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Theoretical search for a n-nn stable bound state? 

G Kalbermann and J M Eisenberg 
Department of Physics and Astronomy. Tel Avii)  Lniuersit]. Tel A I i v .  Israel 

ReceiLed 20 June 1975, in final form 24 July 1978 

Abstract, The  Heitler-London-Pauling variational method is applied to  the rr-nn system 
in a non-relativistic approach and n o  true bound state is found fo r  conient ional  para- 
metrisations of the rrN interaction. 

The enhancement of the attractive 3,3 n N  interaction in the n - n n  system raises 
the intriguing possibility of the existence of a bound state in that system. Since 
the pion has a relatively small mass, attempts to confine it within a small binding 
radius will tend to raise the kinetic energy of the system sharply, thus resisting binding 
(and possibly also obliging a relativistic formulation). O n  the other hand, the p-wave 
attractive 7iN interaction (with j = t = $) is a k a  expected to grow quadratically with 
momentum--until cut off by the vertex form factor--and will thus foster binding. 
while the neutron-neutron interaction is sufficiently attractive to offset most of the 
nucleon kinetic energy. 

If such a bound state exists, it will have the appearance of a particle with 
T =  A = 2, T,  = -2, and a mass M 5 2 M , ,  + m,- = 2019 MeV. This state can then 
decay only through weak interactions since no negatively charged nucleon exists, 
and should therefore have a lifetime comparable with that of the charged pion 
(-2.6 x s). One  could, of course. consider the charge-reflected form of this 
state with T, = +2, namely a n'pp bound state, but here the Coulomb energy \vi11 
work to the disadvantage of binding; other members of the family with T, = k 1,0 
will have broad widths due to hadronic decays such as n - n p + n n  and so forth. 
While the present work was in progress. a related effort by Ericson and Myhrer 
(1978), in which the possibility of hadronically bound pion states in neutron-rich 
nuclei is broached, came to  our attention. The present calculation may be seen as 
an  extreme extension of that situation in which high neutron densities are generated 
through the mutual attractions themselves. Earlier studies of nNN bound states were 
carried out by Gale and Duck (1968) in an  approach based on  Faddeev equations, 
but without the inclusion of the attractive and important nucleon-nucleon interaction. 
(After the present work was completed, there came to our attention a closely related 
effort by Ueda (1978) in which the Heitler-London-Pauling method is applied to 
the nNN system, but for a nN force parametrised in terms of a local potential (with 
a range of about 1 fm) as opposed to the nonlocal form used here with a cut-off 
which we take as a poorly known input parameter.) 
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We attempt to  establish the existence of a bound state in the n -nn  system by 
application of the Heitler-London-Pauling variational method (Pauling 1928, Pauling 
and Wilson 1935) to the non-relativistic Hamiltonian 

H = T +  V,, + V,z + V" (1) 

where the kinetic energy is 

T =  (P2/M, , )  + ( q 2 / 2 m d  

in coordinates such that the relative nucleon momentum is p = &pl - p 2 ) ,  q is the 
pion momentum and the total momentum P = p1 + p z  + q is taken to vanish. The 
neutron mass is labelled M,,  and the pion reduced mass in the system is 
mred = 2m,M,,/(2M1, + m"). The pion interactions with each of the neutrons are taken 
in separable p-wave forms which, in the nN centre-of-mass system, are given by 

where k is the centre-of-mass momentum. Unfortunately, fully convincing information 
on  the parametrisation of the nN cut-off does not yet exist, so we have selected 
two options in (3), linear or quadratic (v  = 1 or 2), and have considered various 
values of A. The coefficient c which gives the interaction strength is determined 
by using (3) as the potential in a Lippmann-Schwinger equation for the nN scattering 
amplitude at zero energy and comparing with recent low-energy data (Bertin et a1 
1976) for the 3,3 channel. (The j = 3, t = $, p-wave channel, though repulsive, is 
considerably weaker than the j = t = 4 channel. The repulsive j = 4, t = 4, s-wave 
channel we assume to act only minimally because the two neutrons are expected 
to be close together and the pion in a relative I = 1 state with respect to them 
for overall J" = l'.) This yields 

C' CI 
c = -  for v = 1, c =  for v = 2 (4) 

1 - (pC '~3 /12n)  1 - (pc'A3/96n) 

for the linear or quadratic cut-offs, c' = -0.968 n/pm;, with p = mnMn/(Mn + m,). 
Since we anticipate that the two neutrons will be in a relative S state, the Pauli 
principle ensures that they will form a spin singlet so that the spin term in the 
nN amplitude averages to  zero. When the interaction of (3) is used for the three-body 
system the translation factor exp[i(q' - 4). vi] appears for nucleon i at y i  and the 
momentum k is replaced by the Galilei invariant momentum (M,q - mnpi)/(M,, + m,). 
Lastly, in (1) the neutron-neutron T =  1 interaction V,, is taken in the ' S  state 
to be of the Reid (1968) hard-core form. 

The Heitler-London-Pauling variational method (Pauling 1928) uses as a trial 
wavefunction a superposition of the two wavefunctions involving a 'bound state' 
for the exchanged particle at each nucleon site. For  our case there is, of course, 
no .nN bound state in the 3,3 channel, but we use the method as suggestive for 
the trial wavefunction 

( 5 )  1 
IC/i(q, = x N N ( r ) ( C l $ j . ( q ,  Tv) f cZ$j . (q ,  -tu)) 

where r is the internucleon separation vector and 
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Here i. refers to the three components of the p-wave nN function. N ,  is a normalisa- 
tion constant such that 

Sldi,12 dqi(2nj3 = 1, 

and y~ is a variational parameter. The cut-off is taken linearly or quadratically in 
parallel to the choice made in (3) and with the same value of A. The nucleon-nucleon 
part of the trial wavefunction is taken to be of the form 

I' < I ' ,  
(7) (" I' > I" 

% N N ( r )  = 
NN exp ( -  x r )  ( 1  - exp [ - ( r  - rc ) /~r ] )  

where I., is the Reid hard-core radius (Reid 1968). ( I  is fixed here arbitrarily at 0.63 fm 
by rough comparison with the deuteron wavefunction (Moravcsik 1958) since it 
depends primarily on the short-range features of the system (it could be treated--and 
indeed was here to  some degree---as yet another variational parameter), N:, is the 
normalisation factor such that i;c:N dr. = 1 and x is a variational parameter. as are 
c1.2 of (5). 

Varying c1,2 yields (Pauling and Wilson 1935) energy extrema 

where 

is the overlap integral. Our  procedure was to evaluate all but the final radial integral 
on 1 1 ' 1  analytically and to perform this last quadrature numerically. This was done 
for various values of the parameters y~ and x ,  as well as for the cut-off A, which 
in principle is a fixed input parameter. but in practice is known only rather loosely. 

No bound state is found when the parameter 17 is varied between 0 and 2000 MeV 
and x is varied between 0.05 and 3.5 fm-' .  with I I  = 0.63 fm and the cut-off A taken 
from 300 MeV to 2500 MeV. Minimal expectation values for the energy are about 
120 MeV and occur for A - 150Ck-1700 MeV. with small 17 and x - 1.5 fm-' .  the 
latter corresponding to a system with 5 1.8 fm. These may possibly indicate 
quasibound states at about 120 MeV or higher. much as found by Ueda (1978). 
(Ueda used a local n N  interaction to generate an  additional NN force due to non-vir- 
tual pion 'exchange', and thus was not restricted--as we are in the variational 
approach---to true bound states, but could search the resulting effective potential 
for resonances and quasibound states.) The experimental observation of a n -nn  
bound state may be possible through reactions such as n -  + d + n +  + (n-nn)  or 
n- + t --+ p + (n-nn), in which two-body final-state kinematics are achieved i f  a 
bound state exists. 
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