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Homotopy classification
of elliptic operators on stratified manifolds

V. E. Nazaikinskii, A. Yu. Savin, and B. Yu. Sternin

Abstract. We give a homotopy classification of elliptic operators on
a stratified manifold. Namely, we establish an isomorphism between the set
of elliptic operators modulo stable homotopy and the K-homology group of
the manifold. By way of application, we obtain an explicit formula for the
obstruction of Atiyah–Bott type to the existence of Fredholm problems in
the case of stratified manifolds.

§ 1. Introduction

In the classical paper [1], Atiyah observed that abstract elliptic operators on
a compact space X (that is, Fredholm operators acting on C(X)-modules and com-
muting modulo compact operators with the operators of multiplication by func-
tions) determine elements of the K-homology group of X. Moreover, Kasparov [2]
and Brown, Douglas, and Fillmore [3] showed that one can not only obtain ele-
ments of K-homology groups but also realize K-homology as a generalized homol-
ogy theory if one takes the quotient of the set of abstract elliptic operators by the
equivalence relation given by stable homotopy.

However, to obtain the K-homology group of a smooth manifold, one need not
consider abstract elliptic operators. It suffices to restrict oneself to differential or
pseudo-differential operators, which arise naturally in the theory of partial differ-
ential equations. Moreover, if the manifold is also equipped with a spinc-structure,
then it suffices to consider only (twisted) Dirac operators. This example suggests
the study of the natural problem of comparing the K-homology group with the
group generated by the elliptic pseudo-differential operators (ψDO) for non-smooth
spaces (see Singer’s problem in [4]), in particular, for stratified manifolds.

This problem has been solved in some special cases. The classification of general
elliptic ψDO in terms of K-homology was established in [5] for manifolds with
isolated singularities. The same result was proved independently in [6] and [7] using
groupoids and KK-theory. A classification of edge-degenerate elliptic operators for
stratified manifolds with two strata was obtained in [8] and [9].

Pseudo-differential calculus on general stratified manifolds is nothing new. It
was constructed, for example, in [10] and, within the framework of the general
approach [13] to the construction of ψDO associated with a given Lie algebra of
vector fields using the techniques of groupoid theory, in [11] and [12]. However,
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no results have yet been obtained on the homotopy classification of elliptic operators
on such manifolds. We establish such results in this paper.

Our main theorem states that if X is a compact stratified manifold with arbi-
trarily (but finitely) many strata, then there is a group isomorphism

Ell(X) ' K0(X), (1.1)

where Ell(X) is the group generated by the elliptic pseudo-differential operators
on X modulo stable homotopy and K0(X) is the even K-homology group of X.
Special cases of this isomorphism were obtained in the papers [5]–[9].

The isomorphism (1.1) enables us to apply the topological methods ofK-homology
theory in the elliptic case. To give examples of such applications, we compute the
obstruction of Atiyah–Bott type to the existence of Fredholm problems on strati-
fied manifolds and generalize the theorem on the cobordism invariance of the index
(see § 8).

In addition to these applications to elliptic operators, the isomorphism (1.1) has
an interesting interpretation within the framework of non-commutative geometry.
Namely, the algebra of ψDO on a stratified manifold is associated with a certain
groupoid (see [14] and [15]). Moreover, the group Ell(X) is related to theK-group of
the C∗-algebra of the groupoid [12]. The well-known Baum–Connes conjecture [16]
asserts that this K-group is isomorphic to the topological K-group of the classifying
space of the groupoid (see [17]). Explicit computations for the simplest stratified
manifolds show that the K-group of the classifying space is isomorphic to K0(X),
that is, to the right-hand side of (1.1). It would be interesting to investigate further
comparisons of (1.1) with the Baum–Connes map.

To conclude the introduction, we wish to express our gratitude to Profes-
sor T. Fack (Lyon) for indicating the possible relationship between the isomor-
phism (1.1) and the Baum–Connes isomorphism for groupoids.

The results of this paper were presented at the international conference ‘Work-
shop on Index Theory’ held in Münster on 4–8 November 2005.

§ 2. Stratified manifolds and ψDO

In this section we describe the class of manifolds where elliptic theory will be
studied and the class of pseudo-differential operators to be considered. These topics
are well known (for example, see [10], [18], [19]), and so our exposition is rather
concise.

2.1. Stratified manifolds. We use the following terminology. A manifold with
singularities is a triple

π : M → M,

where M is a Hausdorff space, M is a manifold with corners1 and π is a continuous
projection. The manifold M is called the blow-up of M. We do not discuss the
uniqueness of the blow-up and, when speaking about manifolds with singularities,
we always assume that the triple π : M → M is given.

1We recall that a manifold of dimension n with corners is a Hausdorff space locally homeomor-

phic to the product Rk
+×Rn−k, 0 6 k 6 n, with smooth transition functions between such domains.
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A diffeomorphism of such manifolds is a pair (f : M1 → M2, f̃ : M1 → M2)
such that f is a homeomorphism, f̃ is a diffeomorphism, and the following diagram
commutes:

M1

ef−−−−→ M2

π1

y yπ2

M1 −−−−→
f

M2,

where π1 and π2 are the natural projections. A special class of manifolds with sin-
gularities is obtained as follows. On a manifold M with corners, consider a smooth
Riemannian metric that is non-degenerate in the interior and possibly degenerate
on the boundary, and define M as the quotient of M by the following equivalence
relation determined by the metric: two points are equivalent if the metric distance
between them is zero. (Of course, one must also assume that M is Hausdorff.)

Now let us describe the class of manifolds with singularities to be studied in this
paper, namely, stratified manifolds. The description is by induction.

Definition 2.1. A filtration of length k on a topological space M is a sequence

M = Mk ⊃ Mk−1 ⊃ · · · ⊃ M0 (2.1)

of closed subspaces of M such that each Mj is contained in the closure of the set
M◦

j+1 = Mj+1 \Mj , j = 0, 1, . . . , k − 1.

Definition 2.2 (inductive base). A stratified manifold of length zero is an arbitrary
smooth manifold. In this case, M = M, π = id and the blow-up M is a smooth
manifold without boundary.

Definition 2.3 (inductive step). A stratified manifold of length k > 0 is a Haus-
dorff space M equipped with a filtration (2.1) such that the following additional
conditions hold.

1. The set M0 has the structure of a smooth manifold.
2. The set M \ M0 is equipped with the structure of a stratified manifold of

length k − 1 with respect to the filtration

M \M0 = Mk \M0 ⊃ Mk−1 \M0 ⊃ · · · ⊃ M1 \M0.

3. We have a bundle with fibre KΩ over M0, where Ω is a compact stratified
manifold of length at most k − 1 and KΩ is the cone with base Ω. We also have
a homeomorphism from a neighbourhood U ⊂ M of M0 onto a neighbourhood
of the subbundle formed by the vertices of the cones, and the restriction of this
homeomorphism to M0 is the identity map.

4. The structure in Condition 3 is compatible with that in Condition 2 on M\M0

in the sense described below.

It follows by induction that
(i) the sets Mj \ Mj−1 ' M◦

j (open strata) are smooth manifolds2 for all
j = 0, 1, . . . , k,

2We put M−1 = ∅ for convenience. These sets are the interiors of the corresponding blow-ups,
which are smooth manifolds with corners.
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(ii) each open stratum M◦
j , j < k, has a neighbourhood Uj ⊂ M homeomorphic

to a bundle with fibre KΛj
, where the base Λj of the cone is a stratified manifold

of length at most k − j − 1.
Let us give precise statements of Conditions 3 and 4.
The cone in Condition 3 is defined by the formula

KΩ = {R+ × Ω}
/ {

{0} × Ω
}
.

We require that the transition functions of the bundle with fibre KΩ preserve the
variable r ∈ R+ and are induced by diffeomorphisms of the stratified manifold Ω
of length 6 k − 1, that is, by maps that are diffeomorphisms of manifolds with
singularities and preserve the stratification and the fibrations of neighbourhoods of
the strata into cones. Hence we actually require that our bundle is obtained by
fibrewise conification from some bundle with fibre Ω over M0.

The complement U \M0 is an open subset of the bundle with fibre

K◦
Ω ' R+ × Ω

(the cone with vertex deleted) over M0 and hence possesses the natural structure
of a stratified manifold of length at most k− 1. Indeed, local trivializations of this
bundle are given by V ×R+×Ω, where V ⊂ Rl (l = dim M0) is a coordinate patch
on M0. Hence they are stratified manifolds of the same length as Ω, that is, of
length at most k − 1. For the strata in V × R+ × Ω, one can take V × R+ × Ωj ,
where the Ωj are the corresponding strata in Ω and the fibrations of neighbour-
hoods of these strata into cones are obtained from those of neighbourhoods of the
corresponding strata in Ω by taking their products by V × R+.

Now let us clarify Condition 4. We have seen that U \ M0 is equipped with
two structures of a stratified manifold: one is the restriction of the corresponding
structure on M \ M0 and the other comes from the bundle. The compatibility
condition requires that these two structures coincide (that is, that the identity map
be a diffeomorphism).

Finally, let us define the blow-up of M. Let π̃ : M̃ → M \ M0 be the blow-up
of M \M0 (known by the inductive hypothesis). The blow-up M of M is obtained
as the union of M̃ and some set ‘over M0’. Hence, to describe M and the projection
π : M → M, it suffices to study what happens over U . We can assume that U
is fibred over M0. Then π̃−1(U \ M0) is fibred over M0 by the composite map

π̃−1(U \M0)
π̃→ U \M0 → M0.

The structure of this bundle is easily described in local trivializations: it is given by

V × R+ × Ω̃
id× id×p−−−−−−→ V × R+ × Ω → V,

where p : Ω̃ → Ω is the blow-up of the base of the cone. In this local trivialization,
we define the blow-up M of M by adding the point r = 0 to the second factor, that
is, by passing from R+ to R+. The projection takes each point (v, 0, ω) to v.

Now the meaning of Definition 2.3 is completely clear.
Each stratum Mj is a stratified manifold (of length j). It has a blow-up Mj ,

which will be called a closed stratum in what follows. The corresponding projection
will be denoted by pj : Mj → Mj .
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Remark 2.1. By Condition 3, the cone bundles are defined over the open strata M◦
j

in M. However, Condition 4 readily implies that these bundles can be extended
canonically to the closed strata Mj .

This remark is used in what follows because the operator-valued symbols of our
pseudo-differential operators are defined over the closed strata.

Metrics, measures, and L2-spaces. Let us introduce some natural metrics and mea-
sures on stratified manifolds. They will be used in the definition of spaces of square-
integrable functions.

First, let us give an inductive description of metrics. We take an arbitrary
Riemannian metric on a stratified manifold of length zero. To describe the inductive
step, we define a metric locally on V × R+ × Ω̃ by the formula

ds2 = dv2 + dr2 + r2 dω̃2, (2.2)

where dω̃2 is the metric defined on Ω̃ by the inductive hypothesis. Globally, the
metric on M is obtained by patching together these local expressions (defined in
a neighbourhood of M0) and the metric dρ̃2 (defined on M \M0 by the inductive
hypothesis) outside a slightly smaller neighbourhood of M0 using a partition of
unity. Metrics of this form are called edge-degenerate metrics.

The measure naturally corresponding to a metric is defined as the volume element
equal to unity on an orthonormal frame. In terms of the inductive formula (2.2),
the corresponding formula for the measure is

d vol = rn dv dr d volΩ,

where d volΩ is the volume form on Ω (known by the inductive hypothesis) and
n = dim Ω is the dimension of Ω.

From now on, all operators on M are considered in the space

L2(M) ≡ L2(M, d vol),

and the operators on the cone KΩ are considered in the space

L2(KΩ) ≡ L2(KΩ, r
ndr d volΩ).

The cotangent bundle. Let us define a space VectM of vector fields on M. If M
is a smooth manifold, then VectM is the space of all vector fields on M. Next, we
define VectM by induction locally, assuming that it is a C∞(M)-module. On the
product V × R+ × Ω̃, the space VectM consists of vector fields of the form

θ = a
∂

∂v
+ b

∂

∂r
+

1
r
θ1,

where a and b are smooth functions and θ1 ∈ VectΩ.
The metric ds2 defines a C∞(M)-valued pairing on VectM, and the formula〈

ϕ(θ), µ
〉

= ds2(θ, µ)

defines a bijection ϕ between the space VectM and some C∞(M)-module Λ1(M) ⊂
Λ1(M) of differential forms on the blow-up M . (To see this, it suffices to note that
VectM ⊂ VectM and the embedding is epimorphic on the dense main stratum.)
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Definition 2.4. The cotangent bundle T ∗M of M is the vector bundle over M
(which exists by Swan’s theorem) whose sections are elements of Λ1(M).

Remark 2.2. The elements of Λ1(M) are precisely the forms vanishing on the fibres
of the projection π : M → M.

Remark 2.3. Since differential operators on a stratified manifold M are polynomials
with smooth coefficients (belonging to C∞(M)) in vector fields in VectM, one can
readily show that their interior symbols are smooth functions on T ∗M.

The cotangent bundles of the strata Mj are defined in a similar way.

The space C∞(M). We define the elements of C∞(M) as smooth functions on the
blow-up M of M satisfying the following additional condition: in the coordinates
(v, r, ω) in a neighbourhood of any stratum of non-maximal dimension, these func-
tions depend only on v for sufficiently small r.

2.2. Pseudo-differential operators and symbols. Let us describe the alge-
bra of zero-order ψDO on a stratified manifold M. As noted in the introduction,
there are several different expositions of the theory of ψDO on stratified manifolds.
We use the construction in [21] and recall the corresponding definitions and facts
for the readers’ convenience. The proofs of the assertions in this section (except for
Proposition 2.2) are omitted because of their awkwardness (they can be found
in [21]).

We shall define families of ψDO with a parameter v ranging over a finite-
dimensional vector space V . By successive trivial generalizations at each inductive
step, one can first treat the case of ψDO depending smoothly on some addi-
tional parameter x and then the case of ψDO parametrized by points of a finite-
dimensional vector bundle over a smooth manifold.

Negligible families. Let us introduce the space of operator families modulo which
ψDO will be defined below. Let M be a stratified manifold (possibly non-compact).
We denote by J∞(V,M) ≡ J∞(M) ≡ J∞ the space of smooth operator families

D(v) : L2(M) → L2(M) (2.3)

such that all the operators D(v) are compact in L2(M), we have∥∥∥∥∂βD(v)
∂vβ

∥∥∥∥ 6 CβN

(
1 + |v|

)−N
, |β|, N = 0, 1, 2, . . . , (2.4)

and these conditions still hold if D(v) is replaced by a product

V1 · · ·VpD(v)Vp+1 · · ·Vp+q

of arbitrary length p + q > 0. Here V1, . . . , Vp+q are smooth vector fields on M

representable near each stratum in the form V =
(
V (x), 0, Ṽ (x, ω)

)
in the local

coordinates (x, r, ω) ∈ Rm × R+ × Ω, where V (x) is a smooth vector field on the
stratum, Ṽ (x, ω) is a vector field with the same properties on the manifold Ω of
shorter length, and Ṽ (x, ω) depends smoothly on x ∈ X.
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ψDO with parameters on smooth manifolds. We are now in a position to
define ψDO. Our definition is by induction, and we start by describing the class
of ψDO with parameters on smooth manifolds.

Definition 2.5. A pseudo-differential operator with parameter v ∈ V on a smooth
manifold M is an operator family

D(v) : L2(M) → L2(M)

that is a zero-order ψDO on M with parameter v ∈ V in the sense of Agranovich–
Vishik. The symbol of D (corresponding to the unique stratum of M) is, by def-
inition, the symbol σ(D)(x, ξ, v) in the sense of Agranovich–Vishik. It is defined
on the total space of the vector bundle T ∗M× V over M outside the zero section.

The space of pseudo-differential operators with parameter v ∈ V on M is denoted
by Ψ(V,M). (In what follows we omit V if it is clear from the context or trivial.)

ψDO with parameters on stratified manifolds. Here we define ψDO by induction
on the length k of the stratified manifold. We simultaneously define ψDO and their
symbols. The inductive base is already available. It is provided by Definition 2.5
for k = 0.

Definition 2.6. Let M be a stratified manifold of length k > 0. A smooth family

D(v) : L2(M) → L2(M)

of linear operators is called a pseudo-differential operator on M (with parameter
v ∈ V in the sense of Agranovich–Vishik) if the following conditions hold.

1. If ϕ,ψ ∈ C∞(M) and suppϕ ∩ suppψ = ∅, then ψAϕ ∈ J∞.
2. The operator D is a ψDO with parameter on M\M0.3 In a neighbourhood U

of M0, the operator D is representable modulo elements of J∞(V,M) as

D = P

(
x, r, rv, −ir ∂

∂x
, ir

∂

∂r
+ i

n+ 1
2

)
, n = dim Ω, (2.5)

where P (x, r, v, η, p) ∈ Ψ(V × T ∗x M0 × R, Ω) is a ψDO with parameters on Ω
depending smoothly on the additional parameters x ∈ M0 and r ∈ R+, and P = 0
for r > r0, where r0 is sufficiently small.

The symbols σj(D) of D corresponding to the strata Mj \Mj−1 (j > 0) of M are
defined as the symbols of the operator D regarded as an element of Ψ(V,M \M0).
The symbol σk(D) is called the interior symbol of D. The symbol of D correspond-
ing to the stratum M0 is the operator family

σ0(D) = P

(
x, 0, rv, rξ, ir

∂

∂r
+ i

n+ 1
2

)
: L2(KΩ) → L2(KΩ) (2.6)

parametrized by points of the bundle V × T ∗M0 over M0 minus the zero sec-
tion. The symbols σj

(
σ0(D)

)
of the symbol σ0(D) are defined as the symbols

σj

(
P (x, 0, v, η, p)

)
of the ψDO P (x, 0, v, η, p) with parameters on Ω, j = 1, . . . , k.

3The stratum M0 has measure zero in M. Hence D is automatically interpreted as an operator
on L2(M \M0).
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Let us clarify formulae (2.5) and (2.6). One can prove by induction on the
length of the manifold that a pseudo-differential operator A ∈ Ψ(V,M) satisfies
the estimates ∥∥∥∥∂αA(v)

∂vα

∥∥∥∥ 6 Cα

(
1 + |v|

)−|α|
, |α| = 0, 1, 2, . . . , (2.7)

and all the derivatives of order at least one are compact-valued. Applying this
assertion with M = Ω, we see that the operator family

F (x, t, v, ξ, p) = P (x, e−t, ve−t, ξe−t, p)

satisfies the estimates∥∥∥∥∂α+l+β+γ+kF (x, t, v, ξ, p)
∂xα ∂tl ∂vβ∂ξγ ∂pk

∥∥∥∥ 6 Cαlβγk

(
1 + |v|+ |ξ|

)−|β|−|γ|(1 + |p|
)−k

,

|α|+ l + |β|+ |γ|+ k = 0, 1, 2, . . . ,
(2.8)

and the operator family F̃ (x, t, v, ξ, p) = P (x, 0, ve−t, ξe−t, p) satisfies the estimates∥∥∥∥∂α+l+β+γ+kF̃ (x, t, v, ξ, p)
∂xα ∂tl ∂vβ ∂ξγ ∂pk

∥∥∥∥ 6 Cαlβγk

(
et + |v|+ |ξ|

)−|β|−|γ|(1 + |p|
)−k

6 Cαlβγk

(
|v|+ |ξ|

)−|β|−|γ|(1 + |p|
)−k

, |α|+ l + |β|+ |γ|+ k = 0, 1, 2, . . . .
(2.9)

Moreover, both families have compact variation in the parameters (v, ξ, p). Now one
can readily show that the operators on the right-hand sides of (2.5) and (2.6) are
well defined as ψDO in the sense of Luke [20]. Indeed, the change of variable r = e−t

takes the cone KΩ to the cylinder Ω × R and the operator ir∂/∂r to −i∂/∂t. It
remains to note that the operator −i∂/∂t+ i(n+1)/2 is self-adjoint in the L2 space
with weight e−(n+1)t on the cylinder. This space is just the image of L2(KΩ) under
our change of variable. Therefore, the substitution of this operator as an operator
argument is well defined. Moreover, the resulting ψDO satisfies the estimates (2.7),
and the inductive step is complete.

Remark 2.4. Since the cone is non-compact (in the variable r), it follows that
the operator-valued symbol (2.6) has only almost compact variation in (ξ, v) in the
general case. (That is, the variation becomes compact if we multiply it by a cut-off
function compactly supported in r.) However, as we shall see shortly, the fibre
variation of the symbol (2.6) is compact if all its symbols σj

(
σ0(D)

)
are zero,

j = 1, . . . , k.

Definition 2.7. The conormal symbol σc

(
σ0(D)

)
∈ Ψ(M◦

0 × V × R, Ω) of the
family (2.6) is the family σc

(
σ0(D)

)
= P (x, 0, v, 0, p).

Compatibility conditions. We have defined the notion of ψDO with parameters on
a stratified manifold M. Such ψDO have symbols defined a priori on the cotangent
bundles of the open strata times the parameter space without the zero section. How-
ever, if we compare the representation (2.5) with the representation valid in U \M0
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by the inductive hypothesis, then we can see that these symbols can actually be
extended continuously (and smoothly) up to the boundary of the cotangent bundle
and hence are defined on the cotangent bundles of the corresponding closed strata.
Moreover, the following compatibility conditions hold at the points where a stratum
Mj meets a stratum Mi, j > i:

σl

(
σj(D)

)∣∣
Mi

= σl

(
σi(D)

)
, l = j, . . . , k. (2.10)

Naturally we write σj

(
σj(D)

)
= σj(D).

Main properties of the calculus of ψDO. Let Ψ(T ∗X × V ,KΩ) be the set of all
symbols of the form (2.6) over the manifold X = M0.

Proposition 2.1. The set Ψ(T ∗X × V ,KΩ) is a local C∗-algebra.

The norm is given by the supremum of the operator norm over all parameter
values.

Theorem 2.1 (main properties of ψDO). Pseudo-differential operators have the
following properties.

1. The set Ψ(V,M) of pseudo-differential operators on a stratified manifold M
is an algebra with respect to the usual composition of operators and is a local
C∗-algebra with respect to the supremum of the operator norm over the parameter.
Pseudo-differential operators compactly commute with the operators of multiplica-
tion by continuous functions on M.

2. The symbol map

σ : Ψ(V,M) →
k⊕

j=0

Ψ(T ∗Mj × V ,KΩj ),

D 7→
(
σ0(D), . . . , σk(D)

)
,

(2.11)

is a local C∗-algebra homomorphism and induces an isomorphism

σ : Ψ(V,M)
/
J(V,M) → Σ(V,M) ⊂

k⊕
j=0

Ψ(T ∗Mj × V ,KΩj
)

onto the local C∗-algebra of symbols satisfying the compatibility conditions (2.10).
Here J(V,M) ⊂ Ψ(V,M) is the ideal of compact-valued operator families vanishing
at infinity.

3. The algebra Ψ(V,M) is invariant under diffeomorphisms of M.

Definition 2.8. An operator D ∈ Ψ(V,M) is said to be elliptic if all its symbols
σj(D), j = 0, . . . , k, are invertible outside the zero sections of the corresponding
bundles.

The following assertion is a corollary of Theorem 2.1.

Theorem 2.2. 1. Elliptic operators on a compact stratified manifold M are Fred-
holm (for all values of the parameter).

2. If V 6= {0}, then an elliptic operator with parameter is invertible for large |v|.
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We shall also use the following proposition.

Proposition 2.2. Let Σ0 ⊂ Ψ(V,KΩ) be the set of symbols whose symbols corre-
sponding to the strata of Ω× R+ are zero. Then each symbol σ ∈ Σ0 has compact
variation in v.

Proof. By definition (see (2.6)), σ can be written as

σ(v) = P

(
rv, ir

∂

∂r
+ i

n+ 1
2

)
: L2(KΩ) → L2(KΩ)

for some operator function P (w, p) ∈ Ψ(V × R, Ω). Theorem 2.1 implies that
P (w, p) ∈ J(V × R, Ω) and satisfies the estimates (2.7) with respect to (w, p).

We must show that the derivative ∂σ/∂v is compact for v 6= 0. We have

∂σ

∂v
= r

∂P

∂w

(
rv, ir

∂

∂r
+ i

n+ 1
2

)
.

The symbol r∂P/∂w(rv, p) satisfies all the estimates needed for it to define
a bounded operator on L2(KΩ) (see (2.9)). Furthermore, it is compact-valued.
It remains to show that it tends to zero as r → 0 and as r → ∞. For r → 0,
this is obvious (because of the factor r), and for r → ∞, one must consider the
representation

r
∂P

∂w
(rv, p) =

1
|v|

|rv| ∂P
∂w

(rv, p) =
1
|v|

[
|w| ∂P

∂w

]
w=rv

and apply the following lemma to P (w, p).

Lemma 2.1. Let f ∈ C2(Rn) be an operator-valued function such that f(ξ) → 0
as ξ →∞ and

∣∣f ′′(ξ)∣∣ 6 C|ξ|−2 for large ξ. Then

|ξ|
∣∣f ′(ξ)∣∣ → 0 as ξ →∞.

Semiclassical quantization. One can consider the quantization (2.6) with a ‘semi-
classical’ parameter h:

Th : Ψ(V × R,Ω) → Ψ(V,KΩ) ⊂ B
(
L2(KΩ)

)
.

This map takes a family of operators with parameter on the base of the cone to
a family of operators on the infinite cone by the rule

(ThD)(v) := D

(
2
rv, ihr

1

∂

∂r
+ ih

n+ 1
2

)
. (2.12)

By the same argument as in the appendix of [8], one can show that this quantization
is asymptotic in L2, that is, the following estimates hold in the operator norm:

Th(a)Th(b) = Th(ab) + o(1), h→ 0. (2.13)

We shall use this quantization to compute the boundary map in the K-theory
of algebras of ψDO.
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§ 3. Ell-groups

Let M be a stratified manifold, which we assume throughout to be compact.

Definition 3.1. Two elliptic operators

D : L2(M, E) → L2(M, F ), D′ : L2(M, E′) → L2(M, F ′)

acting between sections of vector bundles over the blow-up M of M are said to be
stably homotopic if there is a continuous homotopy4

D ⊕ 1E0 ∼ f∗(D′ ⊕ 1F0)e
∗

of elliptic operators, where E0, F0 ∈ Vect(M) are vector bundles and

e : E ⊕ E0 → E′ ⊕ F0, f : F ′ ⊕ F0 → F ⊕ E0

are vector bundle isomorphisms.

Here, ellipticity is understood as the invertibility of the components of a symbol
on all the strata (see Definition 2.8), and we consider only homotopies in the class
of elliptic ψDO.

3.1. Even groups Ell0(M). Stable homotopy is an equivalence relation on the
set of all elliptic pseudo-differential operators acting between sections of vector
bundles. Let Ell0(M) be the quotient by this equivalence relation. This quotient is
a group with respect to the direct sum of elliptic operators. The inverse is defined
as an almost inverse operator (that is, an inverse modulo compact operators).

3.2. Odd groups Ell1(M). In a similar way, one defines the odd elliptic theory
Ell1(M) as the group of stable homotopy classes of elliptic self-adjoint operators.
In this case, stabilization is in terms of the operators ± Id.

Remark 3.1. An equivalent definition of the odd Ell-group can be given in terms
of elliptic families on M parametrized by the circle S1, modulo constant families.

The homotopy classification problem for elliptic operators is the problem of com-
puting the groups Ell∗(M).

§ 4. Main theorem

4.1. A map into K-homology. Let

D : L2(M, E) → L2(M, F )

be an elliptic operator, as in the preceding section. By Theorems 2.2 and 2.1, part 1,
this operator can be treated as an abstract elliptic operator in the sense of Atiyah [1]
on M. Hence it determines an element in the K-homology of M. The correspond-
ing Fredholm module is defined in the standard way. Namely (see [22]), if D is
self-adjoint (and E = F ), then we consider the normalization

D = (Pker D +D2)−1/2D : L2(M, E) → L2(M, E), (4.1)

where Pker D is the projection onto the null-space of D.
4We can and shall always assume that the homotopies of all symbols and their derivatives are

continuous in the corresponding norms.
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In the general case, we consider the self-adjoint operator

D =
(

0 (Pker D +D∗D)−1/2D∗

D(Pker D +D∗D)−1/2 0

)
:

L2(M, E ⊕ F ) → L2(M, E ⊕ F ), (4.2)

which is odd with respect to the Z2-grading of the space L2(M, E) ⊕ L2(M, F ).

Proposition 4.1. 1. The operators (4.1) and (4.2) determine elements in K-
homology denoted by [D]∈K∗(M), where ∗=1 for self-adjoint operators and ∗=0
in the general case.

2. There is a well-defined group homomorphism

Ell∗(M)
ϕ→ K∗(M), D 7→ [D].

Proof. The operators D in (4.1) and (4.2) are self-adjoint and act on ∗-modules over
the C∗-algebra C(M). To complete the proof of part 1, it suffices to verify that

[D, f ] ∈ K, (D2 − 1)f ∈ K (4.3)

for each f ∈ C(M), where K is the ideal of compact operators. These relations
easily follow from the composition formula for pseudo-differential operators since
D is a pseudo-differential operator. The map is well defined because homotopies
of elliptic operators induce continuous homotopies of the corresponding Fredholm
modules and, therefore, result in the same element in K-homology. Bundle iso-
morphisms give degenerate Fredholm modules. (We recall [22] that a module is
degenerate if both the left-hand sides in (4.3) are zero.)

4.2. The classification theorem. The following theorem solves the classification
problem for stratified manifolds.

Theorem 4.1. The map
Ell∗(M)

ϕ
' K∗(M)

that takes each elliptic operator D to the element defined in Proposition 4.1 is an
isomorphism.

The non-degeneracy of the index pairing K0(M)×K0(M) → Z (on the torsion-
free parts of the groups) yields the following assertion.

Corollary 4.1. Two elliptic operators D1 and D2 are stably rationally homotopic
if and only if their indices with coefficients in any vector bundle over M coincide.

We shall obtain Theorem 4.1 as a special case of the more general theorem stated
below.

4.3. Classification of partially elliptic operators. An operator D on M is
said to be elliptic on the set M \Mj if the components σk(D), . . . , σj+1(D) of its
symbol are invertible on their domains, that is, everywhere outside the zero sections
of the respective bundles T ∗Mk, . . . , T

∗Mj+1.
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Let Ell∗(M,Mj) be the group of stable homotopy classes of pseudo-differential
operators that are elliptic on M \Mj . Here we mean that the homotopies are also
taken in this class.

By analogy with the map ϕ constructed in Proposition 4.1, we define a map

Ell∗(M,Mj)
ϕ→ K∗(M \Mj).

Here the operators (Pker D + D∗D)−1/2 must be replaced by self-adjoint pseudo-
differential operators with k − j leading components of the symbol equal to(

σk(D)∗σk(D)
)−1/2

, . . . ,
(
σj+1(D)∗σj+1(D)

)−1/2
.

We note that both constructions give the same K-homology element for an oper-
ator elliptic on the whole of M.

Theorem 4.2. For each j, −1 6 j 6 k − 1, there is an isomorphism

Ell∗(M,Mj)
ϕ
' K∗(M \Mj).

The proof of Theorem 4.2 is given in §§ 5–7. First, in § 5, we represent the
Ell-groups as the K-groups of certain algebras. (This is a non-commutative ana-
logue of the Atiyah–Singer difference construction.) This enables us to define exact
sequences for Ell-groups. Then we prove the theorem by induction on the strata
(§§ 6 and 7).

§ 5. Connection between the Ell-groups and K-theory

5.1. The Ell-groups as K-groups of C∗-algebras. Pseudo-differential opera-
tors acting on sections of vector bundles can be described in terms of the embedding

C∞(M) ⊂ Ψ(M)

of algebras of scalar operators. (The embedding corresponds to the usual action of
functions as operators of multiplication.) Namely, an arbitrary zero-order ψDO
acting between spaces of sections of vector bundles can be represented in the form

D′ : ImP → ImQ,

where P andQ are matrix projections (P 2 = P andQ2 = Q) with entries in C∞(M)
and D′ is a matrix operator with entries in Ψ(M).

Let

Σ(M \Mj)
def= Im(σk, . . . , σj+1) ⊂

⊕
l>j+1

C∞(
S∗Ml,B

(
L2(KΩl

)
))

be the algebra generated by the k − j leading components of the symbol.
Theorem 4 in [5] gives isomorphisms

Ell∗(M,Mj)
χ
' K∗

(
Con

(
C∞(M)

f→ Σ(M \Mj)
))

(5.1)
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between the Ell-groups and the K-groups of a special local C∗-algebra. Here

f : C∞(M) → Σ(M \Mj)

is the embedding taking a smooth function on the blow-up M to the symbol of the
operator of multiplication by this function, and

Con(A
f→ B) =

{(
a, b(t)

)
∈ A⊕ C0

(
[0, 1), B

)
| f(a) = b(0)

}
is the mapping cone of the algebra homomorphism f : A→ B.

In many interesting cases, the right-hand side of (5.1) can be represented in an
equivalent form that does not contain the mapping cone.

Lemma 5.1. There is an isomorphism

K∗+1

(
Con

(
C∞(M) → Σ(M \Mj)

))
' K∗

(
Σ(M \Mj)

)
/K∗

(
C∞(M)

)
provided that there is a non-vanishing vector field on M . (This condition holds if,
for example, M has no components with empty boundary.)

Proof. A vector field M → S∗M defines a section Σ(M\Mj) → C∞(M). Thus the
exact sequence of the mapping cone for the embedding of algebras splits. This gives
the desired isomorphism.

Remark 5.1. In the odd case, the composite of this isomorphism with χ shows
that, modulo stable homotopy, elliptic self-adjoint operators are isomorphic to
symbols-projections modulo projections determining sections of vector bundles
(compare with [23]).

5.2. Exact sequence of the pair in Ell-theory. Let us construct an exact
sequence corresponding to the pair of spaces

Mj \Mj−1 ⊂ M \Mj−1

in the elliptic theory. We define the maps in the desired sequence in terms of
maps in K-theory. To this end, we consider the commutative diagram

0 → ker(σk, . . . , σj+1) → Σ(M \Mj−1)
(σk,...,σj+1)−−−−−−−−→ Σ(M \Mj) → 0

↑ ↑ ↑
0 → 0 → C∞(M) = C∞(M) → 0

(5.2)

with exact rows.
The ideal ker(σk, . . . , σj+1) of symbols with the leading k− j components equal

to zero will be denoted by Σ0 for brevity. The diagram induces the exact sequence

0 → SΣ0 → Con
(
C∞(M) → Σ(M \Mj−1)

)
→ Con

(
C∞(M) → Σ(M \Mj)

)
→ 0
(5.3)

of the mapping cones of the vertical embeddings. Here SΣ0 = C0

(
(0, 1),Σ0

)
stands

for the suspension.
According to (5.1), the K-groups of the mapping cones in (5.3) classify elliptic

operators on M \Mj−1 and M \Mj respectively. The K-groups of the ideal also
classify elliptic operators.
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Lemma 5.2. The K-groups of SΣ0 classify elliptic operators on M\Mj−1 whose
symbols (σk, . . . , σj+1) are induced by multiplication by constant functions in C∞(M).

Proof. To be definite, we consider the even group K0(SΣ0). Then K0(SΣ0) =
K1(Σ0) = K1(Σ+

0 ), where Σ+
0 stands for the algebra with the identity adjoined.

It now follows from the definitions of K1 and Σ0 that K1(Σ+
0 ) classifies the elliptic

operators described in the lemma.

By Lemma 5.2, we can define the map (compare with Proposition 4.1)

ϕ : K∗(SΣ0) → K∗(Mj \Mj−1) (5.4)

that restricts elliptic operators to a neighbourhood U of Mj \ Mj−1, where U
possesses the structure of a bundle π : U → Mj \Mj−1 with conical fibre. We note
that the structure

C0(Mj \Mj−1)
π∗

→ C(U) → B
(
L2(U)

)
of a C0(Mj \ Mj−1)-module on the corresponding L2-spaces (where the opera-
tor acts) is obtained by the pullback from the base of the bundle. The operator
has a well-defined restriction since, by construction, outside an arbitrarily small
neighbourhood of Mj \Mj−1 it is the operator of multiplication by some function.

In what follows (see Lemma 7.1) we shall show that there is an isomorphism

K∗(SΣ0) ' K∗
c (T ∗Mj) = Ell∗(Mj ,Mj−1). (5.5)

Therefore we can replace all K-groups by Ell-groups in the exact sequence induced
in K-theory by the sequence (5.3). As a result, we obtain the following periodic
six-term exact sequence relating the Ell-groups.

Ell0(Mj ,Mj−1) // Ell0(M,Mj−1)

((QQQQQQQQQQQQ

Ell1(M,Mj)

∂

66mmmmmmmmmmmm
Ell0(M,Mj)

∂vvmmmmmmmmmmmmm

Ell1(M,Mj−1)

hhQQQQQQQQQQQQQ

hhQQQQQQQQQQQQQ

hhQQQQQQQQQQQQQ

hhQQQQQQQQQQQQQ
Ell1(Mj ,Mj−1)oo oooooo

(5.6)
We do not dwell upon how to define all the maps in this sequence directly in terms
of elliptic operators.

§ 6. Induction

For j ranging from k down to −1, we shall prove by induction that the map ϕ
in Theorem 4.2 is an isomorphism on the set M \Mj .

For j = k, this is obvious. Let us prove the inductive step: the isomorphism
for j implies an isomorphism for j − 1.
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The pair Mj \Mj−1 ⊂ M \Mj−1 gives the diagram

· · · → Ell∗+1 (M, Mj)
∂−→Ell∗(Mj , Mj−1) → Ell∗(M, Mj−1) → Ell∗(M, Mj)

∂−→ · · ·
↓ ↓ ↓ ↓

· · · → K∗+1 (M \Mj)
∂−→K∗(Mj \Mj−1) → K∗(M \Mj−1) → K∗(M \Mj)

∂−→ · · ·
(6.1)

We note that the vertical maps in the diagram are defined by Proposition 4.1
and formulae (5.4) and (5.5). Once we have proved that the diagram commutes,
the inductive hypothesis can be combined with the five lemma to obtain that the
vertical map with values in K∗(M \Mj−1) is an isomorphism, as desired. Let us
establish the commutativity.

The commutativity of the square

Ell∗(M,Mj−1) −−−−→ Ell∗(M,Mj)y y
K∗(M \Mj−1) −−−−→ K∗(M \Mj)

is obvious since the horizontal arrows are just the forgetful maps.
It is also easy to prove the commutativity of the square

Ell∗(Mj ,Mj−1) −−−−→ Ell∗(M,Mj−1)y y
K∗(Mj \Mj−1) −−−−→ K∗(M \Mj−1)

(6.2)

which corresponds to the embedding i : Mj \Mj−1 → M \Mj−1. Indeed, consider
the composite of the arrows passing through the top right corner of the square (6.2).
It takes each elliptic operator on M\Mj−1 equal to a multiplication operator outside
a neighbourhood U of the stratum Mj \Mj−1 to the same operator with the natural
C0(M \ Mj−1)-module structure on the spaces between which the operator acts.
If we now restrict the operator to a neighbourhood of Mj \Mj−1 (which does not
change the K-homology element since the corresponding Fredholm module varies
by a degenerate module) and make a homotopy of the module structure to the
composite

C0(M \Mj−1)
i∗−→ C0(Mj \Mj−1)

π∗

−→ C(U) −→ B
(
L2(U)

)
,

where π : U → Mj \Mj−1 is the projection, then we obtain the element to which
the operator is taken by the composite of the arrows passing through the bottom
left corner of the square. This proves the commutativity of the square (6.2).

To justify the inductive step, it remains to verify the commutativity of the
squares containing the boundary maps in (6.1). This is the most technically involved
part of the proof, and it occupies the next section.
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§ 7. Comparison of the boundary maps

In this section we prove the commutativity of the squares containing the bound-
ary maps in (6.1). The computations are carried out in terms of the K-groups of
symbol algebras. First we outline the scheme of the proof, which is rather lengthy.

(i) We show that the K-homology boundary map is the composite of the restric-
tion to the boundary of the stratum and the direct image map (see § 7.1).

(ii) The K-theory boundary map is also the composite of the restriction map
and some boundary map ∂′ corresponding to the algebra Ψ(T ∗Mj ,KΩ) of symbols
on the stratum Mj (§ 7.2). Hence the comparison of the boundary maps in the
K-theory and K-homology is reduced to a computation on Mj .

(iii) The boundary map ∂′ is not so easy to work with directly. Therefore we
replace Ψ(T ∗Mj ,KΩ) by the simpler algebra Ψ(T ∗Mj × R,Ω) of families with
parameters, for which the boundary map ∂′′ is easier to describe. More precisely,
we define an asymptotic homomorphism of one algebra to the other (§ 7.3) and show
that the asymptotic homomorphism induces an isomorphism of K-groups (§ 7.4).

(iv) The boundary map ∂′′ corresponding to the algebra Ψ(T ∗Mj × R,Ω) is
expressed in § 7.5 in terms of the index of elliptic families with parameters. Then
the compatibility of the boundary map ∂′′ with the direct image in K-homology,
and hence the commutativity of the diagram (6.1), are obtained in § 7.5.

Let us proceed to a detailed proof of the commutativity of the diagram (6.1).

7.1. The boundary map in the lower row of the diagram (6.1). We start
with some notation. Let U be a neighbourhood of the open stratum Mj \Mj−1 =
M◦

j , fibred with a conical fibre over the stratum. Let π : U → Mj \ Mj−1 be the
projection. The corresponding bundle of cone bases will be denoted by

π′ : Ξ → Mj \Mj−1.

A typical fibre of the bundle will be denoted by Ω. One obviously has U \M◦
j '

R+ × Ξ. Then the boundary map ∂ : K∗(M \ Mj) → K∗+1(Mj \ Mj−1) is equal
to the composite

K∗(M \Mj) −→ K∗(U \M◦
j ) = K∗+1(Ξ)

π′
∗−→ K∗+1(Mj \Mj−1) (7.1)

of the restriction to U \M◦
j , the periodicity isomorphism and the direct image map.

One can readily obtain this decomposition from the fact that the boundary map is
natural.

7.2. Reduction to the boundary. Let us compute the boundary map in the
K-theory of algebras. Since the boundary map

∂ : K∗
(
Con

(
C∞(M) → Σ(M \Mj)

))
→ K∗+1(SΣ0)

is natural, it is equal to the composite

K∗
(
Con

(
C∞(M) → Σ(M \Mj)

))
−→ K∗

(
Con

(
C∞(∂jM) → ΣMj

)) ∂′

−→ K∗+1(SΣ0) (7.2)
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with the restriction of the symbols to Mj , where ΣMj ≡ Σ(T ∗Mj ,Ω) is the algebra
of symbols of ψDO on Ω with parameters in T ∗Mj (from now on, we fix some
isomorphism T ∗Mj ' T ∗Mj) and ∂jM ⊂ ∂M is the closure of π−1M◦

j . We note
that ∂jM is a manifold fibred over Mj with fibre isomorphic to the blow-up of
the stratified manifold Ω.

7.3. The asymptotic homomorphism. We recall that Ψ(T ∗Mj ,KΩ) is the
algebra of jth symbols on Mj . To compute the boundary map ∂′, we replace
the algebra Ψ(T ∗Mj ,KΩ) (without changing its K-group) by an algebra of pseudo-
differential operators with parameters, for which the boundary map is simpler.

To this end, we consider the map (see (2.12))

Th : Ψ(T ∗Mj × R,Ω) −→ Ψ(T ∗Mj ,KΩ), h ∈ (0, 1],

(Thu)(ξ) = u

(
2
rξ, ihr

1

∂

∂r
+ ih

n+ 1
2

)
, (ξ, p) ∈ T ∗Mj × R,

where Ψ(T ∗Mj × R,Ω) is the algebra of smooth families of ψDO on the fibres Ω
with parameters in T ∗Mj × R. As h→ 0, we have

Th(ab) = Th(a)Th(b) + o(1),
(
Th(a)

)∗ = Th(a∗) + o(1), (7.3)

where a, b ∈ Ψ(T ∗Mj × R,Ω) are arbitrary and o(1) refers to the uniform operator
norm.

This semiclassical quantization is a special case of the so-called asymptotic homo-
morphisms, which play an important role in the theory of C∗-algebras [24]–[26]. In
particular, it follows from (7.3) that Th induces a K-group homomorphism

T : K∗
(
Ψ(T ∗Mj × R,Ω)

)
→ K∗

(
Ψ(T ∗Mj ,KΩ)

)
.

Now let us consider the commutative diagram

0 −−−−→ J(T ∗Mj × R,Ω) −−−−→ Ψ(T ∗Mj × R,Ω) −−−−→ ΣMj
−−−−→ 0yTh

yTh

yth

0 −−−−→ Σ0 −−−−→ Ψ(T ∗Mj ,KΩ) −−−−→ ΣMj −−−−→ 0
(7.4)

where th is the induced map on the symbols of families. (It is an algebra isomor-
phism.)

The algebra C∞(∂jM) is embedded in each of the algebras Ψ(T ∗Mj × R,Ω),
Ψ(T ∗Mj ,KΩ) and ΣMj . The diagram of the mapping cones of these embeddings
gives the square

K∗
(
Con

(
C∞(∂jM) → ΣMj

)) ∂′′

−−−−→ K∗
(
C0(T ∗Mj × R)

)∥∥∥ yT

K∗
(
Con

(
C∞(∂jM) → ΣMj

)) ∂′

−−−−→ K∗+1(SΣ0)

(7.5)
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ofK-groups. (The horizontal arrows are just the boundary maps in the corresponding
sequences.) Here we have used the isomorphism

K∗
(
J(T ∗Mj × R,Ω)

)
' K∗

(
C0(T ∗Mj × R)

)
induced by the embedding J(T ∗Mj × R,Ω) ⊂ C0(T ∗Mj × R,K) of the local C∗-
algebra in its closure.

The square (7.5) commutes since the boundary map in K-theory is natural with
respect to asymptotic homomorphisms (for example, see [27]).

7.4. The map T : K∗
(
C0(T ∗Mj × RRRRRRR)

)
→ K∗(Σ0). First let us compute the

groups K∗(SΣ0). To this end, we consider the short exact sequence

0 −→ kerσc −→ Σ0
σc−→ J(Mj × R,Ω) −→ 0 (7.6)

of local C∗-algebras. (Here σc is the conormal symbol map; see Definition 2.7.) The
algebra kerσc is formed by families of compact operators.5 Since the embeddings

kerσc ⊂ C
(
S∗Mj ,K(KΩ)

)
, J(Mj × R,Ω) ⊂ C0

(
Mj × R,K(Ω)

)
induce isomorphisms in K-theory, it follows that the K-theory long exact sequence
corresponding to (7.6) can be written as the upper row of the diagram

−−−−→ K∗(S∗Mj) −−−−→ K∗(Σ0) −−−−→ K∗
c (Mj × R) −−−−→∥∥∥ yL

∥∥∥
−−−−→ K∗(S∗Mj) −−−−→ K∗+1

c (T ∗Mj) −−−−→ K∗
c (Mj × R) −−−−→

(7.7)

where the lower row is the sequence of topological K-groups of the pair S∗Mj ⊂
B∗Mj formed by the unit sphere and ball bundles in T ∗Mj , and the map L is the
difference construction for ψDO with operator-valued symbols in the sense of Luke
(see [20] and [28]). We recall that this map is defined as follows. An element σj

of the unitalized algebra Σ+
0 is an operator-valued function on S∗Mj with compact

variation in the fibres of S∗xMj (see Proposition 2.2). If this function is invertible,
then L takes each element [σj ] ∈ K1(Σ0) to the index

L[σj ] := ind σ̃j ∈ Kc(T ∗Mj) (7.8)

of an extension σ̃j of σj to the unit ball bundle in T ∗Mj preserving the compact
variation property in the fibres. (The extension is a family that is Fredholm inB∗Mj

and invertible on S∗Mj . Thus its index is an element of the K-group with compact
supports mentioned above.) The index in (7.8) is independent of the choice of the
extension. For even K-groups, the map L is defined in a similar way.

Lemma 7.1. The diagram (7.7) commutes, and hence L is an isomorphism.

5Just as in the theory of operators on manifolds with isolated singularities, a family in Σ0 is
compact if and only if its conormal symbol is zero.
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Proof. 1. The commutativity of the squares

K∗(S∗Mj) −−−−→ K∗(Σ0)∥∥∥ yL

K∗(S∗Mj) −−−−→ K∗+1(T ∗Mj)

follows from the fact that L coincides with the Atiyah–Singer difference construction
in the case of finite-dimensional symbols.

2. Now let us consider the square

K∗(Σ0)
σc−−−−→ K∗

c (Mj × R)yL

∥∥∥
K∗+1

c (T ∗Mj)
j∗−−−−→ K∗+1(Mj)

where j : Mj → T ∗Mj is the embedding of the zero section. Its commutativity
follows from the index formula (for example, see [29])

β indDy = indσc(Dy) ∈ K1
c (Y × R) (7.9)

for a family Dy, y ∈ Y , of elliptic operators with unit interior symbol on the infinite
cone. Here Y is a compact parameter space and β is the periodicity isomorphism
K(Y ) ' K1

c (Y × R).
Indeed, if a ∈ K1(Σ0), then the element j∗L(a) (resp. σc(a)) is the left-hand

side (resp. the right-hand side) of the index formula (7.9). If a ∈ K0(Σ0), then one
must first pass to the suspension and then apply formula (7.9).

3. We now consider the square

K∗+1
c (Mj × R) ∂−−−−→ K∗(S∗Mj)∥∥∥ ∥∥∥
K∗(Mj)

p∗−−−−→ K∗(S∗Mj)

where p : S∗Mj →Mj is the natural projection. Its commutativity also follows from
the index formula (7.9). Indeed, for an element a ∈ K1

c (Mj × R), which can be
represented by a family of invertible conormal symbols with unit symbol, we obtain
the element p∗ ind a ∈ K0(S∗Mj) by passing through the left bottom corner of the
square. On the other hand, passing through the upper right corner, we obtain

∂a = p∗ ind â,

where â is an operator family on KΩ with unit interior symbol and conormal sym-
bol a. This equality holds because the boundary map ∂ takes an invertible symbol
to the index of the corresponding operator. Applying (7.9), we obtain the desired
relation p∗ ind a = p∗ ind â ∈ K0(S∗Mj). For a ∈ K0

c (Mj × R), one must first pass
to the suspension.
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Lemma 7.2. The map

T : K∗
(
C0(T ∗Mj × R)

)
→ K∗(Σ0)

is the inverse of the isomorphism L (see (7.7)).

Proof. For example, consider the map

T : K1

(
C0(T ∗Mj × R)

)
→ K1(Σ0).

Let us prove that LT is the identity map on the K-group.
1. Indeed, if u(ξ, p) ∈

(
1 + J(T ∗Mj × R,Ω)

)
is a symbol invertible for (ξ, p) ∈

T ∗Mj × R and equal to the identity on the complement of a compact set, then

LT [u] = indu
(

2
rξ, ihr

1

∂

∂r
+ ih

n+ 1
2

)
∈ K0

c (T ∗Mj)

(for sufficiently small h), where [u] ∈ K1
c (T ∗Mj × R). The index element is well

defined since the operator-valued function (Thu)(ξ) has compact variation on the
fibres of T ∗Mj \0 and is invertible for ξ 6=0 (see Proposition 2.2 and formula (2.13),
respectively).

2. Let Thu be the family of Fredholm operators parametrized by T ∗Mj \ 0 and
equal to Thu for |ξ| < 1 and to

u

((2
r + |ξ| − 1

)
ξ, ihr

1

∂

∂r
+ ih

n+ 1
2

)
for |ξ| > 1. For sufficiently small h, this family is invertible for all ξ. (This follows
since the support of 1−u is bounded and the estimates (2.13) hold uniformly with
respect to the parameter λ, const > λ > 0, if we replace rξ by (r + λ)ξ in (2.12).)
By construction,

indThu = indThu.

However, the family Thu consists of identity operators for ξ lying outside a compact
set. Hence its index can be calculated by (7.9) and is equal to the index of the family
of conormal symbols u(ξ, p) (modulo the Bott periodicity isomorphism), that is, it
does give the original element LT [u] = [u] of the K-group.

7.5. Comparison of the boundary maps. Let us compare the expressions
obtained above for the boundary maps in K-homology and K-theory of algebras
(see (7.1) and (7.2), (7.5)). We ignore the restriction maps in §§ 7.1 and 7.2. Con-
sider the diagram (from now on, I = (0, 1))

K∗(Ξ× I)
π′
∗−−−−→ K∗(M◦

j × I)

ϕ

x xϕ

K∗
(
Con

(
C∞(∂jM) → ΣMj

)) ∂′′

−−−−→ K∗
c (T ∗Mj × R)∥∥∥ xL

K∗
(
Con

(
C∞(∂jM) → ΣMj

)) ∂′

−−−−→ K∗(Σ0)

(7.10)
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containing the boundary maps in the middle and bottom rows. Only the vertical
arrow ϕ in the left column has not yet been defined. To define it, we note that the
groups K∗

(
Con

(
C∞(∂jM) → ΣMj

))
classify the elliptic families σ(x, ξ, p) of oper-

ators on Ω with parameters (x, ξ, p) ∈ T ∗Mj ×R. Such a family defines an operator
on the product Ξ× I by the formula

σ

(
x, −i ∂

∂x
, −i ∂

∂t

)
.

This operator specifies an element of K∗(Ξ× I) provided that the family σ(x, ξ, p)
is elliptic.

The bottom square in (7.10) is isomorphic to (7.5) by Lemma 7.2. Hence it com-
mutes. We claim that the top square also commutes. Let z ∈ K∗

(
Con

(
C∞(∂jM) →

ΣMj

))
be the element defined by an elliptic family σ(x, ξ, p). Since the family is

elliptic, it is Fredholm and the boundary map ∂′′ applied to z is just the index
of the family with parameters in T ∗Mj × R. On the other hand, the element π′∗z
corresponds to the elliptic operator

σ

(
x, −i ∂

∂x
, −i ∂

∂t

)
regarded as an operator on C0(M◦

j × I)-modules. That these two elements actually
coincide is a consequence of the following general result.

Theorem 7.1. Let p(x, ξ) be an operator-valued symbol, elliptic in the sense of
Luke [20], on a compact manifold X with corners. Then[

p

(
x,−i ∂

∂x

)]
= ϕ

(
ind p(x, ξ)

)
∈ K∗(X◦), (7.11)

where X◦ is the interior of the manifold, square brackets stand for an element
in K-homology and ϕ : K∗

c (T ∗X) → K∗(X◦) is the Poincaré isomorphism on man-
ifolds with corners (for example, see [30]).

The proof of Theorem 7.1 is given in the appendix (see § 9).
Thus, Theorem 7.1 ensures that diagram (7.10) commutes. Hence the squares

containing the boundary maps in the diagram (6.1) also commute.
The proof of Theorem 4.2 is complete.

§ 8. Applications

8.1. Topological obstruction to the Fredholm property. Let M ⊃ X be
a stratified pair. It is of interest to find conditions under which a given elliptic
operator on M \ X can be transformed into an elliptic operator on M without
changing the components of the symbol over M \ X. This question is similar
to the Atiyah–Bott problem of determining topological conditions on the symbol
on a smooth manifold with boundary under which there is a Fredholm boundary
condition for the corresponding operator.



Homotopy classification of elliptic operators 1189

We shall answer a similar question for elements of Ell-groups in the case of an
arbitrary stratification. To this end, let us consider the diagram

Ell(M) //

ϕ'
��

Ell(M, X)

ϕ '
��

K0(M) // K0(M \X) ∂ // K1(X)

It obviously commutes since we are dealing with forgetful maps. Hence the non-
vanishing of ∂ϕ(a) is a necessary and sufficient condition for the existence of a lift
of a ∈ Ell(M, X) to the group Ell(M).

The boundary map in K-homology plays a similar role to the obstruction in
other problems (see [31]–[33]).

We note that the vanishing of ∂ϕ(a) is a condition on the interior symbol of the
operator (a finite-dimensional condition) if X = Mk−1 is the set of all singularities
of the manifold M = Mk.

8.2. Cobordism invariance of the index. Let us consider a generalization
of the usual cobordism invariance of the index of Dirac operators on a smooth
manifold. Suppose that X is a smooth stratum. Then we have a commutative
diagram

Ell1(M, X) //

'
��

Ell(X)

'
��

K1(M \X) // K0(X) // K0(M)

Since the map K0(X) → K0(M) preserves the index (∈ Z), we see that the index
of an elliptic operator D on X is zero provided that the element [D] ∈ Ell(X) is
the image of some element of Ell1(M, X).

Remark 8.1. For non-smooth X, the construction of such a commutative diagram
is an open problem (not even the exact sequence in Ell-theory is known).

§ 9. Appendix. Proof of Theorem 7.1

We note that Theorem 7.1 is a refinement of Luke’s theorem [20] on the index
of operators with operator-valued symbols. (The latter is obtained from equa-
tion (7.11) if one assumes that ∂X = ∅ and applies the index map to the K-
homology elements.)

If the symbols are homogeneous for large |ξ|, then the proof is a verbatim repe-
tition of [20]. The general case (non-homogeneous symbols) can be reduced to the
case of homogeneous symbols by a method suggested in [28], where it was adapted
to the computation of the index. The reduction used in the present paper is based
on the following standard fact of Kasparov’s KK-theory.

Proposition 9.1. Let Pt be a ∗-strongly continuous homotopy of bounded operators
such that the families

f [PtP
∗
t − 1], f [P ∗t Pt − 1], [f, Pt], [f, P ∗t ] ∀f ∈ C0(X◦)
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are norm-continuous families of compact operators. Then the corresponding element
in K-homology is independent of the parameter:

[P0] = [P1] ∈ K∗(X◦).

Proof. The hypotheses mean that the family {Pt} defines an operator on the(
C0(X◦), C

(
[0, 1]

))
-bimodule C0

(
X◦× [0, 1], L2(H)

)
. This operator defines a homo-

topy (in the sense of KK-theory) between P0 and P1 (for example, see [34]). The
fact that the K-homology element [Pt] is independent of the parameter t follows
from the equivalence of the definitions of K-homology in terms of homotopies and
in terms of operator homotopies.

Let us apply Proposition 9.1 in our case. We can assume without loss of general-
ity that the symbol p(x, ξ) is smooth up to the zero section in T ∗X and normalized:
p∗(x, ξ)p(x, ξ) = 1 for large |ξ|. Let ψ(t), t > 0, be a smooth positive function
such that

ψ(t) =

{
1 for t < 1,
1/t for t > 2.

We consider the symbol

pε(x, ξ) = p
(
x, ξψ

(
ε|ξ|

))
.

A straightforward computation (compare with [35], Theorem 19.2.3) establishes
the following properties.

1. We have p0 = p. The symbol pε with ε > 0 is homogeneous for large |ξ| and
elliptic for sufficiently small ε.

2. The symbols pε and p∗ε are uniformly bounded in the class of symbols of
compact variation in the fibres of T ∗X for ε ∈ [0, 1].

3. The compactly supported compact-valued symbols pεp
∗
ε − 1 and p∗εpε − 1 are

independent of ε for sufficiently small ε > 0.
We define the operator

Pε = pε

(
x,−i ∂

∂x

)
. (9.1)

(We fix coordinate neighbourhoods and a subordinate partition of unity indepen-
dent of ε on X.) We claim that, for sufficiently small ε > 0,

(a) ind pε ∈ Kc(T ∗X) is independent of ε,
(b) the family Pε satisfies the hypotheses of Proposition 9.1.
Theorem 7.1 now follows since, on the one hand, the symbol pε is homogeneous

at infinity for ε > 0 and hence [Pε] = ϕ(ind pε) by the first part of the proof and,
on the other hand, passage to the limit as ε → 0 is possible by Proposition 9.1.
Thus it remains to prove (a) and (b).

Assertion (a) follows from the homotopy invariance of the index since variations
of ε change the symbol pε only outside a sufficiently large ball

{
|ξ| > R

}
, where

R ' 1/ε, and leave it invertible outside this ball.
Assertion (b) can be proved as follows.
1. The families Pε and P ∗ε are strongly continuous since they are uniformly

bounded and each summand in their definitions in coordinate patches on X is
strongly continuous on the set of functions whose Fourier transform is compactly
supported.
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2. If f ∈ C0(X◦), then the operators f(PεP
∗
ε − 1) and f(P ∗ε Pε − 1) are compact

and depend continuously on ε. Indeed, their compactness is obvious and their
continuity follows from the fact that their complete symbols and their derivatives
in local coordinates are uniformly continuous in ε on compact subsets in ξ, are
uniformly bounded and decay as ξ →∞, and hence they are uniformly continuous
in ε for all ξ.

The compactness and continuity of the commutators [f, Pε] and [f, P ∗ε ] can be
proved along the same lines. The proof of Theorem 7.1 is complete.
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