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NEW INSTRUMENTS AND MEASUREMENT METHODS

Polarization phenomena in x-ray optics
V. A. Belyakov and V. E. Dmitrienko

All- Union Scientific Research Center for the Study of the Properties of Surfaces and Vacuum
Usp. Fiz. Nauk 158,679-721 (August 1989)

This review is devoted to polarization phenomena observed in the x-ray range. It is noted that x--
ray polarization effects are due to two physical factors, namely, the diffraction of x-rays and the
anisotropy of the x-ray susceptibility of atoms in crystals. Diffraction-induced birefringence,
dichroism, and change in polarization state are very dependent on the degree of imperfection of
the crystal. Effects associated with the anisotropy of x-ray susceptibility, which have not been
adequately investigated so far, are discussed in some detail. The anisotropy can lead to a
qualitatively new effect, namely, the appearance of additional reflections with unusual
polarization properties that provide information about crystal structure and chemical bonding.
Magnetic scattering of synchrotron x-rays has become a powerful tool for the investigation of
magnetic ordering in crystals. Practical applications discussed in this review include different
modern x-ray polarizers, analyzers, and quarter-wave plates for obtaining and analyzing circular
polarizations.

Introduction. X-ray optics has been going through a
veritable renaissance in recent years because of improve-
ments in instrumentation and methods of measurement,
which has been partly but not entirely due to the availability
of synchrotron sources of radiation. One of the interesting
phenomena in the development of x-ray optics has been the
study of polarization effects. As far back as 1906, the polar-
ization of x-rays scattered through 90° was used to demon-
strate their electromagnetic character.' Classical phenome-
na, such as birefringence, dichroism, and rotation of the
plane of polarization,2"6 have been observed in x-ray optics
and there have been discussions of the possibility of produc-
ing quarter-wave plates capable of transforming linear into
circular polarization and vice versa.3'7~g

It is important to emphasize that, whereas in ordinary
optics, dealing with visible radiation, the wavelength is
much greater than the interatomic separation, in x-ray op-
tics the phenomenon of Bragg diffraction has a significant
influence on the optical characteristics of a crystal. For ex-
ample, the contribution of Bragg diffraction to dichroism,
birefringence, and the transformation of polarization can
sometimes be the dominant factor. In particular, it is inter-
esting to note that diffractive birefringence, essentially a spa-
tial dispersion effect, is observed not only in low-symmetry
crystals, but even in cubic crystals. Diffractive polarization
phenomena are aleady being used to investigate imperfec-
tions in crystals,10"14 where the complete description of such
phenomena necessitates the use of the dispersion equation
for the polarization tensors of x-ray beams15 by analogy with
the tensors used in the theory of radiation transfer in random
media.16-19

It is important to note that polarization phenomena due
to the anisotropy of the x-ray susceptibility of crystals are
relatively weak and mostly observed near the absorption
edges, i.e., in regions in which effects associated with the
chemical binding of electrons in atoms are significant. Very
recently, it has been shown that the anisotropy of x-ray sus-
ceptibility leads to a qualitatively new effect, namely the ap-
pearance of additional diffraction maxima with unusual po-

larization properties, containing information about the
structure of crystals and chemical bonds of atoms in crys-
tals.20"23 " Particularly interesting and promising is the mag-
netic scattering of x-rays,24"28 which is due to the weak de-
pendence of the x-ray scattering amplitude on the magnetic
moment of the atom. It varies in important and informative
ways with the polarization parameters. Because of improve-
ments in x-ray diffraction studies and the increasing avail-
ability of new high-intensity x-ray sources, it is expected26'27

that magnetic scattering will become a working method for
the direct determination of the magnetic structure of crys-
tals, especially their surface layers, and may well compete
with magnetic neutron-diffraction studies.

This review consists of two sections devoted to the theo-
ry of polarization effects and a section devoted to applica-
tions, although many of the latter are discussed in the first
two sections as well. We analyze and generalize an extensive
range of factual material scattered among numerous publi-
cations, but we devote particular attention to the possible
applications of x-ray polarization methods to the study of
the structure and properties of solids. There is no doubt that
this subject will advance in the next few years, especially in
connection with the advent of specialized sources of synch-
rotron radiation, including those that will be available in our
country. Polarization measurements are also topical for x-
ray astronomy, but this aspect of the subject is outside the
scope of the present review.

1. Polarization phenomena in diffraction. X-ray dif-
fraction by crystals is one of the basic methods of studying
the crystalline structure of matter, and is widely used in x-
ray optics. For example, diffraction monochromators and
spectrometers are used to produce, transform, and analyze
x-ray beams. In this Section, we shall examine in detail the
change in the polarization of primary and diffracted beams
during diffraction. We shall concentrate our attention on
topics that are of current interest, e.g., diffractive birefrin-
gence and dichroism, and the change of polarization state on
diffraction in perfect and imperfect crystals. We emphasize
that, in contrast to Sec. 2, we shall adopt the traditional ap-
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proach in this section and assume that the x-ray susceptibil-
ity is isotropic in order to isolate polarization phenomena
that originate in pure Bragg diffraction.

1.1. Diffraction in perfect crystals (kinematic and dy-
namic theories). The diffraction of x-rays by perfect crystals
has been discussed in an enormous number of papers (see,
for example, Refs. 29-32), so that we shall confine ourselves
to a brief description of the basic results with particular ref-
erence to the polarization characteristics of diffracted
beams. The radiation field inside and outside a crystal is
found by solving the Maxwell equations with appropriate
boundary conditions. The permittivity of the crystal is de-
scribed by the three-dimensional periodic tensor

(r) = 1 + X(r)= 1 + («Hr), ( l .D

where j(r) is the permittivity of the crystal in the x-ray
range, ̂ H are the Fourier harmonics of the x-ray susceptibil-
ity, and H is the reciprocal lattice vector of the crystal. If the
susceptibility is isotropic, all the XH are proportional to a

unit tensor: (XH ),* =*H Sik, where
_ reW

In this expression, re = e2/mc2 is the classical radius of the
electron, A is the wavelength, Kis the volume of the unit cell,
and jpH is the structure amplitude corresponding to the re-
flection H (Refs. 29-32) (for A ~ l A, we find that

Maxwell's equations with permittivity given by (1.1)
can be solved analytically only by adopting some particular
approximation. We shall usually employ the two-wave ap-
proximation (with the exception of Sec. 1.3). It is assumed
in this approximation that only two waves have appreciable
intensity, namely, the direct wave and one diffracted wave,
i.e., Bragg's condition is satisfied only for a single reciprocal
lattice vector H. In general, there will be several diffracted
waves, but multiple-wave diffraction is rare because strin-
gent geometric conditions are imposed on the direction of
propagation of the primary wave for a given wavelength.
The characteristic feature of the two-wave approximation is
the independent diffraction scattering of a and ir polarized
waves [O-(TT) polarization is the linear polarization for
which the electric field vector is orthogonal (parallel) to the
plane of scattering formed by the wave vectors KO and
KH = KO + H of the direct and diffracted waves, respective-
ly].

Crystal field amplitudes can be calculated within the
framework of the two-wave approximation by either kine-
matic or dynamic theory of diffraction. In the kinematic the-
ory, the crystal is assumed to be so thin that we need only
take into account single diffraction scattering (the Born ap-
proximation), whereas, in dynamic theory, the multiple
scattering of incident into diffracted waves and vice versa is
taken into account, especially in thick crystals. The charac-
teristic parameter that can be used to distinguish thick from
thin perfect crystals is the primary extinction length

The kinematic theory is valid when the distances traversed
in the crystal by both the incident and diffracted waves are

much shorter than the primary extinction length (L' Z 10
fj,m for A ~ 1 A). The polarization properties of diffraction
are found to be particularly simple in the kinematic theory in
which the scattering amplitudes for a and IT polarized waves
differ by the polarization factor cos 20, where 20 is the scat-
tering angle (the angle between KO and KH ) and

Ea =
(1.3)

in which E ̂  and E ̂  are the components of the incident
and diffracted waves, respectively, and the factor A depends
on the diffraction geometry, wavelength, and deviation
A© = © — ©B of the angle of incidence 0 from the Bragg
angle ©^. The significant point is that the factor A does not
affect the polarization properties of kinematic diffraction,
and its specific form for a crystal in the form of a plane-
parallel plate can be obtained from the formulas of the dy-
namic theory, given below, by going to the limit of a very
small thickness.29 Since the angle © changes by a very small
amount A© 5 10~4 in the diffraction region, the polariza-
tion factor in (1.3) can be replaced with cos 2QB. The ex-
pressions givenjjy (1.3) are conveniently written in the vec-
tor form Ed = Rf.'E', where the scattering matrix is given by

= AFH cos 26F
= AFHK. (1.4)

The particular feature of the kinematic case is that the
polarization of the diffracted wave is determined by the ratio
Ed^/Ed

a, which is constant throughout the diffraction re-
gion. In particular, a and TT polarized incident beams pro-
duce a and TT polarized diffracted beams: linearly polarized
incident beams produce linearly polarized diffracted beams
independently of the angle of incidence; the sign of elliptic
polarization changes on diffraction if cos 20B < 0, but does
not change when cos 2®B > 0; for scattering through 90°, the
diffracted wave is a polarized.

The polarization properties are much more complicat-
ed in the dynamic theory than in the kinematic theory. The
physical reason for this is that the width of the diffraction
region is different for the a and IT polarizations and, more-
over, the relative phase of the a and -IT components of the
diffracted waves undergoes a change in the diffraction re-
gion. It is well known29"32 that four Bloch waves (two a
polarized and two IT polarized) are produced in a perfect
crystal, and each has its own wave vector. The characteristic
difference between these wave vectors is of the order of 1/L'
and interference between the Bloch waves gives rise to non-
trivial polarization properties. The solution of the dynamic
diffraction problem for a plane-parallel plate leads to the
following expressions for the amplitudes of diffracted and
transmitted waves:

a — Rant'at

* i *

(1.5)

(1.6)

The coefficients Rrr and (y = a,ir) in (1. 5) and
( 1. 6) are given by the following expressions:

(a) The Bragg case (the incident and diffracted waves
leave through the same surfaces of the plate) :

698 Sov. Phys. Usp. 32 (8), August 1989 V. A. Belyakov and V. E. Dmitrienko 698



Y = XnCy (a. + i Av ctg /v)'1,

= (cos /v — t'aAv1 sin /V)~J exp | ixiJL (x0 —
(1.7)

(b) The Laue case (incident and diffracted waves leave
through different surfaces of the plate):

#w = xnCyAv1 sin /v exp [txiJL (x0 —
 a&) (SXpS)"1],

(1.8)
Tr,, = (cos /v + iaAy1 sin /v) exp [t'xjL (x0 — «&) (2x0

s)~1l,

where

262x5

Av = \of +

/v = tVVL, fc = ±81,
2xHs x.Hs

C,, = l,^ = cos 20 B, and s is the inward normal to the
entrance surface of the sample. The parameter a can be ex-
pressed in terms of the deviation of the angle of incidence
from the Bragg angle:

a = (0B — 0) sin 26B + ̂ (1.9)

FIG. 1. a—Reflection coefficients |/?TO|2,|«^|2 and the difference
cp(7 — <p^ between diffraction corrections to the crand TT polarized waves in
the symmetric Bragg case; 220 reflection in Si, semi-infinite crystal, CuK0
radiation, b—Transmission coefficients | Taa |2, | Tr7r

 2 and the difference
<pa — q>^ between diffraction corrections to the phase of a and TT polarized
transmitted waves in the symmetric Bragg case; 220 reflection in Si,
L = lOjUm, CuK0 radiation; dashed line corresponds to the transmission
coefficient in the absence of diffraction. Insert shows the diffraction geom-
etry.

Formulas (1.5)-(1.9) can be used to perform a full
analysis of polarization phenomena in perfect crystals. In
particular, it follows from them that the amplitude and rela-
tive phase of diffracted waves with a and 77 polarizations
undergo a variation within the diffraction region (Figs, la
and 2a). Usually, the reflection coefficient RYY \ 2 for a po-
larization is greater than for 77 polarization, but the reverse
situation is also possible because of the so-called pendello-
sung that arises as a consequence of interference between the
two Bloch functions associated with each polarization state.

The amplitude and phase of the waves transmitted by
the crystal (see Figs. Ib and 2b) also undergo changes with-
in the diffraction region, which can be described as the mani-
festation of an effective diffractive birefringence and dichro-
ism (see Sec. 1.3).2) We emphasize that this dichroism is
related exclusively to the difference between the absorption
of radiation of different polarization (as in ordinary optics)
and, in the first instance, the difference between the diffract-
ed intensities of a and IT polarized waves. As far as true ab-
sorption is concerned, this can be significant for dichroism
under the conditions of anomalous absorption (Borrmann
effect), which is also used to produce polarized beams (Sec.
3.2).

1.2 Polarization tensor and integrated polarization pa-
rameters. In practice, one frequently has to deal with the
description of partially polarized beams. X-ray sources
usually produce either partially polarized or completely un-
polarized radiation. It will be seen below that a change in the
polarization state occurs when the polarization parameters
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TABLE I. Polarization parameters of beams z = En/Ea

Parameter

'l. Intensity/

2. Degree of
polarization
P

3. Ratio of
axes of
polarization
elipse be

4. angle of
rotation, tfr
of the semi-
major axis
of the elipse
relative to
the a polar-
ization

Polan

total

l^ol ' + lfi*!1

l

— 2 I m z

l+iz|2+[(l-|2|2)2+4(Re2)s]1/2

1 . 2 Re z
2 «* l-|*l'

zation

partial

•^oo + •'nit

K^-^snt)
1 + 4|/m,|«]l/»

•'ou + •'jin
2 I" 'on

P/ + (Coo - •/nn)2 + 4<Re 'on)2]''"
1 t 2Re/aj t

? g 7 /z •'ocj — Jn.n

are averaged over the diffraction region, and also in the case
of diffraction by imperfect crystals. The complete descrip-
tion of the polarization properties and intensities of such
beams is accomplished with the aid of the polarization tensor
/(Refs. 15-19), defined by

/pv = £g£v, (1.10)

where the bar indicates averaging (with respect to time in
the classical language'7 or over the photon ensemble in the
quantum-mechanical language33). In a beam with polariza-
tion tensor /, the intensity of a component with arbitrary
polarization represented by the unit vector e is given by the
expression (e* Je). Throughout the discussion presented be-
low, we shall always use the a and TT unit polarization vectors
as our J)asis. The physical meaning of the elements of the
tensor/in this basis is as follows: /„.„. and J^, are the intensi-
ties of the a and tr components, respectively, 2 Re Jair is the
intensity difference between the components that are linear-
ly polarized at + 45° to <r, and 2 Im Ja7r is the intensity ratio
of components with right and left circular polarizations (a
total of four independent elements). The polarization tensor
is convenient because, when coherent beams are combined,
their polarization tensors are added. The expressions relat-
ing the intensity and the polarization parameters of a beam,
on the one hand, and the components of the polarization
tensors, on the other, are given in Table I. We note that the
Stokes parameters'6"18 and the polarization density matrix33

are widely used to describe partially polarized beam (all
these approaches are, of course, equivalent).

The transformation formulas for the beam polarization
tensor in the case of diffraction by perfect crystals can be
obtained from the above formulas for the fields, as given by
(1.3)-(1.8). By constructing the quadratic combinations
(1.10) for the diffracted and transmitted wave fields, we
obtain

Jd=RJiR',
(L ID

where the diagonal components of the matrices are all zero.
The diagonal form of the matrices R and T leads to the fact
that each of the components of the polarization tensors /**

and J' depends only on the corresponding component of f:

(1.12)

where P = a, TT, y = a, IT (no summation over repeated in-
dices! ) .

Formulas (1.11) and (1.12) readily explain the change
in polarization and in the degree of polarization of the beam
on diffraction. For example, one can use the expressions list-
ed in Table I to show that, if/ 'aa/J'^<\R^ 2/\Raa

 2,then,
for any incident-beam polarization, the degree of polariza-
tion of the diffraction beam does not increase, i.e., Pd^P'.
The change in the intensity and polarization of the beam on
successive reflection from a number of crystals is also conve-
niently described by the successive application of ( 1 . 1 1 ) and
(1.12). This procedure becomes nontri vial if the crystals are
rotated relative to one another so that the a and TT polariza-
tions for them are not the same. It is then necessary to trans-
form the polarization tensors from one basis (a; IT) to an-
other (a1, TT'), where the latter is rotated relative to the
former by i/>':

^N

in which the rotation matrix R# is given by

£
cos*'

— sin i|>' cosi|>'/

(1.13)

(U4)

The polarization tensor is also convenient in finding the
integrated ( over the diffraction region ) polarization param-
eters. These are given by the integrated polarization tensors:

(1.15)
d 6.

It follows from'(1.15) that diffraction by a thick perfect
crystal, even for a completely polarized incident beam, gives
rise to a degree of repolarization, provided only that the inci-
dent beam is neither a nor ir polarized. Physically, this is
related to the fact that the polarizations of the diffracted and
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FIG. 3. Integral reflection coefficients for diag-
onal (a) and off-diagonal (b) components of the
polarization tensor as functions of the crystal
thickness. Figs, c and d, taken from Ref. 2, show
the corresponding polarization parameters, i.e.,
rotation of the plane of polarization (c) and ratio
of integral reflection coefficients for a and IT po-
larizations (d). Symmetric Laue case, 220 reflec-
tion in Si, CuK0 radiation. Solid curves—calcu-
lated from dynamic theory, points—
experimental for linear polarization at 45° to the a
and TT vectors; dashed lines correspond to
(1 + cos 20B )/2 and (1 + cos2 + 2®B )/2.

2O 40 SO

transmitted waves undergo a change in the diffraction region
(see Figs. 1 and 2), and the incoherent superpositions of
beams with different polarizations results in partially polar-
ized beams.

The integrated reflections coefficients and the integrat-
ed polarization parameters (Fig. 3) are oscillating functions
of thickness that are related to the well-known pendellosung
solutions for waves diffracted in the crystal. We note that,
for certain particular thicknesses that correspond to
Re RaaR *„ = 0, the diffracted beam is circularly polarized
if the incident beam is linearly polarized at the angle

' = arctg( ' to the direction of the a po-
larization. However, the degree of circular polarization is
then shown by Fig. 3 and Table I to be relatively small

The use of the polarization tensors is particularly con-
venient in the case of imperfect crystals (Sec. 1.4).

1.3. Diffractive birefringence and dichroism. A mono-
chromatic wave falling on a crystal produces in the diffrac-
tion region two a and two 77 polarized Bloch waves, each
with its own wave vector. As they propagate in the crystal,
these waves interfere with one another, so that the polariza-
tion parameters of the waves transmitted and diffracted by
the crystal are very complicated functions of the crystal
thickness, which has often been observed experimentally
(Refs. 2, 3, 34, and 36). However, in many cases, only one
Bloch wave component is significant for each of the polariza-
tions, and we have the simpler situation that is analogous to
ordinary optics, except that the x-ray birefringence is dif-
fractive in origin. For example, one such case is diffraction
by thick absorbing crystals.29

Two further similar cases are discussed below, namely,
"off-Bragg" diffractive birefringence and birefringence by
mosaic crystals. The former is discussed in this Section and
occurs for sufficiently large deviations from the Bragg angle
( A© = © — ®B ) , so that one can neglect the intensity of the
diffracted wave, which decreases relatively rapidly (as

| A01 ~2) with increasing | A@ | [see (1.5)-(1.8)]. It will be
clear from the account given below that, under these condi-
tions, diffractive birefringence decreases slowly (as
| A© | ~ ' ) and, when the crystal thickness is large enough, a
considerable phase difference is established between the a
and -rrpolarized waves emerging from the crystal (Figs. 2b).
Moreover, because of this slow reduction in birefringence,
"off-Bragg" birefringence may include the contribution of
many reflections. This problem is also examined below.

The diffraction correction An to the refractive index
can be obtained in the two-wave approximation either di-
rectly from the Maxwell equations, using perturbation theo-
ry in which it is assumed that the amplitude of the diffracted
wave is much smaller than that of the incident wave,7"9 or
from (1.6) which gives the amplitude of the transmitted
wave in the limit as |A0j-»co. The final expression
(Y = cr,ir) that is valid in both Bragg and Laue cases is

(1.16)

(1.17)

4A0 sin 20B

The refractive index difference An is

i = Art0 — Ann = —
4A9

The range of validity of this expression is defined by the
inequality |A©> \XH |/sin 2©B.

The real part of An determines birefringence and the
imaginary part the dichroism (i.e., different absorption) of
a and IT polarized rays in the crystal.

We emphasize that the dichroism that follows from
(1.17) is displayed by absorbing crystals only if
Im^H^H ^0. Physically, it is related to the difference be-
tween the Borrmann effects for a and tr polarized waves.29"3'
We note that the usual situation in the x-ray region is de-
scribed by | Re 6n \ > | Im 8n \ (provided we are not too close
to an absorption edge). Only the relative phase of the a and -IT
polarized waves is then found to change during propagation.
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In the many-wave case, the solution of the Maxwell
equations can also be obtained by perturbation theory.5'7-9

The solution is sought in the form of the Bloch wave (in this
case, it is more convenient to use the induction D):

_

A" + /' -
(1.24)

D(r) = D0+ (1.18)

Substituting this into the Maxwell equations, we obtain, as
usual,31 the set of equations of multiwave dynamic theory of
diffraction. Since we cannot tell in advance which polariza-
tions will be intrinsic, let us write this set in vector form in
the case of the direct wave D0:

(H^O,KH = K0 + H). Assuming that all the DH are small,
and retaining only D0 on the right-hand side of (1.19b), we
find that

Substituting DH in (1.19a), we obtain the following equa-
tion for the wave vector amplitudes in the crystal:

o = 0, (1.21)

where the tensor Sd is given by (see also Refs. 5 and 9)

'bk-H'tH'd, (1.22)

and the quantity aH = [ H2 + 2 (K0H) ] /!KQ determines the
deviation of the direction of propagation of the wave D0 from
the Bragg direction for the reflection H, where
H' = H-K0(K0H)/K2.

By diagonalizing the tensor 8d we can find the eigenvec-
tors em (m = 1,2,) and the eigenvalues 8d

m of (1.21), which
determine the polarization and the wave vector of eigen-
waves in the crystal, respectively. The refractive index dif-
ference between the eigenwaves is given by Sn — Sd — Sd.

We note that, for absorbing crystals, the eigenpolariza-
tions can be elliptic and nonorthogonal, i.e., (e* ,e2) ̂  0, and
the quantities 8d

m are complex. It also follows from (1.12)
that, in this particular approximation, there is neither bire-
fringence nor dichroism for beams propagating along three-
fold or higher-order symmetry axes.

As an example, let us consider the propagation of x-rays
at right-angles to the (110) plane in a cubic crystal. Symme-
try considerations then show immediately that the eigenpo-
larizations are linear and one of them (e^ is parallel to the
[001] direction, whereas the other (e2) is parallel to the
[HO] direction. Once we know em, we can readily deter-
mine^ since

6< J / * K ^ \ / 1 11 \m = (emo e,,) (1.23)

(em are unit vectors). For the present case (1.22) then leads
to the following expression:

where a is the size of the unit cell and h, k, I are the Miller
indices.

Let us now analyze the application of the general rela-
tions given by (1.22) and ( 1.24) and the resulting estimate
of the effects for the special case of propagation of CuKa,
radiation in silicon. Since, in this case, j2a/A = 4.9855s 5,
the main contribution to An is provided by the 620 and 260
reflections, since the denominator in ( 1.24) is very small for
these reflections. When these reflections alone are taken into
account, we have Sn = ( 1.9 + /0.24) • 10~9, whereas the in-
clusion of the remaining reflections yields
Sn = (2.5 + /0.27) • 10~9, i.e., distant reflections provide a
relatively appreciable contribution. When the crystal thick-
ness is L ~0.04 cm, the rotation A 4* of the plane of polariza-
tion and the ratio be of the axes of the polarization ellipse are
found to be measurable by existing experimental tech-
niques3'5 (for example, A* = 3.8' and be = 0.02 for an inci-
dent wave polarized at 45° to the a and IT directions).

An experimental study37 of the above case of the propa-
gation of CuKa, radiation in silicon showed that both bire-
fringence and dichroism were substantially greater than in-
dicated by the above theoretical values. This discrepancy
may be due to the fact that appreciable 260 and 620 reflec-
tions were produced in the course of collimation of the beam
employed in Ref. 37. Diffraction and the Borrmann effect
associated with these reflections could have given rise to a
substantial increase in the observed dichroism and birefrin-
gence as compared with the theoretical predictions. These
suggestions are consistent with the fact that, when measure-
ments were performed on the same crystal but with special
steps taken to exclude the 260 and 620 reflections,5 this gave
rise to significantly smaller effects than those reported in
Ref. 37 (see also Ref. 38).

We therefore conclude that crystals exhibit appreciable
birefringence and dichroism in the x-ray region even for di-
rections well away from the directions of strong diffraction
scattering. In contrast to the case of strong diffraction scat-
tering, the propagation of x-rays in such cases can be de-
scribed by analogy with the ordinary optics of anisotropic
media, provided the diffraction terms discussed above are
taken into account in the refractive index. Specific estimates
(Sec. 3.3) show that the off-Bragg diffractive birefringence
can be used as a basis for the transformation of linearly po-
larized waves into circularly polarized waves and vice versa.
On the other hand, diffractive birefringence and dichroism
may impede the observation of the true anisotropy of x-ray
susceptibility. Diffraction corrections to the refractive index
can also be very significant in precision measurements of the
refractive index ( using x-ray interferometers, etc. ) , in which
a relative precision of the order oflO~9-10~'° has already
been attained.

1.4. Diffraction in imperfect crystals. The imperfection
of a crystal, i.e., departure from the regular crystal lattice,
ensures that waves diffracted at different points in the crys-
tal acquire an additional phase difference. When these irre-
gularities are random, the waves become partially incoher-
ent because of the randomness of the phase difference. It is
clear that this incoherence will affect, in the first instance,
the polarization properties of diffracted waves and, in partic-
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ular, can give rise to changes of polarization state. There is,
at present, no theory that can describe diffraction by a crys-
tal with arbitrary imperfections. Existing theoretical ap-
proaches apply to slightly or higher imperfect crystals. In
this section, we examine only one of the simplest models, i.e.,
that of the mosaic crystal, which will, nevertheless, exhibit
many of the polarization effects that are specific to imperfect
crystals. In this model, the crystal imperfection is assumed
to be so strong that waves diffracted by different blocks of
the mosaic are completely incoherent, and the kinematic ap-
proximation is applied to each such block.29-39"41

Diffraction by mosaic crystals is traditionally discussed
on the basis of the Darwin transfer equations for the intensi-
ties of the a and TT polarized components. '^' For beams of
arbitrary polarization, the equations for the intensities must
be replaced with the transfer equations for the polarization
tensor / (see Sec. 1.2 for a definition of this tensor). It will be
seen below that this generalization is equivalent to adding to
the Darwin equations, which describe the diagonal compo-
nents of the polarization tensors, a further set of equations
for the off-diagonal components. Their general solution pro-
vides a complete description of the polarization properties of
beams diffracted by mosaic crystals.l5

The derivation of the transfer equations for the polar-
ization tensor can be illustrated by the following simple ar-
gument. Consider the evolution of the polarization tensor of
the direct wave J" as it propagates in the crystal, i.e., let us
find the derivative dJ "/dSH (s() is the distance along the direc-
tion of propagation of the direct wave). First, we must take
into account absorption that is present even outside the dif-
fraction^ region, whose contribution to the derivative has the
form //,/", where/z is the absorption coefficient. Diffraction
of the diffracted wave back into the direct wave is described
in precisely the same way as the diffraction of the direct wave
[ see (1.3), ( I A ) , and (1. 11) ] and leads to a contribution of
the form <7()H KJ"K to the required derivative, where / H is
the polarization tensor of the diffracted wave and aOH is the
mean Bragg scattering cross section per unit volume of the
crystal for a given angular deviation A® = ® — ©fl from the
Bragg angle:

31-

Xsin 26,
(1-25)

B

The function fF(A0) in (1.25) describes the orienta-
tion distribution of the mosaic blocks. In deriving (1.25), it
is assumed that the characteristic size Lb of these blocks is
much less than L ', so that the kinematic approximation is
valid for the individual blocks and the characteristic block
disorientation angle A©4 is much less than A. /Lb (the so-
called type I mosaic structure40).

The terms describing the change in the polarization ten-
sor of the direct beam due to loss by diffraction have the most
nontrivial form. Apart from the obvious diffractive reduc-
tion in the beam, there is an unavoidable change in the phase
velocity (refractive index) in the diffraction region due to
the weakening of the beam by the dispersion relations.15

Here, the situation is analogous to the case of ordinary reso-
nance absorption that necessarily leads to a change in the
real part of the refractive index. We therefore make a small
digression and consider the determination of the diffraction
correction to the refractive index in an imperfect crystal.

The most systematic approach is to evaluate An in

terms of the forward scattering amplitude of an individual
mosaic block (of arbitrary shape),42 followed by averaging
over block orientations. If, as assumed above, Lb <L' and
A0fc >/t /Lb, we need not consider the dependence on the
shape and dimensions of blocks, and we obtain the following
expression for A«y:

, =_ JlC'3CHXH (W (A6) + iW (AO)),
4 sin 26B

(1.26)

where Ca = \,CV = cos 2©B and the function W(A0) is re-
lated to ff(A0) by the dispersion relation

W (A6) =
' ( X ) (

x —A9
(1.27)

This result is unusual because it involves an integral with
respect to the angle of incidence and not the radiation fre-
quency. This replacement is possible because the frequency
and the angle A© are proportional to one another by virtue
of the Bragg condition (with the exception of the case
&B =90°!).

The relation given by (1.26) can be obtained in other
ways as well. For example, if we neglect absorption, we can
conclude from the law of conservation of energy that
Im ( A n y ) = J.amC2

r/4ir [see (1.25)], i.e., whatever was
lost from one beam was gained by the other, and then obtain
Re(A«y ) with the aid of the dispersion relations. Another
method42 consists of evaluating Any from the amplitude of
the wave transmitted by the cry stal [ see (1.6)] inthelimitof
very thin flat mosaic blocks, followed by averaging over the
orientations of the individual blocks. The dispersion rela-
tions given by (1.27) are obtained automatically in this ap-
proach.

We note that (1.26) enables us correctly to take into
account the mutual effects of absorption and diffraction. In
particular, it can be shown42 that partial suppression of ab-
sorption (Borrmann effect) will also occur in mosaic crys-
tals in the diffraction region. However, in contrast to perfect
crystals, the Borrmann effect is now relatively weak, and we
shall not take it into account when we examine polarization
phenomena in mosaic crystals, i.e., we shall assume that
ImCCH^R) =0.

The function fF(A©) is commonly regarded as a Gaus-
sian or Lorentzian. The corresponding graphs of fF(A©)
and W( A®) are shown in Fig. 4. The very significant point is
that H^A©) decreases slowly with increasing |A©|:
fF(A0)~ - (7rA©)~' , and, whatever the distribution of
the mosaic blocks, the refractive index (1.26) reaches the
universal form A«r~ — C2,^H^H/ (4A0sin20B) for
|A®| >A©f c. Hence, diffractive birefringence An^ — An^ is
appreciable even outside the strong diffraction region. The
quantity A«y has an identical asymptotic behavior in perfect
crystals (Sec. 1.3). The fact that, for large |A®|, the diffrac-
tion correction Any does not depend on the degree of perfec-
tion of the crystal can be understood qualitatively from the
following considerations. For large |A©|, the significant
point is that the crystal must be perfect over distances of the
order of Lb >/l | A® | since, for large distances, the phase dif-
ference between the diffracted waves is greater than n and,
on average, the waves tend to cancel out one another. This
means that, when the block size is Lb > A \ A© |, the radiation
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FIG. 4. Graphs ofjhe functions W(A©) and W(\@) for the
Gaussian (G and 5) and Lorentzian (L and L) distributions
(normalized so that $WL (x)dx = S\YG(x)dx.

-0.5

does not "feel" the imperfection of the crystal.
We now return to the examination of the terms in the

transfer equations that describe the evolution of the polar-
ization tensor of the direct beam. Since the refractive index is
given by (1.26) for each of the polarization components, it
can be shown15'43 that terms describing the change in the
polarization tensor of the direct beam by diffraction take the

-^F(A0) (K2J° + J°K2) + iQW (A©)
2J° - /°tf 2).Thisfinallyleadsustotheequationfor<5(/0/

0 and the analogous equation for dJH/dsH :

— = — taJO—QW (A0) (/CV° + W)

+ iW (A0) (/CV° — M

1̂ = _ ^JH _ QU7 (A0) (KVH + J "

(1.28)

— J"K2) + QW (A0) KJ"K,

where % is the distance measured along the direction of
propagation of the diffracted wave. The set of equations giv-
en by (1.28) provides a complete description of the polariza-
tion properties of diffraction in imperfect crystals with type I
mosaic structure. It splits into four set^of equations for each
of the elements of the tensors J° and JH. The equations for
the diagonal elements are identical with the Darwin equa-

P

1.0

0.5

1.0

0.5

0

-0.5

- 5 -* - 3 - Z f 0 1 2 3 J0/J0S

FIG. 5. Degree of polarization P, ratio of axes bc, and rotation >P of the
polarization elipse for a beam diffracted by a mosaic crystal as functions of
the ratio A0/A0B; Laue geometry (A©—deviation from the Bragg con-
ditions). Solid lines—symmetric Laue case b=l, cos ©„ = /3/2,
dashed lines—asymmetric Laue case b = 2, cos &B = VT/2. The incident
beam was linearly polarized at 45° to the plane of scattering,

= WL (£), crystal thickness L = 2.5Z. (' = 5irbQB/Q.

tions for the intensities of the a and TT polarized beams, and
the only new feature is the presence of the equations for the
off-diagonal elements. The solution of these equations for a
crystal in the form of a plane-parallel plate presents no par-
ticular difficulty. A detailed analysis of the results has been
given in Ref. 15, so that we shall confine our attention to a
brief review of the basic results.

The main difference between the x-ray optics of imper-
fect and perfect crystals is that, even for a fixed angle A©, the
diffracted beams become partially polarized whenever the
polarization of the incident beam differs from the a or tr
polarization. This polarization can be understood qualita-
tively from the following considerations. The incident-wave
polarization varies as the radiation propagates through the
crystal, so that waves diffracted at different depths have dif-
ferent polarizations and add inbcoherently, giving rise to a
partially depolarized wave. An appreciable change in the
polarization properties of diffracted beams occurs in mosaic
crystals within the secondary extinction length
L " = 27rA0 (,/£?. For type I mosaic structures L'e

l^L'e< but
L " can be comparable with the absorption length (j.~', i.e.,
both /j,L "> I, and /uL "4,1. can occur. The effect of polar-
ization is enhanced still further for quantities integrated over
the diffraction region [the beam polarization tensors must
be integrated as in the case of perfect crystals; see (1.15)].

Apart from polarization, diffraction birefringence of
the diffracted and transmitted beams ensures that they be-
come elliptically polarized (Fig. 5). For a linearly polarized
incident beam, the elliptic polarization is right- or left-hand-

FIG. 6. Integral polarization parameters as functions of crystal thickness.
Asymmetric Laue case (b = 2 ) , linearly polarized incident beams with
polarization at 45° to the vector a (Ref. 15).
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TABLE II. Polarization properties of diffracted wave for a polarized incident wave.

Properties

1 . Different width of the diffraction
regions for a and IT components

2 . phase difference between
a and TT components

3. depolarization (for a plane
monochromatic wave )

4. depolarization integrated
over the diffraction region

kinematic

No

No

No

No

Crystals

dynamic

Yes

Yes

No

Yes

mosaic

Yes

Yes

Yes

Yes

ed, depending on the sign of A©, and ellipticity practically
disappears from the integrated parameters (if anomalous
absorption can be neglected). Figures 5 and 6 show exam-
ples of differential and integral polarization parameters, and
Table II compares the polarization parameters of perfect
and imperfect crystals.

Experimental studies of the polarization properties of
imperfect crystals are only just beginning, but they have al-
ready led to significant results. In addition to the early
work,10> l2'44^5 we must particularly note the series of experi-
mental studies by N. M. Olekhnovich et al., who investigat-
ed the polarization properties of real crystals with different
dislocation densities (see Ref. 14). They examined in detail
the integrated47"49 and differential"'13'50'51 reflection coeffi-
cients for the a and IT polarizations, and have also observed
diffractive birefringence and depolarization. Although, so
far, experimental studies have been largely confined to a and
TT polarizations, they have demonstrated that the Darwin
theory of diffraction by mosaic crystals is frequently incapa-
ble of providing a quantitative description of the experimen-
tal data. For example, the ratio of the coefficients of reflec-
tion for a and TT polarized radiation (the so-called
polarization coefficient"ll3'50'51) reaches a plateau in the
diffraction region (Fig. 7). This behavior can probably be
explained by assuming that the dimensions of the individual

0.80 .CO S.̂  &g

FIG. 7. Reflection coefficient \R,,a\~ + \Rr,\
2 for unpolarized radiation

andtheratio R,^\2/\Raa
 2 as functions of A© for a dislocation density of

3 X 105 mm"2. Symmetric Bragg case, Ge (III), CuKn radiation.5"

blocks are so large that primary extinction becomes signifi-
cant in each block.50'5' However, some of the experimentally
observed features have not received even a qualitative expla-
nation. For example, it has been reported53 that, for a certain
dislocation density, the integrated reflection coefficient for IT
polarization is greater than that for a polarization (Fig. 8).

In view of the foregoing, it is clear that further advances
are necessary in the theory of diffraction by imperfect crys-
tals, ands polarization measurements have to be brought in
for the verification of theoretical predictions, since such
measurements are the most informative. In particular, the
Kato polarization theory54 and its more developed ver-
sions55'56 could be generalized to the case of arbitrary polar-
ization.

The following general question has arisen: What is the
maximum number of parameters that describe the polariza-
tion properties of each reflection (we have in mind quanti-
ties that can be measured with polarizers and analyzers with-
out measuring the phases of the beams)? It is found that,
since the a and TT polarizations do not mix in each Rayleigh
scattering event, only four such parameters are necessary
(each is a function of the angle of incidence and angle of
reflection). These parameters can be, for example, the coef-
ficients of reflection for a and ir polarizations and the com-
plex coefficient of reflection for the off-diagonal components
of the polarization tensor, i.e., the quantity relating the off-
diagonal components of the polarization tensors of the inci-
dent and diffracted beams. We emphasize that the a and IT

o 0.2 0.4- 0.6

FIG. 8. Ratio of integral reflection coefficients for a and TT polarized
beams as a functon of extinction factor y characterizing the degree of
imperfection of the crystal; 200 (a) and 400 (b) reflections in LiF, CuK,,
radiation."b 1—experiment, 2—calculation including only primary ex-
tinction in individual mosaic blocks.
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polarizations do not mix if diffraction is of the two-wave (or
coplanar multiwave) type, and x-ray polarization anisotro-
py and rotation of the plane polarization are both absent.

It is important to note that measurements of the polar-
ization properties of diffraction by perfect and, especially,
imperfect crystals are also of metrological importance. Since
crystals are used as monochromators, it is often important to
know the quantitative polarization parameters of radiation
after the monochromator (for example, in the case of struc-
ture analysis). The International Union of Crystallogra-
phy57 has therefore called for the investigation of the polar-
ization properties of monochromators and methods for their
determination58"60

2. Anisotropy of x-ray susceptibility. The traditional
neglect of the anisotropy of x-ray susceptibility in discus-
sions of diffraction by crystals (Sec. 1) is often fully justi-
fied.61 However, this anisotropy is the reason for a number of
qualitative effects, such as nondiffractive dichroism and bir-
efringence (mostly near absorption edges), which are rela-
tively obvious. A nontrivial qualitative consequence of this
anisotropy is the appearance of reflections that are forbidden
for symmetric reasons in the case of isotropic susceptibility,
i.e., the appearance of "forbidden" reflections.20"23

Two complementary approaches can be naturally em-
ployed to investigate the anisotropy in x-ray susceptibility.
The phenomenological approach is largely based on symme-
try considerations, whereas the microscopic approach takes
account of the specific atomic structure of the crystal. It is
important to emphasize that symmetry restrictions on the x-
ray susceptibility tensor can, in no way, be reduced to prop-
erties known in ordinary optics. Thus, when the symmetry
properties of the susceptibility tensor in the optical range are
investigated, the crystal is looked upon as a homogeneous
medium.62'63 Only the homogeneous part of the susceptibil-
ity XQ, is then significant, and its symmetry is determined by
the crystal point group, and is well known in optics.62'63 In
the case of x-ray diffraction, the inhomogeneous (periodic)
part of ;£(/•) becomes significant. Its symmetry is different at
different points in the unit cell of the crystal and is deter-
mined by the point group of the crystal. The general proper-
ties of x-ray susceptibility are discussed in detail in Ref. 61,
and the symmetry restrictions on %( r) are examined in Refs.
22 and 23 (see also the discussion below).

One of the manifestations of the anisotropy of suscepti-
bility is the magnetic scattering of x-rays and magnetic di-
chroism, which occur in magnetically ordered crystals and
are discussed in Sec. 2.4 below.

2.1. Birefringence and dichroism near absorption edges.
A systematic description of the anisotropy of x-ray suscepti-
bility can be constructed on the basis of the quantum-me-
chanical theory and requires a knowledge of the atomic and
crystal electron wave functions (Refs. 26, 61, and 64). For
our purposes, we need only be able to understand the phys-
ical reasons for anisotropy and to estimate its magnitude. We
shall therefore slightly simplify the true picture of the inter-
action between x-rays and crystals. It is clear that the anisot-
ropy of susceptibility appears as a consequence of the crystal
structure, and is due to the distortion of the wave functions
of free atoms by the crystal field. The anisotropy derives
from the dispersion (resonance) correction to susceptibility,
whereas the principal (potential) part of susceptibility is iso-
tropic. The wave functions of the outermost electrons are the

most highly distorted, but they provide a very small contri-
bution to the dispersion corrections because the binding en-
ergy of the outer electrons is small in comparison with the
energy of the x-ray photons. Appreciable dispersion correc-
tions (of the order of the contribution of several electrons
per atom) to the permittivity are provided by the innermost
K and L shell electrons when the photon energy is close to
the K or L absorption edges, although these shells are rela-
tively undistorted by the crystal fields. In the simplest, di-
pole, approximation, the dispersion correction to the suscep-
tibility of a crystal is given by61'64

V2 Vi f <0 | p{-1 mxm | p| | 0>
AX« = — ~ .

£»-£„,-

, «>|pi

- i (rm/2)

, | m > < m | p | 1 0 > I

-En,-*» \,
x 6 (r — r/), (2.1)

where ps — ifiVs is the momentum operator acting on the
coordinate of the sih charge, |0> is the wave function of the
initial state and of the final state that coincides with it (we
are confining our attention to elastic processes), and \m)
represents the wave functions of intermediate states that can
lie either in the discrete or continuous spectrum. The origin
of the anisotropy of susceptibility can be seen from (2.1):
although the wave functions of the initial (and final) states
are relatively undistorted, the wave functions of the interme-
diate states m) can be greatly distorted, so that the product
of the matrix elements (0 \pt m}(m \pk \ 0) does not reduce to
the isotropic component. We note that, in the dipole approx-
imation that we are considering here, the eigenpolarizations
are found to be linear for the tensor (2.1). The real part of
(2.1) is responsible for birefringence and the imaginary part
for dichroism (there is no circular birefringence and dichro-
ism). Moreover, the dispersion corrections are not very de-
pendent on the transferred momentum (i.e., on the reflec-
tion H). The last point is related to the fact that spatial
dispersion effects are weak for the radii aK and aL of the K
and L shells with energies in the x-ray range.

13460 13470 13480 13490 13500 eV

FIG. 9. X-ray absorption coefficients of KBrO, for radiation polarized
parallel and perpendicular to the fourfold axis near K absorption edge of
bromine.20
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Numerous experimental6'20'21-65'66 (see Fig. 9) and
theoretical26'61'64 investigations have shown that the disper-
sion corrections and the associated anisotropy of susceptibil-
ity reach their maxima in the immediate neighborhood
(~ 10 eV) of the absorption edge (the so-called XANES,
i.e., X-ray Absorption Near Edge Structure). Below the ab-
sorption edges, the main contribution to anisotropy is pro-
vided by bound excited states, whereas Bloch electron states
in the crystal provide this contribution immediately above
the edge.

Anisotropy decreases rapidly with increasing photon
energy well above the absorption edge ( S 100 eV) in the
EXAFS (Extended X-ray Absorption Fine Structure) re-
gion, but is still experimentally noticeable.2()'2' In this re-
gion, we can carry out a semiphenomenological evaluation
of A;£, for which, in intermediate states, we can take into
account the diffraction of photoelectrons by atoms sur-
rounding a given atom (it is well known that photoelectrons
are preferentially emitted in the direction of the polarization
vector of the incident x-ray photon). This diffraction is very
dependent on the distance to the nearest-neighbor atoms and
on the form factors of these atoms. The result of all this is
that the anisotropy of the environment of a given atom has
an appreciable effect on the anisotropy of A£ in the EXAFS
region. Thus, although the physical reason for the onset of
the anisotropy of susceptibility near x-ray absorption edges
is relatively obvious, a quantitative evaluation is relatively
complicated.61'64 It is therefore natural to perform a symme-
try analysis of the susceptibility tensor, which does not in-
volve a detailed consideration of a model.

2.2. Symmetry restrictions on the x-ray susceptibility
tensor of a crystal. The x-ray susceptibility of a nonmagnetic
crystal is described by the symmetric tensor of rank two
Xik ( r ) = Xki•(r) > which is unaffected by transformations be-
longing to the space group of the crystal. The easiest way of
finding the general form of this tensor is as follows. The
atoms in a crystal structure occupy a certain definite regular
set of points (one or more). It is therefore sufficient (1 ) to
determine the tensor^* (r) for a single basis atom in a given
lattice, taking into account the point symmetry of the atomic
site, (2) to obtain the tensor;p (r), found for they'th atom in
the regular set of points, by transforming the tensor £fc (r) by
a symmetry operation relating the positions of the basis and
y'th atoms in the crystal, and (3) to obtain the total tensor
X(r) as the sum over all atoms in the given regular structure
and over all the regular sets of points occupied by atoms in
the given crystal.

To find the general form of £(r), we must therefore
know how the tensor ̂ (r) transforms under the symmetry
operations. Suppose that the tensor £(r) is given in space. If
we apply to it a transformation g that includes the point
transformation (rotation or reflection) and translation, the
tensor %g (r), obtained as a result of this, is related to the
original tensor ^-(r) as follows (see, for example, Refs. 67
and 68):

it (r) = (2.2)

where rg = R g
 ] ( r —ag) , /?g is the point transformation

matrix and ag is the translation vector. If the tensor ̂ -(r) is
in variant under g, then %g ( r ) = % (r).

If the basis atom lies at a point whose symmetry is de-

scribed by the point group g, the susceptibility tensor^* (r)
of this atom will obviously be invariant under any transfor-
mationgin this group, i.e., in this case£* (r) must satisfy the
following relation that ensues from (2.2):

The tensor satisfying this relation can be obtained by averag-
ing an arbitrary symmetry tensor a(r) over the group G
(Ref. 68):

(r) = (a (r)>0 = J (2.4)

Having determined in this way the most general form of
Xb (r) for the basis atom, we can now use (2.2) to find the
tensors %*(r) for the remaining atoms in the given lattice,
taking g to be the symmetry operation gj relating the posi-
tion of they'th atom to the basis atom. Of course, all these
operations can be performed for any regular set of points
occupied by atoms in a given crystal.

All this finally yields the most general form of the ten-
sor j(r) that is consistent with the space symmetry group of
the crystal. This automatically takes into account the differ-
ence between the electron density of the atom and the spheri-
cally symmetric density (the electron density is a scalar pro-
portional to the trace of the tensor £( r ) ) .

In its symmetry properties, the tensor^(r) differs radi-
cally from the susceptibility tensor in the optical range. In
particular, ^(r) does not reduce to a scalar even in cubic
crystals. The local symmetry of £(r) is different at different
points of the unit cell. We note that the general form of^(r)
can be found even without resorting to the particular atomic
structures of a crystal,22 but the approach employed above is
clearer and enables us to identify the contributions to £(r)
due to different species of atoms.

If, in addition to the symmetry properties, we take into
account the physical origin of the anisotropy, we can find
further restrictions on £(r). Thus, since the radii of the K
and L shells are small, we can substitute r = 0 in the disper-
sive part of j f c (r) in (2.3) and (2.4), which substantially
simplifies all the calculations and, for certain special disposi-
tions of the atoms, may modify the form of the tensor ^(r)
(examples are given below).

To find the intensity and the polarization properties of
individual reflections, it is convenient to introduce the ten-
sor form of the structure amplitude F", which is proportion-
al to the Fourier component of the susceptibility JH:

X( r ) exp (— iHr)dr , (2.5)

where all the symbols have the same meaning as in (1.2).
The amplitude F*1 is usefully divided into the isotropic and
intrinsically anisotropic parts:

^" = /V -f A/7", (2.6)

where FH is the usual structure amplitude, / is the unit ma-
trix, and the anisotropic part is defined so that
S/J(AFH) =0.

The^symmetry restrictions on^(r) influence the tensor
form of F" (Refs. 22 and 23). For an arbitrary vector H,
there are no restrictions on the form of^A.FH and, just like
any other traceless symmetric tensor, AFH has five indepen-
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dent complex components. However, if the vector H points
along the symmetry axes, the number of independent com-
ponents of the tensor A.FH is reduced (we take the z-axis to
lie along H): if His parallel to axis 2, AF£ = AF£ =0;ifH
is parallel to axes 3, 4, 6, AF^, = AF£ = A.f£ = 0 and
AF£ = AF£ = - 1/2A/-2. If H is parallel to the mirror
reflection plane, then, by choosing the x-axis to be perpen-
dicular to this plane, we have AF" = A/1" = 0.

The intensity and polarization properties of reflections
with the tensor amplitude (2.6) can be found in both the
kinematic and two-wave dynamic approximations by analo-
gy with the analysis of diffraction of Mossbauer radiation69

and the diffraction of light by liquid crystals.70 In most cases,
A.FH is small in comparison with FH, and the entire analysis
can be based on perturbation theory. The most interesting
cases are those for which FH = 0 by symmetry consider-
ations ("forbidden" reflections) and A,FH^0, i.e., the in-
clusion of anisotropy reduces the suppression of reflection
(see next section).

2.3. Forbidden reflections. It is well known that the sys-
tematic suppression of reflections is observed in x-ray dif-
fraction by crystals, i.e., the structure amplitudes of some of
the reflections vanish systematically because the atoms in
the interior of the unit cell are found to be in a number of
symmetrically related positions.32 The set of these forbidden
reflections is determined by the space group of the crystal,
and is given in Ref. 71. However, the standard conditions
given in Ref. 71 were obtained on the assumption that the
atomic scattering factors were identical for all atoms in
equivalent positions, i.e., it was actually assumed that the
atoms forming the crystal were spherically symmetric. In
reality, the atoms in the crystal are not spherically symmet-
ric because of interactions between them, which means that
they are not equivalent from the point of view of scattering,
and this can give rise to the appearance of the "forbidden"
reflections. More precisely, it may be said that atoms lying in
equivalent crystallographic positions may be nonequivalent
from the point of view of their interaction with electromag-
netic (x-ray) radiation, and the scattering amplitudes for
such atoms may be different.

There are several physical factors that produce this dif-
ference between the scattering amplitudes corresponding to
crystallographically equivalent atoms. The best known are
the nonspherical electron density distribution of the atom,
and the anisotropy and anharmonicity of thermal vibrations
of atoms72"74 (the 222 type reflections in crystals with dia-
mond structure constitute a well-known example of this).

Another example is provided by the dependence of the scat-
tering amplitude on the electron spin, which leads to very
weak magnetic reflections when x-rays are diffracted by
magnetically-ordered crystals (Sec. 2.4). The anisotropy of
x-ray susceptibility can also lead to a difference between the
scattering amplitudes, since crystallographically equivalent
atoms can be related by a symmetry operation containing
rotation, and under rotations, the anisotropy tensor can alter
the orientation of its principal axes.

It is well known that the conditions for possible Bragg
reflections by a crystal with a given space group can be dif-
ferent for general and particular positions of atoms in the
unit cell.32'71 If we take into account the nonspherical nature
of the atomic electron density and the thermal motion of
atoms, the conditions for special positions are violated, but
those imposed on the general positions are not. However, the
latter may also be violated if we take into account the anisot-
ropy of susceptibility. Clearly, the conditions associated
with the centering of lattices remain valid even in this case,
since the transformation properties of tensors and scalars are
the same under pure translations. However, the restrictions
on reflections that are due to the presence of slip planes or
helical axes are no longer valid (Refs. 20-24), and we shall
prove this rigorously. However, let us first give a clear inter-
pretation of this phenomenon.

Suppose the crystal has a slip plane (Fig. lOa), i.e., for
example, the structure is invariant under reflections in the^z
plane and displacements along the z axis. Atoms in positions
A and B are crystallographically equivalent, but the corre-
sponding susceptibility tensors (indicated symbolically by
the ellipses) are rotated relative to one another, and these
atoms are polarized differently by the incident x-ray waves.
In the case of the 007 reflections with / = In + 1, these atoms
scatter in antiphase. If we ignore the anisotropy of suscepti-
bility, waves scattered by these atoms will extinguish one
another, and the reflections will be forbidden. When the ani-
sotropy is taken into account, scattering by atoms A and B
will be different in both intensity and polarization, and this
will mean that the suppression of the reflections will not
occur. A similar mechanism can lead to the removal of the
suppression of reflections that are "forbidden" by helical
axes (Figs. lOb and c).

We now turn to a detailed symmetry analysis. A crystal
transforms into itself under all symmetry transformations
belonging to^its space group. Consequently, the structure
amplitudes FH must remain unaltered. In the case of the
slip-plane reflection examined above, a displacement by half

.&'
FIG. 10. Effect of symmetry elements on atoms with anisotropic
susceptibility: a—slip plane c, b—3, axis, c—4, axis.
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the period along the z axis leads to the multiplication of the
structure amplitude of the Okl reflection by
exp(/7r/) = ( — 1)'. Reflection by the yz plane (i.e.,
x -» — x) leads to a change in the sign of the xy and xz com-
ponents of the tensor structure amplitude. Since the struc-
ture amplitude must be invariant under this transformation,
we find that the xy and xz components must be annulled in
the structure amplitude for / = 2 n (allowed reflections),
whereas for /= In + 1 ("forbidden" reflections), all the
components other than the xy and xz components are an-
nulled. It is thus clear that symmetry does not demand the
complete annulment of the structure amplitudes of reflec-
tions with / = 2n + 1, and the suppression of these reflec-
tions is removed, but only when the susceptibility is aniso-
tropic.

Reflections that are "forbidden" by the presence of heli-
cal axes can be examined similarly. Suppose that the helical
axis NJ points along the z axis, i.e., the crystal is invariant
under the combined operations of rotation by the angle
(f> = lir/N about the z axis and displacement along the z axis
by the fraction j/N of the period (W = 2,3,4,6;
j = \,...,N — 1). The tensor structure amplitude F001 trans-
forms into RtfF

00'Rtf,~
l under rotation, and acquires the

further factor exp(2irilj/N) under displacement. Conse-
quently, the invariance ofF00' under this operation requires
that the condition

i, (2.7)

must be satisfied, where the rotation matrix R.. has the form

(
cos q> sin <p 0

— sin <p cosq) 0
0 0 I

(2.8)

If there is no anisotropy, it follows from (2.7) that F001 = 0
for / ^Nn/j, where « is an arbitrary integer, i.e., all these
reflections are forbidden.71 When the anisotropy is taken
into account, it follows from (2.7) that the suppression of
these reflections is removed, save for some rare exceptions
(Table III). It is clear from Table III that, for each "forbid-
den" reflection, all the components of the tensor ̂ H are ex-

pressed in terms of, at most, two independent parameters,
say, .F, and F2, which may be complex. To avoid misunder-
standing, we emphasize that these parameters are diiferent
for different reflections and, in general, they depend on the
wavelength. Their numerical values can be calculated from
microscopic theory. The phenomenological theory that we
are discussing shows only that these parameters need not be
zero if the crystal has only a helical axis or only a reflecting
slip plane. Other symmetry elements can lead to additional
relationships between /•", and F2 and, in particular, may re-
duce them (or one of them) to zero. For example, reflections
with |h —\k = | / | continue to be forbidden in cubic crys-
tals.23 Moreover, these parameters are annuled because
atoms that contribute to anisotropy lie in positions of rela-
tively high symmetry. ^

It follows from Table III that the tensor FH can have a
different form for different types of reflection, and it may be
expected that the properties of these types of reflection are
also different (see below). It is interesting to note that some
of the reflections associated with helical axes remain forbid-
den. For example, in the case of the 63 axis, the necessary
presence of axis 3 leads to the absence of anisotropy in the Ay
plane, so that the suppression of reflections with / = 2« + 1
is not removed, and F001 = 0 for them. For axes 6, and 65,
reflections with / = 6n + 3 are also found to remain forbid-
den. When the quadrupole interaction is taken into account,
these reflections may become allowed, and this can be used
to detect the quadrupole mechanism of interaction between
x-rays and crystal atoms.

The intensity and, especially, the polarization proper-
ties of reflections are altered when anisotropy is taken into
account. For allowed reflections, these changes take the
form of corrections (the exception is provided by the possi-
bility of 90° scattering of ir-polarized waves) and can be
found in both the kinematic and dynamic theories. The po-
larization properties become radically different for forbid-
den reflections, and are found to be very unusual. For exam-
ple, a a-polarized incident wave can produce a 7r-polarized
diffraction wave, and vice versa. Since the structure ampli-
tudes of these reflections are relatively small, we can use the
kinematic approximation for them. The amplitude of the dif-

TABLE III. Components of the tensor structure amplitude Fa and the index / for "forbidden"
reflections (the other components are F" = -F^,F^=0, /""=/"", F% = F%, F^
= F?,),n = Q, ± 1, +2... .

Hel. axis or
slip plane

2i
3i
32
4t
4i
4^4;
43
«i
61
61
6.,
63
64
65
65
65
c

F H
XX

0
F,
Fl
0
F!
F,
0
F!
0
F!
0
F!
0
Fl
0
F,
0
u

FH

xy

0
+iF.,
'-1-iFl

d
F.,
F->
0

F-2
(i

+<Fi
0

+iFl
0

+''Fi
U

±i'Fi
I)
F!

^

Fl
F,
F.
FI
u
( i
F!
(1
FI
( I
0
( 1
0
0
F!
U
0

p ^

H
i/2

F2
^iFi
-HFi
+'Fi

0
0

+iF!
0

+'Fi
0
0
0
0
0

+<Fl
0
0
0

(

2n+l
3n+l
3n+l
4n+l
4n+2
2n+l
4/1+1
4/1+2
6/i+l
6/t+2
6/1+3
3«+l
2rc+l
3n+l
6«+l
6n+2
6n+3
2/t+l

Type of
reflection

I
II
II
I

II
II
I

II
I

II

II

II
I

II

II
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fracted wave is then given by

Ed = (2.9)

where the factor A is the same as in (1.3). This expression
enables us to evaluate the intensity and polarization of the
diffracted wave for any polarization of the incident wave.
This can be conveniently carried out in terms of the quantity
/a/J, which describes the intensity of the component with
arbitrary (/3) polarization in the reflected beam for arbi-
trary (a) polarization of the incident beam:

/af5 = |4i2lP*FHa|2, (2.10)

where a and /? are the corresponding polarization vectors.
The polarization of the diffracted wave is determined by the
unit vector P d = Ed/\Ed . We note that the vector (/3d )
may or may not depend on the polarization vector of the
incident beam (see below).

If the incident radiation is a- or rr-polarized or unpolar-
ized, the intensity of the reflection is determined, respective-
ly, by the following expressions:

/„ — 7 - 1 - 7 O 11 \* o ' OO \ ' OJt» ^ £" 1 1 /

/* = /*, + /»*, (2.12)

/H = -|(/a + /*), (2.13)

where

/»» = \A\*[7tnP\\\

/„„ = 7™ = | A |2 1 JtHFHff |2 = | A P | aF\ |2.

(2.14)

Let us examine, for example, the properties of forbid-
den reflections associated with the presence of helical axes.
It is clear from Table III that all these reflections can be
divided into two basic types, namely, reflections for which
/r^./r"» and F" are all zero (type I) and all the other re-
flections (type II). We shall show that the polarization
properties of these two types of reflection are significantly
different.

Type I reflections have the simplest polarization prop-
erties. It follows directly from (2.9)-(2. 14) and from Table
III that Iaa = !„ = 0 and IH=Il7=Ilr= In = jm for all
type I reflections, where for axis 2, the intensity is given by

cos2 0B [ sin 12 cos2 cp „

(2.15)

in which <p H is the azimuthal angle of rotation around the
vector H (z axis), measured from the x axis, whereas for axes
4[, 43, 6,, 65, the intensity has the simpler form

A cr-polarized incident wave will therefore produce a 77-po-
larized diffracted wave for type I reflections, and vice versa.
An unpolarized beam will produce an unpolarized diffracted
beam. Type I reflections disappear in the case of backward
angle diffraction (since cos ®B =0). In the case of the 4,,
43, 6|, 65 axes, the intensity of these reflections does not de-
pend on the azimuthal angle <p H .

The intensity of type II reflections is given by the fol-

lowing expressions that ensue from (2.9)-(2.14) and Table
III;

for axes 3, and 33

+ sin 26B [Re (FjFJ) cos 3<fH T
 Im (FiFl) sin 3cpH]},

for axes 4,, 42, 43

+ Re (FiFJ) cos2 6B sin 4cpH],

/„ = | A |2 sin2 6B || FX |2 C (q>H) + | F212 B (q>H)

— Re (FjFJ) cos2 63 sin 4<pHl,

B (tpH) = 1—cos20B sin22(pH,
C((fH) = 1—cos20s cos22q>H;

for axes 6,, 62, 64, and 65

/„ = /„ sin2

(2.18)

(2.19)

where the upper and lower signs in (2. 17) correspond to the
two possibilities F™y = + iF"x (see Table III). In contrast
to type I reflections, the type II intensities are different for a-
and 7r-polarized beams. It is clear from (2.18) and (2.19)
that, for small Bragg angles, the cr-polarized beams have a
higher intensity. For three- and sixfold helical axes, the type
II reflections have chiral properties, i.e., their intensity is
different for right- and left-handed circular polarizations of
the incident beam. For example, for backward Bragg reflec-
tions (@B = 90°), (2.9) shows that only a component with a
definite circular polarization (right if F"y = — iF™x, and
left if/7" =iF"x) will undergo diffractive reflection (the
diffracted beam having the same circular polarization). The
wave with the opposite circular polarization will not be dif-
fracted. It follows that, for QB = 90°, the crystal works as a
circular polarizer and, for any polarization of the incident
beam, the diffracted beam has a particular circular polariza-
tion that depends on / and on whether or not the helical axis
is right- or left-handed (Table III). When &R < 90°, the po-
larization of these type II reflections are elliptic rather than
circular. For sixfold axes, the ratio of the axes of the polar-
ization ellipse is sin ®B , where the major axis is parallel to
the vector a and the sign of the polarization ( right- or left-
handed ) is determined as for ®B = 90°. For threefold helical
axes, the ratio of the axes of the polarization ellipse is a com-
plicated function of ©B , and we shall not reproduce here the
relationship between the parameters F, and F2. For fourfold
helical axes, we have chiral type II reflections if

We particularly note that the intensity of the "forbid-
den" reflections depends on the azimuthal angle ( even for an
unpolarized incident beam). By studying this dependence,
we can determine the magnitude of the components of FH

(the parameters F, and F2) and their relative phase. It has
been shown23 that the azimuthal dependence can also be
used to determine selectively the coordinates of atoms con-
tributing to the anisotropy.

Let us illustrate all this by considering the example of
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OO/ (/ = 2« + I ) reflections in a crystal with space group
P 213 and four atoms in special positions (a) with point sym-
metry 3 and coordinates x,x,x; 1/2 + x, 1/2— x,x; \/
2 — x,x, 1/2 + x;x, 1/2 + x, 1/2 — x. The anisotropy of sus-
ceptibility of atoms in positions of this symmetry is charac-
terized by the susceptibility difference x\\ — Xi (parallel
and perpendicular to axis 3). Consequently, both /•", and F2

can be expressed in terms of this difference and the coordi-
nate x. It can be shown that F{/F2 = ;' tg(2ir/x) and that the
intensity of the 00/(/ = 2n + 1) reflections is proportional
to 1 — cos 4-irlx cos 2<p H. The azimuthal dependence of the
intensity of "forbidden" reflections can therefore be used to
determine the coordinate x. This was recently demonstrat-
ed2' (Fig. 11) for NaBrO, crystals.

"Forbidden" reflections can also be used in other ways.
They are useful in the interpretation of spectra near absorp-
tion edges (in contrast to absorption coefficients, these re-
flections provide information on not only the imaginary, but
also the real part of the atomic factors, which is moreover
not averaged over the unit cell). They can be used to deter-
mine the phases of some of the reflections75 and, together
with polarization measurements, they can be used to estab-
lish the absolute configuration of enantiomers. In cubic crys-
tals, these reflections afford probably the only way of observ-
ing the anisotropy of the susceptibility of individual atoms.

The so-called Renniger reflections, i.e., the indirect ex-
citation of "forbidden" reflections via allowed reflec-
tions,72'76 can impede the observation of the "forbidden" re-
flections. However, this type of multiwave diffraction is
possible only for certain particular azimuthal angles £>H,
which are readily calculated (the indirect excitations are ac-
tually responsible for the individual departures of the points
from the curves of Fig. 11). Moreover, interference with the
Renniger reflections can be used to determine the phase of
the tensor structure amplitude of "forbidden" reflections
(for the scalar case, this method of solving the "phase prob-
lem" has already been used in Refs. 77-79).

2.4. Magnetic scattering. The principal contribution to
the scattering of x-rays is due to the Thomson mechanism
whereby x-rays are scattered by the charge of the electron.
Classically, this can be looked upon as the dipole emission by
a charge accelerated in the electric field of the x-ray wave.
However, in addition to its charge the electron also has an
intrinsic magnetic moment — 2/j.B s and a magnetic moment

due to its orbital motion in the atom, — fiB 1. The interac-
tion of the x-ray wave with these moments leads to magnetic
scattering that is sensitive to the magnetic structure of the
medium. In classical language, the principal channels of this
magnetic scattering can be described as follows25'80 (Fig.
12) •. (1) magnetic quadrupole emission by the magnetic mo-
ment n moving under the influence of the force — eE, (2)
electric dipole emission of a charge accelerated by the force
— V^H), and (3) magnetic dipole emission by the mag-

netic moment due to rotation under the influence of the cou-
ple [\iH]. Moreover, magnetic scattering can exhibit reso-
nance phenomena,81 e.g., the so-called resonance magnetic
scattering that occurs via atomic energy levels split by the
exchange interaction (the analog of Zeeman splitting).

It is clear from the foregoing that the polarization prop-
erties of magnetic scattering of x-rays are very different from
those of Rayleigh scattering. Phenomenologically the pres-
ence of magnetic scattering corresponds to extra terms of the
formiejknsn in the susceptibility (ejkn is a perfectly antisym-
metric unit tensor) and to extra terms that depend explicitly
on the wave vectors of the incident and scattered waves
(equivalent to taking into account spatial dispersion). These
terms lead, in particular, to different scattering of right- and
left-polarized waves and to the rotation of the plane of polar-
ization (Faraday effect).

motive force reradiation

-eE

(V \f'H quadrupole

moment of forces

FIG. 12. Magnetic scattering of a photon by an atom in classical electro-
dynamics.25
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The absolute magnitude of the magnetic scattering am-
plitude per electron is smaller by the factor fa)/ (me2) than
the Rayleigh scattering amplitude, and some of the terms are
smaller by the factor p/mc, where p is the typical electron
momentum in the atom. In the x-ray region, both estimates
yield a figure of approximately 0.01. Since, in the atom, only
a small number of electrons have an uncompensated mag-
netic moment, and the formfactor of these electrons de-
creases rapidly with increasing angle of scattering, we find
that the magnetic scattering amplitude is smaller than the
Rayleigh amplitude of an atom by three or four orders of
magnitude. Despite the fact that magnetic scattering is
weak, the availability of synchrotron sources ensures that
this can be a working method for the investigation of the
magnetic properties of solids.

The quantum-mechanical approach is, of course, essen-
tial for the quantitative description of magnetic scattering.
Although the corresponding formulas, in which the photon
scattering cross section is a function of the electron spin, has
been known for a relatively long time (for both free and
bound electrons,33'80'82 the suggestion that they could be
used to investigate the magnetic properties of solids did not
appear until 1970; see Ref. 24). The spin of the free electron
ensures that the scattering cross section (Compton effect) is
different, depending on whether the circular polarizations
are parallel ( + ) or antiparallel ( — ) to the spin direc-
tion:3

do
(2.20)

where 0 the scattering angle [formula (2.20) was obtained
in the nonrelativistic approximation in which fua^mc2].
The first experiments on the Compton scattering of polar-
ized x-rays were performed by Sakai and Ono,83 who used
122-keV gamma rays from a radioactive Co57 source. This
showed that magnetic Compton scattering could be ob-
served and used to investigate the momentum distribution of
polarized electrons in a crystal (see also Refs. 84 and 85, in
which circularly polarized synchrotron radiation was em-
ployed). A more detailed theory of magnetic Compton scat-
tering by bound electrons is given in Refs. 86 and 87.

We now turn to a more detailed examination of coher-
ent elastic scattering, in which the atomic system remains in
its initial state after the scattering event.24"27'33 Here, we can
use the nonrelativistic Hamiltonian for the interaction be-
tween the electron and the electromagnetic field:

^ -- Lp'A, (2.21)
2mc*

where p' = p + (mc/e) [\iV], p and n are the momentum
and magnetic moment operators of the electron, and A is the
vector potential of the field. The term containing A2 is re-
sponsible for Thomson scattering in first-order perturbation
theory and the term p' A gives the dispersion corrections to
the scattering amplitude in the second approximation.

This automatically includes magnetic scattering:33

<0 | | mxm | X | 0>

£o - E,r

• <01p s '

(iTm/2)

[cf. (2.1) ]. A detailed analysis of magnetic scattering based
on both (2.21) and with allowance for higher order relativis-
tic corrections is given in Refs. 26 and 27.

As an example, consider the case of high frequencies,
for which fuo^>(Em ~E0). Summation over intermediate
states | m) can then be carried out in (2.22) in an elementary
manner, and A/con tains two terms (spin and orbital) that
depend on the vectors S and P, respectively:

where

P= /O

'•™SB ,
me2

o\ , s=/o

(2.23)

,e sss

'

C = efl(kX) + el (kie0), B = [eje0] + [kje*] (kie0)
ft p i /£ ***\ irk *»*i iD a n t t ITlRocol ^Koei' UKicil LKoeoU' K — Ki — ^o-

The significant point here is that the spin and orbital terms
have different dependence on both the polarizations e() and
e, and the directions kg = ko/jk,,! and k, = k,/|k,| of the
incident and scattered beams, so that we can separate out the
contribution due to these terms and extract magnetic scat-
tering against the background of Rayleigh scattering. For
example, in general, magnetic scattering is different for
right- and left-polarized beams, so that, when this is taken
into account, the a and tr polarizations are no longer the
eigenpolarizations, and so on. A more detailed analysis of
the polarization properties of magnetic scattering can be
performed in precisely the same way as in Sec. 2.3 (see also
Ref. 88). We note that, from the practical point of view, the
kinematic theory almost always suffices for the description
of magnetic diffraction (because of the presence of absorp-
tion) although the dynamic analysis has also been carried
out.89'90

Magnetic scattering of x-rays will undoubtedly become,
in the immediate future, the working method for the investi-
gation of the magnetic properties of solids. Despite the fact
that the cross section for magnetic scattering of x-rays is
lower by 4—5 orders of magnitude than the cross section for
magnetic scattering of neutrons, this difficulty can be over-
come by the high intensity of radiation delivered by synchro-
tron sources.91 Thus, while the pioneering work25'92 on the
observation of magnetic reflections in NiO and Fe2O3, using
ordinary x-ray tubes, required enormous effort (Ref. 93),
the use of synchrotron sources has resulted in the investiga-
tion of even the details of magnetic structure. As an example,
we may cite the investigation of the helical magnetic struc-
ture of holmium.28'94"96 Additional reflections (satellites)
appear near the crystal reflections in this case because the
pitch of the helix is much greater than the lattice constant.
These satellites were investigated in Refs. 28 and 90 and were
found to be both magnetic scattering and magnetoelastic ef-
fects. The two can be separated on the basis of polarization
properties.28'88 The detailed investigation of positions,
widths, and polarizations of these satellites, performed in
Refs. 28 and 94—96, has revealed a number of nontrivial
properties of magnetic ordering in holmium.

Apart from magnetic scattering, the x-ray region re-
veals the presence of magnetic dichroism and birefringence
and, in particular, magnetic rotation of the plane of polariza-
tion (Faraday effect). These phenomena are described by
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magnetic corrections to x-ray susceptibility that are propor-
tional to the magnetic corrections to the forward-scattering
amplitude of magnetic atoms. It is readily verified that the
approximation used to derive (2.23) is then insufficient be-
cause the amplitude (2.23) vanishes for forward scatter-
ing.82'97 Nonzero effects are obtained either in the case of
higher-order corrections (of the order of a2 = (e2/fic)2) or
in the resonance case (near the absorption edge) when the
dispersion correction becomes significant. The former case
has been examined theoretically by Baryshevskii etal.9S (see
also Ref. 82) and the results provide a quantitative descrip-
tion of the Faraday rotation of gamma rays with energies of
about 200 keV (Ref. 99). For the x-ray range, (CuKa),
theory predicts a rotation of the plane of polarization in iron
by approximately 0.008 deg/cm, whereas the most recent
experiments indicate an upper limit in iron of less than 50
deg/cm (Ref. 38). The observed rotation in nickel is of the
order of 2-5 deg/cm (Ref. 4). The dispersion correc-
tions100"104 may be more significant in the x-ray range. Par-
tially circularly polarized synchrotron radiation has been
used103 to show that circular dichroism in iron undergoes a
considerable change (including a change of sign) near the
absorption edge, and may reach 5X 10 ~4 in the immediate
neighborhood of the edge (;s 10 eV) for a thickness of 2 mg/
cm2, i.e., 12.5 yum. A dichroism of the order of 10~4 has been
seen in the EXAFS region (~ 100 eV). Since dichroism is
observed in the form of individual bands, it follows from the
dispersion relations that the rotation of the plane of polariza-
tion in these bands should be of the same order as dichroism,
i.e., cm~' deg/cm.

Magnetic scattering of x-rays has a number of advan-
tages in the study of magnetic properties as compared with
neutron scattering (the latter is discussed in Ref. 105). For
example, synchrotron sources can be used to achieve better
resolution in k space (10~4 A"1 is in prospect), which is
particularly important in the study of long-period struc-
tures. 27-28'94-96 Resonance effects have particular advan-
tages, e.g., in the selective investigation of the magnetic
properties of atoms of a particular species, including the
magnetic properties of unfilled states. Polarization measure-
ments can be used to separate spin from orbital contributions
to magnetization distributions and, in the case of resonance
effects, to examine the structure of atomic and crystal
states.26-88'106-108 In the EXAFS region, magnetic scattering
and dichroism are a source of information about the magnet-
ic structure of the nearest-neighbor environment of an atom
(the atom itself may, in fact, be nonmagnetic). We recall
that oscillations in EXAFS arise because of the back scatter-
ing of photoelectrons, which depends on the spin of the pho-
toelectron and on the magnetic moment of the scattering
atom. Additional information can be obtained from the in-
terference of magnetic scattering with Rayleigh scattering
and the above scattering by the anisotropic part of the x-ray
susceptibility. Particularly promising is the use of x-rays for
the investigation of the magnetic structure of thin films, sur-
faces, and separation boundaries in solids.27'109t'10

To conclude this Section, we note that successful inves-
tigations of the anisotropy of x-ray susceptibility and mag-
netic scattering will depend on advanced polarization mea-
surement techniques, especially circular polarization
measurements.

3. Polarization effects in x-ray-optical components. In

this Section, we examine methods of producing and trans-
forming the polarization of x-rays. Since polarization trans-
forming devices are based on diffraction effects, our entire
presentation will rest on the theory given in Section 1.

3.1. Polarization of radiation produced by x-ray sources.
Traditional x-ray sources, i.e., x-ray tubes, produce either
bremsstrahlung or characteristic radiation. It is well known
that the former is polarized,18'33 but its degree of polariza-
tion is relatively low because the direction of motion of elec-
trons emitted by the cathode rapidly becomes isotropic as
the electrons enter the solid target. The radiation is partially
polarized along the electron beam. The degree of polariza-
tion amounts to only a few percent and increases toward
shorter wavelengths.'!! The characteristic emission of poly-
crystalline targets is unpolarized. Single crystal produce
partially polarized characteristic x-rays (especially in the L
and M series), and this serves as a source of information
about the anisotropy of the environment of atoms, their
chemical bonds, and so on (see, for example, Ref. 112), but
these effects are not used to produce polarized radiation. All
this means that x-rays from conventional x-ray tubes are
usually polarized by diffraction-based devices capable of
producing only linear polarization (see below).

The godsend for x-ray optics has been the advent of
synchrotron sources in which the radiation is emitted by
electrons traveling with ultrarelativistic velocities in a mag-
netic field.113"116 Synchrotron radiation from storage rings
and wigglers has enormous intensity and a continuous spec-
trum. It is confined mostly to the orbital plane of the elec-
trons (the divergence in the direction perpendicular to the
oribtal plane is of the order of mc2/E~ 10 4 at energies of
approximately 5 GeV) and has unique polarization proper-
ties. In particular, the synchrotron radiation emitted by an
electron traveling on a circular trajectory is 100% linearly
polarized in the plane of the orbit, and its electric vector lies
in this plane. Below and above the plane of the orbit (within
the divergence angle A^A at right-angles to the plane of the
orbit), the radiation is right or left elliptically polarized de-
pending on the sign of the projection of the direction of emis-
sion onto the angular velocity of the electron. The intensity
distribution is shown in Fig. 13 for the linear and circular
components of synchrotron radiation. Radiation with a high
degree of circular polarization can be produced in specially
designed wigglers.117

Exceptional possibilities for the production of polarized
radiation with predetermined type and degree of polariza-
tion are provided by special device for generating synchro-
tron radiation, namely, undulators"6'"8-"9 (although we
note that it is technically difficult to produce sufficiently
hard x-ray radiation in these devices'20). In planar undula-
tors, mounted in the straight gaps of electron storage rings,
the radiation is always linearly polarized. In helical undula-
tors, the electrons move on helices and the radiation is circu-
larly polarized. It has been suggested '2|-'23 that two planar
undulators, rotated and shifted relative to one another,
could be used. The coherent combination of two phase-shift-
ed linearly polarized waves in this system of undulators can
produce practically any polarization that can be varied in
the course of an experiment. We also note that the radiation
emitted by particles channelled in crystals is essentially simi-
lar to undulator radiation (Refs. 124-126).

The synchrotron radiation emitted by existing accelera-
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FIG. 13. Intensity of linear (a) and circular (b) polarization
components of synchrotron radiation as functions of angle.

tors is partially depolarized because of the finite size of the
beam and the spread in the direction of motion of elec-
trons.127"129 Crystal monochromators are another sourse of
repolarization. 13° We note that, because of the difference be-
tween the reflection of a- and 7r-polarized x-rays, crystal
monochromators can be used to alter the polarization of
synchrotron radiation, for example, elliptic polarization can
be trimmed down to circular polarization. However, as dis-
cussed in detail in Sec. 1, it must be remembered that diffrac-
tion produces an additional phase differences between the a
and IT components, and partial repolarization may take place
(kinematic diffraction is an exception). These effects can be
estimated and quantitatively taken into account by using the
formulas given in Sec. 1, but, in the case of imperfect crystal
monochromators, these estimates are not very reliable be-
cause, as a rule, the quantitative parameters describing the
imperfections of crystal monochromators are not accurately
known.

3.2. Production and analysis of linear polarization. Since
most x-ray sources do not produce completely polarized ra-
diation, diffraction-based polarization phenomena are wide-
ly used to produce, analyze, and transform polarized beams.
Diffraction polarizers (and the corresponding analyzers)
with 2&B = 90° are the most widely used (Refs. 2-5,10-14,
and 131-133) although the most promising polarizers are
probably those based on dynamic diffraction effects, such as
the Borrmann effect,129'134'135 and the different widths of the
Bragg reflection regions for IT and a polarizations' 36~138 (an-
other possibility is based on the spatial separation of a- and
tr-polarized reflected beams139). The advantage of the 90°
polarizer is its simplicity and the fact that the ability to scat-
ter at 90° exclusively cr-polarized radiation does not depend
on the degree of perfection or the thickness of the crystal.
The disadvantage of these polarizers is that a crystal and a
reflection with 20B = 90° must be chosen for each wave-
length. Moreover, for A ~ 1 A, the reflections are found to be
of relatively higher order (for example, 333 in Ge in the case
of CuKa radiation), so that their intensity is relatively low,
which reduces the luminosity of the polarizer.

Polarizers based on the Borrmann effect (anomalous
transmission effect) exploit the fact that the absorption of
Bloch waves in the diffraction region is very different from
the absorption of a plane wave. The difference is due to the
fact that Bloch waves, which are superpositions of two or
more plane waves, form a standing wave in the crystal. The
absorption of this type of standing wave depends on whether
its nodes occur at atoms or between them (in the former

case, the absorption is greater and, in the second, significant-
ly lower). The important point for us is that, for a polariza-
tion, we can select conditions under which the Bloch wave
field can be made to vanish at points occupied by the atoms,
whereas this cannot be done for the IT polarization because
the ir-polarization vectors have different directions for the
direct and diffracted waves, and complete cancellation can-
not be achieved. This means that the ir-polarized component
is absorbed to a greater extent even under the conditions of
anomalous transmission, so that, by selecting a thick enough
crystal, we can achieve complete a polarization of both the
transmitted and diffracted beams (in the Laue case). The
main advantage of this method is that the Borrmann effect is
observed for all ®B and can readily be wavelength tuned.
Moreover, the effect is particularly well defined for strong
reflections. The disadvantages are as follows: (a) high-qual-
ity crystals have to be employed; (b) for small ®g, the
anomalous absorption coefficients for a and it polarizations
are not very different and one has to use thick crystals, which
leads to absorption also of the "useful" a-polarization, and
(c) the Borrmann effect appears in a small reflection region
with angular dimensions 51". All this restricts the range of
application of polarizers based on the Borrmann effect.

The Hart-Rodrigues polarizers136'137 are probably the
most promising. They are based on the difference between
the Bragg reflection widths for a- and ^--polarized beams
(see Fig. la). These polarizing monochromators consist of
two almost parallel crystals offset by an angle A©, greater
than the Bragg reflection range for the ir-polarized beam,
but less than that for the er-polarized beam. The ir-polariza-
tion is significantly reduced (Fig. 14) after two successive
reflections from the crystals. Any desired suppression of -rr-
polarization can be achieved in principle by multiple reflec-
tion.136 In practice, the Hart-Rodrigues polarizers are cut
from one single crystal and the offset angle A© is conve-
niently produced by controlled elastic deformation (Fig.
15). The polarizers are readily wavelength-tunable, and
only a few Bragg reflections are sufficient to cover the entire
x-ray range usually employed. The advantage of multiple
reflections results from a number of causes including (a) the
suppression of the "tails" of reflection curves, (b) higher
harmonics (A/2, A/3,...) are found to appear and have a
narrower Bragg reflection range, (c) when the number of
reflections is even, there is no change in the direction of
propagation of the beam, which is frequently convenient in
x-ray optical measurements, and (d) the ir-polarization is
suppressed even in the absence of the crystal offset.
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 2 achieved with the
Hart-Rodrigues polarizer after four reflections in Si (differ-
ent reflections with the indices as shown are conveniently
used in different wavelength ranges)."6

We note that all the diffraction-based polarizers have
the common and significant disadvantage that the angular
divergence of the polarized beam is small in the direction
perpendicular to the direction of polarization (it is of the
order of the angular width of the Bragg reflection region),
whereas the divergence in the direction of polarization is
usually greater and is determined by the divergence of the
incident beam. This difference must be taken into account in
diffraction experiments with polarized beams, in which it
can be a source of systematic uncertainty (a detailed analysis
of three-crystal diffraction systems is given in Ref. 140). The
system with crossed polarizer and analyzer, examined in de-
tail by Hart,3 is free from many of the systematic uncertain-
ties and is capable of increasing the precision of polarization
measurements.

3.3. The x-ray quarter-wave plate. Despite the fact that
practically any polarization can be produced by using synch-
rotron or undulator radiation, there is a problem of produc-
ing and, especially, analyzing arbitrary polarized x-ray
beams, including the transformation of linear into circular
polarization and vice versa, i.e., there is the problem of pro-
ducing a quarter-wave plate. As already noted, ordinary bir-
efringence is very small in the x-ray region and great hopes
are invested in the use of birefringence in the Bragg diffrac-
tion region (Sec. 1). These hopes have been realized experi-
mentally.3'1"''03'141'142 We note, however, that the imple-
mentation of this idea directly in the strong diffraction
scattering region encounters a number of practical difficul-
ties. The main difficulty is that, because of the strong change
in phases and intensities in the diffraction region (Figs. 1

and 2), beams with a very small S 1" angular divergence
have to be employed if a high degree of polarization is to be
produced. In Sec. 1, we have already drawn attention to the
fact that diffractive birefringence decreases relatively slowly
as the direction of propagation of the beam deviates from the
Bragg angle. We shall show that the use of this birefringence
outside the region of strong diffractive reflection offers us a
real possibility of transforming the polarization of a beam
transmitted by a crystal and, in particular, of producing a
quarter-wave plate.7"9

The magnitude of birefringence, 8n, in this angular
range is given by (1.17) in both Laue and Bragg cases, and
the intensity of the diffracted wave is very low (of the order
of \XH /A© |2). It follows that, in this case, the situation is, in
many ways, analogous to the ordinary optics of anisotropic
media, except that the magnitude of birefringence is very
dependent on the direction of wave propagation.

The birefringence (1.17) ensures that the phase differ-
ence A^> = 2trRe(8n)L /A is established between the a- and
vr-polarized components as the primary wave propagates
through the medium (L is the path length in the crystal). A
wave with linear polarization at 45° to the a and TT vectors is
transformed into a circularly polarized wave for A<p = + TT/
2, i.e., for Lc =A/|4Re(<5«)|.

In order that this birefringence can actually be used to
transform polarization, we must ensure that absorption
should not be too large within the path length Lc, i.e.,

,uXA0c

sin 26B Re (3fHxfi)
1 (3.1)

FIG. 15. The Hart-Rodrigues polarizer.116
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where fj. is the absorption coefficient. Since %H is a function
of ®B (via the atomic factor), there must be an optimum
angle for (3.1) to be satisfied, and this can be found from the
condition for Re(^HAfH )sm 2©jj to be a maximum. Next,
since // ~ Z 4 and XH ~ Z (Z is the atomic number), it is con-
venient to use crystals with low Z atoms to satisfy (3.1).

As an example, consider the propagation of CuKa radi-
ation (A = 1.54 A) in diamond near the 111 reflection. Us-
ing (1.17), we find that Lc = 2.6-102 A®c, where Lc is in
centimeters and A0C in radians. When A©c

= 0.5'= 1.45-1Q-4, we have Lc = 0.038 cm and
exp( — fj,Lc ) = 0.5. In the wavelength range between about
3 A and 0.5 A, the difference A©c for which fj.Lc = 1 is
found to change from A©c a; 1' to A0C ~0.13', respectively,
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FIG. 16. The difference A0C as a function of wavelength, calculated for
the quarter-wave plate for different reflections (the angular difference
A0C can be increased by increasing the plate thickness Lc).

and the conditions for the validity of this approximation are
well satisfied (the intensity of the diffracted wave is less than
1% of the incident intensity). Similar results are obtained
for the 220 and 200 reflections in LiF (Fig. 16); in silicon,
A0C~1' fornLc -5-10.

We must now consider the effect of a significant angular
divergence of the beam (the fact that the beam is not mono-
chromatic can be taken into account similarly). Because of
this divergence, the Bragg reflection range A® is not strictly
fixed so that the wave transmitted by the crystal is a superpo-
sition of waves with different polarizations, i.e., it is partially
polarized. Suppose that the wave incident on the crystal has
a linear polarization at 45° to the a and ir vectors, the devi-
ation from the Bragg angle ranges from A©c — (A©'/2) to
A0C + (AQ'/2), and all the angles on this interval have
equal probability. The mean deviation A0C is chosen so that
the transformation of linear polarization into circular polar-
ization occurs within this difference. It can then be shown
that the degree of polarization in this case is given by

1/2

-1/2

A6,.
dx (3.2)

When A©' < A©c |, we can readily show from this that, very
approximately,

A6'
96 1 A6,

(3.3)

It follows from this expression that A®' need not be too
small in comparison with |A®C |. Even for A©'~0.5|A©C |,
the polarization calculated from (3.2) is found to be quite
high: P^O.97.

We may therefore conclude that the transformation of
x-ray polarization (including linear into circular polariza-
tion and vice versa) can be carried out with a small loss of
intensity. It is important to note that the case we have con-
sidered has a number of advantages from the practical point
of view, and these are not available when birefringence is
used directly in the strong diffraction region. Actually, the
diffraction correction to the refractive index varies rapidly
within the Bragg reflection range (Figs. 1 and 2) and the
necessary condition for producing a given polarization is

that the divergence A®' of the incident beam must be much
less than the angular width of the Bragg reflection range, i.e.,
it must be of the order of a fraction of a second of arc. On the
other hand, in the case we are considering, we have to satisfy
the less stringent inequality A©' <^
more readily satisfied because A©c

A®c |, which is in fact
can be of the order of a

few minutes of arc. Moreover, there are several complicating
factors in the diffraction region (Sec. 1), including the pres-
ence of several waves, the Borrmann effect, and so on,
whereas, in our case, the situation is similar to that in ordi-
nary optics.

A further advantage of this approach is that, outside the
Bragg reflection region, birefringence is not very dependent
on the degree of perfection of the crystal (Sec. 1).The above
expressions can therefore be used even for relatively imper-
fect crystals, provided the deviation from the Bragg angle is
much greater than the width of the reflection curve.

To conclude this section, we note that elliptic polariza-
tion can be obtained from linear polarization by diffraction
in the Bragg geometry if we use the phase difference between
diffracted waves with a and TT polarizations (Fig. la).143'144

However, the practical implementation of this idea en-
counters a number of difficulties. For example, several
successive reflections are necessary to produce circular po-
larization in this geometry.l43

3.4. Pendellosung. This is one of the well-defined dy-
namic effects arising as a result of interference between
Bloch waves. We recall (Sec. 1) that, for each polarization
(a and ir), there are two Bloch eigenwaves with different
wave vectors. This difference gives rise to intensity beats
(Pendellosung) in both the waves transmitted by the crystal
and in the diffracted waves [(1.7) and (1.8)]. These beats
can be observed, depending on the angle of deviation from
the Bragg conditions and the path traversed in the crystal.
The beats in the dependence on the crystal thickness occur
even in the integrated parameters (Figs. 2 and 3). The signif-
icant point is that, because of the difference between the scat-
tering amplitudes for a- and 77-polarized waves, the oscilla-
tion periods for these two polarizations are different, and
this can give rise to the mutual extinguishing of the oscilla-
tions34'145'146 if the incident radiation is unpolarized or cir-
cularly polarized or polarized at an angle of 45° to the a and
TT polarizations. It is well known that the above beats can be
used in the precise measurement of structure amplitudes. It
is therefore desirable to use a- or Tr-polarized radiation to
increase the contrast of the interference pattern (and the
precision with which the structure amplitudes can be mea-
sured).147

Pendellosung is also observed in the polarization char-
acteristics of beams,2 such as the angle of rotation and the
ratio of the axes of the polarization ellipse (if the polariza-
tion of the incident beam is different from a or TT), but the
beats are less well defined in the degree of polarization.

To conclude this Section, let us briefly enumerate appli-
cations of polarized x-rays that were not mentioned above.
First, there is the topography of almost perfect crystals. In
this case, small distortions of the lattice can be observed if
the width of the reflection curve is as small as can be
achieved by using ir-polarized radiation (it is shown in Ref.
148 that a relative distortion of the lattice of the order of
10~8 can be observed). The diffraction of 7r-polarized radi-
ation for angles 2®B approaching 90° can be used to elimi-
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nate extinction in the case of precise measurements of struc-
ture amplitudes.149'150 The absence of scattered vr-polarized
radiation at 90° is also used to improve the signal-to-noise
ratio in x-ray fluorescence analysis151'152 and in Mossbauer
filtration of synchrotron radiation.153 There is no doubt that
x-ray polarization phenomena will find new applications
and will be extended still further.

Conclusion. X-ray polarization phenomena and their
applications (both possible and already implemented) that
we have discussed show that this method of investigating the
properties of solids is informative and promising. Although
the practical implementation of the method involves in-
creasingly complicated equipment (including synchrotron
sources), all this is justified by the unique character of the
data obtained in this way. A clearer picture of possible future
developments in this area can be obtained by enumerating
some of the unsolved problems. They include, above all, the
complete polarization measurement on x-ray beams, i.e., the
determination of all three polarization parameters, namely,
the degree of polarization, orientation, and ratio of the axes
of the polarization ellipse. At present, the main difficulty is
to produce and, especially, analyze circular polarization.
This difficulty will be overcome once the quarter-wave plate,
which is convenient to use in practice, has become available.
"Forbidden" reflections, e.g., magnetic reflections and those
connected with the anisotropy of susceptibility (Sections 2.3
and 2.4) can also be used to analyze circular polarizations.
We note that the problem of complete polarizations mea-
surement can be solved in the case of Mossbauer radiation,
which also lies in the x-ray region. Polarizers and analyzers
of arbitrary polarization have been developed for Mossbauer
radiation.154"158 X-ray polarization phenomena can also be
investigated in ordinary (non-M6ssbauer) crystals by using
the Mossbauer detection technique in which the source of
radiation is a Mossbauer source instead of the x-ray tube
(the range of validity of this method is limited by the discrete
character of the wavelength employed159 and, mostly, by the
low intensity of Mossbauer sources).

Polarization phenomena under the conditions of
multiwave diffraction 160~165 have not been adequately inves-
tigated. When noncoplanar multiwave geometry is em-
ployed, the eigenpolarizations are almost always different
from a and 77 and, moreover, do not remain constant in the
diffraction region. It may be expected, for example, that a
particular circular polarization will be preferentially reflect-
ed, and there may be some other unusual effects. We also
note that, in the case of noncoplanar multiwave diffraction
by imperfect crystals, the equations for the polarization ten-
sors have to be employed even when the intensities of dif-
fracted waves are calculated. Studies of the polarization of x-
ray beams in resonators'66"168 and in diffraction
focusing169"170 have only just begun. The polarization of x-
rays that have undergone inelastic scattering or scattering by
defects has not been adequately investigated. The polariza-
tion of Compton-scattered photons carries information on
the momentum distribution of polarized electrons, whereas
the polarization of diffusely scattered x-rays can be used to
determine the presence of dynamic effects.171 Relatively lit-
tle attention has been devoted to polarization effects accom-
panying diffraction under the conditions of total external
reflection. I72~17S Studies of the rotation of the plane of polar-
ization of x-rays in optically active media have only just be-

gun.3'5'38'176 Certain technical problems remain unresolved,
for example, there is no metrologic basis for polarization
measurements in the x-ray range.177'178 In view of the in-
creasing number of available synchrotron sources, and ad-
vances in the techniques of traditional x-ray measurements,
it is expected that there will be a rapid expansion in the study
and application of polarization effects in x-ray optics, and
rapid progress in the areas enumerated above.

The authors are indebted to M. A. Andreeva, V. A.
Bushuev, V. M. Kaganer, A. V. Kolpakov, V. G. Labushkin,
M. M. Nikitin, E. N. Ovchinnikova, and E. V. Smirnov for
useful discussions.

"Similar reflections are also possible in quasicrystals.
2'We note that as A© tends to + oo in the Laue case, both the phase

difference and the phase of wave transmitted by the crystal can have
different limits tp + co and <p— oo that differ by 360°.TV, where N is an
integer (see Fig. 2b). The number jV is a topological invariant; it depends
on the crystal thickness and changes by unity for thicknesses for which
either Taa or Tnlr vanishes at some point in the interior of the diffraction
region; if the crystal thickness is much less than the primary extinction
length, then N = 0.

"The translator is greatly indebted to Professor Michael Hart FRS for his
expert advice.
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