, EIE;)

PE=|E)(E|=( : (3.38)

EE. E,E,

amounts to the well known polarization density matrix or
polarization tensor®* of the pure state |E ). The matrix p is
customarily normalized so that the relationship Sp py = 1is
fulfilled. This normalization is conserved if the intensity of
the wave is constant.

Let us expand p in the basis of the Pauli matrices

IR A N B
(3.39)

Then we obtain the following expression for p***
pe = o (I + (o)), (3.40)

Here the vector /i, whose components are called the Stokes
parameters***® and are calculated by the formula

n; = Sp (PE0y), (3.41)
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FIG. 14. A view of the polarization states on the Poincaré sphere. The
points 4 and B on the equator depict linear polarizations. The north and
south poles Pand @ correspond to right and left circular polarization.

must be real, owing to the Hermitian character of p.. For
pure normalized states it must also be unitary, as follows
from the relationships det p = 0, Sp p, = 1. Thus each ele-
ment p ;. of projective Hilbert space in this case corresponds
one-to-one to a point on a sphere of unit radius in ordinary
three-dimensional space, which is called the Poincaré
sphere.”®*® Let a and b be the major and minor semiaxes of
the polarization ellipse, 0<£<7 be the angle between the
major semiaxis and the x, axis, and — 7/4<n<#/4 be the
ellipticity, which is determined by the relationship
tg 7= + b /a. Herethesigns* + *and * — ’ correspond to
right and left polarizations. In this notation we have®

(E) — Aeit (c.osg + cos —.ising . s?n'q) .

sin§ - cosm+icos§-siny

Here 4 and § are real constants. Then Eq. (3.41) yields the
expression for 7

(3.42)

n = (cos 2 - cos 2n, sin 2% + cos 21, sin 21). (3.43)

We see from this that the quantity 2% plays the role of the
latitude, and 2£ the longitude on the Poincaré sphere. The
equator corresponds to states of linear polarization, the
north and south poles to right and left circular polarization,
and the rest of the points to elliptical polarization. The point
of intersection of the Poincaré sphere with the x, axis corre-
sponds to linear polarization along the x, axis, and that with
the x, axis—at a 45° angle to the x, axis. Upon complete
passage around the sphere along a parallel, the polarization
ellipse rotates by the angle 7; diametrically opposite points
correspond to mutually orthogonal polarizations (Fig. 14).

Upon rotation of the Poincaré sphere around some di-
rection 7, by the angle a, the density matrix p g (#) naturally
is not altered, yet the state vector itself |E(n,)) acquires an
additional phase equal to @/2. We can convince ourselves of
this most easily by studying a rotation about the vertical
axis. In this case we have A, = (0,0,1), 7 = 7/4, and (3.43)
leads to the expression

[E\=Aexp[i(6—§)]-—‘/l—§~(l‘,). (3.44)
A change of the longitude 2§ by a (rotation by a) changes
the phase of the field components by a/2.

The description of the polarization states by two-com-
ponent Jones vectors in (3.37) is fully analogous to the de-
scription of the motion of a particle of spin 1/2 in quantum
mechanics (see Sec. 2.11). The matrices o; of (3.39) coin-
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cide apart from the factor 1/2 with the components of the
spin operator. Therefore Eq.(3.41) determines the unit vec-
tor of the spin direction. Thus, for a particle of spin 1/2 the
sphere of directions of the spin vector®’ plays the role of the
Poincaré sphere. Continuing the analogy, we note that an
adiabatic variation of the polarization state of the light wave
corresponds to an adiabatic rotation of the spin, which can
be realized, for example, in a magnetic field that adiabatic-
ally changes direction. Then the Berry formula (2.33), in
which we must set m = 1/2, yields the result

~—5920, (3.45)
which must hold also for the Pancharatnam phase if we take
the solid angle on the Poincaré sphere.

For an arbitrary evolution of polarization states (not
necessarily adiabatic), the relationship (3.45) can be de-
rived by various methods.***** Thus, for example, the au-
thors of Ref. 56 constructed an explicit form of the Hamilto-
nian and explicitly integrated the corresponding equations
of evolution for the operators that transform the state vector
|E ) for displacement of the vector # on the Poincaré sphere
along a given trajectory. Apparently this derivation is the
most direct realization of the approach of Ref. 19 in the
problem being discussed. An elegant, yet purely geometrical
derivation of Eq. (3.45) stems fror)\l the Jordan theorem®
on rotations. Let the unit vector N, be subjected to a se-
quence of rotations Ry (6,),R3 (6,),..R3, (6;) that
transport it to the positions 7,,/,...,71; = f,, where Ry (8)
denotes the matrix of rotation by the angle ,, which equals
the angle between 71, _ , and #;, about the axis N, perpendicu-
lar to the plane in which #; _, and #, lie. In such a series of
rotations, the end of the vector # describes the contour C on
the unit sphere, composed of arcs of great circles. Jordan’s
theorem states that the product of the stated rotations is
equivalent to one rotation about the original direction 7, by
an angle equal to the solid angle subtended by the contour C.
If we apply the Jordan theorem to the Poincaré sphere and
take account of the fact that the corresponding states acquire
the phase — a/2 upon rotation by the angle @ about the
direction 7, then Eq. (3.45) has been proved.

3.9. Experiments to measure the Pancharatnam phase in
laser interferometers

Two general problems that arise in various experiments
to observe and measure the Pancharatnam phase3**7:¢%6162
consist in the following. First, one must organize the cyclic
variation of polarization state and convince oneself that here
the dynamical phase is not altered, as determined by the
optical path length. Second, one must measure the geometri-
cal phase, having isolated it from the dynamical phase.

Toorganize the cyclic variation of the polarization, var-
ious combinations of half-wave and quarter-wave plates and
polaroids have been used. Figure 15 shows simplified dia-
grams of the interferometers used in Refs. 54, 57, 60 and 61
and the arrangement of the cited elements in them. Figure 14
shows the corresponding trajectories on the Poincaré
sphere. In the scheme of Bhandari and Samuel®* shown in
Fig. 15a, the initial state of the linear polarization 4 (see Fig.
14) is converted into a state of right circular polarization P
by the plate (4 /4)1*. The second plate (4 /4)5, which is
rotated by the angle ¢ with respect to the first one about the
direction of the ray, returns the mapping point to the equator
at position B. By using the polaroid LP one performs a return
to the initial state 4. The solid angle subtended by the
contour 4PBA equals 2¢. The difference of Ref. 60 from Ref.
54 consists in replacing the second (movable) plate
(A /4)%, with the half-wave plate (4 /2)5", which converts
the state P into the state @ along the path PBQ (see Fig.14).
The resulting contour 4 BPQA subtends a solid angle of mag-
nitude 4¢.

The authors of Ref. 61 used a Michelson interferometer
(see Fig. 15b) in which the test ray was reflected from an
ideal mirror M and passed through a system of two quarter-
wave plates fwice. ldeal reflection corresponds to inversion
of the ordinary Poincaré sphere, in which the x, axis coin-
cides with the direction of the wave vector. Here the condi-
tions of construction of the closed contour of evolution and
applicability of the relationship (3.45) break down. This dif-
ficulty can be easily overcome if the x, of the Poincaré sphere
is not directed along the wave vector, but along the spin
direction of the photon. The authors of Ref. 57 call this
sphere the generalized Poincaré sphere. It is precisely what

r
L PBS gr 4 LnP N
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]
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FIG. 15. Simplified diagram of laser interferometers
used to measure the Pancharatnam phase in Ref. 54
(a), Ref. 61 (b), and Ref. 57 (¢). L—laser, M, —mir-
rors, BS,—beam splitters, PBS—linearly polarizing
splitter, LP—linear polarizers, Q! and H'!*—mova-
ble and immovable 4 /4 and A /2 phase plates, respec-
tively, D—radjiation receiver.
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the authors of Ref. 61 have used when they speak of defining
the polarization in a spatially fixed system of axes. On the
generalized Poincaré sphere the scheme of Ref. 61 displaces
the mapping point along the same contour ABQA as in Ref.
60, but in four stages. An advantage of the reflection scheme
is the absence of polaroids, which ensures unitarity of the
evolution and corresponds to the conditions of the theory
being tested.

Jiao and his associates®’ used the same Mach-Zehnder
interferometer that has already been discussed in detail
above. When 8 = 77/2 (see Fig. 15¢), the Rytov-Vladimirs-
. kil phase equals zero. Two A /2 plates were placed in the arm
a, rotated with respect to one another by the angle ¢, while
in the arm S—similar plates, but in the reverse order. An
original photon circularly right polarized in the arm a passes
through the path PBOAP on the Poincare sphere, but the
path PAQBP in the arm /3, which differs in the direction of
passage.

Thus in all cases the solid angle on the Poincaré sphere
that figures in (3.45) is proportional to the angle between
the axes of the corresponding phase plates, and is easily con-
trolled in practice.

The assortment of evolution contours realizable on the
Poincaré sphere in the experiments being discussed is rather
meager. Strictly speaking, it does not allow us to convince
ourselves of the topological invariance of the Pancharatnam
phase in practice. Recent studies®®®’ have developed meth-
ods of synthesis of simple optical devices that consist of a set
of half-wave and quarter-wave plates, and which enable
transformation of any given initial polarization state into
any previously defined final state. By using these polariza-
tion converters one can organize on the Poincaré sphere
“journeys” along a given route of complex form. By altering
this form so that the solid angle subtended by the contour
remains constant, it will be possible to prove experimentally
the topological invariance of the Pancharatnam phase.

While Refs. 54, 57, 60—-62 hardly differ in the methods
of transforming the polarization, the methods of measuring
the phase increment are more varied. Bhandari and Sam-
uel*®° use a commercially produced interferometric system
designed to determine changes in the optical path length
over a broad range (from A /40 to 107 A). In this system a
laser is used. The beat frequency of two waves that have
passed through the arms of the interferometer is compared
with the beat frequency of a reference signal. A change in
phase of the test wave caused by rotating a phase plate leads
to a shift in the beat frequency, which is detected by the
system at each instant of time. The phase itself is determined
by integrating the instantaneous value of the frequency shift
over time in a computer. This method of measurement en-
ables one, first, to distinguish the geometrical phase against
the background of the large constant dynamical phase
caused by the considerable difference in course of the rays in
the arms of the interferometer. Second, one can continuous-
ly follow the phase change, without restricting the measure-
ment to the interval 27. It was demonstrated®® that the geo-
metrical phase ® linearly “‘tracks” the rotation of the plate
by the angle ¢ from O to 47 and back in accordance with the
law @ = —2¢.

The method of measuring the phase in Ref. 61 is far
simpler. Actually the shift of the pattern of interference
fringes was measured upon rotating the corresponding phase
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plate. The constant component of the phase that does not
undergo an increment upon rotating the plate was simply
rejected.

The scheme for measuring the phase shift in Ref. 57 has
already been discussed in connection with the measurements
of the Rytov-Vladimirskii phase. The dynamical phases
were compensated here by direct comparison of the interfer-
ence patterns generated by right- and left-polarized photons.
The use of natural light implies averaging over the initial
polarization states, which diminishes the systematic error of
the measurements.

In all the cited experiments the equation @ = — Q/2,
that was predicted by the theory was confirmed to rather
high accuracy.

3.10. The Pancharatnam phase in an optically active medium

In an optically active medium®® a rotation of the ellipse
of polarization occurs upon passage of the wave through the
medium, which constitutes an example of the cyclic evolu-
tion of the polarization state. The mapping point executes a
passage around the Poincaré sphere along a parallel; in a
rotation of the polarization ellipse by 2 the Poincaré sphere
is circled twice, and the corresponding solid angle amounts
to Q = 47 (1 — sin 27). A feature of this formulation is that
Q) is determined unambiguously by the parameter 7, which
characterizes the ellipticity of the initial state and which is
conserved in the process of evolution. Another feature con-
sists in the impossibility of separating the geometrical from
the dynamical phase, having made the latter constant, as in
the experiments with phase plates.

The physical nature of the rotation of the polarization
ellipse here proves to be inessential. Let us demonstrate this
with the example that Garrison and Chiao®® used to illus-
trate the general theory in their study.'® This example is the
known (see, e.g., Ref. 68) phenomenon of self-induced rota-
tion of the polarization ellipse in a medium having Kerr non-
linearity. The starting equation for the complex amplitude of
the electric field in the plane-wave approximation (without
diffraction) has the form:®°

:0E . | R
P~ G,,((EE)E +§(EE)E).

(3.46)
Here G,=3kn,/8n, is the nonlinearity constant;
n = ny + n,|E|? is the nonlinear refractive index. If we de-
fine the field at the entrance to the medium (z = 0) in the
form

EO) =Eo (')

then at an arbitrary point, according to Ref. 69, the solution
of Eq. (3.46) is expressed by the formula

E(z) = ¢=R (T2 E (0.

(3.47)

(3.48)

Here R (a) is the matrix for rotation about the z axis by the
angle a.

%= %G‘,Ez(l + ),
(3.49)

= —2G,E¢.

Thus, with increasing z the field rotates with constant angu-
lar velocity T’ and acquires the uniformly increasing phase
shift »xz. Complete rotation occurs as z varies by the amount
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A =27/|T|. In this same interval the total phase shift, ac-
cording to (3.48), amounts to ® = 27x/|T|.

On the other hand, one can calculate the dynamical
phase directly by the general definition®® (see also Sec.
2.12):

A
G L B
. J[I(E.E)F—l— - (€', Bl dz.

§= (3.50)

Use of the properties of the solution of (3.48)

[E @), E@)=[(E@©), EQ)P =E(1—¢€,
(E"(2), E(2)? = Q* = Es (1 4 €%)?

enables us to calculate the integral of (3.50) explicitly:
_dn(l—er+ €
C o 3lela+en

The geometrical phase is determined by the solid angle
) discussed above, which can easily be expressed in terms of
the parameter €. Consequently we obtain the following
expression for the geometrical phase:

__4nl€]

Cite
Upon adding (3.51) and (3.52), we can easily convince our-
selves that the sum of the quantities § and © yields the total
phase ® = 25 /|I"| acquired by the solution of (3.48) in one
complete revolution.

We can easily see that the result obtained by Garrison
and Chiao does not depend on the nature of the rotation of
the polarization ellipse, and is completely general for optical
activity of any type, since neither § nor ® depends on any-
thing but the ellipticity parameter € fixed at the entrance.
Only the rate of rotation depends on the nature of the effect
(in this case, on the nonlinear interaction G,E,?), or as is the
same, the length A over which a complete rotation occurs.
The experimental verification of Egs. (3.51) and (3.52) is
rather complex, and primarily, it is not very interesting,
since the geometrical phase is not manifested in any specifi-
cally observable effects that would not depend on the dy-
namical phase. The dynamical and the geometrical phases in
the case of optical activity amount simply to two contribu-
tions to the total phase whose isolation is rather arbitrary.

(3.51)

(3.52)

3.11. Simultaneous observation of the Rytov-Vladimirskii and
Pancharatnam phases in a single experiment

If one makes the angle @ differ from #/2 in a Mach-
Zehnder interferometer with a nonplanar ray contour and
with phase plates (see Fig. 15¢), then the additional phase
will be determined both by the change in direction of the spin
of the photons and by the transformation of the polarization
state. Such an experiment has been performed by Jiao and
his associates.’” The scheme of the interferometer differed
from that shown in Fig. 15¢ only in that in each arm one A /2
plate was placed prior to the reflection by the angle 8, and
the other behind it. The experiment showed that in this
scheme the Pancharatnam and Rytov-Vladimirskii phases
amount to additive contributions to the overall geometrical
phase. This fact was confirmed by explicit theoretical calcu-
lations®” in which the Jones matrices that describe the
successive conversion of the states | E ) upon passing through
the elements of the optical system were multiplied. The same
result follows from analysis of the evolution on the sphere of
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spin directions and the generalized Poincaré sphere,

More complex experiments can include optical systems
in which the light wave changes both direction and polariza-
tion state owing to one single physical process. An obvious
example of a discrete variant of such a system is a sequence of
nonideal reflections. Bhandari®® proposed for a theoretical
analysis of the general case of an evolution of this type to use
a projective Hilbert space constructed as follows. In this
space of three-component vectors corresponding to spin uni-
ty, one isolates a subspace having the elements

3}
)
€1

Here the ¢, , are complex numbers, |c , |+ [c_,[*=1.
Vanishing of the second component takes account of the
transverse nature of the wave. States of the field with an
arbitrary direction of propagation (polar angles §and ¢) are
constructed as

R: (@) R,(9) [P =¥ (6, 9)),

Here R, (@) and R, (60) are matrices for transformation of
the spinors in the rotations about the z and y axes by the
angles @ and 6. One further constructs from such “rotated”
states a projective space of the density matrices
1¥(6,9)){(¥(8,¢)), as was done in Sec. 2.11.

4. CONCLUSION

The geometrical phases as the simplest topological
characteristics of state spaces or phase spaces of physical
systems are necessary primarily for a consistent formulation
of quantum theory itself. In quantum mechanics the eigen-
vectors of states of the Hamiltonian fix the basis in the intrin-
sic subspaces apart from a unitary arbitrary factor. Thus, for
example for nondegenerate states this arbitrary factor has
the form of an indefinite phase factor, while for #-fold degen-
erate states—a certain unitary # X n matrix. In many phys-
ical problems the arbitrary phase factor is removed in uni-
versal fashion by transforming to a ray representation.
However, in describing experiments with interfering beams
or quantum-mechanical systems in an external varying field,
when the information on the phases becomes essential, one
naturally uses the language of differential geometry. In this
language the ordinary state space is treated as a vector fiber
space, while the missing phase factor is fixed by the element
of the fiber. The very existence of the ray representation im-
plies that the corresponding fiber space admits a global sec-
tion. In the general case the phase arbitrary factor is globally
not removable; the problem of classifying it is reduced to the
problem of enumerating the vector fiber spaces having dif-
ferent bases. For linear fiber spaces this problem was solved
by B. Kostant in the context of geometrical quantization.

For open systems the Hamiltonian of the quantum
problem depends on the external parameters. In particular,
this can be an external field that depends on the time, effec-
tive coordinates describing the medium in which the quan-
tum system being discussed is embedded, etc. In these cases
the dependence of the instantaneous Hamiltonian on the pa-
rameters is determined by the mapping f of the parameter
space in the basis of the fiber space. Then the question of
global determination of the phase of the wave function is
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reduced to studying the possibilities of extending the image f
to the entire fiber space. This construction finds application
in studying the adiabatic embedding of a “fast” quantum
system into a slowly varying medium.

Rich geometrical structures arise in adiabatic systems
in which a hierarchy of evolutions exists, i.e., separation into
“fast” and “‘slow” subsystems. Such a separation is substan-
tiated by the content of the adiabatic theorem, as rigorously
proved by T. Kato under rather general assumptions on the
form of the Hamiltonian. The analysis of adiabatic systems is
reduced to studying the effective equation for the slow sub-
system in which a covariant derivation is induced upon cy-
clic variation of the instantaneous Hamiltonian. Its form of
connectivity determines the topological phase of the total
wave function in the adiabatic (diagonal) approximation. In
the adiabatic approach, in each intrinsic subspace of the
Hamiltonian a nontrivial structure of the fiber space and a
parallel transport in it are induced in different ways, depend-
ing on the topology of the parameter space. Recently E. Kiri-
tis was able to classify all the topological obstacles to the
global determination of the wave function. In essence the
classification of these obstacles answers the question of what
the topologically nonequivalent adiabatic systems and in-
duced phases can be. This formulation of the problem en-
ables finding the topological phases of the wave function
geometrically.

Another mechanism of manifestation of topological
phases arises in the algebraic approach in which the set of
mutually commuting operators defining the quantum sys-
tem depends in a coordinated way on the time (i.¢., the Ham-
iltonian evolution and the Poisson brackets do not violate
the algebraic closed character of the set). Here the evolution
of the eigenvectors, as before, is defined apart from the
phase, which depends on the time, and the direct use of the
ray description becomes incomplete, since upon a periodic
variation of the operators in time the wave function can ac-
quire a topological phase. One can conveniently study it with
the examples of quantum-mechanical systems having dy-
namical symmetry. We can expect that a classification of
this type of the phases in the quasiclassical limit involves
studying the symplectic structures within the framework of
the methods developed by V. 1. Arnol’d.

In closing we briefly note certain unsolved problems of
the theory and experimentation to study topological phases
within the framework of the presented material. The existing
classification theorems are actually formulated only in the
adiabatic approach. It is necessary to extend the study that
has begun of topological phases in the symplectic approach
with account taken of the Aharonov-Anandan phase. The
problem of cyclic evolution of mixed states in the case of
degenerate levels and non-Abelian Aharonov-Anandan and
Pancharatnam phases requires further theoretical treatment
with account taken of planning experiments to discover
them.

5. APPENDIX

Hisroric excursion and perspectives. The authors have
tried to give a pictorial view of the topological phases, while
using the simplest examples from quantum mechanics and
polarization optics. In this Appendix we would like to ex-
pand somewhat the scope of the material and present to the
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reader the possibility of tracing the history of the ideas that
have led to an understanding of geometrical phases and their
applications in various physical problems.

The problems involving the appearance and properties
of topological phases in quantum mechanics have a long his-
tory. Actually it begins with the 1st Solvay Congressin 1911,
where the participants included A. Poincaré, M. Planck, A.
Sommerfeld, E. Rutherford, and A. Einstein. Under the
chairmanship of G. Lorentz the question was discussed of
the essence of the quantization of the energy of an oscillator
having the frequency v, i.e., E = nhv (n = 1,2,3,...). Then
Planck’s hypothesis was still considered to be simply a for-
mal mathematical trick. Actually, it was known that Planck
introduced it in a fit of despair, having lost any hope of any
other way to explain the experimentally observed spectrum
of black-body emission. Therefore the physicists sought me-
chanical analogs, while trying to understand the essence of
the new phenomena. Thus, at the end of the 1st Solvay Con-
gress Lorentz spoke of the question, which he discussed with
Einstein: “...We were speaking of a simple pendulum that
could be shortened by squeezing the thread with two fingers
and shifting them along it.” Lorentz did not understand
what will occur with a pendulum. On the one hand, it will
change the frequency of oscillation, and on the other hand,
the energy will somehow change. It was found that, by
changing the length of the thread, one could break down the
Planck relationship. Einstein partially resolved Lorentz’s
bewilderment with the following words: “... When the
length of the pendulum is changed infinitely slowly and con-
tinuously, the energy of oscillation remains equal to v, if
initially it was equal to A the energy of the oscillations
changes in proportion to ».”” Lorentz answered: “This ex-
tremely strange result removes the stated difficulty.”” The
strange result formulated by Einstein is intuitively obvious:
in an infinitely slow and continuous change in the length of
the thread, the integer {the quantum number) cannot
change jumpwise, i.e., the ratio of the energy of oscillation of
the pendulum to its frequency remains constant. In other
words, one can say that Lorentz and Einstein had encoun-
tered a special case of an "‘adiabatic invariant .

In the general case adiabatic invariants were introduced
and studied by L. Boltzmann in 1866 in an attempt to derive
the second law of thermodynamics from the principles of
mechanics. He treated a mechanical system whose state was
determined by a set of parameters 4. He assumed that the
system for fixed values of the parameters underwent a peri-
odic motion with the frequency v. If heat is not absorbed nor
released upon changing the parameters 4 (such processes
are called adiabatic), then the magnitude of 7 which equals
the ratio of the mean kinetic energy to the frequency of the
oscillations, is conserved and amounts to an adiabatic invar-
iant.

The term “‘adiabatic invariant” was introduced by P.
Ehrenfest. Toward the end of 1912 he proved the adiabatic
invariance of the quantity 7 and thus gave Boltzmann’s char-
acteristic a new life. Ehrenfest proposed that Planck’s hy-
pothesis on quanta of energy must be generalized as follows:
T=(n/2)vh.

At the beginning of 1913 such a suggestion was a very
bold step. Thus Ehrenfest introduced this general rule of
quantization, even before N. Bohr studied the quantization
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of circular orbits in the hydrogen atom. Before Ehrenfest one
quantized only harmonic oscillations, whereas by his for-
mula one could quantize any uniform periodic motion. In
going from the quantum representations of Planck and Ein-
stein to the quantum theory in its present form, a great role
was played by the adiabatic hypothesis of Ehrenfest: any
state defined from the standpoint of quantum theory trans-
forms upon an adiabatic change in the parameters of the
system again into a defined state characterized by the same
quantum numbers.

Subsequently the question of the exactness of fulfill-
ment of the adiabatic hypothesis upon a slow variation of the
external conditions was studied at the end of the 20s after the
appearance of quantum mechanics. In 1928 M. Born and V.
A. Fock showed that the adiabatic hypothesis of Ehrenfest is
a consequence of the postulates of quantum theory. Finally,
in 1949 T. Kato’™® gave a mathematically rigorous proof of
the adiabatic theorem. We can consider the question to be
exhausted. Yet it turned out that one simple, but important
feature of the evolution of quantum-mechanical states in
studying the adiabatic hypothesis in quantum theory actual-
ly has not been studied up to the present.

In 1983 the English scientist M. V. Berry found that, if
the evolution of the Hamiltonian is determined by a set of
time-dependent parameters A,, 4,, 43, ..., 4, then the
change in phase of the wave function ¥{(A(7)) in the cyclic
evolution of the system, i.e., under the condition
WA(0)) =¢¥(4)(7.)), possesses remarkable geometrical
properties, namely, the change in phase does not depend on
the duration of the evolution (which is assumed to be long
enough that the evolution is adiabatic), but is directly deter-
mined by the geometrical (topological) properties of the
space of parameters {4, }}.

This is how the history of the discovery itself is present-
ed. During a lecture in the USA in 1983, Berry was not able
to answer one tricky question on the behavior of the wave
function of a quantum system when the symmetry of the
function is broken with respect to time reversal.''’ On re-
turning home he thought about this question two weeks and
discovered what was called the quantum adiabatic phase. Of
course, this is apocryphal.

In 1983 B. Simon, who was familiar with Berry’s work
even before its publication, showed that the change in the
phase of the function (A4 (7)) is completely characterized by
the Born-Fock condition, which can be interpreted as the
condition of parallel transport of quantum-mechanical state
vectors in Hilbert space.

In 1984 F. Wilczek and A. Zee turned their attention to
the fact that, in a cyclic evolution of degenerate systems,
Berry’s phase transformation is generalized by a certain uni-
tary transformation of the wave functions belonging to a
certain state degenerate in energy. Ehrenfest’s adiabatic hy-
pothesis states that in the adiabatic evolution of a quantum-
mechanical system the quantum numbers do not change.
However, here the system does not necessarily return to its
initial state. Thus, for example, if the state is degenerate with
respect to the angular momentum, then the projection of the
angular momentum during adiabatic evolution does not
change, but the axis of quantization can change in direction.

We note in starting that the ideas involving the adiaba-
tic phase of Berry within the framework of quantum me-
chanics are contained already in Refs. 72 and 73 within the
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framework of the more general problem of the quasi-cross-
ing of the levels of a fast subsystem. The needed attention
was not paid to them in the context of the practical problems
of atomic physics. In more contemporary studies,”* the
phases were studied already as in model problems with a
finite number of quasilevels, just as in the Coulomb problem
of two centers.

For reference purposes let us list a number of the meth-
odologically interesting studies. A postadiabatic generaliza-
tion was proposed in Ref. 21, while Refs. 20 and 22 treated
the general structure of the evolution operator and its factor-
ization into geometrical and dynamical parts. Examples
have also been studied of the evolution of states using repre-
sentations of groups'>****737¢ tg calculate the geometrical
phases. In Refs. 77-80 coherent states were used for this
same purpose. The role of the adiabatic invariants was dis-
cussed in Refs. 81-83. One-dimensional evolution equations
with a periodic potential and their geometrical properties
involving the Berry phase were studied, e.g., in Refs. 84 and
85. The effective action for adiabatic systems with account
taken of the topological phase was carried out in Refs. 86 and
87. The effective quantum action and the quasiclassical ap-
proximation were studied in Ref. 88 for many-particle sys-
tems. An account taken of the topological phase in the three-
particle problem is actually contained in Ref. 89 (see also
Refs. 90 and 91). The adiabatic approach to the topological
phase in the symplectic formulation was treated in Refs. 92—
95. A general topological classification of nontrivial adiaba-
tic phases was performed in Ref. 5. Individual results are
contained in Refs. 96-98.

Recently the boundaries of the definition of topological
phases were expanded. In 1987 Aharonov and Anandan in-
troduced a phase without resorting to the concept of adiaba-
ticity. It arises in a cyclic evolution in which the initial and
final quantum-mechanical rays coincide: ¢(7,) = ¢“¥(0).
In particular, this phase is manifested in the Aharonov-
Bohm effect, which has become classical, and in a thought
experiment with the system of a charge plus a Dirac mono-
pole.

It was shown further that, if one uses as the complete
basis the eigenfunctions of the invariants associated with the
dynamics of a given quantum system,'*2***** then one can
obtain the topological phases of the wave functions without
requiring adiabaticity nor a parametric dependence of the
Hamiltonian on the parameters. Study of the invariants
served as an impetus for revealing the topological phase in
nonlinear evolution equations.”®

Generalizations have been made to the case of mixed
states by using the density matrix. The anholonomy of the
density matrix in adiabatic changes of the state vectors has
been studied®®'%? in the presence of stochastic noise.

The next generalization, which does not require unitar-
ity of the evolution operator, was performed in Refs. 27 and
56. Here mechanisms are possible that include stochastic
forces, and which lead to the appearance of dissipative terms
in the Hamiltonian.'®

It was found that noncyclic evolution in the space of
solutions of the quantum problem supplemented by motion
along a geodesic with respect to the appropriate metric leads
effectively to a cycle and to a phase increment.”’-*

Now let us trace the history of the appearance and de-
velopment of the concept of the geometrical phase in optics.
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The reason for appearance of topological phases in optics
involves the fact that the propagation of polarized light, ac-
cording to classical electrodynamics, admits a representa-
tion in the form of an evolution equation for the complex
quantity £'2E + in'?H. As early as 1938 S. M. Rytov
turned attention to the rotation of the polarization vector
upon displacement along the ray in an optically active medi-
um. Then in 1941 V. V. Vladimirskil wrote the angle of this
rotation and Rytov’s law in contemporary form—in the lan-
guage of the Gaussian curvature associated with the ray, and
defined the rule of parallel transport, which coincided with
that introduced by Simon 50 years later. Further, in the 50s
Pancharatnam studied the questions of phase change of po-
larized light upon passing through active elements (media)
and introduced the relative phase between two rays. At pres-
ent all these attainments of optics, combined with the con-
temporary attainments of fiber optics in interferometry,
have served as a basis for planning and performing a number
of experiments to measure topological and geometrical
phases. The description of the most important among them
has found a place in the main text of this review.

Almost simultaneously with the Berry phase, another
scientist from Bristol, J. H. Hannay,'® pointed out the
mechanism of appearance of such phases within the frame-
work of classical mechanics. These phases can be manifested
in integrable mechanical systems dependent on external pa-
rameters. If such a system is adiabatically transported along
a closed contour in the space of even two parameters, then in
the action-angle representation a topological increment A
to the dynamical angle ¢ can appear. This increment is now
called the Hannay phase (see the reviews).'®*!% Curiously,
although the method of averaging, which has a direct rela-
tion to the appearance of the Hannay phase, has been known
for a long time (see, e.g., Ref. 107 and the review),'*® this
phenomenon (Ag #0) remained unknown.

The Hannay angle arises in the quasiclassical limit from
the Berry phase for systems with a finite number of degrees
of freedom.'” Examples are known with an infinite
numbers of degrees of freedom, when the WKB approxima-
tion does not lead to a nontrivial Hannay angle.''® We note
that taking a coordinated account of the influence of adiaba-
tic external parameters alters the symmetry structure of the
phase space of the system,''" which involves the noncanoni-
cal character of the adiabatic imaging (see also Refs. 94 and
95). Moreover, a nonadiabatic variant of the Hannay angle
is introduced, which is manifested in the cyclic evolution of
tori in the action-angle representation.''

Geometrical phases as the simplest topological invar-
iants have found application in quantum field theory in ex-
plaining different types of anomalies and in studying the
properties of vacuum quantum field theory (see, e.g., Refs.
113-118) in the Schrodinger representation.''”

The manifestations of topological phases in supersym-
metric quantum mechanics®>°* and supersymmetric quan-
tum scattering theory'?>'** are numerous.

Let us complete the list of the fields of physics where
topological phases have been applied with the question with
which I. J. R. Aitchison begins his review:'** “What in com-
mon is manifested in the behavior of particles with spin 1/2
in a slowly rotating magnetic field,” in experiments on spin
resonance in a weakly modulated magnetic field,"* in nu-
clear quadrupole resonance spectra of slowly rotating speci-
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mens,'? in the passage of photons through helically bent

optical light guides,* in the classification of the spectra of
diatoms and molecules in terms of half-integral angular mo-
menta'*** and rotational bands,'?® in the sequences of low-
est states of Jahn-Teller systems,'?” in atoms with an odd
number of electrons situated in a slowly rotating electric
field,"*® in the quantum Hall effect,'?® in the fractional Hall
effect,’* in the fractional statistics and the quantum Hall
effect,’’! in the statistics of vortices for two-dimensional su-
perfields'*? ...? What in common do all these effects have
with the anomalies in chiral gauge fields''*''"® and with
skyrmions'*?”

Familiarity with the cited articles convinces the reader
that in all these concrete, varied studies the theme was the
manifestation of effects of topological phases. As a whole the
impression takes shape that future theories that could claim
generality in the description of physical phenomena in the
great range of energies must have a topological character
(see Ref. 134).

') That is, the conditions of the adiabatic theorem are fulfilled.

2 We recall that in this context adiabaticity implies the conservation of
the quantum numbers of the initial state throughout the evolution.

* We recall that the scalar product (ww’} is induced from the trival (y4')
by projection on the horizontal subspace.

* We note that exactly the same expression would be obtained from Egs.
(2.81) and (2.87), which shows the agreement of the definitions.

%) Each of these two statements is equivalent to the relativistic wave equa-
tions of the corresponding mass-free fields.”’

' Henceforth in this section the most important parts of V. V. Vladimirs-
kii's study™ are cited in quotation marks.

) The propagation constant of an intrinsic mode depends on the differ-
ence in refractive indices of the core and the cladding of the light guide.
Therefore the term & 2/23 corresponds to the terms containing the gra-
dients of € and y; the dropping of them in the adiabatic limit was men-
tioned in discussing the equations (3.3).

*) Parametrization on the Poincaré sphere proves useful also in other
quantum-mechanical problems, e.g., problems of scattering in a system
of several particles within the framework of the adiabatic approach; see,
e.g., Ref. 65.

) Here the unitarity of evolution breaks down and, strictly speaking, the
theory discussed above is inapplicable. While running ahead, we note
that experiments with unitary” ' and nonunitary™** evolutions yield-
ed the very same results, so that the requirement of unitarity is appar-
ently not essential.

') The general theory developed in Ref. 28 is one of the few attempts to
generalize the Berry phase to nonlinear evolution equations.

' A contemporary presentation of this problem is given in Ref. 71 with
the example of Fermi systems.
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